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118.1  Introduction

Medical staff, pharmaceutical companies, and 
other scientists and engineers working in 
human health‐related fields are constantly fos-
tering new approaches to establish or improve 
therapeutic solutions or design prevention 
strategies. For instance, in several pathologies, 
the human body faces the loss of tissues caused 
by trauma or disease, being unable to heal 
itself. From a medicine based in substitution, 
science is evolving to a regenerative paradigm, 
inspired by nature and the striking examples of 
a newt’s regenerating limbs and a starfish’s 
regenerating arms, to name a few. This regen-
erative medicine uses tissue engineering 
(TE), proposed about 25 year ago by Langer 
and Vacanti (Langer and Vacanti 1993), aiming 
to overcome the drawbacks of current pros-
thetic devices and grafts from donors of a dif-
ferent nature, such as limited function, scarcity, 
or non‐biocompatibility. TE is commonly 
based on the development of biodegradable 
matrices (mimicking the extracellular matrix) – 
scaffolds  –  where cells will be seeded and 
cultured in the presence of appropriate cock-
tails of bioactive compounds to induce cell 

fate, pointing to the production of living con-
structs to be implanted in the patient body. 
These constructs will, hopefully, experience an 
adequate integration in the surrounding tis-
sues and subsequently trigger tissue regenera-
tion by recruiting cells that together with the 
implanted ones will proliferate (and differenti-
ate) and produce a new extracellular matrix, 
while the implanted scaffold materials are 
degrading and being secreted from the body. 
While several derivative approaches can be 
designed, including acellular ones (Burdick 
et  al. 2013) or scaffold‐free approaches 
(DuRaine et al. 2015; Syed‐Picard et al. 2015), 
it cannot be denied that materials play a pivotal 
role in TE. In this perspective, several poly-
mers have been used for the development of 
scaffolds, be they of natural origin or synthe-
sized, with the combination of proteins and 
polysaccharides promising to resemble the bio-
chemistry of the native extracellular matrix. 
One can thus see collagens and silk fibroin 
being combined with alginate, chitosan, starch, 
or chondroitin sulfate, which will not only act 
as structural materials with support function, 
but will also exert several biological activities 
that have been reported (Malafaya et al. 2007). 

118

Marine-origin Polysaccharides for Tissue Engineering 
and Regenerative Medicine
Chitosan and Fucoidan as Illustrative Examples
Lara L. Reys1,2, Simone S. Silva1,2, Catarina Oliveira1,2, Rita Lopez-Cebral1,2, Nuno M. 
Neves1,2,3, Albino Martins1,2, Joaquim M. Oliveira1,2,3, Tiago H. Silva1,2 and Rui L. Reis1,2,3

1 3B’s Research Group, I3Bs  - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters 
of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, 
Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
2 ICVS/3B’s -PT Government Associate Laboratory, Braga/Guimarães, Portugal
3 The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805–017, Barco, Guimarães, Portugal



118  Marine-origin Polysaccharides for Tissue Engineering and Regenerative Medicine2620

While proteins have a well‐defined primary 
structure coded on genetic information, poly-
saccharides can be quite variable and heteroge-
neous, depending on physiological and 
environmental conditions, to which add a sig-
nificant degree of variability caused by the 
methodologies used for their extraction from 
natural sources. Thus, although several bio-
logical activities have been attributed to poly-
saccharides grouped under the same name, 
those activities are not ubiquitous, depending 
on chemical features, since several of those 
molecules can be quite different and still be 
given the same family name, from which a val-
idation of the chemical and biological proper-
ties is always needed when dealing with a new 
polysaccharide extract. Indeed, the structure‐
activity relationship (SAR) is one of the 
active areas of polysaccharide research, with 
intriguing results being reported in the last 
years (Jin et al. 2016; Oliveira et al. 2017). This 
variability can be regarded as a source of flexi-
bility, which can be enriched by the many 
modifications offered by chemistry, being the 
variation in functional groups, molecular 
weight, or grafting of bioactive molecules, 
such as peptides, resulting in a very versatile 
class of biopolymers (Alves and Mano 2008). 
Nevertheless, this versatility is not being fully 
exploited, namely regarding the biomedical 
potential of polysaccharides, mainly because 
their functions in the human body are not yet 
completely understood. Besides the support 
and storage roles, played respectively by cellu-
lose and starch in plants, for instance, there are 
a series of other biological roles assumed by 
polysaccharides, with cells being literally cov-
ered by sugars  –  the common name given to 
this class of biopolymers – that are believed to 
interfere on the growth, function, and survival 
of our organisms, namely by acting on recogni-
tion of toxins, viruses, antibodies, bacteria, and 
other cells (Pashkuleva and Reis 2010).

The marine environment is quite well repre-
sented in the polysaccharide world, being the 
origin of some of the most explored examples, 
such as chitosan, agar, and alginate. Besides, 

sulfated polysaccharides from macroalgae 
have been receiving increasing attention from 
the scientific community associated to the 
innumerable biological activities being identi-
fied (Silva et al. 2012), as well as exopolysac-
charides from microalgae, which can be 
isolated as by‐products from cultivation for 
capture of CO2 (Posada et al. 2016).

The present chapter focuses on two polysac-
charides – chitosan and fucoidan –  that have 
been studied as models of glycosaminoglycans, 
in the first case with similarities to hyaluronic 
acid given the presence of acetylglycosamine 
(but no uronic acids) and in the second case 
given the presence of sulfation and uronic 
acids. These are illustrative examples of the 
processability, properties, and applications of 
marine polysaccharides (Figure  118.1), with 
chitosan deriving from chitin, the second most 
abundant polysaccharide in the world, and 
fucoidan representing the highly biologically 
active sulfated polysaccharides. Moreover, the 
former is a polycation due to the presence of 
free amines protonated in acid medium and 
the latter is a polyanion due to the presence of 
ester sulfates. In the following sections we 
discuss the methodologies used for their 
extraction from the marine origin biomass and 
their chemical and biological properties, with 
emphasis on the ones more relevant in bio-
medical context.

118.2  Chitin/Chitosan

The exploration of polysaccharides like chi-
tin and chitosan from the marine biomass 
has attracted considerable interest as an 
ecofriendly and sustainable strategy (He 
et al. 2014; Huang et al. 2015). Chitin is the 
second most abundant natural polymer after 
cellulose. Structurally, chitin is composed of 
N‐acetyl‐D‐glucosamine and D‐glucosa-
mine monomers, bonded by β‐D‐(1→4) link-
ages (Bueter et al. 2013; Cheng et al. 2014). 
Depending on the source, chitin can be 
characterized by α and β crystallographic 
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forms: α‐chitin is the most abundant type of 
chitin in nature, found in the exoskeleton of 
many crustaceans such as crabs and shrimps, 
while the β‐chitin constitutes the endoskel-
etons of various mollusks (Langer and 
Vacanti 1993; Kim and Mooney, Rinaudo 
2006; Cheng et  al. 2014). In both types of 
chitins, the chains are organized in sheets 
and held together by intra‐sheet hydrogen 
bonds (see Figure 118.2). Nevertheless, dif-
fering from α‐chitin, polymeric chains 
organized in a parallel way are present in 
the β‐chitin structure, leading to weaker 
intermolecular bonds, which may explain 
its higher affinity for solvents and its higher 
reactivity (understood as susceptibility for 
chemical modification).

