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Abstract – One presents a fuzzy logic approach for optimal 
control of discrete-time nonlinear dynamic systems with a 
quadratic criterion. The approach is based on Pontryagin’s 
Minimum Principle. It uses back-propagation from the final co-
state error and gradient descent to estimate a sequence of values 
for the co-state variables converging to the optimal ones. This 
implies that the controlled variables trajectories converge to the 
optimal ones. The estimator is implemented through an 
adaptive fuzzy inference system.  
The approach allows one to find a solution to the optimal 
control problem on-line by training the system, rather than by 
pre computing it. The use of an adaptive fuzzy inference system 
will allow to incorporate a priori knowledge about the optimal 
behavior of the co-state variables and to track changes in the 
system. 
 

I. INTRODUCTION 
 
In the past decade, fuzzy inference systems emerged as a 
most useful approach to collect human knowledge and 
expertise on control and to transform the collected 
knowledge into a basis for developing controllers [1–3]. A 
fuzzy logic controller is usually a fuzzy inference system 
establishing a static nonlinear mapping from the state 
variables values to the actuators values [4]. 
In the fuzzy logic approach to optimal control described here, 
the (adaptive) fuzzy inference system can be used to generate 
actuator values, but its primary function is to generate 
estimates of the co-state variables. 
Co-state variables play a key role in finding the optimal 
control when using Pontryagin’s Minimum Principle (PMP). 
One begins by briefly reviewing the concepts of PMP, 
specially focusing those related to the case herein presented, 
i.e. for systems modeled in discrete time. 
Let one consider systems described by nonlinear difference 
equations of the kind: 

( )1 ,k
k k kx f x u+ =  (1) 

where n
kx ∈ is the state vector and m

ku ∈  the control 
vector of the system at time kT, f is a vector valued function, 
possibly non-linear and time-varying, and T is the sampling 
period. One requires that ( ), : n m nf x u × →  is 
Lipschitz continuous and that there exists a constant 0fM >  

such that ( ) ( ), 1ff x u M x u≤ + +  for all ( ), nx u ∈ × . 

The control problem is to find the control sequence *
ku  that 

minimizes the criterion or cost function iJ : 

( ) ( )
1

, ,
N

k
i N k k

k i
J N x L x u

−

=

= Φ +∑  (2) 

In (2) [i, N] is the prescribed control time interval, ( ), NN xΦ  

is the cost on the final state value Nx , and ( ),k
k kL x u  is the 

cost on both state and command at instant k N< . 
The solution for this problem given by PMP is as follows. 
One defines the sequence of Hamiltonian functions kH : 

1
k k T k

kH L fλ += + ⋅  (3) 

where n
kλ ∈  is a vector of Lagrange multipliers. 

Accordingly to common usage one will designate kλ  as the 
co-state variables. The optimal sequence *

ku  that minimizes 
the criterion (2) is found by solving simultaneously the 
following equations: 
 
State variable equation: 

( )1
1

,
k

k
k k k

k

Hx f x u
λ+

+

∂= =
∂

 (4) 

Co-state variable equation: 

1

Tk k k

k k
k k k

H f L
x x x

λ λ +

⎛ ⎞∂ ∂ ∂= = +⎜ ⎟∂ ∂ ∂⎝ ⎠
 (5) 

Stationary conditions equation: 

10
Tk k k

k
k k k

H f L
u u u

∂ ∂ ∂λ
∂ ∂ ∂+

⎛ ⎞
= = +⎜ ⎟

⎝ ⎠
 (6) 

Limit conditions equations: 
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∂ ∂

∂ λ
∂

⎧⎛ ⎞⎛ ⎞⎪⎜ ⎟+ =⎜ ⎟⎪⎜ ⎟⎪ ⎝ ⎠⎝ ⎠⎨
⎪⎛ ⎞Φ⎪ − =⎜ ⎟
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 (7) 

