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Introduction to Natural Materials

The use of naturally occurring materials as matrices or scaf-
folds to support cell growth and proliferation significantly 
impacted the origin and progress of tissue engineering and 
regenerative medicine (TERM). However, the majority of 
these materials failed to provide adequate cues to guide cell 
differentiation toward the formation of new tissues. Over 
the past decade, a new generation of multifunctional and 
smart natural-based materials has been developed to provide 
biophysical and biochemical cues intended to specifically 
guide cell behavior.

Natural-based polymers originate from millions of years 
of nature’s evolution in different environments, which 
resulted in an outstanding range of well adapted macromo-
lecular designs to perform multiple structural and biological 
functions (Mano et al., 2007). In general, these can be cate-
gorized into three types of biopolymers: (1) proteins–chains 
of amino acids (e.g., collagen, elastin); (2) polysaccharides–
chains of sugar (e.g., chitin, cellulose, glycosaminogly-
cans); and (3) nucleic acids–chains of nucleotides (DNA, 
RNA) (Table 1.3.6.1). From the point of view of origin, 
they might be derived from plants, animals (xenogenic), 
or humans (allogenic and autologous). Natural polymers 
offer several advantages with respect to synthetic polymers 
(Fig. 1.3.6.1): (1) they frequently avoid the immunogenic 
response and toxicity typical of synthetic polymers, thus 
presenting higher biocompatibility; (2) they contain bio-
active motifs enabling local remodeling and cell spreading 
and a fibrillar architecture that can be deformed by cells, 
thus better mimicking the extracellular matrix (ECM); and 
(3) they can be recognized and metabolically processed by 
the body. However, natural polymers have historically been 

associated with some disadvantages, including batch-to-
batch variability, lower modularity, and inadequate biome-
chanical properties. Recent developments in the field have 
led to a reduction in these drawbacks, and allowed explora-
tion of the full potential of naturally occurring polymers to 
develop a number of biomaterials that mimic key aspects of 
the native ECM (Mano et al., 2007).

In this chapter, we first review the use of ECM proteins 
and blood-derivatives intrinsic capacity to mimic the bio-
physical and biological characteristics of native tissues. Fur-
thermore, the design of a variety of nanostructures using the 
well-explored characteristics of nucleic acids is summarized. 
In the second section, the exploitation of supramolecular 
chemistry to create new dynamic functional hydrogels that 
mimic the ECM structure and/or composition is surveyed. 
Finally, we focus on the incorporation of nanoelements in 
polymeric networks for the design of smart nanocomposite 
materials with tailored functionalities to guide cell behavior.␣

Natural Based-Biomaterials Exploring 
Structural Molecules
Extracellular Matrix-Based Biomaterials
The ECM comprises a complex milieu of proteins and gly-
cosaminoglycans (GAGs) that provides a physical scaffold 
for maintaining the structural integrity of tissues, serves 
as an adhesive substrate for cell attachment and organi-
zation, and as a reservoir for biochemical cues to sup-
port cell survival and differentiation (Hussey et al., 2018; 
Mecham, 2001). These results in the establishment of spe-
cialized environments that contribute to the specific cell 
phenotypes and functions, making the ECM composition  
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tissue/organ-specific. Most ECMs are formed by a hydrogel-
like porous network of fibrous proteins and linear GAGs. 
This fibrillar structure of the ECM influences its physical 
properties, signaling of growth factors (GFs), cell fate, and 
transport of nutrients and waste (Prince and Kumacheva, 
2019). In order to recreate the biophysical and biochemical 
characteristics of the native tissues, the use of ECM-based 
biomaterials has gained interest in the last few years.

Proteins
Naturally occurring materials processed from purified or 
recombinant ECM proteins, such as collagen, laminin, fibrin, 

fibronectin, or elastin, have been widely used to create a myr-
iad of biomimetic hydrogels and scaffolds for diverse TERM 
applications. The most abundant and well-studied protein of 
mammalian ECM is collagen, which accounts for nearly 90% 
of the dry weight of most tissues and organs. Other abun-
dant ECM proteins include fibronectin and elastin. Colla-
gen and its partially hydrolyzed form, gelatin, are among the 
most preferred ECM proteins used in TERM due to their 
wide availability in nature (bovine, porcine, and marine), and 
ease of processing and modification using various techniques 
and chemistries. For example, the modification of gelatin 
with methacryloyl residues (also known as GelMA) has been 

   Origin and Relevant Properties of Selected Natural Polymers

Natural Material Source Relevant Properties

Proteins
Collagen or denatured 

collagen (gelatin)
Animal tissues/cell culture ECM protein. Provides cell-binding sites. Thermal gelation. 

Easy chemical modification

Decellularized ECM Animal tissues/cell culture ECM composition and structure mimetic. Tissue-specific. 
Provides cell-binding sites

Blood derivatives Blood ECM mimetic. Provides biochemical cues related to tissue 
healing/regeneration. Natural enzymatic gelation with 
thrombin (clot formation). Provides cell-binding sites

Polysaccharides
Chondroitin sulfate Animal tissues Sulfated GAG present in connective tissues. Different 

sulfation patterns/growth factors affinity depending on 
source

Hyaluronic acid Animal tissues/bacterial fermentation ECM component. Nonsulfated GAG. Easy chemical 
modification

Cellulose nanocrystals Plants, bacteria and tunicates (marine 
invertebrate animal)

High strength and aspect ratio. Used as nanofiller and 
reinforcement element

Nucleic acids
DNA Cells Predictable biophysical and biochemical behavior. Different 

applications

TABLE 
1.3.6.1 

• Figure 1.3.6.1 Native extracellular matrix is a heterogeneous fibrillar network that provides biochemical 
and biophysical cues to cells. The use of natural polymers aims to mimic the native ECM complexity, which 
is very difficult to achieve using synthetic polymers. On the other hand, the modularity and chemical modi-
fication possibilities are wider on synthetic polymers.
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widely used to generate constructs with controlled architec-
tures using micromolding, photomasking, bioprinting, self-
assembly, and microfluidic techniques. The derived structures 
have been explored in a wide range of applications includ-
ing bone, cartilage, cardiac, vascular tissues engineering, and 
drug and gene delivery (Yue et al., 2015).

