
JID:TCS AID:11504 /FLA Doctopic: Logic, semantics and theory of programming [m3G; v1.233; Prn:9/03/2018; 15:30] P.1 (1-19)

Theoretical Computer Science ••• (••••) •••–•••
Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

A logic for the stepwise development of reactive systems

Alexandre Madeira a,∗, Luís S. Barbosa a,b, Rolf Hennicker c, Manuel A. Martins d

a QuantaLab and HASLab INESC TEC, Univ. Minho, Portugal
b United Nations University, UNU-EGOV
c Ludwig-Maximilians-Universität München, Germany
d CIDMA – Dep. Mathematics, Univ. Aveiro, Portugal

a r t i c l e i n f o a b s t r a c t

Article history:
Received 13 April 2017
Received in revised form 14 November 2017
Accepted 1 March 2018
Available online xxxx

Keywords:
Specification
Reactive systems
Dynamic logic
Hybrid logic

D↓ is a new dynamic logic combining regular modalities with the binder constructor
typical of hybrid logic, which provides a smooth framework for the stepwise development
of reactive systems. Actually, the logic is able to capture system properties at different
levels of abstraction, from high-level safety and liveness requirements, to constructive
specifications representing concrete processes. The paper discusses its semantics, given
in terms of reachable transition systems with initial states, its expressive power and
a proof system. The methodological framework is in debt to the landmark work of
D. Sannella and A. Tarlecki, instantiating the generic concepts of constructor and abstractor
implementations by standard operators on reactive components, e.g. relabelling and
parallel composition, as constructors, and bisimulation for abstraction.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Almost 30 years ago, D. Sannella and A. Tarlecki claimed, in what would become a most influential paper in (formal)
Software Engineering [31], that “the program development process is a sequence of implementation steps leading from a specification
to a program”. Being rather vague on what was to be understood either by specifications (“just finite syntactic objects of some
kind” which “describe a certain signature and a class of models over it”) or programs (“which for us are just very tight specifications”),
the paper focuses entirely on the development process, based on a notion of refinement.

Indeed, the quest for suitable notions of implementation and refinement has been for more than four decades on the
research agenda for rigorous Software Engineering. This goes back to Hoare’s paper on data refinement [19], which influ-
enced the whole family of model-oriented methods, starting with VDM [21]. A recent reference [33] collects a number of
interesting refinement case studies in the B method, probably the most successful member of the family in what concerns
industrial applications.

In such model-oriented approaches, a specification is said to refine another one if every model of the latter is a model
of the former. Sannella and Tarlecki’s work complemented and generalised this view with the notions of “constructor” and
“abstractor implementations”:

“constructor implementations which involve a construction ‘on top of’ the implementing specification, and abstractor implemen-
tations which additionally provide for abstraction from some details of the implemented specification” [31].

* Corresponding author.
E-mail address: madeira @ua .pt (A. Madeira).
https://doi.org/10.1016/j.tcs.2018.03.004
0304-3975/© 2018 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.tcs.2018.03.004
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:madeira@ua.pt
https://doi.org/10.1016/j.tcs.2018.03.004

JID:TCS AID:11504 /FLA Doctopic: Logic, semantics and theory of programming [m3G; v1.233; Prn:9/03/2018; 15:30] P.2 (1-19)

2 A. Madeira et al. / Theoretical Computer Science ••• (••••) •••–•••
The idea behind a constructor implementation is that for representing a specification SP one may use one or several
given specifications and apply a construction on top of them to satisfy the requirements of SP. On the other hand, abstractor
implementations capture the fact that sometimes the requirements for a system are only satisfied up to an abstraction which
usually involves hiding of implementation details. Over time, many others contributed along similar paths, with Sannella
and Tarlecki’s specific view later consolidated in their landmark book [32]. All main ingredients were already there: i) the
emphasis on loose specifications; ii) correctness by construction, guaranteed by vertical compositionality, and iii) genericity,
as the development process is independent, or parametric, on whatever logical system better captures the requirements to
be handled.

The present article investigates this approach in the context of reactive software, i.e. systems which interact with their
environment along the whole computation, and not only in its starting and termination points [1]. The relevance of such an
effort is anticipated in Sannella and Tarlecki’s book [32] itself: “An example of an area for which a satisfactory, commonly accepted
solution still seems to be outstanding (despite numerous proposals and active research) is the theory of concurrency” (page 157). Dif-
ferent approaches in that direction have been proposed, of which we single out an extension to concurrency in K. Havelund’s
PhD thesis [17]. His work, however, focused essentially on functional requirements expressed by algebraic specifications and
implemented in a functional programming language.

As a matter of fact, the development of reactive systems, which are nowadays the norm rather than the exception, fol-
lowed a different path. Typical approaches start from the construction of a concrete model (e.g. in the form of a transition
system [34], a Petri net [29] or a process algebra expression [20,4]) upon which the relevant properties are later formulated
in a suitable (modal) logic and typically verified by some form of model-checking. Resorting to old software engineering
jargon, most of these approaches proceed by inventing & verifying, whereas this paper takes the alternative correct by con-
struction perspective.

Actually, our research hypothesis is that also in the domain of reactive systems, loose specification has an important
role to play, because it supports the gradual incorporation of further requirements and implementation decisions such that
verification of the correctness of a complex system can be done piecewise in smaller steps. Additionally, this allows for the
systematic documentation of design decisions, as a support to systems’ maintenance and refactoring.

Therefore, the challenge undertaken here is twofold. First, we propose a new logic to support the development of reac-
tive systems at different levels of abstraction. Then, we show how to adapt to this context Sannella and Tarlecki’s recipe
according to which “specific notions of implementation (...) corresponds to a restriction on the choice of constructors and abstractors
which may be used” [31].

To address these challenges, we introduce a new logic, D↓ , which is able not only to express abstract properties, such
as liveness requirements or deadlock avoidance, but also to describe the concrete, recursive process structures which im-
plement them. The logic combines modalities indexed by regular expressions of actions, as in dynamic logic [16], and state
variables and binders, characteristic of hybrid logic [7].

As a second contribution, the paper introduces a number of constructors and abstractors relevant to the development of
reactive systems. Interestingly, it turns out that requirements of Sannella and Tarlecki’s methodology for vertical composition
of abstractor/constructor implementations boils down to the congruence property of bisimilarity w.r.t. constructions on
labelled transition systems, like parallel composition and relabelling.

This article is an extended version of our previous work [24], presented at Ictac’2016. As such it includes the complete
proofs of all results, and two new sections: Section 5 discusses the expressive power of D↓ , while Section 6 introduces a
sound proof calculus for it.

Apart from those new sections, section 2 introduces D↓ , and sections 3 and 4, respectively, characterise the development
method, with a brief revision of the relevant background, and its tuning to the design of reactive systems. Finally, section 7
concludes and points out some issues for future work.

2. A dynamic logic with binders

2.1. D↓: syntax and semantics

D↓ logic is designed to express properties of reactive systems, from abstract safety and liveness requirements, down
to concrete design decisions specifying the (recursive) structure of processes. It thus combines modalities with regular
expressions, as originally introduced in dynamic logic [16], and binders in state variables. This logic retains from hybrid
logic [7], only state variables and the binder operator first studied by V. Goranko in [13]. These motivations are reflected in
its semantics. Differently from what is usual in modal logics, whose semantics is given by Kripke structures and satisfaction
evaluated globally in each model, D↓ models are reachable transition systems with initial states at which satisfaction is
evaluated.

Definition 1 (Model). For a finite set of atomic actions A, models are reachable A-labelled transition systems, i.e. triples
(W , w0, R) where W is a set of states, w0 ∈ W is the initial state and R = (Ra ⊆ W × W)a∈A is a family of transition relations
such that, for each w ∈ W , there is a finite sequence of transitions Rak (wk−1, wk), 1 ≤ k ≤ n, with wk ∈ W , ak ∈ A, such
that w0 = w0 and wn = w .

JID:TCS AID:11504 /FLA Doctopic: Logic, semantics and theory of programming [m3G; v1.233; Prn:9/03/2018; 15:30] P.3 (1-19)

A. Madeira et al. / Theoretical Computer Science ••• (••••) •••–••• 3
The set of (structured) actions, Act(A), induced by A is given by

α � a | α;α | α + α | α∗

where a ∈ A.
Let X be an infinite set of variables, disjoint with A. A valuation for an A-model M = (W , w0, R) is a function

g : X → W . Given such a g and x ∈ X , g[x 	→ w] denotes the valuation given by g[x 	→ w](x) = w and g[x 	→ w](y) = g(y)

for any other y
= x ∈ X .

Definition 2 (Formulas and sentences). The set FmD↓
(A) of A-formulas is given by

ϕ ::= tt | ff | x | ↓ x. ϕ | @xϕ | 〈α〉ϕ | [α]ϕ | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ

where x ∈ X and α ∈ Act(A). SenD
↓
(A) = {ϕ ∈ FmD↓

(A)|FVar(ϕ) = ∅} is the set of A-sentences, where FVar(ϕ) are the free
variables of ϕ , defined as usual with ↓ being the unique operator binding variables.

D↓ retains from hybrid logic the use of binders, but omits nominals: only state variables are used, even as parameters
to the satisfaction operator (@x). By doing so, the logic becomes restricted to express properties of states reachable from
the initial state, i.e. processes.

To define the satisfaction relation we need to clarify how composed actions are interpreted in models. Let α ∈ Act(A) and
M ∈ ModD

↓
(A). The interpretation of an action α in M extends the interpretation of atomic actions by Rα;α′ = Rα · Rα′ ,

Rα+α′ = Rα ∪ Rα′ and Rα∗ = (Rα)� , with the operations ·, ∪ and � standing for relational composition,1 union and Kleene
closure.

Given an A-model M = (W , w0, R), w ∈ W and g : X → W ,

• M, g, w |= tt is true; M, g, w |= ff is false;
• M, g, w |= x iff g(x) = w;
• M, g, w |=↓ x. ϕ iff M, g[x 	→ w], w |= ϕ;
• M, g, w |= @xϕ iff M, g, g(x) |= ϕ;
• M, g, w |= 〈α〉ϕ iff there is a w ′ ∈ W with (w, w ′) ∈ Rα and M, g, w ′ |= ϕ;
• M, g, w |= [α]ϕ iff for any w ′ ∈ W with (w, w ′) ∈ Rα it holds M, g, w ′ |= ϕ;
• M, g, w |= ¬ϕ iff it is false that M, g, w |= ϕ;
• M, g, w |= ϕ ∧ ϕ′ iff M, g, w |= ϕ and M, g, w |= ϕ′;
• M, g, w |= ϕ ∨ ϕ′ iff M, g, w |= ϕ or M, g, w |= ϕ′ .

We write M, w |= ϕ if, for any valuation g : X → W , M, g, w |= ϕ . If ϕ is a sentence, then the valuation is irrelevant,
i.e., M, g, w |= ϕ iff M, w |= ϕ . For each sentence ϕ ∈ SenD

↓
(A), we write M |= ϕ whenever M, w0 |= ϕ . Observe again

the pertinence of avoiding nominals: if a formula is satisfied in the standard semantics of hybrid logic, then it is satisfiable
in D↓ . Obviously, this would not happen in the presence of nominals.