118.2.1  Extraction of Chitin 
and its Conversion to Chitosan

Chitin present in the exoskeleton of arthro-
pods is associated with minerals, proteins, 
lipids, and pigments. Therefore, the isolation 
of α‐chitin consists in washing, demineraliza-
tion, deproteinization, and depigmentation to 
remove impurities and those other major com-
ponents: minerals (calcium carbonate), pro-
teins, and pigments, respectively (Reys et  al. 
2013). In those processes, demineralization is 
made using strong acids, while deproteiniza-
tion uses strong bases, e.g. sodium hydroxide 
(NaOH) solution. A possible alternative to the 
previous methodologies is the employment 
of  microorganisms and proteolytic enzymes 
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Figure 118.1  Overview of the properties, processability, and tissue engineering applications of marine 
polymers for biomedical applications (Ribeiro et al. 2011; Bueter et al. 2013; McFall-Ngai 2014; Janakiram 
et al. 2015).
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(Gasperini et  al. 2014; Younes et  al. 2014). 
Later on, the depigmentation process is per-
formed, relying on the use of solvents (acetone 
or ethanol) for the extraction of red pigments, 
carotenoids. These solvents will also eliminate 
the lipids present in the raw material (Hsieh 
et al. 2003; Maoka 2011). By its turn, β‐chitin is 
isolated from the endoskeletons of squids and 
cuttlefish (Silva et  al. 2008; Jayakumar et  al. 
2010; Reys et al. 2013). Compared to α‐chitin, 
β‐chitin contains a smaller amount of minerals 
and lipids, while pigments are absent. Thus, 
chitin is retrieved mainly following a depro-
teinization procedure.

Chitin has been converted into chitosan by 
partial deacetylation (Rinaudo 2006; Silva 
et al. 2010). This process consists of the removal 
of the acetyl groups using a high temperature 
(90°–100°C) and strong alkali solutions (e.g. 
50% NaOH) during several hours (Evans et al. 
2002; Hsieh et al. 2003; Reys et al. 2013). Being 
harsh conditions, polymer degradation may 
also be promoted and thus, depending on the 
reaction conditions used, chitosan with varia-
tions in both molecular weight (MW) and 
degree of deacetylation (DD) can be 
obtained. The DD is characterized by the molar 

fraction of non‐acetylated units within the chi-
tosan chain. Both the DD and MW are relevant 
parameters of chitosan that could influence its 
performance in pharmaceutical and biomedi-
cal applications (Rinaudo 2006). It has been 
described that chitosan can be only considered 
when a maximum of 40% N‐acetyl‐D‐glucosa-
mine units remain as part of the polymer 
structure (Dimzon et  al. 2013), although a 
more empirical approach is commonly used: if 
soluble in diluted acetic acid, it is chitosan; if 
not, it is still chitin. A purification process can 
be made to obtain chitosan with a higher 
degree of purity, by dissolving chitosan in a 
diluted solution of acetic acid (1% w/v), fol-
lowed by filtration to remove insoluble impuri-
ties and further chitosan precipitation by the 
addition of NaOH 3M until pH 8. The pH 
should be controlled to avoid high alkaline 
conditions, which could promote the addi-
tional deacetylation of the material (Reys et al. 
2013). The precipitated chitosan is washed 
with distilled water and ethanol solutions. 
Then, the final material is frozen at –80°C 
overnight and freeze‐dried for at least 4 days 
(Signini and Campana Filho 1998; Reys et al. 
2013).
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Figure 118.2  Structures of α-chitin (a) and β-chitin (b). Reprinted with permission from Zeng et al. (2012).
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118.2.2  Properties and Processing 
of Chitin and Chitosan

118.2.2.1  Chitin
Chitin has strong intra‐ and interchain hydro-
gen bonding, contributing to the formation of 
a microfibrillar structure that presents crystal-
line and amorphous zones (Villares et al. 2014; 
Deringer et  al. 2016). In native chitin, these 
fibrils with diameters from 2.5 to 25 nm are 
usually embedded in a protein matrix (Zeng 
et al. 2012). Chitin microfibers can be hydro-
lyzed and separated into individual nanofibers, 
commonly called nanowhiskers (CHWs) 
(Araki and Kurihara 2015). These CHWs have 
interesting features such as remarkable 
mechanical properties, positive surface charge, 
large surface area, relatively low density, high 
heat resistance, and biodegradability (Araki 
and Kurihara 2015; Huang et al. 2015; Aklog 
et al. 2016). The CHWs are used mainly as rein-
forcing polymer nanocomposites, with the for-
mation of CaCO3/chitin‐whisker hybrids, as 
well as on structuring oil, fueling, and also to 
produce hydrogels and scaffolds, among other 
applications (Kadokawa 2013; Pereira et  al. 
2014; Cui et  al. 2016; Valverde Serrano et  al. 
2016; Zhang et al. 2016; Silva et al. 2017).

Chitin has poor solubility in water and most 
organic solvents due to its strong intermolecu-
lar hydrogen bonding. In fact, only a limited 
number of solvents, namely N,N‐dimethyl-
acetamide/lithium chloride (DMA‐LiCl), 
NaOH/urea, and hexafluoroacetone are able to 
solubilize chitin (Ravi Kumar 2000; Rinaudo 
2006; Silva et  al. 2010), representing a draw-
back for industrial purposes (Deringer et  al. 
2016; Skołucka‐Szary et  al. 2016). However, 
chitin itself has appealing properties for bio-
medical applications such as biocompatibility, 
tumor cell growth suppression, acceleration of 
wound healing, and antimicrobial activity 
(Ravi Kumar 2000; Silva et  al. 2010; Cheung 
et al. 2015). The mentioned key properties of 
chitin have stimulated the development of 
many chitin‐based products such as dressing 
for burns, vascular implants, artificial blood 

vessels, and tumor inhibitors (Ravi Kumar 
2000; Khor and Lim 2003; Muzzarelli 2009).

Recent advances in the processing of chitin 
into useful materials have been achieved using 
ionic liquids (ILs), defined as salts that melt 
below 100°C (Anthony, Brennecke et al. 2002). 
ILs are composed of different cations and ani-
ons and can be tailored to meet the demands of 
each application, possessing the ability to dis-
rupt strong H‐bond interactions. Therefore, 
the dissolution of chitin in ILs, such as 1‐butyl‐
imidazolium acetate (BMIMAc) and 1‐ethyl‐3‐
methylimidazolium chloride (BMIMCl), has 
been demonstrated in the production of 2D 
(films) and 3D‐based matrices (sponges, 
micro/nanoparticles, nanofibers) (Silva et  al. 
2011; Silva et al. 2017). The produced materials 
have been designed to act as wound dressing, 
hemostatic or antibacterial agents, and drug‐
delivery systems (Silva et al. 2011; Silva et al. 
2017). During chemical reactions such as 
hydrolysis, acetylation, graft copolymeriza-
tion, and atom transfer radical polymeriza-
tion (ATR) on chitin, imidazolium‐based ILs 
not only reduce dissolution times but are also 
an excellent catalytic media due to their inher-
ent task‐specific properties (Silva et al. 2017). 
Despite the successful findings, studies involv-
ing in vivo biocompatibility on chitin‐based 
matrices processed in ILs are scarce. Although 
more research is needed, the available results 
suggest that the chitin–IL platform can be an 
attractive new tool in the processing of chitin‐
based biomedical devices.