Elastin is an extremely durable ECM protein responsible 
for the repetitive and reversible elastic recoil of tissues. The 
insoluble nature of elastin makes its processing challenging 
and incompatible with some techniques, which restricts its 
use in TERM approaches. Tropoelastin, on the other hand, 
is the soluble precursor of elastin and combines the similari-
ties to elastin with easy handling, making this monomer a 
versatile building block to engineer biomaterials (Mithieux 
et al., 2013; Wise et al., 2009). It has been incorporated as 
a bulk material to build highly elastic hydrogels (Annabi 
et  al., 2017, 2010), films produced through casting (Hu 
et  al., 2011), or electrospun fibrous scaffolds (Machula 
et  al., 2014; Nivison-Smith et  al., 2010) to enhance cell 
adhesion, proliferation and migration, neovascularization, 
and even direct stem cell commitment (Yeo and Weiss, 
2019). It has also been used as surface coatings to enhance 
cell interaction with the interface and to potentiate integra-
tion within the body (Yeo et al., 2017, 2012). In a different 
approach, recombinant and synthetic elastin-like polypep-
tides [repetition of the pentapeptide valine-proline-glycine-
valine-glycine (VPGVG) from elastin], which mimic the 
extensibility and thermal properties of natural elastin, have 
been used to produce a range of biomaterials, including 
nanoparticles, electrospun fibers, and hydrogels cross-linked 
used different chemical strategies (Rodríguez-Cabello et al., 
2018). These polypeptides also have been modified to incor-
porate “clickable” sequences (azides and alkynes) that react 
orthogonally to form an irreversible covalent bond, which 
resulted in hydrogels with fully tunable viscoelastic proper-
ties (González de Torre et al., 2014; Testera et al., 2015).

In order to recapitulate the cell-binding properties of 
ECM proteins, different biomaterials/formats have been 
conjugated with the bioactive domains of these proteins. 
The majority of the published studies (89%, from 1979 to 
early 2018) used the tripeptide arginine-glycine-asparagine 
(RGD), which is the minimal binding domain of some 
ECM proteins such as fibronectin, vitronectin, and laminin 
to integrin receptors (Huettner et al., 2018). Beyond this, 
many binding domains derived from ECM proteins have 
been recently described, which has opened new avenues for 
designing complex strategies to target diverse cell receptors 
(Huettner et al., 2018). For example, PCL scaffolds coated 
with RGD and tyrosine-isoleucine-glycine-serine-arginine 
(YIGSR) promoted axonal regeneration, functional recov-
ery, and vascularization within regenerating nerve tissues 
in  vivo through the activation of independent signaling 
pathways (Zhu et  al., 2017a). Nevertheless, although the 
short binding domains can support cell attachment, migra-
tion, and activation of specific pathways, they have severely 
reduced binding affinity and specificity compared with the 
same peptide presented within its associated full-length 3D 

protein structure (Li et  al., 2017; Martino et  al., 2009). 
Interestingly, the presentation of RGD in fibronectin 
sequences containing the major integrin-binding domain 
has been shown to improve binding affinity and modulate 
GF signaling (Martino et al., 2011). Therefore, the presen-
tation of multiple cell-adhesion domains in their correct 
three-dimensional (3D) structural context can open new 
avenues for precisely controlling cell function and identi-
fying synergistic effects that promote tissue regrowth and 
regeneration.

In addition, decellularized ECM (dECM)-based hydro-
gels have emerged as promising “game-changer” materials 
to develop biomimetic bioinks for 3D bioprinting (Choud-
hury et al., 2018). These bioinks are prepared from decel-
lularized tissues and organs that are typically mixed and/or 
cross-linked using different natural and synthetic polymers 
or cross-linking agents to make them printable alone or in 
combination with biocompatible thermoplastics (e.g., PCL) 
to obtain mechanically reinforced scaffolds (Fig. 1.3.6.2). 
So far, different dECM bioinks have been derived from vari-
ous organs such as heart, liver, fat, cartilage, skeletal muscle, 
skin, and vascular tissue (Choudhury et al., 2018). In a pio-
neering work, heart dECM bioink was developed, which 
allowed myoblasts to produce the cardiac-specific proteins 
actinin and fast myosin heavy chain-6, when compared with 
a collagen bioink (Pati et  al., 2015, 2014). Thus, dECM 
bioinks have great potential to direct and mediate the differ-
entiation of stem cells to create biomimetic and functional 
tissues, which would have applications in drug screening, 
disease modeling, and regenerative medicine. Neverthe-
less, since dECM is prepared either from human donors 
or animals, immunological issues need to be considered 
as well as the batch-to-batch high variability and limited 
availability of tissues. In order to overcome these issues, the 
use of cell-culture-derived matrix to produce dECM could 
offer a reliable alternative (Hussey et al., 2018). Using this 
approach, autologous cells can be cultured to obtain specific 
ECMs, avoiding concerns about the immune response. Fur-
thermore, it could be obtained on a larger scale with higher 
reproducibility using cell expansion factories, although it 
remains very far from clinical translation.␣
Glycosaminoglycans
GAGs are negatively charged linear polysaccharides fre-
quently found in the ECM conjugated with proteins, 
forming proteoglycans. They play important structural 
and regulatory roles in the ECM and are involved in many 
important cellular signaling processes governing tissue 
growth and development. Important types of GAGs that 
differ in chemical composition, structure, and function 
include the nonsulfated hyaluronan, the sulfated heparan 
sulfate and the closely related heparin, the sulfated chon-
droitin sulfate and the related dermatan sulfate, and kera-
tan sulfate. Considering the diverse cell-instructive roles 
of GAGs in native tissues, GAG-based biomaterials have 
attracted huge attention in the field of TERM (Dinoro 
et al., 2019; Freudenberg et al., 2016).
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Chondroitin sulfate (CS) is composed of repeating gluc-
uronic acid and N-acetylgalactosamine units and has a high 
negative charge density. The main sources of CS for bio-
medical applications are cartilaginous tissues from bovine 
trachea and, in recent years, also from marine sources such 
as shark cartilage (Valcarcel et al., 2017). CS is a very het-
erogeneous family of polysaccharides with high variabil-
ity in terms of sulfation pattern and chain length, which 
depend mainly on their sources. CS has traditionally been 
used for polyelectrolyte complexation strategies to build, 
e.g., membranes, fibers, and nanoparticles (Costa-Almeida 
et al., 2016; Santo et al., 2015; Silva et al., 2016).