The remaining of this section discusses the versatility of D↓ claimed in the introductory section. In the sequel, given a
set of atomic actions A = {a1, . . . , an}, we write A and −ai to refer to structured actions a1 + · · · + an , and a1 + · · · + ai−1 +
ai+1 + · · · + an , respectively.

By borrowing regular modalities from dynamic logic [16,15], D↓ is able to express liveness requirements such as “after
the occurrence of an action a, an action b can be eventually realised” with [A∗; a]〈A∗; b〉tt, or “after the occurrence of an action a,
an occurrence of an action b is eventually possible if it has not occurred before” with [A∗; a; (−b)∗]〈A∗; b〉tt. Safety properties are
also captured by sentences of the form [A∗]ϕ . In particular, deadlock freeness is expressed by [A∗]〈A〉tt.

Example 1. As a running example we consider a product line with a stepwise development of a file compressing ser-
vice, working both with text and image files. We start with an abstract requirements specification SP0, over the set
A = {inTxt, inGif, outZip, outJpg} of atomic actions. Informally, inTxt (respectively, inGif) stands for the input of a txt-file
(respectively, a gif-file), and action outZip (respectively, outJpg) for the output of a zip-file (respectively, a jpg-file). Sentences
(0.1)–(0.3) below express three requirements: (0.1) Whenever a txt-file has been received for compression, the next action
must be an output of a zip-file, (0.2) whenever a gif-file has been received, the next action must be an output of a jpg-file,
and (0.3) the system should never terminate.

(0.1) [A∗; inTxt](〈outZip〉tt ∧ [−outZip]ff
)

(0.2) [A∗; inGif](〈outJpg〉tt ∧ [−outJpg]ff
)

(0.3) [A∗]〈A〉tt

Obviously, SP0 is a very loose specification of rudimentary requirements with a huge set of possible models. �
1 Symbol · (rather than the more standard ;) is used throughout the paper to denote diagrammatic composition of binary relations, to distinguish the

sequential action composition from its semantic denotation.

JID:TCS AID:11504 /FLA Doctopic: Logic, semantics and theory of programming [m3G; v1.233; Prn:9/03/2018; 15:30] P.4 (1-19)

4 A. Madeira et al. / Theoretical Computer Science ••• (••••) •••–•••
Fig. 1. D2FSP Translator: Translating D↓ into FSP processes.

The logic D↓ , however, is also suited to directly express process structures and, thus, the implementation of abstract
requirements. The binder operator is crucial for this. The ability to give names to visited states, together with the modal
features to express transitions, makes possible a precise description of the whole dynamics of a process in a single sentence.
Binders allow to express recursive patterns, namely loop transitions (from the current to some visited state). Actually, this
kind of properties cannot be specified in the absence of a feature to refer to specific states in a model, as in standard modal
logic. For example, sentence

↓ x0.
(〈a〉x0 ∧ 〈b〉 ↓ x1.(〈a〉x0 ∧ 〈b〉x1)

)
(1)

specifies a process with two states accepting actions a and b respectively. As discussed in the sequel, the stepwise develop-
ment of a reactive system typically leads to a set of requirements defining concrete transition systems. These are expressed
in the fragment of D↓ omitting modalities indexed by the Kleene closure of actions, that can be directly translated into
a set of FSP [25] definitions. Fig. 1 depicts the translation of the formula above as computed by a proof-of-concept im-
plementation of such a translator.2 Note, however, that sentence (1) is a loose specification of the envisaged scenario (e.g.
a single state system looping on a and b also satisfies this requirement). Resorting to full D↓ concrete processes, unique up
to isomorphism, can be defined, i.e. we may introduce monomorphic specifications. For this specific example, it is enough
to consider, in the conjunction guarded by x1, the term @x1¬x0 (to distinguish between the states bound by x0 and x1), as
well as to enforce determinism resorting to formula (det) in Ex. 3 below.

2.2. Turning D↓ into an institution

The concept of an institution has been introduced by Joseph Goguen and Rod Burstall in [11]. An institution formalises
some basic ingredients that any logical system should provide when it is used as a specification framework in program
development. The notion relies on a clear separation between syntax (signatures, sentences) and semantics (models) which
are related by a satisfaction relation M |= ϕ between models and sentences.

In order to meet the necessary requirements to adopt Sannella and Tarlecki’s development method, logic D↓ has to be
framed as a logical institution [11].

In this view, our first concern is about the category of signatures. As suggested, signatures for D↓ are finite sets A of
atomic actions, and a signature morphism A σ A′ is just a function σ : A → A′ . Clearly, this defines a category, SignD

↓
.

Our second concern is about the models functor. Given two models, M = (W , w0, R) and M′ = (W ′, w ′
0, R

′), for a
signature A, a model morphism (A-morphism, for short) is a function h : W → W ′ such that h(w0) = w ′

0 and, for each a ∈ A,
if (w1, w2) ∈ Ra then (h(w1), h(w2)) ∈ R ′

a . Clearly, the class of models for A, and the corresponding morphisms, defines a
category ModD

↓
(A).

Definition 3 (Model reduct). Let A σ A′ be a signature morphism and M′ = (W ′, w ′
0, R

′) an A′-model. The σ -reduct of
M′ is the A-model ModD

↓
(σ)(M′) = (W , w0, R) such that

• w0 = w ′
0;

• W is the largest set with w ′
0 ∈ W and, for each v ∈ W , either v = w ′

0 or there is a w ∈ W such that (w, v) ∈ R ′
σ(a) , for

some a ∈ A;
• for each a ∈ A, Ra = R ′

σ(a) ∩ W 2.

Lemma 1. Consider a signature morphism A σ A′ , a A′-model M ′ = (W ′, w ′
0, R

′) and its σ -reduct M = (W , w0, R). Then,
for any action α ∈ Act(A),

2 See translator.nrc .pt.

http://translator.nrc.pt

JID:TCS AID:11504 /FLA Doctopic: Logic, semantics and theory of programming [m3G; v1.233; Prn:9/03/2018; 15:30] P.5 (1-19)

A. Madeira et al. / Theoretical Computer Science ••• (••••) •••–••• 5
1. Rα = R ′
σ(α)

∩ W , and

2. for any w, v ∈ W ′ such that (w, v) ∈ R ′
σ (α)

, w ∈ W iff v ∈ W .

Proof. The proof is by induction on the structure of actions. The property holds by definition for basic actions a ∈ A. We
consider below the case of sequential composition of actions (α; α′); the remaining cases follow a similar argument.

Rα;α′

= { ; defn}
Rα · Rα′

= { I.H.}
(R ′

σ(α) ∩ W 2) · (R ′
σ(α) ∩ W 2)

Hence,

(w, v) ∈ (R ′
σ(α) ∩ W 2) · (R ′

σ(α) ∩ W 2)

⇔ { · defn}
(∃z)

(
(w, z) ∈ (R ′

σ(α) ∩ W 2) ∧ (z, v) ∈ (R ′
σ(α′) ∩ W 2)

)

⇒ { set theory}
(∃z)

(
(w, z) ∈ (R ′

σ(α) ∧ (z, v) ∈ R ′
σ(α′)

) ∧
(∃z)

(
(w, z) ∈ W 2 ∧ (z, v) ∈ W 2)

)

⇔ { · defn }
(w, v) ∈ (R ′

σ(α) · R ′
σ(α′)) ∩ (W 2 · W 2)

⇒ { ∩ monotonicity (since W 2 · W 2 ⊆ W 2) + σ defn}
(w, v) ∈ (R ′

σ(α;α′)) ∩ W 2

Therefore Rα;α′ ⊆ R ′
σ(α;α′) ∩ W 2. For the converse direction:

R ′
σ(α;α′) ∩ W 2

= { σ and ; defn}
(R ′

σ(α)
· R ′

σ(α′)) ∩ W 2

⊆ { · monotonicity}
(
(R ′

σ(α)
∩ W 2) · (R ′

σ(α′) ∩ W 2)
) ∩ W 2

= { I.H.}

(Rα · Rα′) ∩ W 2

= { Rα, Rα′ ⊆ W 2}
Rα · Rα′

= { ; defn}
Rα;α′

�

Moreover, given any A′-morphism M ′
1

h M ′
2 , it is easy to check that ModD

↓
(σ)(M ′

1)
h ModD

↓
(σ)(M ′

2) is also
a (Nom, A)-morphism.

Example 2. Let us consider the inclusion signature morphism {a} σ {a,b} and an {a, b}-model M depicted by

w0

a

b

·
b

·
a

·

The reduct of M is w0

a

·

JID:TCS AID:11504 /FLA Doctopic: Logic, semantics and theory of programming [m3G; v1.233; Prn:9/03/2018; 15:30] P.6 (1-19)

6 A. Madeira et al. / Theoretical Computer Science ••• (••••) •••–•••
Lemma 2. For each A′-morphism M ′
1

h′
M ′

2 between two A′-models and for each signature morphism A σ A′ , we have a

morphism M1
h M2 , where M1 = ModI(σ)(M ′

1), M2 = ModI(σ)(M ′
2) and h is the restriction of h′ to W1 .

Proof. The proof is by induction over the structure of W1. Note first that h is well defined in the sense that, for each
w ∈ W1, h(w) ∈ W2:

• for the initial state w1
0 ∈ W1, we have by definition of h and since h′ is a morphism, h(w1

0) = h′(w1
0) = w2

0. By reduct
definition, w2

0 ∈ W2.
• for each v ∈ W1, there is a w ∈ W1 such that (w, v) ∈ R ′ 2

σ(a)
for some a ∈ A. Since h′ is a morphism, we have also that

(h(w), h(v)) ∈ R ′ 2
σ(a) . Assume, by I.H., that h(w) ∈ W2. Then, by reduct definition, h(v) ∈ W2.

The morphism properties for h are directly inherited from the morphism properties of h′ . �
Model morphisms are preserved by reducts, in the sense that, for each such morphism h : M′

1 → M′
2 there is another

h′ : ModD
↓
(σ)(M′

1) → ModD
↓
(σ)(M′

2), where h′ is the restriction of h to the states of ModD
↓
(σ)(M′

1). Hence, for each
signature morphism A σ A′ , a functor ModD

↓
(σ):ModD

↓
(A′) → ModD

↓
(A) maps models and morphisms to the cor-

responding reducts. Finally, this lifts to a contravariant models functor, ModD
↓ : (SignD

↓
)op → Cat , mapping each signature

to the category of its models and, each signature morphism to its reduct functor.
The third concern relates to the definition of the functor of sentences. Each signature morphism A σ A′ can be

extended to a formulas’ translation σ̂ : FmD↓
(A) → FmD↓

(A′) by identifying variables and replacing, symbol by symbol, each
action by the respective σ -image. In particular, σ̂ (↓ x.ϕ) =↓ x.σ̂ (ϕ) and σ̂ (@xϕ) = @xσ̂ (ϕ). Since FVar(ϕ) = FVar(σ̂ (ϕ)), for
each signature morphism A σ A′ , we can define a translation of sentences SenD↓

(σ) : SenD
↓
(A) → SenD

↓
(A′), by

SenD
↓
(σ)(ϕ) = σ̂ (ϕ), ϕ ∈ SenD

↓
(A). This defines the intended functor SenD↓ : SignD

↓ → Set , mapping each signature to
the set of its sentences, and each signature morphism to the corresponding translation of sentences.