118.2.2.2  Chitosan
Chitosan has fascinating characteristics as a 
biomedical polymeric material, such as bio-
degradability, biocompatibility, mucoadhesiv-
ity, antibacterial and antioxidant activity, lack 
of toxicity, hemostatic action, and cationic 
nature (Rinaudo 2006; Silva et al. 2010). Due to 
its stable crystalline structure, chitosan is usu-
ally insoluble in water, but soluble in diluted 
acid solutions that promote the protonation of 
the free amine groups (‐NH2) present in the 
deacetylated units (pKa  6.3) (Rinaudo et al. 
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1999). Several matrices can be obtained using 
chitosan. For instance, diluted chitosan acid 
solutions are the basis for membrane produc-
tion, while gels can be formed with concen-
trated polymeric solutions. Particles and fibers 
can be produced using dripping or direct con-
tact of chitosan solution with a coagulation 
alkaline bath (Silva et al. 2010). Alternatively, 
porous structures and tubes can be obtained 
using freeze‐drying. Also, the cationic nature 
of the chitosan permits the formation of ionic 
complexes with a variety of anionic polysac-
charides, such as alginate or gelatin (Mano 
et  al. 2007; Silva et  al. 2010), as well as with 
glycosaminoglycans (GAGs) or proteogly-
cans (Reys et al. 2013).

The availability of amine and hydroxyl 
groups present in the chitosan structure offers 
the opportunity for the introduction of novel 
moieties and properties (Rinaudo 2006; Alves 
and Mano 2008). Indeed, this possibility has 
been widely explored through the synthesis of 
several chitosan derivatives such as quater-
nized, N‐alkyl, hydroxyalkyl, carboxyalkyl, N‐
Acyl, O‐Acyl, thiolated, sulfated, azidated, or 
phosphorylated chitosans (Alves and Mano 
2008). Among these chitosan derivatives, car-
boxymethyl chitosan (CMCS) has been the 
most explored for biomedical applications, 
mainly due to its water‐solubility (Upadhyaya 
et al. 2014). Table 118.1 displays a summary of 
different chitin and chitosan matrices and 
their potential biomedical applications.

The combination of chitosan with other 
polymers, natural or synthetic, is an approach 
frequently used to create blends and compos-
ites with improved mechanical properties or 
biocompatibility. Although it is much easier to 
use synthetic polymers since they have repro-
ducible processing, suitable mechanical prop-
erties, and thermal stability, natural polymers 
are also an excellent choice due to their abun-
dance, biocompatibility, and biodegradability. 
Most of the studies reported in the literature 
described blended systems composed by chi-
tosan with alginate (Venkatesan et  al. 2014: 
Silva et al. 2015: Conzatti et al. 2017), cellulose 
(Park et  al. 2011; Fu et  al. 2017), fucoidan 

(Murakami et  al. 2010; Pinheiro et  al. 2015; 
Huang et  al. 2016), chondroitin sulfate (Fan 
et al. 2017; Nunes et al. 2017), hyaluronic acid 
(Park et al. 2013; Miranda et al. 2016), gelatin 
(Dhandayuthapani et  al. 2010; Tseng et  al. 
2013; Nieto‐Suarez et  al. 2016; Wang 
et al.  2016), collagen (Sarkar et al. 2013; Wang 
et  al. 2013; Xin et  al. 2015; Mahmoud and 
Salama 2016), and silk fibroin (Silva et al. 2008; 
Silva et al. 2012), as illustrated by the examples 
depicted in Table  118.2. These blends can be 
processed into different forms: membranes can 
be obtained using solvent casting method 
(Silva et  al. 2008; Silva et  al. 2013), porous 
structures can be processed by freeze‐drying 
technique (Xin et  al. 2015; Mahmoud and 
Salama 2016), while hydrogels can be pro-
duced through ion gelation, chemical 
crosslinking, or copolymerization reactions 
(Silva et al. 2012), among others. These poly-
meric matrices have suitable properties and 
functionalities for biomedical purposes, 
namely as dermal substitutes, wound dress-
ings, drug delivery, and 3D porous structures 
for cartilage, bone, and skin regeneration.

Recent research described the positive inter-
action between chitosan with active phyto-
chemicals found in aloe vera (AV), a medicinal 
plant, as a strategy to create active wound 
dressing materials useful for skin repair (Silva 
et al. 2013; Silva et al. 2013). The chitosan/AV 
based membranes displayed increased rough-
ness and wettability, while the crosslinking 
with genipin, a natural crosslinker, promoted 
the formation of stiffer membranes in compari-
son to non‐modified ones. Moreover, in vitro 
assays demonstrated that the adhesion and pro-
liferation of human fibroblasts on chitosan/AV 
membranes were better than chitosan membrane.

Recent studies described the chemical modifi-
cation of chitosan backbone to convert it into 
water‐soluble CMCS, which has been blended 
with soy protein (Teng et al. 2013), collagen (Lin 
et al. 2017), and gelatin (Kanth et al. 2017) to pre-
pare nanoparticles, microspheres, and hydrogel 
microspheres, respectively. These matrices can 
be potential candidates for developing controlled 
release devices for nutraceuticals and drugs.
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The interactions between chitosan and algi-
nate (Silva et al. 2015; Conzatti et al. 2017) or 
gelatin (Dhandayuthapani, Krishnan et  al. 
2010, Tseng, Tsou et  al. 2013; Nieto‐Suarez 
et  al. 2016; Wang et  al. 2016) have been also 

employed in the preparation of polyelectro-
lyte complexes (PECs). For instance, the 
interactions between amine groups of chitosan 
and carboxylate groups present in gelatin 
resulted in the formation of hydrogen bonding 

Table 118.1  Chitin and chitosan matrices for biomedical purposes.

Composition Matrix type Relevant properties
Proposed biomedical 
application References

Chitin Nanofibers Self‐assembly TE (Rolandi and 
Rolandi 2014)

Nanoparticles Interaction with 
anticancer drugs

Anticancer therapy 
(drug delivery)

(Geetha et al. 
2016)

Nanocrystalline 
films

Protein adsorption Biological sensors 
and catalysis

(Wang and Esker 
2014)

Microspheres Positive charge Controlled drug 
release

(Shang et al. 2014)

Carboxymethyl 
chitin

Injectable 
hydrogels

Thermosensitivity Soft tissue 
regenerative 
medicine

(Liu et al. 2016)

Carboxymethyl 
chitin /PAMAM 
dendrimer NPs

Grafting potential Regenerative 
medicine

(Salgado et al. 
2010)

Microspheres Emulsification 
potential

Anticancer therapy 
(drug delivery)

(Li et al. 2011)

Porous 
membranes

Water solubility TE (Zhao et al. 2015)

Chitosan Microparticles Functionalization 
potential

Tissue regeneration (Custódio et al. 
2015)

NPs Positive charge Anticancer therapy 
(drug delivery)

(Van Woensel et al. 
2016)

Coatings Cell interaction TE (Chou et al. 2016)

Hydrogels Gelling ability Bacteria detection (Sadat Ebrahimi 
and Schönherr 
2014)

Films Adhesiveness Tissue repair (Barton et al. 2014)

Chitosan‐ 
sulfonamide 
derivatives

Membranes Antimicrobial 
activity

Wound dressing (Dragostin et al. 
2016)

Chitin and 
chitosan

Chitosan‐sheath 
and chitin‐core 
nanowhiskers

Crystallinity and 
deacetylation 
potential

Improving the 
properties of other 
systems

(Pereira et al. 
2014)

N‐acetyl‐
cysteine 
chitosan

Reinforced mats Antimicrobicity, 
hydrating features, 
crystallinity, and 
electrospun ability

Wound dressing (Naseri et al. 2014)

Abbreviations: TE – Tissue engineering; NPs – nanoparticles; PAMAM – Polyamidoamine.



Table 118.2 Chitosan blends for biomedical applications.