Hyaluronic acid (HA) is the only nonsulfated GAG, and 
consists of repeating disaccharide units of N-acetylglucos-
amine and glucuronic acid. For biomedical and biotechno-
logical use, it has been traditionally isolated from animal 
sources, mainly rooster combs, but in recent years micro-
bial fermentation has emerged as the preferred alternative 
in industrial production of HA (Liu et al., 2011). Although 
HA is among the preferred polymers for hydrogel matrices 
in the biomedical field, it does not have any natural and 
effective physical mechanisms of gelling (e.g., thermal, 
ionic) and therefore, chemical modification is required 
for this type of application (Highley et al., 2016). Readers 
are addressed to the section “Dynamic Hydrogels Explor-
ing Supramolecular Chemistry” of this chapter and to the 
excellent reviews from Burdick’s group to gain a better 
overview of HA-based biomaterials for biomedical applica-
tions (Burdick and Prestwich, 2011; Highley et al., 2016). 
Among several strategies, recent works have developed an 
injectable hydrogel using a combination of dynamic cova-
lent cross-linking with thermoresponsive engineered pro-
teins provided by hydrazine-modified elastin-like protein 
and aldehyde-modified HA. This biomaterial allowed the 

encapsulated cells maintain their ability to differentiate into 
multiple lineages after injection (Wang et  al., 2017) and 
the increase in cartilage-marker gene expression and GAG 
deposition while minimizing undesirable fibrocartilage phe-
notype (Zhu et al., 2017b).␣

Blood Derivatives as a Source of Bioinstructive 
Materials
Upon tissue injury, blood components, together with the 
provisional fibrillar matrix, are crucial to achieve hemosta-
sis, to support cell infiltration, and to establish a spatial-
temporal chemotactic gradient of proteins (e.g., GFs, 
cytokines, morphogens) that can tightly regulate the com-
plex wound healing microenvironment (Anitua et al., 2019; 
Mendes et  al., 2018a). During normal wound repair, the 
mimetic fibrillar network embedded with biologically 
active proteins is remodeled, being gradually degraded and 
replaced by mature ECM, until tissue repair is achieved. In 
a biomimetic approach, blood derivative formulations have 
been extensively studied to guide the wound healing pro-
cess into regenerative pathways by tailoring the biophysi-
cal and biochemical cues present on the biomimetic ECM 
(Mendes et  al., 2018a). In particular, platelet-rich blood 
derivative strategies led to the development of a panoply of 
novel human-based biomaterials that are making their way 
to clinical application.

Under physiological conditions, activated platelets release 
an enriched milieu of proteins, while circulating fibrino-
gen is polymerized, producing an insoluble fibrin matrix 
(clot) through multiple molecular mechanisms (Piechocka 
et al., 2010; Ryan et al., 1999). Briefly, fibrin polymeriza-
tion is initiated by thrombin cleavage, which exposes the 
central domain of fibrinogen-binding sites to interact with 

• Figure 1.3.6.2 Three-dimensional printing using specific cell-laden dECM bioinks. (Reproduced with 
permission from Pati, F., Jang, J., Ha, D.-H., Won Kim, S., Rhie, J.-W., Shim, J.-H., Kim, D.-H., Cho, 
D.-W., 2014. Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. 
Nat. Commun. 5, 3935. https://doi.org/10.1038/ncomms4935.)
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complementary sites at the terminal domains of other 
fibrin molecules. These noncovalent interactions induce 
the self-assembly of fibrin monomers and the formation of 
half-staggered two-stranded protofibrils. When protofibrils 
achieve a threshold length, they start to associate laterally 
to form fibers that branch into a stable three-dimensional 
network due to plasma transglutaminase (factor XIIIa) 
covalent cross-linking and calcium ions presence. It is clear 
that the self-assembled fibrin matrix not only provides a 
provisional hierarchical ECM to facilitate cellular infiltra-
tion, but also contains numerous binding domains for the 
cells, ECM proteins, and secreted GFs (Brown and Barker, 
2014; Laurens et  al., 2006). Interestingly, fibrin contains 
binding sequences for integrins, which facilitate the adhe-
sion of platelets, endothelial cells, smooth muscle cells, 
fibroblasts, and leukocytes (Lishko et al., 2004). Moreover, 
fibrin through its heparin-binding domain shows a promis-
cuous high affinity to bind platelet-derived GF (PDGF), 
vascular endothelial GF (VEGF), and fibroblast GF (FGF), 
which can be released from the activated/disrupted platelets 
(Martino et al., 2013). The complex and hierarchical fibrin 
structure, in combination with the unique molecules bind-
ing interactions, highlight the important and ubiquitous 
role of fibrin as a bioinstructive platform that provides the 
biophysical and biochemical cues to modulate a number of 
complex cellular responses.

In a biomimetic regenerative medicine approach, blood 
derivatives composed by a high content of structural pro-
teins have been easily produced from autologous or het-
erologous whole blood samples (Mendes et  al., 2018a). 
Thus, blood derivative formulations can be used directly 
as a liquid or a liquid-to-gel fibrin-based scaffold through 
the activation of collagen, calcium, or/and thrombin. The 
modulation of fibrinogen, thrombin, and calcium/salt 
concentrations has a marked impact over fibrin polymer-
ization dynamics and the resulting fibrin scaffold proper-
ties, namely on fiber diameter, mechanical properties, and 
bioactive molecule sequestration (Brown and Barker, 2014; 
Dohan Ehrenfest et  al., 2012; Piechocka et  al., 2010). 
Throughout the last few decades, fibrin-based blood deriva-
tive formulations have been already successfully translated 
to the clinics (e.g., fibrin glue) due to their positive effects 
in the localized and sustained delivery of therapeutic GFs 
in the treatment, for instance, of periodontal and soft tis-
sue wound healing (Anitua et al., 2019; Heher et al., 2018; 
Miron et al., 2017; Weisel and Litvinov, 2013). However, 
the lack of standardization in the formulations’ preparation, 
poor characterization of formulations, and conflicting code-
livery of multifunctional biomolecules led to conflicting 
results in the therapeutic outcomes, opening a debate on 
their real potential within the field (Marx, 2004; Wang and 
Avila, 2007). Moreover, the use of fibrillar gels produced 
from blood derivative precursors has attracted significant 
interest in the promotion of vascularization in regenerative 
strategies due to their natural reservoir in angiogenic GFs 
(e.g., VEGF) (Fortunato et al., 2016). Nevertheless, these 
strategies also exhibit limited ability to protect biomolecules 

from fast clearance and proteolytic degradation, have low 
mechanical properties, and show a high contractile effect 
upon cell encapsulation, which severely limits their poten-
tial as wound-healing modulators (Robinson et al., 2016; 
Sadeghi-Ataabadi et al., 2017).