Finally, our fourth concern is on the agreement of the satisfaction relation w.r.t. the satisfaction condition. This is estab-
lished in the following result:

Theorem 1. Let σ : A → A′ be a signature morphism, M′ = (W ′, w ′
0, R

′) ∈ ModD
↓
(A′), ModD

↓
(σ)(M′) = (W , w0, R) and ϕ ∈

FmD↓
(A). Then, for any w ∈ W (⊆ W ′) and for any valuation g : X → W and g′ : X → W ′ , such that, g(x) = g′(x) for all x ∈

FVar(ϕ), we have

ModD↓
(σ)(M′), g, w |= ϕ iff M′, g′, w |= σ̂ (ϕ).

Proof. The proof is by induction on the structure of formulas. For that, we denote ModD
↓
(σ)(M′) by (W , w0, R). With

exception of formulas x, 〈α〉ϕ , [α]ϕ and ↓ x. ϕ , the proof of all the cases is trivial. Moreover, the arguments for 〈α〉ϕ and
for [α]ϕ are analogous. Hence, we only consider the proofs for the following cases:
Formulas x:

ModD↓
(σ)(M′), g, w |= x

⇔ { |= defn}
w = g(x)

⇔ { by hypothesis g(x) = g′(x)}
w = g′(x)

⇔ { |= defn}
M′, g′, w |= x

⇔ { σ̂ defn}
M′, g′, w |= σ̂ (x)

Formulas ↓ x.ϕ:

ModD↓
(σ)(M′), g, w |=↓ x.ϕ

⇔ { |= defn}

JID:TCS AID:11504 /FLA Doctopic: Logic, semantics and theory of programming [m3G; v1.233; Prn:9/03/2018; 15:30] P.7 (1-19)

A. Madeira et al. / Theoretical Computer Science ••• (••••) •••–••• 7
ModD↓
(σ)(M′), g[x 	→ w], w |= ϕ

⇔ { step (�), and I.H.}
M′, g′[x 	→ w], w |= σ̂ (ϕ),

⇔ { |= defn}
M′, g′, w |=↓ x.σ̂ (ϕ)

⇔ { σ̂ defn}
M′, g′, w |= σ̂ (↓ x.ϕ)

The step marked with a (�) is justified as follows: By hypothesis g(y) = g′(y), for any y ∈ FVar(↓ x.ϕ). Hence, g[x 	→
w](y) = g′[x 	→ w](y), for any y ∈ FVar(ϕ), and the induction hypothesis apply.

Formulas @xϕ:

ModD↓
(σ)(M′), g, w |= @xϕ

⇔ { |= defn}
ModD↓

(σ)(M′), g, g(x) |= ϕ

⇔ { g(x) = g′(x), and I.H.}
M′, g′, g′(x) |= σ̂ (ϕ),

⇔ { |= defn}
M′, g′, w |= @xσ̂ (ϕ)

⇔ { σ̂ defn}
M′, g′, w |= σ̂ (@xϕ)

Formulas〈α〉ϕ:

ModD↓
(σ)(M′), g, w |= 〈α〉ϕ

⇔ { |= defn}
ModD↓

(σ)(M′), g, v |= ϕ for some v ∈ W

such that (w, v) ∈ Rα

⇔ { Lemma 1, and I.H.}
M′, g′, v |= σ̂ (ϕ) for some v ∈ W ′

such that (w, v) ∈ R ′̄
σ(α)

⇔ { |= defn}
M′, g′, w |= 〈σ(α)〉σ̂ (ϕ)

⇔ { σ̂ defn}
M′, g′, w |= σ̂ (〈α〉ϕ) �

In particular:

Theorem 2 (Satisfaction condition). For any signature morphism A σ A′ ∈ SignD
↓

, model M′ ∈ ModD
↓
(A′) and sentence

ϕ ∈ SenD
↓
(A),

ModD↓
(σ)(M′) |= ϕ iff M′ |= SenD↓

(σ)(ϕ).

JID:TCS AID:11504 /FLA Doctopic: Logic, semantics and theory of programming [m3G; v1.233; Prn:9/03/2018; 15:30] P.8 (1-19)

8 A. Madeira et al. / Theoretical Computer Science ••• (••••) •••–•••
Proof. Since ϕ ∈ SenD
↓
(A), we have FVar(ϕ) = ∅, and hence, by Lemma 1, for any w ∈ W ,

ModD↓
(σ)(M′), w |= ϕ iff M′, w |= SenD↓

(σ)(ϕ).

Moreover, by reduct definition, w0 = w ′
0 ∈ W , and the result follows. �

3. Formal development à la Sannella & Tarlecki

Developing correct programs from specifications entails the need for a suitable logic setting in which meaning can be
assigned both to specifications and their refinements. Sannella and Tarlecki have proposed a formal development method-
ology [31,32] which is presented in a generic way for arbitrary institutions. As already pointed out in the Introduction,
Sannella and Tarlecki have studied various algebraic institutions to illustrate their methodology and they presume the lack
of a satisfactory solution in the theory of concurrency. In this section we briefly summarize their crucial principles for for-
mal program development over an arbitrary institution, and illustrate the case of simple implementations by examples of
our D↓-logic institution. The concepts of constructor and abstractor implementations will be instantiated for D↓ later on in
Sect. 4.

In the sequel we assume given an arbitrary institution, with category Sign of signatures and signature morphisms, sen-
tences functor Sen : Sign → Set , and models functor Mod : Signop → Cat assigning to any signature � ∈ |Sign| a category
Mod(�) whose objects are called �-models. As usual, the class of objects of a category C is denoted by |C |, and abbreviated
to C when clear from the context.

3.1. Simple implementations

The simplest way to design a specification is by expressing the system requirements in a set of sentences over a suitable
signature, i.e. as a pair S P = (Sig(S P), Ax(S P)) where Sig(S P) ∈ |Sign| and Ax(S P) ⊆ |Sen(Sig(S P))|. The (loose) semantics
of such a flat specification S P is the pair (Sig(S P), Mod(S P)) where

Mod(S P) = {M ∈ |Mod(Sig(S P))| : M |= Ax(S P)}.
In this context, a refinement step is understood as a restriction of an abstract class of models to a more concrete one.
Following the terminology of Sannella and Tarlecki, we call a specification which refines another one an implementation.
Formally, a specification S P ′ is a simple implementation of a specification S P over the same signature, in symbols S P � S P ′ ,
whenever Mod(S P) ⊇ Mod(S P ′). Transitivity of the inclusion relation ensures the vertical composition of simple implemen-
tation steps.

Example 3. Two refinement steps are illustrated with simple implementations in the D↓ institution. Consider specification
SP0 from Ex. 1 which expresses a few rudimentary requirements for the behaviour of a file compressing service. The action
set A defined there provides the signature of SP0; similarly, its axioms are the three sentences (0.1)–(0.3) in the example.

First refinement step SP0 � SP1. SP0 is a very loose specification which would allow to start a computation with an arbitrary
action. We will be a bit more precise now and require that at the beginning only an input (of a text or gif file) is allowed,
as captured by axiom (1.1) below. Moreover whenever an output action (of any kind) happens, the system must go on with
an input (of any kind), as in axiom (1.4). This leads to the specification SP1 with Sig(SP1) = Sig(SP0) = A and the following
set of axioms Ax(SP1):

(1.1) 〈inTxt + inGif〉tt ∧ [outZip + outJpg]ff
(1.2) [A∗; inTxt](〈outZip〉tt ∧ [−outZip]ff

)

(1.3) [A∗; inGif](〈outJpg〉tt ∧ [−outJpg]ff
)

(1.4) [A∗; (outZip + outJpg)](〈inTxt + inGif〉tt ∧ [outZip + outJpg]ff
)

It is easy to check that SP0 � SP1 holds: Axioms (0.1) and (0.2) of SP0 occur as axioms (1.2) and (1.3) in SP1. It is also
easy to see that non-termination (axiom (0.3) of SP0) is guaranteed by the axioms of SP1.

The level of underspecification is, at this moment, still very high. Among the multiple models of SP1, the LTS shown in
Fig. 2, with initial state w0, exhibits an alternating compression mode.

Second refinement step SP1 � SP2 . This step rules out alternating behaviours as the one above. The first axiom (2.1) of
specification SP2 is equivalent to axiom (1.1) of SP1. Alternating behaviours are ruled out by axioms (2.2) and (2.3) which
require that, after any text or image compression, the initial state must be reached again. To express this we need state
variables and binders which are available in D↓-logic. In our example we introduce one state variable x0 which names the
initial state by using the binder at the beginning of axioms (2.2) and (2.3). Moreover, we only want to admit deterministic
models such that in any (reachable) state there can be no two outgoing transitions labelled with the same action. It turns
out that D↓ makes possible to specify this property with the set of axioms (det) shown below. This leads to the specification
SP2 with Sig(SP2) = Sig(SP1) = A and with axioms Ax(SP2):

JID:TCS AID:11504 /FLA Doctopic: Logic, semantics and theory of programming [m3G; v1.233; Prn:9/03/2018; 15:30] P.9 (1-19)

A. Madeira et al. / Theoretical Computer Science ••• (••••) •••–••• 9
·
outZip

w0

inTxt

·

inGif

·
outJpg

Fig. 2. A model of SP1.

w0

inTxt

w1

outZip

w0

inGif

w1

outJpg

w0

inTxt

inGif

w1

outZip

w2

outJpg

Fig. 3. Models of SP2.

(2.1) (〈inTxt〉tt ∨ 〈inGif〉tt) ∧ [outZip + outJpg]ff
(2.2) ↓ x0. [inTxt](〈outZip〉x0 ∧ [−outZip]ff

)

(2.3) ↓ x0. [inGif](〈outJpg〉x0 ∧ [−outJpg]ff
)

(det) For each a ∈ A, the axiom: [A∗] ↓ x.(〈a〉tt ⇒ (〈a〉 ↓ y. @x[a]y))

Clearly, SP2, shown in Fig. 3, fulfils the requirements of SP1, i.e. SP1 � SP2. SP2 has three models which are shown in .
(Remember that models can only have states reachable from the initial one.) The first model allows only text compression,
the second one does the same for image compression, and the third supports both. The signature of all models is A, though
in the first two some actions have no transitions.

Other variants of SP2 could be considered to underpin the expressive power of D↓ . If we want only the model where both
text and image compression are possible, then we can simply replace in axiom (2.1) 〈inTxt〉tt∨〈inGif〉tt by 〈inTxt〉tt∧〈inGif〉tt.
If we would like to require that text compression must be possible in any model but image compression is optional, thus
ruling out the second model in Fig. 3, then we would simply omit ∨〈inGif〉tt in axiom (2.1). This is an interesting case since
it shows that D↓ can express the so-called “may”-transitions present in modal transition systems [23] to specify options for
implementations.