Finding solutions for equations (4)-(7) is not, in general, an 
easy task, due to the interdependence of equations (4) and (5) 
implying that forward and backward time sequences should 
be used. 
However, looking at the problem on fuzzy logic grounds, the 
co-state variables appear to behave as the output of an expert 
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system that knows which sequence of values will minimize 
the cost function. 
This means that one may devise a control strategy based on 
an adaptive fuzzy inference system which generates at each 
time k, in the control time interval, an estimated value for the 
co-state variable at time 1k + . 
Let one define a training iteration as a sequence of control 
actions from 0k =  to 1k N= − . Then, along successive 
training iterations the fuzzy inference system rules may be 
changed in order to generate estimates converging to the true 
optimal values of the co-state variables. This will imply that 
the state variables values will also converge to the optimal 
ones. 
Changing the rules of the fuzzy inference can be made by 
means of a learning algorithm which takes the final error 
between state and co-state variables as its input. In fact, it can 
be proved that, under the quadratic version of criterion (2) 
one can assume that if this error goes to zero then the state 
and co-state trajectories will converge to the optimal ones. 
Subsequently this idea is explored as follows. Firstly, in 
section 2, a brief introduction to the fuzzy inference systems 
used is made. The quadratic version of the optimal control 
problem considered and the fuzzy logic approach to its 
solution are described in section 3. Section 4 presents the 
learning algorithm. An illustrative simulation example is 
presented in section 5. Finally, the main conclusions are 
outlined in section 6. 
 

II. THE FUZZY INFERENCE SYSTEM 
 
Consider the system ( )1, , ny f x x= , in which y V∈  is the 
output (or consequent) variable and i ix U∈ , 1, ,i n= , are 
the input (or antecedent) variables. In fuzzy systems 
modelling, this relationship is represented by a collection ℑ 
of M fuzzy IF–THEN rules: 

1 1:l l i ln lR IF x is A and x is A THEN y is B  (8) 

where liA  in jU  and lB  in V are linguistic terms 

characterized by fuzzy membership functions ( )li iA x  and 

( )lB y , respectively. The linguistic connective “and” of 
antecedent of rule (8) will be defined as a t-norm operation, 
ø , where an aggregated fuzzy set lA  can be viewed as the 
fuzzy intersection set 1

n
i liA=X  with membership function 

( ) ( ) ( )1 1l l ln nA A x A x=x ø ø . The fuzzy implication of each 

rule l, : l lR A Bl  is a fuzzy set in product space U V×  
which is defined as ( ) ( ) ( ),B l lR y A B y= ⊗l :A x x , where 
“ ⊗ ” is an operator rule of fuzzy implication, usually min-
max inference [1-2] or arithmetic inference [3]. 
For each rule l, the effective output value Bl is calculated 
using sup-star composition: 

( ) ( ) ( )' sup ,l BB y A R y
∈

′⎡ ⎤= ⎣ ⎦l :A
x U

x x . 

The final fuzzy set B, which is determined by all the rules in 

the base, is obtained by the combination of the Bl and their 
associated membership functions. 
The fuzzy inference system performs a mapping from 

nU ∈  to V ∈ (a multi-input multi-output fuzzy system 
can always be seen as a parallel of several multi-input single-
output fuzzy systems). It comprises four main components: 
fuzzifier, fuzzy rule base, fuzzy inference engine and 
defuzzifier. Many different choices are available within each 
block, and in addition, many combinations of these choices 
can result in a useful subclass of fuzzy systems. 
The fuzzy inference system used in this study is based on a 
product inference engine, singleton fuzzifier, and centre-
average defuzzifier. So, the fuzzy logic inference system may 
be represented by: 

( ) ( )
( )

1

1

M
l l il=

M
l il=

y A x
f x =

A x
∑
∑

, (9) 

where ( ) ( )1

n
l li ii

A x A x
=

= ∏  is the input membership 

function and ly  is the centre of the output membership 
function. 
There are three main reasons for using this fuzzy system as a 
basic building block for adaptive fuzzy controllers or 
identification systems: 
–It has been showed that fuzzy logic systems given by (9) are 
universal function approximators [4-9]; 
–These fuzzy logic systems are constructed from fuzzy IF-
THEN rules using specific fuzzy inference, fuzzification, and 
defuzzification strategies, which allow the incorporation of 
information from human experts into controllers; 
–The functional form of (9) can be represented as a three-
layer feedforward network. Therefore, it is possible to apply 
the back-propagation learning methods or other neuro-fuzzy 
techniques, for adjusting the parameters of the membership 
functions of the rules [4-5], yielding an adaptive fuzzy 
system. 
An adaptive fuzzy system is defined as a fuzzy logic system 
equipped with a learning algorithm. The fuzzy system is 
constructed from a set of fuzzy IF-THEN rules and the 
learning algorithm adjusts the parameters of the fuzzy system 
based on the training information. 
 