Composition Processing methodology Matrix type Potential biomedical application Reference

Chitin/ALG Dry‐jet wet spinning Fibers Wound care dressings (Shamshina et al. 2014)

Chitin/CEL Gelation in ILs (AMIMBr, 
AMIMCl)

Composite gel 
and films

n.d. (Takegawa et al. 2010)

Wet‐spinning process Fibers n.d. (Mundsinger et al. 2015)

 Chitosan/ALG PEC formation
Drying process (Hot air, freeze‐
drying, SCC)

Xerogel, alcogel Gastrointestinal wound 
dressings

(Conzatti et al. 2017)
 
 
 
(Silva et al. 2016)

Layer‐by‐layer Freestanding 
membrane

n.d.

Chitosan/AG Freeze‐drying Scaffold Cartilage TE (Merlin Rajesh Lal et al. 
2017)

Sol‐gel transition Nanocomposite 
ionogels

Biotechnology and biomedical 
applications

(Trivedi et al. 2014)

Chitosan/AV Solvent casting Membranes Wound dressing (Silva et al. 2013)
(Silva et al. 2013)Solvent casting

Genipin crosslinking
Crosslinked 
membranes

Chitosan/CAR Polyelectrolyte complexation/
ionic gelation

Nanoparticles Mucosal delivery of 
macromolecules

(Rodrigues et al. 2012)

PEC formation Scaffolds TE (Araujo et al. 2014)

Chitosan/CEL Electrospinning Nanofibers Wound repair (Park et al. 2011)

Solvent casting Films Antibacterial materials (Fu et al. 2017)

Chitosan/CMC Spray‐drying process Microparticles Drug delivery system (Cerchiara et al. 2016)

Chitosan/COL Freeze‐drying Scaffolds Skin regeneration application (Mahmoud and Salama 2016)

Therapeutic strategy for 
ischemic stroke

(Xin et al. 2015)

Chitosan/COL/
ALG

Spray‐spinning Fibrous scaffold Anticancer drug screening (Wang et al. 2016)



Chitosan/CS Schiff base reaction Injectable 
hydrogel

Injectable drug and cell delivery 
system in cartilage tissue 
engineering

(Fan et al. 2017)

Gelation in ILs ([Hmim][HSO4]) Hydrogel Many technological purposes (Nunes et al. 2017)

PEC formation Nanoparticles Controlled release of growth 
factors and proteins

(Santo et al. 2012)

Chitosan/soy 
protein/TEOS

Sol‐gel process
Solvent casting

Membranes Wound dressing (Silva et al. 2013)

Chitosan/
Fucoidan

Ionotropic crosslinking Nanoparticles Potential carriers in pulmonary 
delivery

(Pinheiro et al. 2015;  
Huang et al. 2016)

Layer‐by‐layer assembly Nanocapsules Delivery system for water 
soluble bioactive compounds

Chitosan/GEL Crosslinking (succinimide‐end 
polyethylene glycol)

Microgels Delivery vehicle of hydrophobic 
bioactive molecules

(Wang et al. 2016)

Crosslinked with glutaraldehyde
ice segregation induced  
self‐assembly

Scaffolds n.d. (Nieto‐Suarez et al. 2016)

Chitosan/GG Crosslinking (PEG) Hydrogel Diabetic wound healing (Shukla et al. 2016)

Chitosan/HA Photocrosslinking Injectable 
hydrogels

Cartilage TE (Park et al. 2013)

Gelation/ freeze‐drying Hydrogel 
scaffold

Periodontal TE (Miranda et al. 2016)

Chitosan/SF Gelation Hydrogels Skin regeneration (Silva et al. 2012)

Abbreviations: AG – agarose; ALG – alginate; AV – aloe vera; AMIMBr – 1‐allyl‐3‐methylimidazolium bromide; AMIMCl – 1‐allyl‐3‐methylimidazolium chloride; 
CMC – carboxymethylcellulose; CAR – carrageenan; CEL – cellulose; CS – chondroitin sulfate; COL – collagen; GEL – gelatin; GG – gellan gum; HA – hyaluronic acid; 
n.d. – not defined; PEG – polyethylene glycol; PLLA – poly(lactic acid); PBS – polybutyrene succinate; PEC – polyelectrolyte complex; SF – silk fibroin; SCC – super critical 
CO2 drying; TEOS – tetraethylorthosilicate; TE – tissue engineering.
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and electrostatic attraction, enabling the pro-
duction of blended films (Hamman 2010). In 
other studies, nanoparticles were produced 
based on the electrostatic interaction between 
chitosan and chondroitin sulfate. This system 
is proposed for the controlled release of protein 
and growth factors (GFs), specifically plate-
let lysates (PLs) (Santo et al. 2012).

Blending chitosan with synthetic polymers, 
namely polyvinyl pyrrolidone (PVP), poly-
vinyl acetate (PVA), polyethylene oxide 
(PEO), and poly(butylene terephthalate 
adipate) (CPBTA) (Alves da Silva et al. 2011; 
Sionkowska 2011), can be performed to 
enhance hydrophilicity, mechanical proper-
ties, blood compatibility, or antibacterial 
properties. The chitosan/synthetic blends can 
be done in solution or by melting, with 
Sionkowska describing chitosan‐PVP hydrogels 
produced through crosslinking (Sionkowska 
2011), suggested for protein absorption and 
immobilization.

118.2.3  Applications

The intrinsic properties of chitosan serve as 
the basis for the utilization of this biomaterial 
in diverse areas, such as agriculture, environ-
mental protection, food industry, biotechnol-
ogy, materials science, or pharmaceutical and 
biomedical industry (Aranaz 2009; Dutta et al.; 
Silva et al. 2010). Particularly, in tissue engi-
neering and regenerative medicine 
(TERM), several chitosan‐based systems have 
been used in the development of 3D porous 
structures to induce and support the regenera-
tion of different tissues, namely bone, carti-
lage, and skin (Oliveira et al. 2006; Silva et al. 
2008; Yilgor et al. 2009; Neves et al. 2011; Jin 
et  al. 2013; Tseng et  al. 2013; Francis et  al. 
2014; Martins et al. 2014).

118.2.3.1  Cartilage Regeneration
Chitosan‐based structures have been suggested 
for cartilage regeneration, since chitosan 
chemical structure and characteristics have 
similarities to GAGs. GAGs are known constituents 

of the cartilage extracellular matrix (ECM), 
and they have a fundamental role in vitro and 
in vivo chondrogenesis (Suh and Matthew 
2000). Silva et al. developed porous structures 
combining chitosan and silk fibroin in which 
ATDC5 chondrocyte like‐cells were able to 
adhere and proliferate, while producing ECM, 
during up to 28 days of culture. The biological 
findings associated with the properties of the 
developed structures suggest that these sys-
tems can be suitable candidates for their use 
for cartilage regeneration (Silva et  al. 2008; 
Silva et al. 2013).

118.2.3.2  Bone Regeneration
Different authors outlined the use of chitosan‐
based structures for the treatment of bone and 
osteochondral defects (Mano and Reis 2007; 
Muzzarelli 2009; Yilgor et  al. 2009; Duarte 
et al. 2010). This can be achieved by freeze‐dry-
ing of chitosan–collagen blends (Raftery et al. 
2016), processing with supercritical fluids 
(Duarte et al. 2010), or incorporation of bone‐
specific growth factors (Yilgor et al. 2009), but 
the development of biphasic structures are 
offered as more appropriate to tackle the chal-
lenging osteochondral pathologies, since those 
layered scaffolds supply differentiated regions 
to promote both bone and cartilage regenera-
tion. Oliveira et al. obtained polymeric bipha-
sic structures combining chitosan with 
hydroxyapatite, throughout a synthesis and 
freeze‐drying process (Oliveira et  al. 2006), 
with biological results proving that both layers 
are adequate 3D supports for the adhesion and 
proliferation of bone marrow stem cells 
and  further enabling their differentiation in 
osteogenic and chondrogenic lineages.