3.2. Constructor implementations

The concept of a simple implementation is, in general, too strict to capture software development practice, along which,
implementation decisions typically introduce new design features, or reuse already implemented ones, usually entailing a
change of signatures along the way. The notion of constructor implementation offers the necessary generalization. The idea
is that for implementing a specification SP one may use a given specification SP’ and apply a construction to the models
of SP’ such that they become models of SP. More generally, an implementation of SP may be obtained by using not only
one but several specifications SP′

1, . . . , SP′
n as a basis and applying an n-ary constructor such that for any tuple of models

of SP′
1, . . . , SP′

n the construction leads to a model of SP. Such an implementation is called a constructor implementation with
decomposition in [32] since the implementation of SP is designed by using several components. These ideas are formal-
ized as follows, partially in a less general manner than the corresponding definitions in [32] which allow also partial and
higher-order functions as constructors.

Given signatures �1, ..., �n, � ∈ |Sign|, a constructor is a total function κ : Mod(�1) × · · · × Mod(�n) → Mod(�). Con-
structors compose as follows: Given a constructor κ : Mod(�1) × · · · × Mod(�n) → Mod(�) and a set of constructors
κi : Mod(�1

i) × · · · × Mod(�
ki
i) → Mod(�i), 1 ≤ i ≤ n, the constructor κ(κ1, . . . , κn) : Mod(�1

1) × · · · × Mod(�
k1
1) × · · · ×

Mod(�1
n) × · · · × Mod(�

kn
n) → Mod(�) is obtained by the usual composition of functions.

Definition 4 (Constructor implementation). Given specifications SP, SP′
1, . . . , SP′

n , and a constructor

κ : Mod(Sig(S P ′
1)) × · · · × Mod(Sig(S P ′

n)) → ModD↓
(Sig(S P)),

〈S P ′
1, . . . , S P ′

n〉 is a constructor implementation via κ of S P , in symbols S P �κ 〈S P ′
1, . . . , S P ′

n〉, if for all Mi ∈ ModD
↓
(S P ′

i),
κ(M1, . . . , Mn) ∈ ModD

↓
(S P). We say that the implementation involves a decomposition if n > 1.

JID:TCS AID:11504 /FLA Doctopic: Logic, semantics and theory of programming [m3G; v1.233; Prn:9/03/2018; 15:30] P.10 (1-19)

10 A. Madeira et al. / Theoretical Computer Science ••• (••••) •••–•••
3.3. Abstractor implementations

Often in formal program development properties of a specification are not literally satisfied by an implementation, but
only up to an admissible abstraction. Usually such an abstraction concerns implementation details which are hidden from
the user of the system and which may, for instance for efficiency reasons, not be fully conform to the requirements spec-
ification. In such cases the implementation is still considered to be correct if it shows the desired observable behaviour.
In general this can be expressed by considering an equivalence relation ≡ on the models of the abstract specification, and
requiring the implementation models to be only equivalent to models of the requirements specification.

Formally, let S P be a specification and ≡⊆ Mod(Sig(S P)) ×Mod(Sig(S P)) an equivalence relation. Let Abs≡(ModD
↓
(S P))

be the closure of ModD
↓
(S P) under ≡. A specification S P ′ , with the same signature as S P is a simple abstractor implemen-

tation of S P w.r.t. ≡ whenever Abs≡(ModD
↓
(S P)) ⊇ ModD

↓
(S P ′). Both concepts, constructors and abstractors can be

combined as shown in the definition of an abstractor implementation. (For simplicity, the term constructor is omitted.)

Definition 5 (Abstractor implementation). Let SP, SP′
1, . . . , SP′

n be specifications, κ : Mod(Sig(S P ′
1)) × · · · × Mod(Sig(S P ′

n)) →
Mod(Sig(S P)) a constructor, and ≡⊆ Mod(Sig(SP)) × Mod(Sig(SP)) an equivalence relation. We say that 〈S P ′

1, . . . , S P ′
n〉 is an

abstractor implementation of S P via κ w.r.t. ≡, in symbols S P �≡
κ 〈S P ′

1, . . . , S P ′
n〉, if for all Mi ∈ ModD

↓
(S P ′

i), κ(M1, . . . , Mn) ∈
Abs≡(ModD

↓
(S P)).

4. Reactive systems development with D↓

4.1. Constructor implementations in D↓

This section introduces a palette of constructors to support the formal development of reactive systems within D↓ ,
instantiating the definitions given in Sect. 3.2. The idea is to lift standard constructions on labelled transition systems (see,
e.g. [34]) to constructors for implementations. The constructors introduced in the sequel will be illustrated with our running
example.

Along the refinement process it is sometimes convenient to reduce the action set, for instance, by omitting some actions
previously introduced as auxiliary actions or as options that are no longer needed. For this purpose we use the alphabet
extension constructor. Remember that constructors always map concrete models to abstract ones. Therefore when omitting
actions in a refinement step we need an alphabet extension on the concrete models to fit them to the abstract signature.

Definition 6 (Alphabet extension). Let A, A′ ∈ |SignD
↓ | be signatures in D↓ , i.e. action sets, such that A ⊆ A′ . The alpha-

bet extension constructor κext : ModD
↓
(A) → ModD

↓
(A′) is defined as follows: For each M = (W , w0, R) ∈ ModD

↓
(A),

κext(M) = (W , w0, R ′) with R ′
a = Ra for all a ∈ A and R ′

a = ∅ for all a ∈ A′ \ A.

Example 4. The specification SP2 of Ex. 3 has the three models shown in Fig. 3. Hence, it allows three directions to proceed
further in the product line.

Third refinement step SP2 �κext SP3. We will consider here the simple case of a service for text compression only. The
following specification SP3 is a direct axiomatisation of the first model in Fig. 3 considered over the smaller action set
A3 = {inTxt, outZip}. Hence, Sig(SP3) = A3 and the axioms in Ax(SP3) are:

(3.1) ↓ x0. (〈inTxt〉 ↓ x1. (〈outZip〉x0 ∧ [inTxt]ff) ∧ [outZip]ff)
(det) For each a ∈ A3, the axiom: [A∗

3] ↓ x.(〈a〉tt ⇒ (〈a〉 ↓ y. @x[a]y))

Since the signature of SP3 has less actions than the one of SP2, we apply an alphabet extension constructor κext :
ModD

↓
(A3) → ModD

↓
(A) which transforms the model of SP3 into an LTS with the same states and transitions but with

an empty accessibility relation for the actions in A \ A3. Then, trivially, SP2 �κext SP3 holds. Specification SP3 is a simple
example that shows how labelled transition systems can be directly specified in D↓ . This could suggest that we are al-
ready close to a concrete implementation. But this is not true, since SP3 is in principle just an interface specification which
specifies the system behaviour “from the outside”, i.e. its interactions with the user. �

The standard way to build reactive systems is by aggregating in parallel smaller components. The following parallel
composition constructor, synchronising on shared actions, caters for this.

Definition 7 (Parallel composition). Given signatures A and A′ the parallel composition constructor κ⊗ : ModD
↓
(A) ×

ModD
↓
(A′) → ModD

↓
(A ∪ A′) is a function mapping models M = (W , w0, R) ∈ ModD

↓
(A) and M′ = (W ′, w ′

0, R
′) ∈

ModD
↓
(A′), to the A ∪ A′-model M ⊗ M′ = (

W ⊗, (w0, w ′
0), R

⊗)
where W ⊗ ⊆ W × W ′ and R⊗ = (R⊗

a)a∈A∪A′ are the
least sets satisfying (w0, w ′) ∈ W ⊗ , and, for each (w, w ′) ∈ W ⊗ ,
0

JID:TCS AID:11504 /FLA Doctopic: Logic, semantics and theory of programming [m3G; v1.233; Prn:9/03/2018; 15:30] P.11 (1-19)

A. Madeira et al. / Theoretical Computer Science ••• (••••) •••–••• 11
w1

txt

w0

inTxt

w2

zip

w3

outZip

w ′
1

compTxtw ′
0

txt

w ′
2

zip

Fig. 4. Models of Ctrl and GZip.

(w1, w ′
0)

txt
(w2, w ′

1)

compTxt(w0, w ′
0)

inT xt

(w3, w ′
0)

outZip

(w2, w ′
2)

zip

Fig. 5. Model of Ctrl ⊗ GZip.

• if a ∈ A ∩ A′ , (w, v) ∈ Ra , (w ′, v ′) ∈ R ′
a , then (v, v ′) ∈ W ⊗ and

(
(w, w ′), (v, v ′)

) ∈ R⊗
a ;

• if a ∈ A \ A′ , (w, v) ∈ Ra , then (v, w ′) ∈ W ⊗ and
(
(w, w ′), (v, w ′)

) ∈ R⊗
a ;

• if a ∈ A′ \ A, (w ′, v ′) ∈ R ′
a , then (w, v ′) ∈ W ⊗ and

(
(w, w ′), (w, v ′)

) ∈ R⊗
a .

Since, up to isomorphism, parallel composition is associative, the extension of this constructor to the n-ary case is
straightforward. Parallel composition is a crucial operator for constructor implementations with decomposition; see Defini-
tion 4. Remember again that constructors always go from concrete models to abstract ones, i.e. in the opposite direction of
the refinement process. Therefore the parallel composition constructor justifies the implementation of reactive systems by
decomposition.

Example 5. Let us construct an implementation for the interface specification SP3 in Ex. 4, based on a decomposition into
two components, a controller component Ctrl and a component GZip which does the actual text compression. The controller
has actions ACtrl = {inTxt, txt, zip, outZip}. First, it receives a txt-file from the user (action inTxt). Then it hands over the text,
with action txt, to the GZip component and receives the resulting zip-file (action zip). Finally, it returns the zip-file (action
outZip) and becomes ready to process another compression. Hence, the controller component has signature Sig(Ctrl) = ACtrl .
The axioms below specify a single model, shown in Fig. 4 (left), with the intended behaviour.

(4.1) ↓ x0. (〈inTxt〉 ↓ x1. (〈txt〉 ↓ x2. (〈zip〉 ↓ x3. (〈outZip〉x0 ∧ [−outZip]ff)
∧[−zip]ff)

∧[−txt]ff)
∧[−inTxt]ff)

(det) For each a ∈ ACtrl , the axiom: [A∗
Ctrl] ↓ x.(〈a〉tt ⇒ (〈a〉 ↓ y. @x[a]y))

The GZip component has the actions AGzip = {txt, compTxt, zip}. First, it receives (action txt) the text to be compressed
from the controller. Then it does the compression (action compTxt), delivers the zip-file (action zip) to the controller and is
ready for a next round. The GZip component has the signature Sig(Gzip) = AGzip and the axioms Ax(Gzip) are similar to the
ones of the controller and not shown here. They specify a single model, shown in Fig. 4 (right).

To construct an implementation
〈
Ctrl, GZip

〉
by decomposition (see Definition 4), we use the synchronous parallel com-

position operator “⊗” defined above. According to [32], Exercise 6.1.15, any constructor gives rise to a specification building
operation. This means that we can define the specification Ctrl ⊗ GZip whose model class consists of all possible par-
allel compositions of the models of the single specifications. Since Ctrl and GZip have, up to isomorphism, only one
model there is also only one model of Ctrl ⊗ GZip which is shown in Fig. 5. Therefore, we know by construction that
Ctrl ⊗ GZip �κ⊗

〈
Ctrl, GZip

〉
is a constructor implementation with decomposition. It remains to fill the gap between SP3 and

Ctrl ⊗ GZip which will be done with the action refinement constructor to be introduced in Definition 9.

