
Traffic Optimization at the Application Level
Proof of concept, development and usefulness evaluation of the ALTO solution

Gonçalo Camaz, Paulo Caldas
Department of Informatics

University of Minho
Braga, Portugal

a76861@alunos.uminho.pt, a79089@alunos.uminho.pt
	

Pedro Sousa
Centro Algoritmi, Department of Informatics

University of Minho
Braga, Portugal

pns@di.uminho.pt

	
Abstract — This paper presents an overview, proof of concept,
and a preliminary demonstrative benchmarking study of the
Application-Layer Traffic Optimization (ALTO) architecture
proposed by the IETF ALTO Working Group. The main ALTO
system purpose is to allow applications to get a more complete
view of the underlying network infrastructure, allowing for well-
reasoned connection decisions in situations of service
redundancy. This paper first begins with a technical description
of the ALTO project, and afterwards evaluates how P2P
applications, guided by our proposed prototype implementation
of the ALTO architecture, perform in comparison to traditional
peer selection algorithms on the task of downloading a file in a
typical file-sharing P2P network environment. The obtained
results from our developed ALTO prototype system state that an
application guided by the ALTO solution reduced overall
network usage by around 40% with no significant impact in the
application performance.

Keywords – Network optimization, P2P, ALTO, Traffic
Engineering, CORE emulator.

I. INTRODUCTION 	

A Peer-to-Peer (P2P) network is a way of connecting one
or more nodes in such a way that computing tasks and
resources are scattered throughout those nodes, called "peers",
where each one has the ability to act both as a client and as a
server. Whilst the P2P network architecture isn't a complete
replacement to the classic server-client counterpart, it is an
attractive alternative because the nature of its design allows
for better scalability and resilience, as well as removing a
single logical point of control. As such, P2P networks are now
a useful architectural design for many current use cases, for
instance file sharing, multimedia streaming, or unregulated
social networking. In fact, according to TeleGeography, a
telecommunications research firm, the demand for bandwidth
is constantly growing and, according to researchers, P2P
applications are the fastest growing consumers of it, rivaling
the traffic used in web surfing - most shockingly, Cachelogic
estimated that between 60% and 80% of capacity on consumer
ISP networks is used by P2P traffic [1]. With more focus in
the present, a Cisco forecast shows that by 2022, 82% of all IP
traffic will be for video, and states that media streaming with
P2P as a distribution mechanism is a good tool for low-cost
content delivery [2]. The usage and dependency on these kinds
of networks makes it a priority that these are correctly
implemented and optimized. As such, a point of interest in this

work is the way in which, in cases when a service or resource
is redundantly deployed throughout the network, a peer
chooses another to connect to, e.g., how does a BitTorrent
client decide what peer to retrieve a file chunk from when a
tracker gives him plenty of options to choose from. For many
unstructured P2P networks, the procedure from which to
generate a network and choose peers has a crucial random
component [3][4], and another alternative bases such choice
on the measurement of the Round-Trip Time (RTT) of a
connection establishment [4] - a seemingly better alternative
than a random choice but far from optimal, partly because
message delay is only one of many important metrics to
consider, and perhaps a misleading strategy for applications
that prefer high transfer rates, as the path with less delay is not
necessarily the one with the best data throughput. It thus may
not come as a surprise that P2P traffic often crosses network
boundaries multiple times [5][6], even considering that the
content is, or could easily be, in the client's network proximity
[6][7]. As such, the fundamental problem is that P2P
applications (or others that regard host choice at application
level, for that matter) lack of sufficient reliable knowledge on
the underlying network infrastructure and, as such, the host
selection process cannot be made optimally. It is with this
issue in mind that the "Application-Layer Traffic
Optimization" (ALTO) IETF working group [8] arose, and as
a solution proposes a server-client architecture and associated
protocols that allow clients to query a secure set of servers,
who would be provisioned by reputable sources and
subsequently available for querying on information that
regards the network (including but not limited to topological
organization, link properties, or costs defined by one-way
delay, maximum bandwidth, hop count, etc.). As to be
expected, enabling a communication channel for reputable and
updated network information would be ideal for applications
to properly reason on situations where hosts must be chosen to
connect to, and the consequences of a more optimal mode of
operation regarding peer choice would be beneficial for both
service clients, who can achieve higher application
performance, but also for the entities who provide such
information to the server, as they can now more easily
transmit to client applications the network status information
that would allow a more optimal and compliant consumption
of infrastructural resources and, as such, could result in less
overall network traffic and reduced congestion probability.