In order to overcome the above-mentioned drawbacks, 
a wide range of natural and synthetic polymers, inorganic 
materials, or their blends have been recently combined with 
blood derivatives to tightly modulate spatiotemporal bio-
molecules delivery and to reinforce its inherent mechanical 
and structural properties (Mendes et al., 2018a). Recently, 
Faramarzi et al. embedded the inert alginate polymer matrix 
with the enriched bioactive milieu of platelet-rich plasma 
(platelets suspended in platelet-poor plasma at 1 × 106 plate-
let µL−1 concentration) to obtain a biofunctional alginate 
bioink for 3D bioprinting (Faramarzi et al., 2018). The engi-
neered patient-specific bioink exhibited a gradual release of 
bioactive proteins and positively affected the function of 
mesenchymal stem cells and human umbilical vein endo-
thelial cells, which could be explored to induce a healing 
response in cardiovascular and musculoskeletal bioprinted 
tissue constructs. Our research group has been focused on 
the modulation of biomolecule release kinetics from platelet 
lysate (platelet disruption by freeze–thaw cycles) hydrogels 
in a timely and a controlled space by solely using magnetic 
stimulation (Silva et al., 2018). The incorporation of mag-
netic nanoparticles in a methacrylated chondroitin sulfate 
hydrogel loaded with platelet lysate enabled the modulation 
of hydrogel physical properties (swelling, matrix stability, 
and degradation) and control over the GF profile release. 
This magnetic stimulation control led to a synergistic impact 
on cell morphology and synthesis of tendon- and bone-like 
matrix in an in vitro interfacial coculture model. In a differ-
ent work, using polyelectrolyte complexation between two 
oppositely charged polysaccharides–—chitosan and CS—
resulted in the formation of nanoparticles that were loaded 
with PL and human adipose-derived stem cells. These par-
ticles showed an initial burst release of growth factors that 
correlated with higher cell proliferation, compared to cul-
tures on unloaded particles and in the form of cell pellets 
(Santo et al., 2015). Along the modulation of bioactive mol-
ecules profile release, nanomaterials have also been explored 
to fine-tune hydrogel mechanical properties to trigger spe-
cific cellular responses (Memic et al., 2015). This concept 
was explored on the development of an injectable fibrillar 
nanocomposite hydrogel based on platelet lysate combined 
with cellulose nanocrystals (CNC) (Mendes et al., 2018b). 
Here, by increasing CNC loading it was possible to increase 
stiffness, improve biomolecule sequestering, and hinder the 
typical extensive retraction upon 3D cell culture, enabling 
therefore the modulation of encapsulated human adipose-
derived stem cell behavior.

The development of blood derivatives-based biomateri-
als with biochemically, mechanically, and structurally tun-
able properties will clearly improve control over the proteins’ 
milieu composition and kinetics release profile. These findings 
can be explored to fine-tune stem cell behavior toward specific 
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lineages and, in combination with recent developments in 
the regenerative mechanisms, to engineer the wound-healing 
microenvironment toward tissue regeneration.␣

Multifunctional Biomaterials Based on DNA
Deoxyribonucleic acid (DNA) is a very old and well-known 
molecule due to its role as genetic information carrier. How-
ever, recently, it has also become a key player in materials sci-
ence. Exploiting the biophysical and biochemical features of 
single- and double-stranded DNA, a variety of DNA-based 
materials showing programmable and multifunctional char-
acteristics are used for biomedical applications (Ke et  al., 
2018; Shahbazi et al., 2018; Zhang et al., 2018). In this sec-
tion, we focus on hydrogels, aptamers, and nanostructures 
based on DNA for tissue engineering applications.

The hydrated nature of DNA hydrogels, which can mimic 
the properties of natural tissues, has awakened the interest in 
the design of DNA-based tissue engineering scaffolds. DNA 
hydrogels are normally created using ligase cross- linking or 
self-assembly reactions, enabling the gelling to occur under 
physiological conditions and, thus, the encapsulation of 
cells. These gels have shown excellent biocompatibility and 
biodegradation (Stoll et al., 2017). In addition, they have 
been designed to respond to a variety of stimuli, such as 
temperature, pH, enzymes, light, or magnetic forces to alter 
their conformation (Shahbazi et  al., 2018; Zhang et  al., 
2018). For example, Liu’s group reported a DNA hydro-
gel that undergoes a pH-driven conformational transition 
(called the DNA motor), which influences the spatial dis-
tance between cross-linking points and subsequently the 
stiffness of the hydrogel. By changing the pH between 5.0 
and 8.0, the storage modulus of the hydrogel could be tuned 
reversibly from 1000 to 250 Pa (Zhou et al., 2016).

The aptamers, also known as “nucleic acid antibodies,” 
are designed to specifically bind with high affinity to a tar-
get molecule, have been classically used for disease diagnosis 
and therapy (Keefe et al., 2010; Zhang et al., 2018). DNA 
aptamers are generated using SELEX, an in vitro selection 
and evolution process, it being theoretically possible to cre-
ate aptamers that target any molecule of interest (Gelinas 
et al., 2016). Unlike antibodies, the generation of aptamers 
is much cheaper and easier and reduces ethical and immu-
nogenic constraints, offering new perspectives in biomedical 
applications. In a pioneering work using DNA aptamers to 
design GF mimetics for regenerative medicine, an aptamer 
for the hepatocyte GF (HGF) receptor (also known as 
c-Met), which plays a key role in cancer metastasis, inhibited 
HGF-induced c-Met activation, which suppressed cancer 
cell mobility in vitro (Ueki and Sando, 2014). More recently, 
aptamers were engineered to bind the PDGF-BB and VEGF. 
One end of the aptamer was linked to an RGD peptide and 
the other end to a functional group able to covalently link the 
aptamer to different material systems such as glass, polymers, 
or collagen scaffolds. In this new strategy the specific GFs are 
delivered using cell traction forces on the ECM, avoiding the 
need for exogenous triggers (Stejskalová et al., 2019).