Two constructions which are frequently used, and typically present in most process algebras, are relabelling and restric-
tion. They are particular cases of the reduct functor in the D↓ institution.

JID:TCS AID:11504 /FLA Doctopic: Logic, semantics and theory of programming [m3G; v1.233; Prn:9/03/2018; 15:30] P.12 (1-19)

12 A. Madeira et al. / Theoretical Computer Science ••• (••••) •••–•••
Definition 8 (Reduct, relabelling and restriction). Let σ : A → A′ be a signature morphism. The reduct constructor κσ :
ModD

↓
(A′) → ModD

↓
(A) maps any model M′ ∈ ModD

↓
(A′) to its reduct κσ (M′) = ModD

↓
(σ)(M′). Whenever σ is a

bijective function, κσ is a relabelling constructor. If σ is injective, κσ is a restriction constructor removing actions and transi-
tions.

An important refinement concept for reactive systems is action refinement where an abstract action is implemented by a
combination of several concrete ones (see [14]). It turns out that an action refinement constructor can be easily defined in
D↓-logic if we use the reduct functor for models over a signature consisting of structured actions built over atomic ones.

Definition 9 (Action refinement). Let A, A′ ∈ |SignD
↓ | be signatures in D↓ , i.e. sets of actions. Let D be a finite subset of

Act(A′) considered as a signature in |SignD↓ | and let f : A → D be a signature morphism. The action refinement constructor

| f : ModD
↓
(D) → ModD

↓
(A) maps any model M′ ∈ ModD

↓
(D) to its reduct ModD

↓
(f)(M′).

Example 6. Let us establish a refinement relation between SP3 (Ex. 4) and Ctrl ⊗ GZip (Ex. 5). The signature of SP3 consists
of actions A3 = {inTxt, outZip}, the signature of Ctrl ⊗GZip is the set A4 = {inTxt, txt, compTxt, zip, outZip}. To obtain an action
refinement, we define the signature morphism f : A3 → Act(A4) by f (inTxt) = inTxt; txt; compTxt and f (outZip) = zip; outZip.
Then, we apply the action refinement constructor | f : ModD

↓
(A4) → ModD

↓
(A3) induced by f . Clearly, the application of

| f to the model of Ctrl ⊗ GZip leads to the model of SP3 explained above. Hence, SP3 �| f Ctrl ⊗ GZip, which combined with
Ex. 5, justifies Ctrl ⊗ GZip �κ⊗

〈
Ctrl, GZip

〉
which completes a refinement chain:

SP0 � SP1 � SP2 �κext SP3 �| f Ctrl ⊗ GZip �κ⊗
〈
Ctrl,GZip

〉
.

Finally, let us discuss how the last specification in the chain could be implemented in a concrete process algebra. Trans-
lation from D↓ to FSP yields

Ctrl = (inTxt -> txt -> zip -> outZip -> Ctrl).
Gzip = (txt -> compTxt -> zip -> Gzip).

The FSP semantics of the two processes are just the two models of the Ctrl and Gzip specifications respectively. They
can be put together to form a concurrent system(Ctrl || Gzip) by using the synchronous parallel composition of FSP
processes. Since the semantics of parallel composition in FSP coincides with the one of constructor κ⊗ , we conclude that
the FSP system (Ctrl || Gzip) is a correct implementation of the interface specification SP3.

4.2. Abstractor implementations in D↓

Abstractor implementations in the field of algebraic specifications use typically observational equivalence relations be-
tween algebras based on the evaluation of terms with observable sorts. Interestingly, in the area of concurrent systems,
abstractors have a very intuitive interpretation in terms of bisimilarity (aka bisimulation equivalence). Let us briefly recall
this standard notion [27]:

Definition 10 (Bisimilarity). Given two models M = (W , w0, R) and M′ = (W ′, w ′
0, R

′) for signature A, a bisimulation be-
tween M and M′ is a relation B ⊆ W × W ′ that contains (w0, w ′

0), and is such that

(zig) for any a ∈ A, w, v ∈ W , w ′ ∈ W ′ , such that (w, w ′) ∈ B , if (w, v) ∈ Ra , then there is a v ′ ∈ W ′ such that (w ′, v ′) ∈ R ′
a

and (v, v ′) ∈ B;
(zag) for any a ∈ A, w ∈ W , w ′, v ′ ∈ W ′ , such that (w, w ′) ∈ B , if (w ′, v ′) ∈ R ′

a , then there is a v ∈ W such that (w, v) ∈ Ra

and (v, v ′) ∈ B .

The bisimilarity relation with respect to A, is the equivalence ≡A ⊆ ModD
↓
(A) × ModD

↓
(A) defined as

≡A � {(M1,M2) | there is a bisimulation between M1 and M2}.

Subscript A is omitted when the context is clear.
There is a number of well known properties of bisimulations that are used in the sequel. In particular, bisimulations are

closed for composition, converse and union, and form a complete lattice whose top coincides with bisimilarity.
To motivate the use of an abstractor implementation for bisimilarity, let us consider the specification S P =

({a}, {↓ x.〈a〉x}). The axiom is satisfied by the first model in Fig. 6, but not by the second one. Clearly, however, both
are bisimilar and so it should be irrelevant, for implementation purposes, to choose one or the other as an implementation
of S P .

JID:TCS AID:11504 /FLA Doctopic: Logic, semantics and theory of programming [m3G; v1.233; Prn:9/03/2018; 15:30] P.13 (1-19)

A. Madeira et al. / Theoretical Computer Science ••• (••••) •••–••• 13
w0

a

w0

a

·
a

Fig. 6. Behaviourally equivalent LTSs.

Vertical composition of implementations refers to the situation where the implementation of a specification is further
refined in a subsequent step. For simple implementations it is trivial to show that two implementation steps compose. In the
context of constructor and abstractor implementations the situation is more complex. A general condition to obtain vertical
composition in this case was established in [31]. However, the original result was only given for unary implementation
constructors. In order to adopt parallel composition as a constructor, we first generalise the institution independent result
of [31] to the n-ary case involving decomposition:

Theorem 3 (Vertical composition). Consider specifications S P , S P1, . . . , S Pn over an arbitrary institution, a constructor

κ : Mod(Sig(S P1)) × · · · × Mod(Sig(S Pn)) → Mod(Sig(S P)),

and an equivalence ≡⊆ Mod(Sig(S P)) × Mod(Sig(S P)) such that S P �≡
κ 〈S P1, . . . , S Pn〉. For each i ∈ {1, . . . , n}, let S Pi �≡i

κi

〈S P 1
i , . . . , S Pki

i 〉 with specifications S P 1
i , . . . , S Pki

i , constructor

κi : Mod(Sig(S P 1
i)) × · · · × Mod(Sig(S Pki

i)) → Mod(Sig(S Pi)),

and equivalence ≡i⊆ Mod(Sig(S Pi)) × Mod(Sig(S Pi)). Suppose that κ preserves the abstractions ≡i , i.e. for each Mi, Ni ∈
Mod(Sig(S Pi)) such that Mi ≡i Ni , κ(M1, . . . , Mn) ≡ κ(N1, . . . , Nn). Then,

S P �≡
κ(κ1,...,κn)

〈
S P 1

1, . . . , S Pk1
1 , . . . , S P 1

n , . . . , S Pkn
n

〉
.

Proof. For each 1 ≤ i ≤ n and for all 1 ≤ j ≤ ki , let M j
i ∈ Mod(S P j

i). By hypothesis, for each i, Mi ≡i κi(M1
i , . . . , M

ki
i), for

some model Mi ∈ Mod(S Pi). Since κ preserves abstraction ≡i , 1 ≤ i ≤ n,

κ(M1, . . . ,Mn) ≡ κ(κ1(M1
1, . . . ,M

k1
1), . . . , κn(M1

n, . . . ,Mkn
n)).

Since κ(M1, . . . , Mn) ∈ Abs≡(Mod(S P)), we get

κ(κ1, . . . , κn)(M1
1, . . . ,M

k1
1 , . . . ,M1

n, . . . ,Mkn
n) ∈ Abs≡(Mod(S P)). �

The remaining results establish the necessary compatibility between the constructors defined in D↓ and behavioural
equivalence ≡A ⊆ |ModD

↓
(A)| × |ModD

↓
(A)|, for A ∈ SignD

↓
, defined as bisimilarity.

Theorem 4. The alphabet extension constructor κext preserves behavioural equivalences, i.e. for any M1 ≡A M2 , κext(M1) ≡A′
κext(M2).

Proof. By hypothesis, since M1 ≡A M2, there is at least a bisimulation B ⊆ W1 × W2. Then, B is also a bisimulation
between κext(M1) and κext(M2). Thus, for all actions a ∈ A′ \ A, the bisimulation conditions hold trivially. Therefore
κext(M1) ≡A′ κext(M2). �
Theorem 5. The parallel composition constructor κ⊗ preserves behavioural equivalences, i.e. for any M1 ≡A1 M′

1 and M2 ≡A2 M′
2 ,

M1 ⊗M2 ≡A1∪A2 M′
1 ⊗M′

2 .

Proof. Suppose, without lost of generality, that M1 ≡1 M′
1 and M2 ≡2 M′

2, given the existence of bisimulations B1 and
B2, respectively. Consider relation ∼ ⊆ (M1 ⊗M2) × (M′

1 ⊗M′
2) such that (w1, w2) ∼ (w ′

1, w
′
2) if w1 ≡1 w ′

1 and w2 ≡2
w ′

2. We prove that ∼ is a bisimulation. First note that (w10, w20) ∼ (w ′
10, w

′
20) since (w10, w ′

10) ∈ B1 and (w20, w ′
20) ∈ B2.

In order to prove the zig condition (the proof is similar for the zag case) we consider two kinds of admissible transitions:

1. Suppose that a ∈ A1 ∩ A2, (w1, v1) ∈ R1
a and (w2, v2) ∈ R2

a . Then a transition
(
(w1, w2), (v1, v2)

)
R⊗

a . By zig in B1, there
is a v ′

1 ∈ W ′
1 such that (v1, v ′

1) ∈ B1 and (w ′
1, v

′
1) ∈ R ′ 1

a . Analogously, there is a v ′
2 ∈ W ′

2 such that (v2, v ′
2) ∈ B2 and

(w ′
2, v

′
2) ∈ R ′ 2

a . By definitions of R ′ ⊗ and ∼,
(
(w ′

1, w
′
2), (v ′

1, v
′
2)

) ∈ R ′ ⊗
a and (v1, v2) ∼ (v ′

1, v
′
2).