118.2.3.3  Skin Regeneration
Chitosan has interesting features for skin 
regeneration, namely wound protection, heal-
ing acceleration, and antibacterial action. 
Therefore, chitosan membranes or blended 
ones, as well as hydrogels (Santos et al. 2013; 
Silva et al. 2013), have been proposed as wound 
dressings or as artificial skin. Some authors 
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have reached promising results, as for instance 
Kong et al. with alternately deposited alginate 
and chitosan on a substrate of solidified gela-
tin, to form an ultrathin nanomembrane (Kong 
et  al. 2016). This system accelerated wound 
contraction and epidermalization. By their 
turn, Lu et  al. used a chitosan/ascorbic acid 
solution blend containing gelatin, followed by 
crosslinking with tannin acid and freeze‐
drying, to obtain a chitosan–gelatin sponge 
(Lu et al. 2016), observing the rapid healing of 
a treated wound. This wound heal was further 
promoted with the loading of platelet‐rich 
plasma. Anjum et  al. coated a cotton fabric 
with a blend of chitosan, polyethylene glycol 
(PEG) and PVP (Anjum et al. 2016). By incor-
porating the drug tetracycline hydrochloride 
(antibiotic) within the developed system, the 
drug‐loaded dressing demonstrated good anti-
microbial nature against both Gram‐positive 
and Gram‐negative bacteria. Moreover, in vivo 
studies carried out on full‐thickness skin 
wounds suggested that drug‐loaded dressings 
could provide scar preventive wound healing.

118.2.3.4  Cancer Treatment
Chitosan has multifaceted applications in can-
cer therapy, namely as assisting in gene deliv-
ery and chemotherapeutic delivery, as well as 
being immunoadjuvant for vaccines (Babu and 
Ramesh 2017). Chitosan matrices have also 
been utilized for the development of anticancer 
therapies. Chitosan‐based structures have been 
designed to mimic the cancerous biologic envi-
ronment, to both facilitate the study of cancer 
cell behaviors and to enable the evaluation of 
the performance of novel therapeutic mole-
cules (Florczyk et al. 2013; Huang and Li 2014; 
Kievit et al. 2014). For instance, chitosan nan-
oparticles (CSNPs) have drawn considerable 
attention as anticancer drug delivery carriers 
due to their easy accessibility, excellent stabil-
ity, low toxicity, and easy modification (Fu et al. 
2016). Jin et al. demonstrated that a nanoparti-
cle‐based drug carrier composed of chitosan, 
ursolic acid (UA), and folate (FA‐CS‐UA‐NPs) 
could effectively diminish off‐target effect and 

increase local drug concentrations of ursolic 
acid (Ji et al. 2016). In vivo experiments showed 
that FA‐CS‐UA‐NPs could significantly reduce 
breast cancer burden in MCF‐7 xenograft 
mouse model, overall suggesting that these NPs 
might provide a platform to develop an antican-
cer drug delivery system.

118.2.3.5  Drug Delivery Systems
Chitosan can be used as an attractive component 
of different drug delivery systems (DDSs), such 
as membranes, nanoparticles, tablets, or hydro-
gels (Hamman 2010, Silva, Alves et  al. 2012, 
Cardoso, Costa et al. 2016). The drug incorpora-
tion within these systems can be performed by 
addition into the solution or posterior entrap-
ment by complexation or adsorption. Bigucci 
et al. studied complexes formed by chitosan and 
carboxymethylcellulose (CMC) for the vaginal 
administration of chlorhexidine, a broad‐spec-
trum antiseptic (Bigucci et al. 2015). Tang et al. 
developed chitosan films for the administration 
of ibuprofen in the oral mucosa, with drug incor-
poration by supercritical impregnation (Tang 
et  al. 2014). Moreover, Calinescu et  al. elabo-
rated gastro‐resistant tablets destined for the 
controlled release of therapeutic proteins in the 
intestine (Calinescu et al. 2012). In other studies, 
chitosan hydrogels were employed in the sus-
tained release of latanoprost (ocular anti‐hyper-
tensive), destined to be used in glaucoma therapy 
(Cheng et al. 2014). Hermans et al. prepared chi-
tosan films that were used to prolong the release 
of ciclosporin (immunosuppressive drug) after 
its ocular administration, as part of the thera-
peutic treatment of the dry eye (Hermans et al. 
2014), while Bhalerao et al. developed chitosan 
and heparin films for the controlled release of 
drugs destined for the treatment of the malaria 
disease (Bhalerao et al. 2015).

118.3  Fucoidan

Fucoidan is an anionic sulfated polysaccharide 
present in the cell wall of brown algae, 
although it can represent all polysaccharides 
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having a polymer backbone composed by 
sulfated fucose units, which has been found 
also in sea cucumbers. Fucoidan has been iso-
lated from different species of brown algae, 
namely Fucus vesiculosus, Ecklonia cava e 
Undaria pinnatifida (Sezer and Cevher 2011; 
Wa and Yj 2012). The chemical and structural 
composition of fucoidan has been much stud-
ied over the past few years but it is not yet defi-
nitely established (Mak 2012). The main 
components of fucoidan are L‐fucose with 
ester sulfate groups, with other monosaccha-
rides also being present, like mannose (Duarte 
2001), galactose (Rocha et  al. 2005), glucose 
(Nagaoka et  al. 1999), xylose (Rocha et  al. 
2005), and uronic acids (Nagaoka et al. 1999; 
Ponce et  al. 2003). The chemical structure of 
fucoidan is usually composed of residues of 
α‐L‐fucopiranose interconnected by links (1 → 3) 
or alternating (1 → 3) and (1 → 4), but polymer 
branching is also possible, including with 
other sugars, related to the species of brown 
seaweed (Chizhov et al. 1999), but also to other 
factors, such as harvest location and season 
and seaweed maturity (A.Sarah, et  al. 2001; 
Mak 2012), besides experimental conditions 
used during extraction. In Figure 118.3 we can 
observe two fucoidan types with varying 
degrees of sulfation. The interest in this 

sulfated polysaccharide comes from its intrin-
sic properties, including antitumor (Li Bo 
2008; Shilpi 2011; Oliveira et al. 2017), antico-
agulant (Mourão 2004; Li Bo 2008; Shilpi 
2011), antiviral (Mourão 2004; Mandal et  al. 
2007; Li Bo 2008; Shilpi 2011) and anti‐inflam-
matory (Maruyamaa et  al. 2005; Li Bo 2008) 
activities, as well as the capacity to reduce the 
level of glucose in blood (Li Bo 2008). Based on 
these features, fucoidan has been used with 
success in different areas, such as food, 
cosmetics, pharmaceutical, and medicine 
(Kitamura et  al. 1991) (see examples in 
Table 118.3). The exploration of fucoidan as a 
marine origin material has economic and envi-
ronmental interest, representing a recovery 
strategy for producing marine‐based biomate-
rials (Ponce et al. 2003). In this perspective, an 
increasing number of fucoidan‐based profita-
ble products have been developed for biomedi-
cal application, including controlled drug 
delivery devices and TE scaffolding (Silva et al. 
2012).