This paper starts by presenting an overview of the ALTO
solution (mainly the architecture and its use cases) and the
developed ALTO system prototype. Complementary to these,
it is also presented the illustrative testing scenarios and related
results, which aim to compare host-choosing algorithms in
regard to efficiency on network resource usage. Up to now, as
far as the authors’ knowledge, this is one of the first prototype
implementations of the proposed ALTO system along with the
presentation of the corresponding illustrative test results.

This paper is organized as follows: Section II presents the
ALTO system architecture and characterizes its data
resources. Section III presents the developed prototype system
modules for the proof of concept of the ALTO system. Section
IV overviews the tools and technologies used for the
implementation phase. Section V depicts the testing
environment and explains how the benchmarking will be
executed. Section VI presents the benchmarking results and
corresponding discussion. Finally, in Section VII, conclusions
are made and future work topics are suggested.

II. SYSTEM ARCHITECTURE
This section presents the main ALTO system architecture.

Figure 1 presents the main system entities and how these must
interact with each other. At its core, the ALTO system is a
well-defined structure on how network information must flow
as to guarantee two key requirements: i) there is a common
interface to allow for network data to be uploaded from a
provider to a well-known server; ii) there is a common
interface to allow for network data to be downloaded by a
client from a well-known server.

As it can be also seen from Figure 1, and in accordance to
the ALTO architectural specifications [9], the system
architecture delineates three distinct layers.

o Provisioning layer: any entity that has valuable
network information that it wishes to provide.
Examples include authoritative information from
ISPs or network managers (such as static policies),
collected statistics from third party applications (such
as QoS measurements), and information retrieved
from routing protocols.

o Server layer: section that encapsulates what the
system needs to correctly store and provide network
information. Note that it is a single logical layer, but
multiple physical server layers can exist to ensure
service requirements.

o Client layer: any entity that could benefit from
network information that is provided by the ALTO
server layer. Any of the examples given consist of an
ALTO client, but they can take many forms. For
example, an ALTO client can be embedded on a P2P
application to process through the tracker-retrieved
information, or be embedded on the Tracker itself as
a way for it to act as a proxy on behalf of the P2P
client that queried it. Many other use cases exist, as
the information retrieved from the server layer can be
helpful at the application layer on many levels,

whether it be choosing a mirror server that contains a
file, deciding the best moment to connect to a host,
among many other examples.

Figure 1. ALTO System Architecture

The information that flows between the entities is
characterized in the form of an ALTO resource. An ALTO
resource is characterized by having the following metadata
[9]:

o A unique and immutable URI from which to be
accessed.

o An IANA-registered media content type.
o A list of IANA-registered accept types, in situations

where query parameters are required.
o A list of capabilities, e.g., whether or not it allows

filtering or data calendarization.
o A list of resources it refers to, if applicable.

Alongside this information, the network content itself is
presented. There are, at the time of writing, four different
types of resources considered in the ALTO system [9]. Figure
2 displays them, along with illustrative abstract examples of
each. More specifically, the resource types are the following:

o Network map: aggregation of a set of endpoints into a
single identifier called PID. The reasoning of how
such aggregation is handled is left to the provisioning
parties. For example, a PID could group endpoints by
the Autonomous System they reside in, geographic
proximity, or one or many subnets. The reasoning of
such a resource is to allow for better scaling of
ALTO systems, as it is more efficient to group
endpoint costs between endpoints with similar
properties.

o Endpoint property map: mappings of the properties
that an endpoint possesses. For example, the
endpoint's geographical position or connection type.

o Cost map: mappings of pairs of routing entities to a
cost associated with its path. These entities can either
be PIDs or endpoint addresses, and the costs can

range from generic routing cost, hop count, packet
loss percentage, etc. The full range of metrics
currently considered in the ALTO project is available
on the ALTO cost metrics document [10].