2. Suppose that a ∈ A1 \ A2 and (w1, v1) ∈ R1
a . By zig in B1, there is a v ′

1 ∈ W ′
1 such that (v1, v ′

1) ∈ B1 and (w ′
1, v

′
1) ∈ R ′ 1

a .
Moreover, by definition of relational converse, R ′⊗ ,

(
(w ′

1, w
′
2), (v ′

1, w
′
2)

) ∈ R ′ ⊗
a . Clearly, w2 ≡2 w ′

2. Therefore, (v1, w2) ∼
(v ′ , w ′). For transitions a ∈ A2 \ A1, the proof is analogous. �
1 2

JID:TCS AID:11504 /FLA Doctopic: Logic, semantics and theory of programming [m3G; v1.233; Prn:9/03/2018; 15:30] P.14 (1-19)

14 A. Madeira et al. / Theoretical Computer Science ••• (••••) •••–•••
Theorem 6. Let f : A → Act(A′) be a signature morphism. The constructor | f preserves behavioural equivalences, i.e. for any
M1, M2 ∈ ModD

↓
(Act(A′)), if M1 ≡Act(A′) M2 , then | f (M1) ≡A | f (M2).

Proof. Assuming M1 ≡A′ M2, let us consider a bisimulation B between M1 and M2. We prove that the restriction of B
to W 1 × W 2 is a bisimulation between | f (M1) and | f (M2). For the forward direction (cf., the zig component), suppose
(w1, w ′

1) ∈ R1
a and (w1, w2) ∈ B ∩ (W1 × W2). By | f definition, (w1, w ′

1) ∈ R ′ 1
f (a)

and hence, by the observation below,
(w2, w ′

2) ∈ R ′ 2
f (a)

for some (w ′
1, w

′
2) ∈ B . Since R ′ 2

f (a)
= R2

a and w2 ∈ W2, (w ′
1, w

′
2) ∈ B ∩ (W1 × W2). The proof for the other

direction (zag) is analogous. The same argument still applies when considering transitions indexed by sequences of (sets of)
actions, as in [1] for string bisimulation. �
5. On the expressive power of D↓

In the last section, bisimilarity is taken as a suitable equivalence relation for constructing abstractor implementations.
Indeed, this is a usual notion of equivalence for transition systems. In standard modal logic it has a logical counterpart,
often referred to as the Hennessy–Milner property: bisimilar states satisfy exactly the same modal sentences and, conversely,
in two image-finite models (i.e. in which any state has at most finitely many outgoing transitions) any two states satisfying
the same modal sentences are bisimilar. Obviously, the latter implication does also hold in D↓-logic since Hennessy–Milner
logic is a fragment of D↓ (where, anyway, sentences are only interpreted in the initial state). However, the first implication
of the Hennessy–Milner property does not hold in D↓: the logic fails to be modally invariant, i.e. bisimilar states do not
necessarily satisfy the same D↓-sentences. A counterexample was presented in Sect. 4.2, Fig. 6. The first model satisfies the
sentence ↓ x.〈a〉x but the second one doesn’t. This is not a surprise since D↓-logic is a very powerful logic. If we want to
abstract from a specification w.r.t. bisimulation equivalence then we can use an abstractor implementation as explained in
Sect. 4.2. Indeed the concept of an abstractor implementation would be meaningless if sentences of D↓-logic were preserved
by bisimulation equivalence.

In this section we discuss the expressive power of D↓-logic and show that it allows us to specify finite A-models
uniquely up to isomorphism. Since the converse direction also holds, i.e. isomorphic models satisfy the same A-sentences,
D↓-logic is as powerful as model isomorphism to distinguish finite A-models.

Model morphisms were defined in Sect. 2.2. Two A-models M, M′ ∈ ModD
↓
(A) are isomorphic, in symbols M iso M′ ,

if there is a pair of morphisms h : M →M′ and h−1 :M′ →M such that h · h−1 = idM and h−1 · h = idM′ . The following
result was originally presented in [18]:

Theorem 7. Let M and M′ be A-models such that M iso M′ . Then, for any A-sentence ϕ , we have

M |= ϕ iff M′ |= ϕ.

For the remainder of this section we assume given a finite, non-empty set A of actions and two finite A-models M =
(W , w0, R) and M′ = (W ′, w ′

0, R
′), i.e. the sets W , W ′ are finite. We show that there exists an A-sentence ϕM which

determines M up to isomorphism. ϕM is constructed as follows:

ϕM =↓ w0.F(w0,Im(w0), W , {w0})
where the initial state w0 is introduced as a bound variable, F is algorithmically defined in Table 1, and for any state w ∈ W ,
Im(w) = {(a, v) ∈ A × W | (w, v) ∈ Ra} and, in the following algorithm, for any a ∈ A, Im(w, a) = {v ∈ W | (a, v) ∈ Im(w)}.
The algorithm takes the model M and performs a recursive breadth-first traversal starting from the initial state of M.
For each reached state w it checks its outgoing transitions and requires the existence of such transitions in the formula.
Additionally it requires that no other transitions with source state w exist. If all states are visited the algorithm terminates
by requiring that the states of M are pairwise different. The algorithm uses the states of M as variables. Whenever a new
state v is reached, v is bound with the binder of D↓-logic.

Example 7. As an example, let M be the model on the right in Fig. 3. We show how ϕM can be derived by using the
algorithm in Table 1.

ϕM =↓ w0.F(w0,Im(w0), W , {w0})
with Im(w0) = {(inTxt, w1), (inGif, w2)} and W = {w0, w1, w2}. Then we compute:

F(w0,Im(w0), W , {w0}) =
@w0〈inTxt〉 ↓ w1.F(w0, {(inGif, w2)}, W , {w0, w1}) =
@w0〈inTxt〉 ↓ w1.@w0〈inGif〉 ↓ w2.F(w0,∅, W , W) =

JID:TCS AID:11504 /FLA Doctopic: Logic, semantics and theory of programming [m3G; v1.233; Prn:9/03/2018; 15:30] P.15 (1-19)

A. Madeira et al. / Theoretical Computer Science ••• (••••) •••–••• 15
Table 1
Algorithm to construct an A-sentence.

F(w , ImageToVisit, StatesToVisit, BoundStates) =
if ImageToVisit
= ∅
then {

//take a transition outgoing from w and specify that it is required;
//if the target state v has been introduced as a bound variable before
//then require @w 〈a〉v and continue;
//otherwise bind v as a variable, require @w 〈a〉 ↓ v and continue;
choose (a, v) ∈ ImageToVisit;
if v ∈ BoundStates
then return @w 〈a〉v ∧

F(w , ImageToVisit \{(a, v)}, StatesToVisit, BoundStates)
else return @w 〈a〉 ↓ v .

F(w , ImageToVisit \{(a, v)}, StatesToVisit, BoundStates ∪{v})
}
else {

//i.e. ImageToVisit = ∅, which means that all transitions outgoing
//from w are already specified;
//then finalise the visit of w by requiring that only the transitions
//outgoing from w are allowed at w and continue with some other
//state v which has been bound before but not yet visited
//if such a state exists;
//otherwise terminate by specifying that all states in W are different;
let finalise(w) = @w (

∧
a∈A [a](∨u∈Im(w,a) u));

StatesToVisit = StatesToVisit \ {w};
if StatesToVisit
= ∅
then {

choose v ∈ BoundStates ∩ StatesToVisit;
return finalise(w) ∧ F(v , Im(v), StatesToVisit, BoundStates)

}
else return finalise(w) ∧∧

w
=w ′∈W ¬@w w ′
}

where
∨

u∈∅ stands for ff.

@w0〈inTxt〉 ↓ w1.@w0〈inGif〉 ↓ w2.

@w0([inTxt]w1 ∧ [inGif]w2 ∧ [outZip]ff ∧ [outJpg]ff)∧
F(w1,Im(w1), {w1, w2}, W)

where

F(w1,Im(w1), {w1, w2}, W) =
@w1〈outZip〉w0 ∧ F(w1,∅, {w1, w2}, W) =
@w1〈outZip〉w0 ∧

@w1([inTxt]ff ∧ [inGif]ff ∧ [outZip]w0 ∧ [outJpg]ff)∧
F(w2,Im(w2), {w2}, W)

where

F(w2,Im(w2), {w2}, W) =
@w2〈outJpg〉w0 ∧ F(w2,∅, {w2}, W) =
@w2〈outJpg〉w0 ∧

@w2([inTxt]ff ∧ [inGif]ff ∧ [outZip]ff ∧ [outJpg]w0)∧
¬@w0 w1 ∧ ¬@w0 w2 ∧ ¬@w1 w2

Theorem 8. Let M and M′ be two finite A-models such that M |= ϕ iff M′ |= ϕ for all A-sentences ϕ . Then M iso M′ .

JID:TCS AID:11504 /FLA Doctopic: Logic, semantics and theory of programming [m3G; v1.233; Prn:9/03/2018; 15:30] P.16 (1-19)

16 A. Madeira et al. / Theoretical Computer Science ••• (••••) •••–•••
Proof. We give only a sketch of the proof. Let ϕM be the A-sentence derived from M, as explained above. M and
M′ satisfy the same A-sentences and therefore M′ satisfies, in particular, ϕM . Since ϕM specifies M uniquely up to
isomorphism, we get M iso M′ . �
6. A proof system for D↓

This section introduces a proof system for D↓ , which, as explained before, combines a hybrid logic with binders H(@, ↓)

[6], but no propositional symbols (i.e. neither propositions nor nominals), with dynamic logic [12]. The proof system reflects
this combination by putting together the proof systems of both components. First, because all state symbols considered
are variables, the axioms of H(@, ↓) are restricted to state variables, instead of state variables and nominals, as one would
expect. On the other hand, the dynamic part consists just of four axioms, expressing how composite programs behave.
Axioms involving tests are omitted, as tests themselves are not allowed in the logic. The non-dynamic part of the axiomatics
disregards the way programs are built. It introduces a modality symbol for each program in Act(A), and not just for the
atomic ones. Thus, the logic can be taken as a multimodal logic with an infinite set of modality symbols Act(A). The proof
system is as follows,

Axioms
Basic Kripke axioms:

(Taut) all propositional tautologies
(K) [α](ϕ → ψ) → ([α]ϕ → [α]ψ)

These are the axioms of a normal multimodal logic. The next three sets of axioms come from the axiomatization of hybrid
logic (cf. [6]).