118.3.1  Extraction of Fucoidan

Many methods have been investigated to 
produce high‐quality fucoidan, such as 
using   ethanol/water and acidic solutions 
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(D’Ayala et al. 2008; Mak 2012), assisted with 
ultrasound or microwave radiation or based in 
enzymatic processing (Pomin et  al. 2005; 
Rodriguez‐Jasso et al. 2011; Hahn et al. 2012; 
Ale and Meyer 2013; Balboa et  al. 2013). In 
these methods, a set of parameters such as 
temperature, time of extraction, acid concen-
tration, and pH must be controlled, so as to 
avoid degradation of the fucose chain but to 
successfully remove some insoluble compo-
nents. Indeed, the experimental conditions 
used during extraction can influence the 
chemical composition, number of sulfates, 
chemical structure, and MW of the retrieved 
biopolymer. The extraction of fucoidan with 
acids, such as HCl, has a higher yield, but algi-
nates are also extracted and chain degradation 
may occur (Ale et  al. 2011). Thus,  calcium 
solutions are used subsequently to promote the 

precipitation of alginates (Kitamura et al. 1991; 
Hahn; et al. 2012), to be separated by centrifu-
gation (Foley et  al. 2001). Fucoidan purifica-
tion can be made using different methods, 
such as treatment with alcohol/formaldehyde 
and cetilpiridine chloride, followed by dialysis 
(Kitamura et a. 1991). Fucoidan extracts usu-
ally have a colour varying between yellow and 
brown (Sezer and Cevher 2011; Mak 2012). 
Figure 118.4 depicts a scheme with the process 
commonly used in production plants.

118.3.2  Fucoidan Properties

Fucoidan has interesting properties, namely 
antioxidant, antivirus, anti‐inflammatory, 
anticoagulant, antitumor and antihyperglyce-
mia (Silva et  al. 2012). In Table  118.3, the 
biological activities, sources, and possible 

Table 118.3  Fucoidan bioactive properties and possible biomedical applications.

Biological activity Source Applications References

Antioxidant Laminaria japonica
Sargassum 
tenerrinum
Sargassum 
glaucescens

Antioxidant activity 
prevention; helps in 
diseases that require free 
radicals

(Wang et al. 2010; 
Marudhupandi et al. 
2014; Huang et al. 2016)

Antiviral Cystoseira indica
Undaria pinnafida
Sargassum mcclurei
Sargassum 
polycystum
Turbinara ornata

Antiviral activity against 
different kinds of viruses 
(HIV, HSV, and human 
cytomegalovirus)

(Lee et al. 2004; Mandal 
et al. 2007; Thuy et al. 
2015; Wozniak et al. 
2015)

Anti‐inflammatory Laminaria japonica
Fucus vesiculosus

Leukocytes inhibition (Park et al. 2011; Kyung 
et al. 2012)

Anticoagulant Laminaria japonica
Fucus vesiculosus

Anticoagulant activity 
mediated by antithrombin 
and heparin

(Irhimeh et al. 2009; 
Wang et al. 2010; Zhang 
et al. 2014)

Antitumor Undaria pinnatifida
Fucus vesiculosus
Cladosiphon 
navae‐caledoniae

Inhibits cancer cells 
proliferation; promotes 
cancer cells apoptosis; 
enhances activity of 
chemotherapeutic agents

(Yang et al. 2013; Zhang 
et al. 2013; Chen et al. 
2014; Hsu et al. 2014)

Antihyperglycemia Sargassum thumbergii
Sargassum wighti
Fucus vesiculosus

Helps in the treatment of 
type II diabetes

(Kim et al. 2014; Jiang 
et al. 2015; Vinoth 
Kumar et al. 2015; Shan 
et al. 2016)
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applications of fucoidan are summarized. 
Bioactive properties of fucoidan may be influ-
enced by its MW, polymer branching, sugar 
content, sulfation degree, and sulfates distribu-
tion (Ale et al. 2011).

In recent studies, fucoidan has shown sig-
nificant antioxidant activity in in vitro experi-
ments. It has been demonstrated that fucoidan 
is an excellent natural antioxidant and has 
great potential for preventing free radical‐
mediated diseases. This antioxidant activity is 
often associated with fucoidans’ MW and sul-
fate content (Wang et al. 2008; Marudhupandi 
et al. 2014). Another interesting feature is the 
antiviral activity that fucoidan (like other sul-
fated polysaccharides) exhibits. Its low cyto-
toxicity, when compared with other antiviral 
drugs currently used in a clinical setting, is of 
considerable interest (Li et  al. 2008). It has 
been reported that different fucoidans obtained 
from different species showed inhibition of 
leucocyte recruitment in the inflammatory 
process, with fucose contents and sulfation 
degree seeming not to affect its efficacy regarding 

this property (Cumashi et  al. 2007; Li et  al. 
2008). The anticoagulant effect of fucoidan has 
been also addressed, associated with a higher 
sulfation degree and sulfates position (Li et al. 
2008; Jin et  al. 2013). Antitumor and antihy-
perglycemia properties will be analyzed in 
more detail in the following sections.

118.3.2.1  Antitumor Properties
In vitro and in vivo studies indicate that 
fucoidan protects the organism against differ-
ent types of cancer, namely leukemia, colon, 
breast, and lung (Ale et  al. 2011; Boo et  al. 
2011; Boo et al. 2013; Moussavou et al. 2014). 
The mechanism of action of fucoidan in can-
cer therapies is not yet clearly understood. 
However, some studies reveal that fucoidan 
inhibits the growth of tumors, inducing cyto-
toxicity and apoptosis of cancer cells, and 
interrupts the cell cycle by targeting key apop-
totic molecules (Lee et al. 2012; Senthilkumar 
et al. 2013). It also inhibits metastasis forma-
tion and enhances the toxic effects of other 
chemical therapies and compounds. It can also 
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affect cancer cells by controlling the angiogenic 
activity (Kwak 2014; Atashrazm et al. 2015).

Lower MW and higher sulfated fucoidans 
have been associated with higher toxicities 
over tumor cells (Koyanagi et  al. 2003; Kasai 
et al. 2015); however, the results are not fully 
reproducible and different behaviors have been 
observed, showing that not all fucoidan 
extracts present this anti‐tumor activity (Kwak 
2014). The reasons behind this fact are not yet 
clarified but may be related to different factors 
such as the MW, the sulfation degree, the sugar 
compounds, polymer branching, and sulfation 
pattern (Ale et al. 2011; Oliveira et al. 2017), by 
their turn dependent on the source and the 
extraction method.

Keeping in mind all these properties, it is of 
the utmost importance to characterize the 
fucoidan extracts to try to reveal the mecha-
nisms of action and understand which 
factors(s) play a major in role in this antitumor 
behavior.

When considering a cancer therapy based in 
fucoidan, there are some concerns about its 
toxicity to non‐cancer cells. Indeed, the funda-
mental aspect of a cancer therapy is based on 
eliminating cancer cells without affecting the 
surrounding healthy tissues. For this reason, it 
is essential to take into consideration specific 
and targeting therapies to affect only the tumors, 
envisioning a more effective treatment.

118.3.2.2  Blood Glucose Reduction
Some in vitro and in vivo studies propose the 
application of fucoidan in reducing blood glu-
cose (Kim et  al. 2014; Vinoth Kumar et  al. 
2015). In fact, some studies show the antidia-
betic potential of extracts of brown algae 
(Wang et  al. 2014). Kim et  al. (2012) have 
shown that the low MW fucoidan prevents 
hyperglycemia in diabetic rats, pointing out 
that the reduction of glucose is dependent on 
the MW of fucoidan (Kim et  al. 2014). 
Moreover, it has been referred that the lowering 
of blood glucose is related to inhibition of 
enzymes α‐amylase and α‐glycosidase during 
the digestion of carbohydrates (Ali et al. 2006; 

Kim et al. 2014). In the process of digestion of 
a diet rich in carbohydrates, enzymes α‐gly-
cosidase and α‐amylase play a vital role and the 
inhibition of these enzymes would reduce the 
digestion of oligosaccharides and disaccha-
rides, leading to a delay in the production of 
glucose. The action of fucoidan on the cited 
enzymes, when fully understood, can play a 
major role in the treatment of diabetes melli-
tus type I and II.