Exploiting nitrogenous bases complementarity and DNA 
predictable folding, the DNA origami technique provides a 
versatile platform to engineer nanoscale structures and devices 
that can sense, compute, and actuate (Hong et al., 2017; Zhang 
et al., 2018). This has opened a wide range of applications in 
chemistry, biology, physics, material science, and computer sci-
ence (Hong et al., 2017). In the field of biomedicine, the most 
frequent application of these nanostructures is for targeted 
drug delivery of anticancer drugs, while its use in classical tissue 
engineering approaches is still limited to a conceptual stage, 
which is addressed in the last section of this chapter.␣

Dynamic Hydrogels Exploring 
Supramolecular Chemistry

A plethora of biocompatible hydrogel cross-linking mech-
anisms have been developed along the years to recreate 
hydrated mesh-like architectures of native tissue ECM. 
Nonetheless, conventional hydrogel systems typically rely on 
stable, permanent covalent cross-linking bonds that do not 
capture its highly dynamic character. The inability to relax 
and dissipate stress, a phenomenon that happens in native 
ECM by reorganization of physical cross-links or entangle-
ments, or the restrictions that they pose to the spreading, 
migration, and proliferation of encapsulated cells, are limita-
tions of most static hydrogels (Rosales and Anseth, 2016). 
In some cases, hydrogel degradation may proceed through 
hydrolytic or cell-mediated enzymatic degradation (Kharkar 
et  al., 2013). However, the degradation of permanently 
cross-linked hydrogels presents several drawbacks in TERM 
applications, such as fast disappearance or deterioration and 
spatial inhomogeneity of mechanical properties over time. 
These features pose significant challenges in studying and 
controlling how cells respond to local biophysical cues, which 
is increasingly recognized as a key parameter in determining 
the fate of cells (McKinnon et al., 2014; Rodin et al., 2010).

Reversible Hydrogels Based on 
Supramolecular Cross-Linking of Polymeric 
Precursors
Hydrogels based on reversible (or adaptable) linkages that 
can be broken and reformed in a reversible manner (self-
healing) under physiological conditions without external 
triggers (such as changes in pH or temperature) are becom-
ing increasingly popular in the design of biomaterials (Fig. 
1.3.6.3). Several comprehensive reviews covering this topic 
can be found in the literature (Mann et al., 2018; Saunders 
and Ma, 2019; Wang and Heilshorn, 2015). The dynamic 
nature of the linkages (built through physical associations or 
dynamic covalent bonds) applied to obtain reversible hydro-
gel systems has significant advantages over static hydrogels. 
Inherently, it enables the spatiotemporally controlled addi-
tion and removal of biochemical signals, repeated changes 
in matrix mechanics and, having shear-thinning (viscous 
flow under shear stress) and self-healing (time-dependent 
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recovery upon relaxation) characteristics, they allow the 
encapsulation and delivery of cells though minimal inva-
sive strategies (Guvendiren et al., 2012; Rosales and Anseth, 
2016). This set of characteristics further makes them inter-
esting materials to be applied as bioink for 3D bioprinting 
(Wang and Heilshorn, 2015). This biofabrication strategy 
is an emerging and rapidly expanding field of research in 
which additive manufacturing techniques in combination 
with cell printing are exploited to generate hierarchical tis-
sue-like structures. In fact, the bioinks, materials that com-
bine printability with cytocompatibility, are currently one 
of the biggest bottlenecks of 3D bioprinting technology. 
Thus, new polymeric biomaterials that can overcome these 
limitations are particular needed, making reversible hydro-
gel systems appealing alternatives in this field. Moreover, 
self-healing hydrogel with rapid self-integrating properties 
may provide a novel injectable solution for the regeneration 
of tissue interfaces needing different spatiotemporal bio-
chemical and biophysical cues but that seamlessly integrate 
at their interfaces (e.g., bone–cartilage tissue complex).

Among the possible approaches to produce reversible 
hydrogels, systems based on transient polymeric networks 

formed through supramolecular cross-linking of poly-
mer chains such as host–guest inclusion complexes (Fig. 
1.3.6.3A), multiple hydrogen bonding, or metal–ligand 
coordination (Fig. 1.3.6.3B–C) are currently among the 
most promising strategies (Appel et  al., 2012; Webber 
et al., 2016). Here, we highlight some representative stud-
ies exploring these reversible hydrogel design strategies with 
potential application in TERM.

Functionalization of polymers and macromeres with 
pendant host−guest motifs has been among the preferred 
strategies to produce building blocks of reversibly cross-
linked hydrogels. Examples of these systems are the host–
guest inclusion complexes using macrocyclic host molecules 
such as cyclodextrin (CD) and cucurbit[n]uril (CB[n], 
n = 5–8), showing high affinity for small hydrophobic 
guest molecules (Mann et al., 2018; Wang and Heilshorn, 
2015; Webber et  al., 2016). Although other macrocyclic 
hosts have been explored (e.g., crown ethers, catenanes, 
and cyclophanes), CD and CB[n] are the most commonly 
applied in TERM. This is mainly because of their compat-
ibility with aqueous use since the interaction between host 
and guest occurs in a hydrophobic cavity that minimizes 