Axioms for @:

(K@) @s(ϕ → ψ) → (@sϕ → @sψ)

(@s-self-dual) @sϕ ↔ ¬@s¬ϕ
(Introduction) (s ∧ ϕ) → @sϕ

Axioms for the modal theory of labeling:

(Label) @ss
(Nom) @st → (@tϕ → @sϕ)

(Swap) @st ↔ @t s
(Scope) @t@sϕ ↔ @sϕ

Axioms for the interaction between @ and �:

(Back) 〈α〉@sϕ → @sϕ
(Bridge) (〈α〉s ∧ @sϕ) → 〈α〉ϕ

The axioms expressing how binders behave are taken from [6]:

Axioms for binders:

(b1) ↓x.(ϕ → ψ) → (ϕ →↓x.ψ)

(b2) ↓x.ϕ → (s → ϕ[s/x])
(b3) ↓x.(x → ϕ) →↓x.ϕ
(b4) ↓x.ϕ ↔ ¬ ↓x.¬ϕ (self-dual)

Finally, the axioms for composition of programs come from dynamic logic.
Axioms of dynamic logic:

(Comp) [α; β]ϕ ↔ [α][β]ϕ
(Alt) [α + β] ↔ ([α]ϕ ∧ [β]ϕ)

(Mix) [α∗]ϕ → ϕ ∧ [α][α∗]ϕ
(Ind) [α∗](ϕ → [α]ϕ) → (ϕ → [α∗]ϕ)

where x, s, t are variables, ϕ and ψ are arbitrary formulas and α, β ∈ Act(A). Note that in (b1) ϕ cannot contain free
occurrences of x. Similarly, in (b2) s must be substitutable for x in ϕ .
The rules are as expected:

Rules:

Modus ponens:
ϕ → ψ,ϕ

ψ

Necessitation:
ϕ

[α]ϕ

JID:TCS AID:11504 /FLA Doctopic: Logic, semantics and theory of programming [m3G; v1.233; Prn:9/03/2018; 15:30] P.17 (1-19)

A. Madeira et al. / Theoretical Computer Science ••• (••••) •••–••• 17
Variable localization:
ϕ

↓x.ϕ

@s-necessitation:
ϕ

@sϕ

Paste rules:
@s(t ∧ ϕ) → θ

@sϕ → θ

@s〈α〉(t ∧ ϕ) → θ

@s〈α〉ϕ → θ

where t is a variable different from s, that does not occur in either ϕ or θ .
The first two rules are the rules of a normal multimodal logic, the last two come from hybrid logic. The rule of variable

localization is the usual generalization rule for binding.

Deductions are defined in the usual way.

Definition 11.
A deduction of ϕ is a finite sequence ξ1, ..., ξn of formulas in FmD↓

(A) such that

• for every 1 ≤ i ≤ n − 1, either ξi is an axiom, or ξi is obtained from previous expressions in the sequence using a rule,
and

• ξn = ϕ .

We write � ϕ , and call ϕ a theorem, whenever such a sequence exists.

The soundness of this proof system is not difficult to prove. As mentioned above, this can be considered as a logic over
a multimodal language with a set of modality symbols Act(A). Its models can naturally be regarded as models of such a
multimodal language. The interpretation of modalities corresponding to non atomic programs is defined by Rα;α′ = Rα · Rα′ ,
Rα+α′ = Rα ∪ Rα′ and Rα∗ = (Rα)� , as defined in Section 2). Given that the proof system for (multimodal) hybrid logic with
binders H(@, ↓) is sound, we may conclude the validity of the non dynamic axioms and rules. For the dynamic component
the result follows as a consequence of the definition of the interpretation of the operators over programs. Thus,

Theorem 9 (Soundness). If � ϕ then M |= ϕ for any model M.

Discussion on completeness. Establishing completeness seems to be harder. In [6] the authors presented a proof of com-
pleteness of a logic similar to D↓ , which they denote by H[↓, @](K). There are three main differences: first they consider
nominals and variables (not only variables as in D H), do not have composition of programs and their models do not have
reachability restrictions. This does not allow a straightforward adaptation of their proof to the case at hands.

Let us discuss some problems arising when trying to combine the proof of completeness of hybrid logic with binders
with the corresponding proof for dynamic logic. We will revisit the proof for hybrid logic with binders and will point out
the problems arising in our setting. The reader not familiar with hybrid logic, can check the details in [6]. The standard
proof of completeness of modal logic (and general extensions of modal logic, like hybrid logic) is a consequence of the
following fact: Every consistent set of formulas (in a countable language) is satisfiable in a (countable) model.

Hence, we have tried to prove a similar result for our logic. More specifically, we have been trying to prove extend/adapt
the proof given in reference [6] to the dynamic logic with binders discussed in this paper.

First of all, as in dynamic logic, we have to consider D↓ as a multimodal logic with modality symbols indexed by
elements of Act(A), and build the associated canonical model (see below). In general, this is not a dynamic standard one,
because Rα∗ is not equal to (Rα)� . Recall that a model of a multimodal logic is dynamic standard if it is a model of the
dynamic logic such that the interpretation of non atomic programs is obtained from the interpretation of the atomic ones
by means of the corresponding operations on the associated relations. In the strictly dynamic case, one needs to perform
an adequate filtration in order to obtain a dynamic standard model that satisfies the original consistent set.

Typically, in modal logic the states of the canonical model Mc = (Sc, (Rc
α)α∈Act(A)) are the maximal consistent sets (MCS),

i.e. consistent sets which are maximal with respect to inclusion, and the accessibility relation is defined by sRc
αt iff

{ϕ | [α]ϕ ∈ s} ⊆ t . Note that in the context of this paper there is an additional requirement: the model must be reach-
able, as well. Here the first problem arises: It is not clear if the canonical model is reachable. Moreover, we should also
consider how to deal with initial states.

The completeness proof for hybrid logic (with or without binders) considers only MCS which are labelled, in the sense
that one of its elements is a state symbol. Then, the proof proceeds by showing that each consistent set can be extended to
a MCS labelled by a nominal. This is another problem in our case, since D↓ has variables only.

The extended Lindenbaum’s lemma – Any consistent set of formulas � can be extended to a maximal consistent set with
three desirable properties: labelled by a nominal, pasted (see [6]), and maximal consistent, plays a crucial role in the classical
proof. Then, given a pasted maximal consistent set �, labelled by a nominal, we define the labelled model yielded by � as
M = (S�, (R�

a)a∈Act(A)), where S� = {{ϕ | @sϕ ∈ �} | s is a state symbol}, R�
a is the restriction of Rc to S� , and the natural

assignment g : X → S� is given by g(x) = {s ∈ S� | x ∈ s}. This model is the one that works in standard hybrid logic (mul-
timodal case). Its construction shows that every consistent set of formulas in the multimodal language Act(A) is satisfiable
in a model with respect to a assignment function.

JID:TCS AID:11504 /FLA Doctopic: Logic, semantics and theory of programming [m3G; v1.233; Prn:9/03/2018; 15:30] P.18 (1-19)

18 A. Madeira et al. / Theoretical Computer Science ••• (••••) •••–•••
To sum up, we have not been able to obtain the completeness proof. There are two main questions to overcome: (a)
the canonical models have to be reachable and exhibit an initial state, and (b) D↓ has no nominals and hence MCS cannot
be labelled by them. Concerning the latter, we conjecture that variables can be used, instead of nominals, in the pro-
cess.

7. Conclusions and future work

Building on our previous work [24], this paper completed the characterization of a new logic D↓ intended to specify
abstract requirements for reactive systems, as well as concrete designs expressing (recursive) process structures. Therefore
D↓ is appropriate to instantiate Sannella and Tarlecki’s refinement framework to provide stepwise, correct-by-construction
development of reactive systems. We have illustrated this with a simple example using specifications and implementation
constructors over D↓ . We believe that a case was made for the suitability of both the logic and the method as a viable
alternative to other, more standard approaches to the design of reactive software.

Related work. Since the 80’s, the formal development of reactive, concurrent systems has emerged as one of the most active
research topics in Computer Science, with a plethora of approaches and formalisms. For a proper comparison with this work,
the following paragraphs restrict to two classes of methods: the ones built on top of logics formalised as institutions, and
the attempts to apply to the domain of reactive systems the methods and techniques inherited from the loose specification
of abstract data types.

In the first class, references [10,28,8] introduce different institutions for temporal logics, as a natural setting for the
specification of abstract properties of reactive processes. Process algebras themselves have also been framed as institutions.
Reference [30] formalises CSP [20] in this way. What distinguishes our own approach, based on D↓ , is the possibility to
combine and express in the same logic both abstract properties, as in temporal logics, and their realisation in concrete,
recursive process terms, as typical in process algebras.

Our second motivation was to discuss how institution-independent methods, used in (data-oriented) software devel-
opment, could be applied to the design of reactive systems. A related perspective is proposed in reference [26], which
suggests the loose specification of processes on top of the CSP institution [30] mentioned above. The authors explore
the reuse of institution independent structuring mechanisms introduced in the CASL framework [3] to develop reac-
tive systems; in particular, process refinement is understood as inclusion of classes of models. Note that the CASL
(in-the-large) specification structuring mechanisms can be also taken as specific constructors, as the ones given in this
paper.

Future work. A lot of work, however, remains to be done. For example, decidability of D↓ is yet an open question. In [2]
it has been shown that nominal-free dynamic logic with binders is undecidable. But while [2] considers standard Kripke
structures and global satisfaction, D↓ takes reachable models and satisfaction with respect to the initial states.

It would also be worthwhile to discuss satisfaction up to some notion of observational equivalence, as done in [5] for
algebraic specifications, thus leading to a behavioural version of D↓ . Such a behavioural setting offers an interesting way to
recover modal invariance for D↓ , as recently explored in [18].

The study of initial semantics (for some fragments) of D↓ is also in our research agenda. For example, theories in the
fragment of D↓ that alternates binders with diamond modalities (thus binding all visited states) can be shown to have
weak initial semantics, which becomes strong initial in a deterministic setting. The abstract study of initial semantics in
hybrid(ised) logics reported in [9], together with the canonical model construction for propositional dynamic logic intro-
duced in [22] can offer a nice starting point for this task. Moreover, for handling more complex systems, data must also be
represented in the logic.

A second line of inquiry is more directly related to the development method. For example, defining an abstractor on
top of some form of weak bisimilarity would allow for a proper treatment of hiding, an important operation in CSP [20]
and some other process algebras through which a given set of actions is made non observable. Finally, our aim is to add
a final step to the method proposed here in which any constructive specification can be translated to a process algebra
expression, as currently done by our proof-of-concept translator D2FSP. A particularly elegant way to do it is to frame such
a translation as an institution morphism into an institution representing a specific process algebra, for example the one
proposed by M. Roggenbach [30] for CSP.

Acknowledgements

The comments of the anonymous referees to earlier versions of this paper were fundamental to improve contents
and exposition. This work was funded by ERDF European Regional Development Fund, through the COMPETE Pro-
gramme, and by National Funds through FCT – Portuguese Foundation for Science and Technology – within projects
POCI-01-0145-FEDER-016692 (DaLí – Dynamic logics for cyber-physical systems: towards contract based design) and
UID/MAT/04106/2013 at CIDMA. Further support was given by the project SmartEGOV, NORTE-01-0145-FEDER-
000037, supported by Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partner-
ship Agreement, through the EFDR. The first author is also supported by a FCT individual grant SFRH/BPD/103004/2014.

JID:TCS AID:11504 /FLA Doctopic: Logic, semantics and theory of programming [m3G; v1.233; Prn:9/03/2018; 15:30] P.19 (1-19)

A. Madeira et al. / Theoretical Computer Science ••• (••••) •••–••• 19
References

[1] L. Aceto, A. Ingólfsdóttir, K.G. Larsen, J. Srba, Reactive Systems: Modelling, Specification and Verification, Cambridge University Press, 2007.
[2] C. Areces, P. Blackburn, M. Marx, A road-map on complexity for hybrid logics, in: J. Flum, M. Rodríguez-Artalejo (Eds.), 13th Intern. Workshop Computer

Science Logic, CSL’99, Madrid, Spain, September 20–25, 1999, in: Lecture Notes in Computer Science, vol. 1683, Springer, 1999, pp. 307–321.
[3] E. Astesiano, M. Bidoit, H. Kirchner, B. Krieg-Brückner, P.D. Mosses, D. Sannella, A. Tarlecki, CASL: the common algebraic specification language, Theoret.