118.3.3  Fucoidan-based 
Biomaterials and Biomedical 
Applications

The applications of fucoidan have been cen-
tered mainly in Japan, Australia, and the 
United States (Shibata et al. 2000), mostly rely-
ing on its biological activities. In this perspec-
tive, fucoidan is building a successful story in 
different industries, such as agriculture (ferti-
lizers for plants), food (dietary fiber, choles-
terol reduction, and sports drinks), cosmetics 
(skin exfoliate, acne treatment, hair moistur-
izing, and toothpaste) and biomedical (antico-
agulant, antiviral, and immune control action) 
(Courtois 2009; Choi 2010). Additionally, its 
use with a support role may be also explored, 
particularly in the development of biomateri-
als for the biomedical area. However, fucoidan 
has high solubility in water, which could be a 
problem for the production of stable structures 
in aqueous media using fucoidan alone. Some 
studies have been reported involving fucoidan 
composites or mixtures with other natural or 
synthetic macromolecules, such as silk (Cheng 
2009), chitosan (Sezer et  al. 2007; Murakami 
et al. 2010), hydroxyapatite (Jeong et al. 2013), 
gelatin (Ko et  al. 2012), poly(ε‐caprolactone), 
PCL, (Gyuhyun Jin 2011; Ji Seok Lee et  al. 
2012; Venkatesan et al. 2014), polycarbonates 
and polyethylene terephthalate (PET) (Mandal 
et al. 2007). These systems could be processed 
as 2D and 3D structures such as hydrogels (Ali 
Demir Sezer 2008), microspheres (Sezer 2006), 
fibers (Ji Seok Lee 2012), polyelectrolytes complexes, 
and 3D porous structures (Gyuhyun Jin 2011). 
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These structures can be produced using stand-
ard processing technologies namely electro-
spinning technique (Ji Seok Lee et  al. 2012), 
rapid prototyping (Gyuhyun Jin 2011), freeze‐
drying (Venkatesan et al. 2014), solvent evapo-
ration (Sezer et  al. 2007) and polyelectrolyte 
complexation (Nakamura, et  al. 2008) (see 
examples in Figure 118.5).

118.3.3.1  Fucoidan Blends 
for Wound Healing
Fucoidan hydrogels can be made by swelling the 
materials in acidic solution to form a gel that can 
be applied to burn injuries healing on rabbits. 
Sezer et  al. described that fucoidan/chitosan 
hydrogels applied on the burn wound induced 
significant wound contraction and healing 
(Sezer et al. 2008). In a similar study, Nakamura 
et al. produced fucoidan/chitosan hydrogels as a 
carrier for controlled release of heparin‐binding 
fibroblast growth factor (FGF)‐2 (Nakamura 
et  al. 2008). The in vivo studies demonstrated 
that chitosan/fucoidan hydrogel could promote 
neovascularization by FGF‐2 release.

In other studies, membranes and hydrogels 
based on fucoidan or blended systems have 

been proposed as a wound dressing or as artifi-
cial skin (Bhatnagar and Bhatnagar 2015). 
Sezer et al. described that coating of chitosan 
films with fucoidan induces significant wound 
contractions, and accelerates the migration of 
fibroblasts, wound closure, and healing pro-
cess (Sezer et  al. 2007). After seven days of 
treatment, fibroplasia and scars were observed 
on wounds treated with the fucoidan‐chitosan 
film. The films healed the wound within 14 
days, while the control groups took longer 
healing time (Sezer et al. 2007). Yanagibayashi 
et  al. (Yanagibayashi et  al. 2012) developed a 
hydrocolloid sheet composed of alginate, chi-
tin/chitosan, and fucoidan (ACF‐HS) to treat 
healing impaired wounds, such as diabetic 
wounds. The results demonstrated that ACF‐
HS could effectively protect a healing‐impaired 
wound in diabetic db/db mice, providing a 
good moist healing environment with exudate. 
Additionally, ACF‐HS absorbed serum and 
FGF‐2 were found to be proliferative for fibro-
blasts and endothelial cells, respectively, and 
ACF‐HS‐absorbed serum appeared chemoat-
tractive for fibroblasts. The authors concluded 
that ACF‐HS wound dressing showed properties 
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such as ease of application, removal, and excel-
lent adherence that could make it a useful 
application for treatment of diabetes‐related 
wounds (Renn 1984; Yanagibayashi et al. 2012).

118.3.3.2  Fucoidan Composites 
for Bone Tissue Engineering
Some authors outlined the use of fucoidan‐
based composites and fibers meshes for bone 
regeneration (Jeong et al. 2013). This approach 
consisted of the development of fucoidan 
structures by different techniques, combining 
it with other materials, namely PCL and nano‐
hydroxyapatite, which will promote bone 
regeneration. Jeong et al. observed two times 
higher mineralization in fucoidan/nano‐
hydroxyapatite scaffolds than in nano‐
hydroxyapatite scaffolds, suggesting that the 
former matrices could be promising biomateri-
als for bone tissue engineering (Jeong et  al. 
2013). Jin et al. developed structures of PCL/
fucoidan using rapid prototyping technique 
(Gyuhyun Jin 2011), with mechanical proper-
ties and mineralization promotion superior to 
the ones composed by pure PCL (Gyuhyun Jin 
2011; Venkatesan and Kim 2015). A recent 
approach to treat bone diseases involves the 
effect of fucoidan on human mesenchymal 
stem cells, observing that the fucoidan 
improved the stem cell behavior regarding 
osteogenic differentiation, namely by register-
ing an increase in the expression of ALP, osteo-
pontin, type I collagen, RUNX‐2, and 
osteocalcin (Park et al. 2012; Venkatesan and 
Kim 2015).

118.3.3.3  Nanoparticles for Controlled 
Delivery of Bioactive Agents
Over the past years, nanoparticles have been 
widely studied for the delivery of drugs and 
macromolecules (Liu et al. 2008). Nanoparticles 
have interesting properties such as the small 
size that allow them to pass through the capil-
lary vessels. They can also pass cells and tissue 
gaps to arrive at specific organs, showing con-
trolled‐release behavior (Singh et  al. 2014). 
The surface properties of the nanoparticles are 

also noteworthy, since it is possible to func-
tionalize the nanoparticles to target and be rec-
ognized by specific cells (Steichen et al. 2013; 
Loureiro et al. 2014), envisaging more efficient 
systems with reduced side effects.

Polymeric materials are often used to pre-
pare nanoparticles, with polysaccharides being 
among the most promising building blocks 
with a cost‐effective processing (Silva et  al. 
2012; Cardoso et  al. 2016; Manivasagan and 
Oh 2016). Moreover, the high number of reac-
tive groups found in polysaccharides, namely 
carboxyl and amino groups, facilitate its modi-
fication and functionalization (Liu et al. 2008). 
Polysaccharide‐based nanoparticles are often 
prepared by polyelectrolyte complexation, self‐
assembling and ionic or covalent cross‐linking 
(Santo et  al. 2012). Polyelectrolyte complexa-
tion takes advantage of the electrostatic inter-
actions between two opposite charged 
polymers (Hamman 2010; Ramasamy et  al. 
2014), with chitosan being often used as poly-
cation, combined with negatively charged pol-
ymers, such as fucoidan, chondroitin sulfate, 
carrageenan, hyaluronic acid, and alginate, 
among others. To optimize the production of 
the nanoparticles, different conditions need to 
be tested, namely polymer concentrations and 
ratio, pH, stirring time, and also the solution 
ionic strength (Jonassen et al. 2012; Jain et al. 
2013), which affects particles average size 
and  distribution, as well as surface charge 
(Couvreur 2013).