• Figure 1.3.6.3 Supramolecular biomaterials formed by cross-linking of polymeric precursors through (A) 
host–guest complexation using macrocyclic hosts, (B) coordination of metals with ligands (end-terminated or 
grafted on polymer chains), and (C) multiple hydrogen-bonding motifs. (D) Hybrid supramolecular combining 
high-molecular-weight biopolymers and oppositely charged low-molecular-weight peptide amphiphiles. (Figure 
adapted with permissions from: (A) Mann, J.L., Yu, A.C., Agmon, G., Appel, E.A., 2018. Supramolecular poly-
meric biomaterials. Biomater. Sci. 6, 10–37. https://doi.org/10.1039/C7BM00780A; (B) Burnworth, M., Tang, L.,  
Kumpfer, J.R., Duncan, A.J., Beyer, F.L., Fiore, G.L., Rowan, S.J., Weder, C., 2011. Optically healable  
supramolecular polymers. Nature 472, 334–337. https://doi.org/10.1038/nature09963; (C) Dankers, P. Y. W., 
Harmsen, M. C., Brouwer, L. A., Van Luyn, M. J. A., Meijer, E. W., 2005. A modular and supramolecular approach 
to bioactive scaffolds for tissue engineering. Nat. Mater. 4, 568–574. https://doi.org/10.1038/nmat1418; and 
(D) Borges, J., Sousa, M.P., Cinar, G., Caridade, S.G., Guler, M.O., Mano, J.F., 2017. Nanoengineering hybrid 
supramolecular multilayered biomaterials using polysaccharides and self-assembling peptide amphiphiles. Adv. 
Funct. Mater. 27, 1605122. https://doi.org/10.1002/adfm.201605122.)
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polar solvent interactions (Assaf and Nau, 2015; Mann 
et  al., 2018). Both CD and CB[n] bind guest molecules 
through hydrophobic and van der Waals interactions in 
the hydrophobic cavity. However, CB[n] has a higher bind 
versatility. Whereas CB[6] tends to bind neutral and posi-
tively charged organic guests, CB[7] binds larger amphi-
philic guests, and CB[8] binds positively charged and large 
organic guests (Assaf and Nau, 2015; Mann et al., 2018). 
These different affinities contribute to widening the number 
of possible hydrogel designs. Moreover, different binding 
affinities exist not only between CB[n], but also between 
the host and different guest molecules, a particular behavior 
that has been recently explored to develop hydrogels with 
a broad range of bulk dynamic properties without chang-
ing network topology (Zou et al., 2019). Both natural (e.g., 
HA) and synthetic polymeric (e.g., polyacrylamide or PEG) 
precursors have been cross-linked using these recognition 
motifs to produce reversible supramolecular hydrogels. The 
precursor polymers can be grafted with either a host or its 
complementary guest molecule to form hydrogels when the 
pairs are mixed. This cross-linking strategy has as an addi-
tional advantage the possibility of using the same grafted 
supramolecular motifs for the modular noncovalent func-
tionalization of polymer hydrogel through biorthogonal 
synthesis pathways.

Numerous hydrogel systems based on these supramo-
lecular cross-linking strategies have been developed and 
optimized in the past for 3D cell encapsulation and as 
injectable cell carries (Wang and Heilshorn, 2015). The β-
CD–adamantane host–guest pair is perhaps one of most 
well-known cross-linking systems explored in the TERM 
field. For example, HA has been modified with these pen-
dant moieties to produce a hydrogel that enables shear-thin-
ning injection and high target site retention (>98%) (Rodell 
et al., 2015). Stabilization of the network through second-
ary Michael addition reaction (between thiol- and Michael-
acceptor modified HA macromers) further improved the 
positive outcomes on the treatment of myocardial infarct 
in an in vivo mouse model. In a similar approach, the low 
stability and mechanical properties of β-CD–adamantane 
cross-linked HA has been improved by first promoting the 
host–guest complexation between monoacrylated β-CD 
host monomers and adamantane-functionalized HA guest 
polymers, to fabricate the supramolecular hydrogels by UV-
induced polymerization of preassembled host–guest com-
plexes (Wei et  al., 2016). These hydrogels demonstrated 
self-healing behavior and showed promising results as 
injectable cell carriers, supporting chondrogenesis of human 
mesenchymal stem cells (hMSCs) and promoting cartilage 
regeneration in a rat model. Injectable and cytocompat-
ible hydrogels have also been produced based on CB[6]-
modified HA mixed with the respective complementary 
guest, diaminohexane conjugated HA (DAH-HA), that 
was applied for the controlled chondrogenesis of hMSCs 
(Jung et al., 2014). Interestingly, this host–guest pair was 
not only used to produce the hydrogel as a cell carrier, but 
was also leveraged to functionalize the polymer backbone 

with a prochondrogenic drug conjugated to CB[6], dem-
onstrating the modular nature of these type of systems. The 
versatility of this strategy was later explored to support the 
long-term survival and prolonged transgene expression of 
bioengineered MSCs, a potential platform biomaterial that 
can be applied in the treatment of cancer and other intrac-
table diseases (Yeom et al., 2015).

Functionalization of polymers or macromers with multi-
ple hydrogen bonding motifs, such as the quadruple hydro-
gen bonding motif ureidopyrimidinone (UPy), is another 
widely reported strategy for the production of supramolecu-
lar hydrogels with viscoelasticity, shear-thinning, and self-
healing behavior (Saunders and Ma, 2019; Webber et al., 
2016). Several hydrogels based on UPy cross-linking have 
been used as biologic, and recently, also as cell delivery sys-
tems. A notable example of this strategy is a dextran-based 
hydrogel where the polymer backbone was functionalized 
with multiple pendant UPy units per chain (Hou et  al., 
2015). This supramolecular hydrogel was used as a cell car-
rier and drug-delivery system (chondrocytes, bone marrow 
stem cells, and bone morphogenetic protein 2). Moreover, 
due to its self-healing and shear-thinning nature, the system 
has the potential to be applied in the regeneration of com-
plex tissue interfaces.

Metal–ligand interactions are an alternative cross-linking 
strategy that are gaining relevance in the biomaterials field. 
This class of supramolecular cross-linking, in which two or 
more ligands donate a nonbinding electron pair to empty 
orbitals in a transition metal cation, include the well-known 
Fe-catechol coordination complexes that have stability and 
strength approaching covalent bonds (Mann et  al., 2018; 
Webber et al., 2016). Several mussel-inspired metal–ligand 
hydrogels based on Fe-catechol cross-linking have been 
developed in the past few years. For example, HA func-
tionalized with pendent catechol can be cross-linked with 
Fe3+ ions, resulting in reversible, self-healable, and tissue-
adhesive hydrogels (Lee et al., 2016; Park et al., 2016; Shin 
et al., 2015). These biocompatible injectable hydrogels were 
demonstrated to be effective for cell transplantation (Shin 
et  al., 2015) and could potentiate the in  vivo stem cell-
mediated angiogenesis and osteogenesis potential in tissue 
defect models (Park et al., 2016), making them promising 
materials for TERM applications.