III. THE OPTIMAL CONTROL ALGORITHM 
 
In this section, a method for the optimal control of systems 
described by (1) under a quadratic version of criterion (2) is 
presented. The method is based on the ideas and framework 
sketched above. 
Consider the rewriting of the nonlinear discrete dynamic 
system in (1) for the case of a scalar ku as: 

( ) ( )1k k k kx g x h x u+ = +  (10) 

where : n ng →  and : n nh →  are continuous over 
n . Assume that kg hu+  is Lipschitz continuous on a set 

nU ∈  containing the origin, and that system (10) is 



 

stabilizable in the sense that there exists a continuous control 
on U that asymptotically stabilizes the system. It is desired to 
find a sequence of uk, which minimizes the cost function: 

1
2

0
1 1( ) ( )
2 2

N
T T

N N N N N k k k
k o

J x r R x r T u Q u
−

=

= − − + ∑  (11) 

where Nr  is the desired final state, NR  and kQ are matrices 
that allow to weight attainment of the desired final state 
versus control effort. 
Now, (4)-(7) can be rewritten: 
 

1

Tk

k k
k

f
x

∂λ λ
∂ +

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

, (12) 

1
1

Tk

k k k
k

fu Q
u

∂ λ
∂

−
+

⎛ ⎞
= − ⎜ ⎟

⎝ ⎠
, (13) 

( )N N N Nx r Rλ = − . (14) 

Given (10), (13) allows one to write the control variable at 
time k as: 

1
1( )k k k ku Q h x λ−

+= − . (15) 

This equation may be taken as an optimal feedback control 
law, if the optimal value of the co-state variable, *

1kλ +  is 
known at time k+1. 
Now the approach proposed in this paper may be made 
explicit. One takes 1kλ +  as the output of a fuzzy inference 
system Λ  that at instant k generates an estimate of *

1kλ + , 
having as inputs the observed state kx  and the time to go 
N k− : 

*
1 1

ˆ ( , )k k kx N kλ λ+ += = −Λ . (16) 

This gives the feedback control law 
1 ( ) ( , )k k k ku Q h x x N k−= − −Λ  (17) 

which by incorporation of the h  function into the fuzzy 
inference system can be streamlined to: 

1 ( , )k k h ku Q x N k−= − −Λ  (18) 

If, by adaptation or learning of the fuzzy inference system, 
along successive runs or training iterations of the system 
from 0k =  to N, the estimates are made to converge to the 
optimal ones, then any of the control laws (17) or (18) 
becomes optimal. 
That this indeed can be done is the subject of the next 
section. 
 

IV. THE LEARNING ALGORITHM 
 
To solve the equations resulting from framing a discrete 
optimal control problem under PMP, one usually applies an 
off-line optimization method. Here, one proposes a learning 

algorithm based on an approximate gradient descent method 
that, during the training iterations, progressively refines the 
accuracy of the co-state fuzzy estimator. This strategy 
reduces the necessary computing time and memory, avoiding 
calculating the exact adjoint and the directional derivatives of 
the cost functional. The first algorithm of this method, in 
theoretical form, is given below. The implementation of the 
algorithm will be described in future work. 
Without loss of generality, let one consider that in (11) rN = 0 
and 1NR = . From (14) it follows that for optimal trajectories 
one must necessarily have N Nx λ=  so * *

N Nx λ= .  
Let N NE x λ= −  be the error or difference between the end 
value of the state and the co-state variable trajectories, as 
exemplified in Fig. 1. As pointed above, for optimal 
trajectories * ( )x k  and * ( )kλ , it is a necessary condition that 

* *
N Nx λ=  or 0E = . It is possible to prove that this is also a 

sufficient condition. If 0E → , then *
k kx x→  and *

k kλ λ→ , 
i.e. the trajectories of the state and co-state variables 
converge to the optimal ones. Fig. 1 graphically depicts the 
idea for one state and co-state variable. 
It follows that to attain optimal state trajectories, it is 
necessary that the error E converges to zero. This objective is 
achieved by adjusting the kλ  co-state variables or parameters 
in order to minimize:  

( ) ( )2 T
N N N NE x xλ λ= − − . (19) 

The gradient descent algorithm was employed to determine 
the adjustments to the co-state values: 

1 2
q

q q q
k k q

k

EEλ λ α
λ

+ ∂= −
∂

 (20) 

where, 0,1, 2,q = … is the training iteration number and α is 
a scalar step-size variable.  
For all q one has that: 