Chitosan‐fucoidan nanoparticles (NPs) have 
been reported as potential carriers for different 
applications. The release of gentamicin from 
chitosan‐fucoidan NPs has been studied for 
pulmonary delivery in pneumonia treatment 
(Huang et al. 2016). Another possible applica-
tion is the successful release of basic FGF for 
nerve tissue regeneration (Huang and Yang 
2013). Chitosan‐fucoidan NPs were also 
reported as effective in delivering antibiotics to 
the lungs, showing the antioxidant activity of 
the prepared nanoparticles (Huang and Li 
2014). Poly‐L‐Lysine was also released from 
chitosan‐fucoidan nanocapsules, making this 
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a promising delivery system for water‐soluble 
bioactive compounds, showing a great poten-
tial for application in the pharmaceutical 
industries (Pinheiro et  al. 2015). Moreover, 
Huang and Li reported that fucoidan‐chitosan 
NPs had a highly antioxidant effect by reduc-
ing the concentration of reactive oxygen spe-
cies (Huang and Li 2014). In another study, 
pH‐sensitive chitosan‐fucoidan NPs were pro-
duced to protect curcumin, an antitumor drug, 
from deterioration (Huang and Lam 2011), 
envisaging their use in oral delivery since they 
can resist the low pH of the gastric medium in 
the stomach, which is one of the major barriers 
to oral delivery approaches (Huang and Lam 
2011; Jeong et al. 2013).

118.3.3.4  Photocrosslinking for Processing 
of Hydrogels for Cell Culture
The lack of processability of fucoidan is associ-
ated with its water solubility, as already men-
tioned, from which results an absence of 
studies using pure fucoidan matrices. A few 
works reported the modification of polymers 
by methacrylation to obtain structures further 
suggested for application in the biomedical 
area (Baier Leach et  al. 2003; Li et  al. 2004; 
Amsden et al. 2007; Mihaila et al. 2013). The 

methacrylation of natural polymers with anhy-
dride methacrylate (MA) is a strategy to incor-
porate methacrylic groups that can be further 
photocrosslinked using photoinitiator solu-
tions, rendering cohesive polymeric matrices. 
In our group, this strategy was successfully 
used for processing several natural polymers, 
namely gellan gum (Silva‐Correia et al. 2011) 
and κ‐carrageenan (Mihaila et al. 2013). More 
recently, methacrylation was also used to func-
tionalize fucoidan, followed by photocrosslink-
ing with visible light to obtain hydrogel‐like 
beads (Reys et  al. 2016) (see Figure  118.6 for 
a  simplified production scheme). In particu-
lar,  methacrylated fucoidan solution was 
combined with photoinitiators and added 
dropwise  onto superhydrophobic surfaces 
(Rial‐Hermida 2014) that enable the droplets 
to sustain their quasi‐spherical geometry. By 
irradiation of visible light, crosslinking is pro-
moted, yielding particles or beads with diame-
ters ranging from 0.6 to 1.3 mm. These 
hydrogel‐like particles may find application as 
drug delivery devices or polymeric matrices for 
cell culture and/or encapsulation. In this 
regard, L929 mouse fibroblast‐like cells were 
cultured onto those particles, revealing good 
adhesion and proliferation. Remarkably, cells 

Pipetting
Visible light

Particles

1 to 5μl

Figure 118.6  Scheme of the methodology to produce fucoidan-based particles by photocrosslinking 
triggered by using visible light.
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were also able to migrate into the particle core 
(see Figure 118.7), illustrating the capability of 
these systems to support cell culture regarding 
further biomedical application.

118.4  Final Remarks

Chitosan and fucoidan have been addressed in 
particular during the present chapter as illus-
trative examples of marine polysaccharides 
mainly with a support role. Both share simi-
larities with GAGs found in the extracellular 
matrix: while chitosan has N‐acetylglycosa-
mine units in common with hyaluronic acid, 
fucoidan exhibits sulfated sugars and the pres-
ence of uronic acids alike chondroitin sulfate 
and others. Since GAGs are particularly 
abundant in cartilage extracellular matrix, a 
biomimetic strategy would propose the use of 
the referred marine polysaccharides on TE 
scaffolding.

The chemical composition of chitosan and 
fucoidan is not only similar to the one observed 
in specific GAGs, but it is also responsible for 
interesting properties exhibited by the former. 
Due to the presence of free amines in the non‐
acetylated glycosamine units, chitosan is the 
only natural polycation known and the proto-
nation of amines in acidic pH make it soluble 

in diluted acid solutions. On the other hand, 
the presence of sulfated fucose and a highly 
negative charge density furnish fucoidan with 
several biological properties of great interest of 
healthcare.

Both polysaccharides have been explored in 
the development of particles, membranes, 
hydrogels, and porous structures as matrices to 
support cell culture envisaging tissue regenera-
tion, namely on wound healing and bone ther-
apies, among others. Given its abundance, 
chitosan has been widely used, but fucoidan is 
receiving increasing attention because it can 
associate biological activity to the support role, 
resulting in functional biomaterials equipped 
with antioxidant, antiviral, anti‐inflammatory, 
and anticoagulant features. Moreover, their 
potential role in cancer therapies should be 
also highlighted, being as selective drug 
(fucoidan) or as component of drug delivery 
devices.

The share of marine polysaccharides on bio-
medical science was undoubtedly demon-
strated, with several innovative therapeutic 
solutions being currently proposed and stud-
ied. Nevertheless, their ubiquitous use in clin-
ical practice is still farfetched. Firstly, the 
interaction between scientists, engineers, and 
clinicians needs to be reinforced and 
established as common practice toward tissue 

5 mm 80 μm

50 μm

Figure 118.7  Photocrosslinked methacrylated fucoidan beads laden with L929 fibroblast-like cells, 
observed under fluorescence confocal microscope after 7 days of culture (cross-section is depicted, 
illustrating the presence of cells in the particles core).
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regeneration, in a synergy capable to develop 
precise and personalized therapies, thus 
improving patients’ quality of life. This will 
come with the success of clinical trials cur-
rently ongoing using different materials, such 
as hydroxyapatite, collagen, polycaprolactone, 
among others, which will set the basis for the 
use of other materials. On the other side, there 
is still a need to establish production method-
ologies capable of rendering biopolymers with 
high purity and reproducible properties in an 
environmentally, economically, and techni-
cally sustainable way. The acceptance ranges 
for biomedical areas are much narrower than 
for others and thus current protocols still need 
to be optimized and validated. Moreover, 
reproducibility and sustainability need to be 
also verified in polymer processing rendering 
biomedical‐relevant matrices. Only with this, 
associated with adequate industrial property 
rights, will it be possible to raise the invest-
ment needed to entrepreneurial initiatives 
based in marine origin materials be success-
ful. This is a long road but some actors are 
around, with products in the market in a busi-
ness‐to‐business model. The momentum is 
there and we are contributing to them, believ-
ing that industrial efforts to overcome the 

identified production bottlenecks will allow 
the achievement of a production scale sup-
porting affordable costs, associated with the 
scientific efforts to demonstrate the preclini-
cal and clinical efficacy of marine origin poly-
saccharides based biomaterials, and bring the 
future closer.
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