The unique rheology and gelation properties of the 
above-mentioned supramolecular hydrogels make them 
obvious candidates as bioinks materials for 3D bioprint-
ing. Burdick’s research group has published a representative 
example of such applications. Their approach explores an 
interesting printing strategy based on HA bioink that cross-
links through supramolecular assembly of β-CD–adaman-
tane host–guest complexes (Highley et al., 2015; Ouyang 
et  al., 2016). Since the host–guest supramolecular bonds 
can be disrupted by the shearing stress applied during the 
extrusion process and rapidly reform after printing without 
any further trigger, this system allows reaching new levels 
of 3D printing complexity, such as the direct writing of 
shear-thinning bioinks at any position of a 3D space into 
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supporting self-healing hydrogels made of similar materials. 
The printed structures can be further stabilized by second-
ary cross-linking by, e.g., introducing methacrylates into the 
HA and post-printing photopolymerization. The versatility 
of this platform has shown that supramolecular cross-linked 
hydrogels are biomaterials with new and existing properties 
to be explored in the field of 3D bioprinting.␣

Hydrogels Based on Natural Supramolecular 
Self-Assembly
Based on DNA self-assembly capacity, hybrid DNA hydro-
gels can be developed using short DNA sequences mixed or 
coupled onto the polymer backbones physically or chemi-
cally. Contrary to DNA-based hydrogels addressed in the 
section “Multifunctional Biomaterials Based on DNA,” hybrid 
hydrogels only require a small quantity of DNA, and self-
assembled DNA acts as both the cross-linker and switch-
able element (Shahbazi et  al., 2018; Shao et  al., 2017). 
For example, Li and colleagues combined single-stranded 
(ss) DNA attached to a polymer backbone with a double-
stranded DNA with ending sequences complementary to 
the ssDNA to develop a biodegradable bioink with encapsu-
lated cells (Li et al., 2015). The hydrogel was biocompatible 
and could be used for rapid formation of 3D constructs for 
tissue engineering.

In another very interesting approach, a stimuli-respon-
sive liposome–DNA hydrogel was created by the function-
alization of polyacrylamide with cholesterol-modified DNA 
motifs (Lyu et al., 2018). The cholesterol interacts with the 
lipid bilayers of the liposomes and cross-links the polymer 
in a reversible manner (sol–gel–sol transitions) due to the 
thermosensitive nature of DNA motifs. Moreover, the sys-
tem can serve as a release system upon the presence of a 
restriction endonuclease enzyme.

Peptides are versatile building blocks for supramolecular 
assembly of tissue engineering constructs. The use of pep-
tides to create biomaterials provides a number of advan-
tages such as natural biodegradation, and the possibility to 
mimic the structural and functional aspects of native ECM. 
Peptides can be used alone, or designed for conjugation or 
coassembly with polymers in order to improve bioactivity 
and structural complexity. In particular, the supramolecular 
assembly capacity of peptide amphiphiles (PAs), consisting 
of a charged hydrophilic head, a β-sheet forming domain, 
and a hydrophobic alkyl tail (Fig. 1.3.6.3D), has been used 
to create one-dimensional self-assembled fibrillar structures 
with many applications in biomedicine (Borges et al., 2017; 
Brito et al., 2019; Radvar and Azevedo, 2019; Webber et al., 
2016). Although not covered in this chapter, for more infor-
mation readers are directed to a recent review on the topic 
by the Stupp’s group, pioneers in the field (Hendricks et al., 
2017).

PA also can be coassembled with hydrophobic polymer 
tails or polypeptides to construct self-assembling bioac-
tive and biomimetic hydrogels (Borges et  al., 2017; Rad-
var and Azevedo, 2019). In a recent work, a biodegradable 

self-healing polymer–peptide hydrogel consisting of a 
poly(γ-glutamic acid) polymer network was physically 
cross-linked via conjugated β-sheet peptide sequences 
(Clarke et al., 2017). The authors could tailor the mechani-
cal properties of the hydrogels over an order of magnitude 
range of 10–200 kPa, which is in the region of many soft 
tissues, by altering the β-sheet peptide graft density and 
concentration. In a different approach, using hybrid PA–
protein systems, Mata and colleagues produced complex 
hierarchical fibrillar membranes and 3D printed constructs 
for tissue engineering applications. On one hand, hybrid 
PA–elastin-like polypeptides were used as building blocks 
to fabricate foldable bioactive membranes that guide the 
growth of endothelial and adipose-derived stem cells into 
tubular structures (Inostroza-Brito et al., 2015). In a later 
work, using a range of ECM biomolecules as the protein 
component of the hybrid system, adipose-derived stem cells 
were bioprinted with high viability into complex hierarchi-
cal structures, demonstrating that the combination of self-
assembly with 3D bioprinting has a huge potential in the 
field (Hedegaard et al., 2018).␣

Soft Nanocomposite Smart Materials

The nanoscale interactions between the cells and the tissue 
microenvironment control the function and fate of the cells. 
Hence, the rational design of biomimetic and functional 
biomaterials is subjective to these cues (Memic et al., 2015). 
The design of “smart materials,” stimuli-responsive materi-
als that respond to external stimuli such as pH, tempera-
ture, magnetic, electric, or any other stimulus, is gaining 
increased relevance in the biomedical field (Merino et al., 
2015). Among the numerous strategies to incorporate new 
and tunable functionalities in biomaterials, the incorpora-
tion of nanoparticles in hydrogels has become a popular 
option, not only as mere reinforcement nanofillers, but also 
as functional nanoelements to meet the specific needs of 
the different tissues (Alarçin et al., 2016). These nanoele-
ments can be manipulated to interfere with cell processes 
like growth, differentiation, proliferation, and alignment in 
a controlled manner (Carrow and Gaharwar, 2015). In this 
section, we highlight some of the latest developments on 
soft nanocomposites developed using natural materials.