Figure 2. ALTO System Resources

III. PROTOTYPE SYSTEM MODULES
This section aims to present how the ALTO system

prototype for proof of concept was implemented as to test its
usefulness in a file-sharing P2P network. A useful ALTO
system prototype should implement the core functionalities of
the three architectural layers displayed on Fig. 1. For the
simulation to correctly perform, there should exist: i) a
provider entity able to retrieve network information and
upload valuable metrics to a central server; ii) a client entity
able to retrieve metrics from a central server, and iii) a server
able to interface with the aforementioned entities in order for
information to flow between a provider and a client. The three
layers were implemented as follows:

o Provider layer: A developed program expects the user
to input configuration files that provide network
maps and costs of links. Given those, the program
prompts the user for what information he wishes to
upload. Furthermore, a developed module allows for
the creation of a shortest path map of a given metric
and within a given source, through the Dijkstra
algorithm. As an extra feature, it uploads a called
"multi-cost map" [11] of said shortest path, with the
associated costs of such path (for example, consider
that the algorithm calculates the shortest path
between network nodes A and B considering a
generic routing cost and, for instance, also associates
to that path the required number of traversed hops,
and the bandwidth of the lowest provisioned link
along it). Finally, the module uses a developed class
entitled ALTOResourceUploader as way to interface
with a server. This class is thus responsible for

encoding the information and following the
uploading protocol designed for this work (as one is
currently not specified by the ALTO working group),
which consists of a POST request of a JSON object
to a private upload URL that the ALTO server is
hosting.

o Server layer: According to the IETF ALTO working
group specifications, the ALTO server must
implement a RESTful interface [9]. As such, our
implementation goes as follows: a web server hosts
two types of URLs, one responsible for upload
actions, and another responsible for download
actions. Both servlets use the developed class
ALTOServer, which encapsulates all the behavior
associated with an ALTO Server - the upload and
download of ALTO resources, most specifically. As
to be expected, this class handles all business logic,
which includes but is not limited to data storage, data
parsing, information directory updating, and anomaly
detection (e.g. incorrect parameters, non-existing
requested resource, etc.). For data storage and
retrieval needs, the server must contain an active
database instance reference to connect to.

o Client layer: The client layer is instantiated in the
form of a file-sharing P2P based client. This client is
capable of splitting a file into many shards, and both
request and provide shards on the network. As input,
the client takes the files it wishes to share with its
peers, and the mode of operation. More specifically,
these modes of operations are the following:

Ø IDLE: Only provide the given files to the

network.

Ø RANDOM: Retrieve a single file whilst, in case
of multiple peers having the same shard, using a
random-based peer selection algorithm.

Ø PING: Retrieve a single file whilst, in case of
multiple peers having the same shard,
prioritizing the one that, at the moment of
selection, has the lowest RTT measurement of a
probe packet sent to him.

Ø ALTO: Retrieve a single file whilst, in case of
multiple peers having the same shard,
prioritizing the one that contains the lowest
"routing-cost" metric from the client's origin.
This implies that the default network map and
cost map of an ALTO server must be retrieved
from a previously configured ALTO server.