Comput. Sci. 286 (2) (2002) 153–196.
[4] J.C.M. Baeten, T. Basten, M.A. Reniers, Process Algebra: Equational Theories of Communicating Processes, Cambridge University Press, 2010.
[5] M. Bidoit, R. Hennicker, Constructor-based observational logic, J. Log. Algebr. Program. 67 (1–2) (2006) 3–51.
[6] P. Blackburn, M. Tzakova, Hybrid languages and temporal logic, Log. J. IGPL 7 (1) (1999) 27.
[7] T. Braüner, Hybrid Logic and Its Proof-Theory, Appl. Log. Ser., Springer, 2010.
[8] M.V. Cengarle, The Temporal Logic Institution, Technical Report Technical Report 9805, LUM München, Institut für Informatik, 1998.
[9] R. Diaconescu, Institutional semantics for many-valued logics, Fuzzy Sets and Systems 218 (2013) 32–52.

[10] J.L. Fiadeiro, T.S.E. Maibaum, Temporal theories as modularisation units for concurrent system specification, Form. Asp. Comput. 4 (3) (1992) 239–272.
[11] J.A. Goguen, R.M. Burstall, Institutions: abstract model theory for specification and programming, J. ACM 39 (1) (1992) 95–146.
[12] R. Goldblatt, Logics of Time and Computation, 2 edition, CSLI Lecture Notes, vol. 7, Center for the Study of Language and Information, Stanford, CA,

1992.
[13] V. Goranko, Temporal logic with reference pointers, in: D.M. Gabbay, H.J. Ohlbach (Eds.), First Int. Conf. Temporal Logic, ICTL, in: Lecture Notes in

Computer Science, vol. 827, Springer, 1994, pp. 133–148.
[14] R. Gorrieri, A. Rensink, M.A. Zamboni, Action refinement, in: Handbook of Process Algebra, Elsevier, 2000, pp. 1047–1147.
[15] J.F. Groote, M.R. Mousavi, Modeling and Analysis of Communicating Systems, MIT Press, 2014.
[16] D. Harel, D. Kozen, J. Tiuryn, Dynamic Logic, MIT Press, 2000.
[17] K. Havelund, The Fork Calculus—Towards a Logic for Concurrent ML, PhD thesis, DIKU, University of Copenhagen, Denmark, 1994.
[18] R. Hennicker, A. Madeira, Observational semantics for the dynamic logic with binders, in: M. Roggenbach, N. Oliet (Eds.), Recent Trends in Algebraic

Development Methods, in: Lecture Notes in Computer Science, vol. 10644, Springer, 2017, pp. 135–152.
[19] C.A.R. Hoare, Proof of correctness of data representations, Acta Inform. 1 (1972) 271–281.
[20] C.A.R. Hoare, Communicating Sequential Processes, Series in Computer Science, Prentice-Hall International, 1985.
[21] C.B. Jones, Software Development — a Rigorous Approach, Series in Computer Science, Prentice Hall, 1980.
[22] P. Knijnenburg, J. van Leeuwen, On models for propositional dynamic logic, Theoret. Comput. Sci. 91 (2) (1991) 181–203.
[23] K.G. Larsen, B. Thomsen, A modal process logic, in: Third Annual Symposium on Logic in Computer Science, IEEE Computer Society, 1988, pp. 203–210.
[24] A. Madeira, L.S. Barbosa, R. Hennicker, M.A. Martins, Dynamic logic with binders and its application to the development of reactive systems, in:

A. Sampaio, F. Wang (Eds.), Theoretical Aspects of Computing, 13th International Colloquium, Taipei, Taiwan, ROC, October 24–31, 2016, Proceedings,
ICTAC 2016, in: Springer Lecture Notes in Computer Science, vol. 9965, 2016, pp. 422–440.

[25] J. Magee, J. Kramer, Concurrency – State Models and Java Programs, 2nd edn., Wiley, 2006.
[26] L. O’Reilly, T. Mossakowski, M. Roggenbach, Compositional modelling and reasoning in an institution for processes and data, in: T. Mossakowski, H.-J.

Kreowski (Eds.), WADT 2010, Selected Papers, Springer, 2012, pp. 251–269.
[27] D. Park, Concurrency and automata on infinite sequences, in: P. Deussen (Ed.), Theoretical Computer Science, 5th GI-Conference, in: Lecture Notes in

Computer Science, vol. 104, Springer, 1981, pp. 167–183.
[28] G. Reggio, E. Astesiano, C. Choppy, Casl-ltl: a Casl Extension for Dynamic Reactive Systems Version 1.0. – Summary, Technical report disi-tr-03-36.

Technical report, DFKI Lab Bremen, 2013.
[29] W. Reisig, Petri Nets: An Introduction, EATCS Monographs on Theoretical Computer Science, Springer Verlag, 1985.
[30] M. Roggenbach, CSP-CASL – a new integration of process algebra and algebraic specification, Theoret. Comput. Sci. 354 (1) (2006) 42–71.
[31] D. Sannella, A. Tarlecki, Toward formal development of programs from algebraic specifications: implementations revisited, Acta Inform. 25 (3) (1988)

233–281.
[32] D. Sannella, A. Tarlecki, Foundations of Algebraic Specification and Formal Software Development, Monographs on TCS, an EATCS Series, Springer, 2012.
[33] E. Sekerinski, K. Sere, Program Development by Refinement: Case Studies Using the B Method, Springer Science and Business Media, 2012.
[34] G. Winskel, M. Nielsen, Models for concurrency, in: S. Abramsky, D.M. Gabbay, T.S.E. Maibaum (Eds.), Handbook of Logic in Computer Science, vol. 4,

Oxford University Press, Oxford, UK, 1995, pp. 1–148.

http://refhub.elsevier.com/S0304-3975(18)30143-9/bib616365746Fs1
http://refhub.elsevier.com/S0304-3975(18)30143-9/bib44424C503A636F6E662F63736C2F417265636573424D3939s1
http://refhub.elsevier.com/S0304-3975(18)30143-9/bib44424C503A636F6E662F63736C2F417265636573424D3939s1
http://refhub.elsevier.com/S0304-3975(18)30143-9/bib6361736C32303032s1
http://refhub.elsevier.com/S0304-3975(18)30143-9/bib6361736C32303032s1
http://refhub.elsevier.com/S0304-3975(18)30143-9/bib4242523130s1
http://refhub.elsevier.com/S0304-3975(18)30143-9/bib434F4Cs1
http://refhub.elsevier.com/S0304-3975(18)30143-9/bib31s1
http://refhub.elsevier.com/S0304-3975(18)30143-9/bib6C6976726F5F627261756E6572s1
http://refhub.elsevier.com/S0304-3975(18)30143-9/bib43656E6761726C65393874686574656D706F72616Cs1
http://refhub.elsevier.com/S0304-3975(18)30143-9/bib6E6F766F72617A76616Es1
http://refhub.elsevier.com/S0304-3975(18)30143-9/bib464D3932s1
http://refhub.elsevier.com/S0304-3975(18)30143-9/bib696E73s1
http://refhub.elsevier.com/S0304-3975(18)30143-9/bib476F6C64626C6174743932s1
http://refhub.elsevier.com/S0304-3975(18)30143-9/bib476F6C64626C6174743932s1
http://refhub.elsevier.com/S0304-3975(18)30143-9/bib476F72616E6B6F3934s1
http://refhub.elsevier.com/S0304-3975(18)30143-9/bib476F72616E6B6F3934s1
http://refhub.elsevier.com/S0304-3975(18)30143-9/bib616374696F6E726566696E656D656E74s1
http://refhub.elsevier.com/S0304-3975(18)30143-9/bib474D3134s1
http://refhub.elsevier.com/S0304-3975(18)30143-9/bib444C626F6F6Bs1
http://refhub.elsevier.com/S0304-3975(18)30143-9/bib486176656C756E64506844s1
http://refhub.elsevier.com/S0304-3975(18)30143-9/bib776164743136s1
http://refhub.elsevier.com/S0304-3975(18)30143-9/bib776164743136s1
http://refhub.elsevier.com/S0304-3975(18)30143-9/bib486F613732s1
http://refhub.elsevier.com/S0304-3975(18)30143-9/bib486F613835s1
http://refhub.elsevier.com/S0304-3975(18)30143-9/bib4A6F6E3830s1
http://refhub.elsevier.com/S0304-3975(18)30143-9/bib444C63616E6F6E6963616Cs1
http://refhub.elsevier.com/S0304-3975(18)30143-9/bib44424C503A636F6E662F6C6963732F4C617273656E543838s1
http://refhub.elsevier.com/S0304-3975(18)30143-9/bib4D61646569726142484D3136s1
http://refhub.elsevier.com/S0304-3975(18)30143-9/bib4D61646569726142484D3136s1
http://refhub.elsevier.com/S0304-3975(18)30143-9/bib4D61646569726142484D3136s1
http://refhub.elsevier.com/S0304-3975(18)30143-9/bib44424C503A626F6F6B732F6461676C69622F30303136323435s1
http://refhub.elsevier.com/S0304-3975(18)30143-9/bib4353504361736C32s1
http://refhub.elsevier.com/S0304-3975(18)30143-9/bib4353504361736C32s1
http://refhub.elsevier.com/S0304-3975(18)30143-9/bib5061723831s1
http://refhub.elsevier.com/S0304-3975(18)30143-9/bib5061723831s1
http://refhub.elsevier.com/S0304-3975(18)30143-9/bib4341534C2D4C544Cs1
http://refhub.elsevier.com/S0304-3975(18)30143-9/bib4341534C2D4C544Cs1
http://refhub.elsevier.com/S0304-3975(18)30143-9/bib5265693835s1
http://refhub.elsevier.com/S0304-3975(18)30143-9/bib526F6767656E626163683036s1
http://refhub.elsevier.com/S0304-3975(18)30143-9/bib73656D696E616C53616E6E656C6C615461726C65636B69s1
http://refhub.elsevier.com/S0304-3975(18)30143-9/bib73656D696E616C53616E6E656C6C615461726C65636B69s1
http://refhub.elsevier.com/S0304-3975(18)30143-9/bib6C6976726F5F73616E6E656C6C61s1
http://refhub.elsevier.com/S0304-3975(18)30143-9/bib534B3132s1
http://refhub.elsevier.com/S0304-3975(18)30143-9/bib57696E736B656Cs1
http://refhub.elsevier.com/S0304-3975(18)30143-9/bib57696E736B656Cs1

	A logic for the stepwise development of reactive systems
	1 Introduction
	2 A dynamic logic with binders
	2.1 D↓: syntax and semantics
	2.2 Turning D↓ into an institution

	3 Formal development à la Sannella & Tarlecki
	3.1 Simple implementations
	3.2 Constructor implementations
	3.3 Abstractor implementations

	4 Reactive systems development with D↓
	4.1 Constructor implementations in D↓
	4.2 Abstractor implementations in D↓

	5 On the expressive power of D↓
	6 A proof system for D↓
	7 Conclusions and future work
	Acknowledgements
	References