N N

k k k

xE λ
λ λ λ

∂ ∂∂ = −
∂ ∂ ∂

 (21) 
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Fig. 1. Trajectories of optimal (-) and non-optimal (--) state (blue 

line) and co-state variable (green line)  



 

The summands at the right side of (21) have as expressions: 
11 iN

N

i kk i

f
x

λ
λ

−−

=

⎛ ⎞∂ ∂= ⎜ ⎟∂ ∂⎝ ⎠
∏  (22) 

1

1

N N N N N

k N k N k

x x x x
x

λ
λ λ λ λ

−

−

∂ ∂ ∂ ∂ ∂
= +

∂ ∂ ∂ ∂ ∂
 (23) 

The expression (23) can be solved iteratively as: 

 1

1

,     for j j j j j

k j k j k

x x x x
j k

x
λ

λ λ λ λ
−

−

∂ ∂ ∂ ∂ ∂
= + >

∂ ∂ ∂ ∂ ∂
 

 
V. EXPERIMENTAL RESULTS 

 
For illustrative purposes, the method described was 
implemented to regulate the plant: 

( )1 ,k k k kx x T f x u+ = + ⋅  (24) 

with: 

( ) 1, 10
1

k

k

x

k k kx

ef x u u
e

−

−

−= +
+

 (25) 

In this case, 0Nr = . The plant (25) is unstable if no control 
action exists: 

1

1

10 0 10 0
1
10 0 10 0
1

k

k

k

k

x

k k k k x

x

k k k k x

eu x x x
e
eu x x x
e

−

+ −

−

+ −

−= ∧ > → − = >
+
−= ∧ < → − = <
+

 (26) 

The model has been identified with a fuzzy identification 
method, resulting in a fuzzy model. A sampling time of 

0.1sT = was used. 
Having divided the input space in an adequate number of 
membership functions, the partial derivatives of the system 
can be calculated by (5) and (6).  
For each trajectory generated the algorithm above was used 
to adjust the values of the co-state variable. At the end of this 
process, the results were stored in the fuzzy inference system. 
Fig. 2 shows the values of the co-state variable generated by 
the fuzzy inference system as a function of the inputs state 
and time remaining to end. 
This function may be linguistically interpreted as follows: 
–When the initial state equals the final state, the co-state 
value is zero everywhere. 
–The system symmetry corresponds to one co-state 
symmetry. 
–Because the system is unstable, less energy consumption is 
obtained if the control system drives the state variable to the 
equilibrium point ( 0x = ) as soon as possible – and with 
more strength the shorter is the remaining time. 
These conclusions could be achieved before the training 
process, through analysis of the system model. Incorporating 
them in the fuzzy inference system would result in a faster 
convergence process. 
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Fig. 2. Surface map of co-state with respect to state and time 

remaining  
 
Fig. 3 shows test responses, comparing the described method 
(curve of × points) to an off-line optimization, obtained by 
use of the Quasi-Newton method with a mixed quadratic and 
cubic line search procedure (curve of + points). 
In a system where noise is present, it is expected that a 
closed-loop strategy works better than an open-loop obtained 
by off-line optimization. Fig. 4 shows one test using off-line 
optimization control (+) and the co-state calculated by the 
fuzzy inference system (×), with Gaussian noise added to the 
state space variable. It is possible to observe that the 
proposed control strategy is more robust. 
 

VI. CONCLUSION 
 
In this paper the implementation of non-linear quadratic 
optimal control is described using a fuzzy logic methodology 
based on Pontryagin’s Minimum Principle. A learning 
algorithm, interacting with the controlled system, calculates 
the values of co-state variables along a sequence converging 
to the optimal ones. The values found are saved in a fuzzy 
inference system. The methodology proposed allows for 
attaining calculation of optimal control actions on-line and in 
closed-loop. This fact should make possible to design 
feedback strategies more robust than standard off-line open 
loop optimal strategies, with respect to inaccuracies of the 
process model and unpredictable disturbances. Moreover, it 
should allow for tracking process changes. 
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Fig. 3. Optimal trajectories: optimal co-state fuzzy control (×) and off-line numerical optimization (+)
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Fig. 4. Discrete trajectory with white noise added to the state space 
variable: optimal fuzzy control (×) and off-line optimization (+) 
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