IV. TOOLS AND TECHNOLOGIES
This section briefly references the tools and overall pieces

of technology that were used in the development of the
developed ALTO system prototype and in the experimental
part of the work. Integral to most of the implementation phase

was the Java platform [12], which allowed the creation of Java
applications. The reasoning for such choice was mainly due to
the existing experience with the Java language and all the
development and deployment tools associated with it, which
helped with the development of the prototype, however, a
more important reason stems from the project’s possible
magnitude in case of future work, and as such an object
oriented paradigm with a well proven development
environment seemed fitting. Both the network data provider
and a P2P client were packaged as Java applications that could
be run from the terminal, as it would allow for easier test
automation via bash [13] scripting. As for the server layer,
Apache Tomcat [14] was used to deploy a WAR file which
was packaged by the Maven [15] build tool. This WAR file
contained the implementation of Java Servlets which were
responsible for handing client HTTP requests. Following an
MVC architecture, the servlets, acting as the controller layer,
resorted to Java classes that contained most of the business
logic. The database of choice was MongoDB [16], due to the
fact that data can be stored and retrieved in a JSON format, the
same that should constitute any ALTO resource when in an
HTTP response [9] – this possibility to minimize translation
between data storage and data to be transmitted made
development less complex and easier to validate.

The main tool for the testing environment was the CORE
network emulator [17] to create the network topology and to
run real applications (i.e. the developed modules of the
prototype) in virtualized Linux based stations. Within this
environment, a bash script would be run to execute all the
applications needed to initiate all the three ALTO layers,
provider, server and client, in the appropriate network hosts.
Additionally, the Vtysh [18] terminal client allowed for the
modification of OSPF network routing costs in the second
testing scenario. Finally, the Vnstat [19] tool was used to
monitor network traffic, as to calculate the overall used
bandwidth.

V. TESTING ENVIRONMENT
This section aims to detail the environment in which the

tests were performed, and the methodologies used to gather
data restuls. The main goal is to create a reasonably believable
network environment where an overlay network of a P2P
application would reside, evaluate network and application
performance on the task of retrieving a file spliced among
several peers. To achieve this, a 300 MB file was divided into
ten 30MB chunks and randomly distributed throughout the
peers in the network, and a client P2P application (from now
on called testing host) retrieves information from the P2P
tracker of where those chunks reside, sequentially retrieves
each chunk and, in cases of a chunk residing in many peers,
performs one of the three non-idle modes of operation
specified in the previous section. As can be visualized on Fig.
3, the network topology consists of a backbone area that
connects many edge networks. The edge networks are where

the P2P client applications reside (labeled "P2PCli#"), save
for a single edge network where the auxiliary servers are
hosted: i) the ALTO server, ii) the network information
provider, and iii) the P2P tracker. All backbone routers are

labeled with a PID number, and routers that serve as a
gateway will have their PID number aggregate all the subnets
that it gateways from. The network provider will read from a
JSON file that contains the bandwidth values and
corresponding OSPF link routing costs of each link in the
backbone area and, using the Dijkstra algorithm, will derive
the shortest path map from the PID representative of the
testing host, to all the PIDs of the existing gateway routers. All
links in the backbone area have been setup to contain a
propagation delay of 20-50ms, randomly distributed between
the links, as to create a more heterogeneous and unpredictable
network behavior. Taking this into account, the tests will be
performed in two types of scenarios:

o All network links have a bandwidth of 4 Mbps, as per
Figure 3. The network was configured with OSPF
link costs of 1 for every backbone connection and the
provider calculates the shortest distance between the
testing host and any gateway router (which in this
case represents the minimum number of hops).

o To create a even more heterogeneous scenario, all
network links have a bandwidth of 4 Mbps, save for
three under-provisioned ones that are seen in light
blue in Figure 4, which have capacities of 1 Mbps.
Such links were assigned with higher OSPF link
costs. This will cause that some paths change their
routing costs or, in some cases, the network paths
between some routers integrate distinct intermediary
routers.

Figure 3. First scenario test topology

Figure 4. Second scenario test topology

Per each scenario, a total of fifteen measurements were
performed, five per P2P operation mode (RANDOM, PING,
and ALTO). The measured metrics will be the time to
download the file and the total amount of network traffic
flowing along the all network backbone area.