Stimuli-Responsive Soft Nanocomposites
The intrinsic properties of iron-based magnetic nanopar-
ticles (MNPs) are highly attractive to produce responsive 
biomaterials providing the liberty to control the spatial dis-
tribution and orientation of MNPs through remote mag-
netic fields (Tibbitt et  al., 2015). For example, a hybrid 
hydrogel composed of type II collagen, hyaluronic acid, 
and polyethylene glycol, incorporating MNPs was guided 
to defect tissue sites using a remote magnetic field (Zhang 
et al., 2015). This work paves a path for further investiga-
tion of tunable magneto-responsive nanocomposites for 
minimally invasive tissue engineering strategies.
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Furthermore, the use of rod-shaped CNC, the nature’s 
“carbon nanotubes,” has been explored by our group and 
others to cross-link and reinforce soft HA hydrogel net-
works (Domingues et al., 2015) and to produce anisotro-
pic domains within natural and synthetic 3D hydrogels 
(Araújo-Custódio et  al., 2019; De France et  al., 2017). 
These CNC could also be decorated with MNPs to create 
injectable gelatin hydrogels presenting an aligned micro-
structure, which was achieved by the alignment of the 
nanoparticles under the influence of low magnetic fields 
(106 mT) (Araújo-Custódio et al., 2019). At the same time, 
hydrogel 3D anisotropy induced the alignment of encap-
sulated and seeded adipose tissue-derived stem cells, when 
compared with isotropic hydrogels.

In a different approach, the incorporation of electrocon-
ductive nanoelements can play a key role in the improve-
ment of regenerative strategies for electro-responsive 
organs/tissue, such as the heart, muscles, and neural tis-
sue (Palza et al., 2019). For example, an electro-responsive 
nanogel was achieved via incorporation of gold nanopar-
ticles in a chitosan hydrogel. The amount of nanoparticle in 
the hydrogel was directly proportional to electrical conduc-
tivity. Mesenchymal stem cells seeded on these hydrogels 
showed high viability and were able to migrate and prolifer-
ate, while showing evidence of accelerated cardiomyogenic 
differentiation in compassion with control hydrogels (Baei 
et al., 2016).␣

Future Perspectives

Tissue engineering was born with the promise of revolu-
tionizing health care by providing artificially engineered 
functional tissue and organ substitutes (Langer and Vacanti, 
1993). During the last few decades, extraordinary accom-
plishments have been achieved and significant scientific 
knowledge spanning from cell biology up to advanced 
biomaterials synthesis and processing technologies has 
been produced. However, the vast majority of strategies 
has been developed as “one-size-fits-all.” Addressing the 
increasing demand for precision and personalized medicine 
treatments, in which health care is tailored on the basis of 
individual complexities (Hodson, 2016), the extension of 
this concept to the field of TERM will allow to produce 
biomaterials with precise and specific functions that will be 
integrated with technological advances such as microfabri-
cation, 3D bioprinting, and stem cells, to select the most 
suitable approach to treat diseases or injuries in a specific 
patient or subset of patients (Aguado et al., 2018). Further-
more, using the same principles, personalized tissue con-
structs have the incomparable potential to be used as disease 
models that will change the future of drug-discovery pipe-
lines in a manner that substantially deviates from traditional 
platforms, namely, 2D cell monolayer cultures and animal 
disease models (Skardal et al., 2016).

The combination of blood derivatives with biomateri-
als has emerged as a synergistic strategy to modulate the 
release of signaling molecules that orchestrate the swing 

between tissue regeneration, tissue repair, and scar forma-
tion (Mendes et al., 2018a). In this sense, the use of biomi-
metic biomaterials described in this chapter incorporating 
standardized blood derivatives might enable engineering 
the wound-healing environment toward tissue regen-
eration. In a translational perspective, we think that this 
strategy holds great potential to produce biomimetic and 
bioactive materials for different TERM applications due to 
the increasing trend on the production and use of stan-
dardized clinical-grade human PL as a xeno-free alternative 
to animal-derived serum in cell culture, which represents 
an advantage over similar materials such as dECM. This 
further strengthens the use of blood derivative formula-
tions not only for research purposes, but also in terms of 
compliance with good manufacturing practices and clinical 
relevance.

DNA-based materials represent a forefront frontier for 
the biomaterials field due to their versatility. In particu-
lar, an underexplored area is the use of DNA origami for 
TERM applications. These nanostructures could be used to 
provide direct cell behavior on surfaces (2D) and hydrogel 
(3D) environments. For example, the creation of anisotro-
pic DNA origami patterns, as shown in a chemically modi-
fied graphene surface (Yun et al., 2012), could be used to 
provide enough biophysical cues to guide the appropriate 
stem cells toward the regeneration of anisotropic tissues. 
Furthermore, the potential of DNA origami nanostructures 
to bind serum proteins could be explored for the selective/
preferential binding of GFs and to control its delivery to 
target tissues.

In addition, so far mostly the methods to achieve anisot-
ropy within hydrogel matrices depend on external stimuli 
such as magnetic or electrical, which is not universally prac-
tical for large-scale production (Chen et al., 2018). Hence, 
we believe that continued development in this area of soft 
nanocomposites is essential to acquire scalable orderly 
structures, with excellent mechanical properties, and novel 
responses to stimuli for use in innovative applications in the 
fields of biomedicine, sensors, actuators, and biomimetic 
materials.

Using an out-of-the-box concept, a new generation of 
living biomaterials that contain genetically modified bac-
teria have been proposed to modulate the microenviron-
ment in a dynamic way. For this, bacteria are engineered 
to produce proteins and GFs triggered by external stimuli 
such as molecules and drugs, in a dose-dependent manner 
(Hay et al., 2018; Sankaran et al., 2018). Furthermore, the 
combination of additive manufacturing or other advanced 
technologies and bacteria (Liu et al., 2018; Schaffner et al., 
2017) might bring a new generation of living responsive 
materials on demand, if serious bacterial safety concerns are 
addressed.

Despite the added functionalities that provide many new 
materials, the clinical translation of tissue-engineered prod-
ucts has been significantly slower than would be expected. 
The complexity of some strategies represents the main 
barrier for clinical translation, as practical, economic, and 



371CHAPTER 1.3.6  Natural Materials

regulatory barriers favor simplicity (Abou-El-Enein et  al., 
2017; Darnell and Mooney, 2017). However, tissues and 
organs have multiscaled architectures, multiple cell types 
and ECM components, and possess a complex vascular, neu-
ral, and lymphatic network to support cell activity in a finely 
orchestrated dynamic microenvironment. Balancing the 
need for simplicity with this natural complexity creates the 
necessity for biomaterials researchers to identify the strate-
gies, within the large design space now available, with the 
minimum necessary complexity to recreate native tissues.
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