VI. SIMULATION RESULTS AND DISCUSSION
This section now focuses on presenting and discussing the

obtained results in the considered scenarios. For the first
scenario, Table I displays the obtained download times
(average, maximum and minimum) and the total backbone
bandwidth used for all three methods. As also depicted in Fig.
5, the total backbone bandwidth used per method shows that
an ALTO-assisted download was clearly much more resource
friendly, as it nearly halved the total bandwidth usage when
compared to the alternative methods. The results clearly show
that the use of the ALTO system allow a much more efficient
use of the network resources, which a much more lower
amount of P2P traffic traversing the core network, caused by
the fact that the shortest path graph calculated in this scenario,
where all links have equal bandwidth and costs, resulted in a
way of reaching the needed chunks in the fewest hops
possible. Regarding the download time, the ALTO method
was marginally, although consistently, faster. By contrast, the
random and ping-oriented methods were less efficient in the
number of hops needed to retrieve the chunks, thus the
observed higher download times and total load in the network.

TABLE I. System Test Results [Scenario 1]

Mode Total Load
(Megabytes)

Value
Type

Download Time
(s)

Random 4245,63

Avg 663,44
Min 662,81
Max 664,51

Ping 4238,73

Avg 666,67
Min 666,57
Max 666,84

ALTO 2422,07

Avg 661,51
Min 661,33
Max 661,73

	
Figure 5. Network Load Comparison

For the second scenario, Table II displays the results in a

similar structure to the previous mentioned, and the trend
remains equal to the first scenario. In fact, as visible in Table
II, the ALTO assisted method presents again much lower
values for the total amount of P2P traffic traversing the
network, which represents economical gains due to a more
efficient use of the available network resources. Despite that,
the total load difference between the ALTO method and the
other ones is not so expressive as in the previous experiment.
This is explained by the fact that in the second scenario some
OSPF costs were changed and some path routing costs no
longer express the minimum number of hops between the
routers. Nevertheless, the total load difference between the
methods is still expressive, clearly benefiting the ALTO
method.

As regards the download times (also expressed in Fig. 6),
similar reasoning can be made as for the previous scenario.
The important conclusion to draw is the fact that the ISP gains
obtained in the save of network resources, were not obtained
with the cost of the degradation of the P2P application running
in the network. On the contrary, the results observed in Table
II and Fig. 6 show also a marginal gain in the downlad times
obtained when the P2P application uses the ALTO system.
Thus, the resutls observed in both scenarios clearly illustrate
and corroborate the advantages of an ALTO assisted system.

TABLE II. System Tests Results [Scenario 2]

Mode Total Load
(Megabytes)

Value
Type

Download
Time (s)

Random 3465,91
Avg 663,94
Min 662,95
Max 664,98

Ping 3545,99
Avg 667,65
Min 667,54
Max 667,74

ALTO 2596,21
Avg 662,33
Min 662,18
Max 662,70

	
Figure 6. Download Times Comparison

The results allow us to conclude that the method that was

guided by the ALTO system was favorable on both scenarios
– this method was faster even on a very lenient topology, and
such speed disparity would increase with less well provisioned
topologies where bottlenecks and less path redundancy can
occur with higher probabilities. The overall network usage
was massively decreased, and its important to note that such
was accomplished with no performance hit. As such, a P2P
client application that could obtain privileged information on
the network topology could be more efficient in the peer-
selection process, and thus greatly reduce the network
resources needed to retrieve all chunks from a file.

VII. CONCLUSIONS
This article accomplished the two main goals it set out to

tackle. Firstly, a review of the existing documentation of the
IETF ALTO project allowed for the contextualization and
specification of such project, and the creation of a proof of
concept with core functionalities, mainly the ability for clients
to retrieve network information from a server that could be
provided by trusted users. The specification of the solution
and the existing prototype implementation allows for the
project continuation and maintenance, as it is well structured
and complies to the ALTO projects requirements. Secondly, a
testing environment was created to empirically test the ability
of a file-sharing P2P network to use network resources within
three peer-choosing algorithms – random choice of peers,
choice of peers that prioritizes shortest RTT time, and choice
of peers influenced by an ALTO infrastructure that provides
resources to a client in the form of network and cost maps that
could allow to choose the peer with the smallest routing cost.

The paper main contributions were to further present the
ALTO project and its purpose within the current needs of ISPs
and client applications. Such project came to life in the form
of a proof of concept with core functionalities, which were
tested in a credible scenario where sufficient conditions were
met for it to objectively improve the management of network
resources.

Further work should focus on expanding the existing
prototype to increase its functionalities, in such a way that

project guidelines and requirements are followed. For
example, the ability to encode temporal information into costs
in the form of cost calendarization or server discovery
mechanisms. Research into deployment methods of an ALTO
system on a large scale are also of interest, in regards of
service availability and response time, for example.
Additionally, security analysis and risk assessment are
important when considering the confidentiality of some of the
network information that can be shared, and the ease-of-use
nature of such data. Finally, more research can be done on the
effectiveness of the ALTO solution in a real scenario, with
focus on understanding what concrete metrics should be
shared, with what frequency, and with whom, in order to
maximize network and client application performance in a
way that complies with ISPs, network administrators, and
clients security and privacy policies.

ACKNOWLEDGMENT
This work has been supported by FCT – Fundação

para a Ciência e Tecnologia within the R&D Units Project
Scope: UIDB/00319/2020

REFERENCES
[1] Wired.com, “P2P Fuels Global Bandwidth Binge”, 2005. [Online].

Available: https://www.wired.com/2005/04/p2p-fuels-global-bandwidth-
binge	

[2] Cisco.com, "Cisco visual networking index: forecast and trends, 2017-
2022 white paper". Updated in 2019. [Online]. Available:
https://www.cisco.com/c/en/us/solutions/collateral/service-
provider/visual-networking-index-vni/white-paper-c11-741490.html	

[3] V. Vishnumurthy and P. Francis, “On random node selection in P2P and
overlay networks”, in Proceedings of INFOCOM’06, 2006.

[4] J. Seedorf and E. Burger, “Application-Layer Traffic Optimization
(ALTO) Problem Statement”, RFC 5693, 2009.

[5] V. Aggarwal, S. Bender, A. Feldmann, and A.Wichmann, “Methodology
for estimating network distances of Gnutella neighbors”, in Proceeding
of INFORMATIK’2004, 2004.

[6] T. Karagiannis, P. Rodriguez, and K. Papagiannaki, “Should ISPs fear
peer-assisted content distribution?”, in ACM SIGCOMM, Proceedings
of IMC, USENIX Association, 2005.

[7] A. Rasti, D. Stutzbach, and R. Rejaie, “on the long-term evolution of the
two-tier Gnutella overlay”, in Proceedings of Global Internet, 2006.

[8] ALTO. https://datatracker.ietf.org/wg/alto/about/
[9] R. Alimi, R. Penno, Y. Yang, S. Kiesel, S. Previdi, W. Roome, S.

Shalunov and R. Woundy, “Application-Layer Traffic Optimization
(ALTO) protocol”, RFC 7285, September 2014.

[10] Q. Wu, Y. Yang, Y. Lee, D. Dhody and S. Randriamasy, “ALTO
performance cost metrics”. Internet-draft draft-ietf-alto-performance-
metrics-08, Work in Progress, November 2019.

[11] S. Randriamasy, W. Roome and N. Schwan, “Multi-Cost Application-
Layer Traffic Optimization (ALTO)”, RFC 8189, October 2017.

[12] JavaPlatform.
https://www.oracle.com/technetwork/java/javase/overview/index.html

[13] GNU Bash. https://www.gnu.org/software/bash/
[14] Apache Tomcat. https://tomcat.apache.org/
[15] Apache Maven. https://maven.apache.org/
[16] MongoDB. https://www.mongodb.com/
[17] CORE. https://www.nrl.navy.mil/itd/ncs/products/core
[18] Vtysh. https://linux.die.net/man/1/vtysh
[19] VnStat. https://humdi.net/vnstat/

	

