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Abstract

Whether in the thermodynamic limit of lattice length L → ∞, hole concentration mz
η = −2Sz

η/L =
1 − ne → 0, nonzero temperature T > 0, and U/t > 0 the charge stiffness of the 1D Hubbard model with 
first neighbor transfer integral t and on-site repulsion U is finite or vanishes and thus whether there is or 
there is no ballistic charge transport, respectively, remains an unsolved and controversial issue, as different 
approaches yield contradictory results. (Here Sz

η = −(L −Ne)/2 is the η-spin projection and ne = Ne/L the 
electronic density.) In this paper we provide an upper bound on the charge stiffness and show that (similarly 
as at zero temperature), for T > 0 and U/t > 0 it vanishes for mz

η → 0 within the canonical ensemble in 
the thermodynamic limit L → ∞. Moreover, we show that at high temperature T → ∞ the charge stiffness 
vanishes as well within the grand-canonical ensemble for L → ∞ and chemical potential μ → μu where 
(μ −μu) ≥ 0 and 2μu is the Mott–Hubbard gap. The lack of charge ballistic transport indicates that charge 
transport at finite temperatures is dominated by a diffusive contribution. Our scheme uses a suitable exact
representation of the electrons in terms of rotated electrons for which the numbers of singly occupied and 
doubly occupied lattice sites are good quantum numbers for U/t > 0. In contrast to often less controllable 
numerical studies, the use of such a representation reveals the carriers that couple to the charge probes 
and provides useful physical information on the microscopic processes behind the exotic charge transport 
properties of the 1D electronic correlated system under study.
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1. Introduction

Likely, the most widely studied correlated electronic model on a lattice in one (spatial) dimen-
sion (1D) is the Hubbard model with first neighbor transfer integral t and on-site repulsion U . 
In spite of being solvable by the Bethe ansatz (BA) [1–10], in the case of electronic density 
ne = Ne/L = 1 its unusual charge transport properties remain poorly understood at finite tem-
peratures T > 0 [11–18]. This includes, specifically, some of the behaviors of the real part of 
charge conductivity at finite temperature T whose general form reads,

σ(ω,T ) = 2π D(T ) δ(ω) + σreg(ω,T ) . (1)

Even for the T = 0 Mott–Hubbard insulating quantum phase, the related charge dynamic struc-
ture factor is a complex problem that is only partially understood [19].

The charge stiffness or Drude weight D(T ) in Eq. (1) characterizes the response to a static 
field and σreg(ω, T ) describes the absorption of light of frequency ω. For T > 0 these quantities 
can be written as,

D(T ) = 1

2T L

∑
ν

pν

∑
ν′

(εν=εν′ )

|〈ν,u|Ĵ |ν′, u〉|2 , (2)

and

σreg(ω,T ) = π

L

1 − e− ω
T

ω

∑
ν

pν

∑
ν′

(εν 	=εν′ )

|〈ν,u|Ĵ |ν′, u〉|2δ(ω − εν′ + εν) , (3)

respectively. In these equations and elsewhere in this paper units of Boltzmann constant kB , 
Planck constant h̄, and lattice spacing a one are generally used. Moreover, L → ∞ denotes the 
system length in the thermodynamic limit (TL), which within the units of lattice constant one 
equals the (even) number of lattice sites Na , |ν, u〉 are energy and momentum eigenstates, ν
stands for all quantum numbers other than the parameter,

u = U

4t
, (4)

needed to uniquely specify each such a state, the sum runs over states with the same energy 
eigenvalue, εν = εν′ , pν = e−εν/T /Z is the usual Boltzmann weight, Z =∑

ν e−εν/T , and Ĵ is 
the charge current operator. (Its specific expression for the present model is given below in Sec-
tion 2.)

The studies of this paper rely in part on the BA solution of the 1D Hubbard model. It was 
solved first by the so-called coordinate BA [1,2], which provided the ground state energy and 
revealed that the model undergoes a Mott metal-insulator transition at electronic density ne = 1
whose corresponding critical onsite interaction is U = 0. Which are the effects of a finite tem-
perature on such a transition is one of the issues studied in this paper.

Following the coordinate BA solution, the ground state properties [20–22] and the excitation 
spectrum [6,7,23–27] were studied by several authors. The 1D Hubbard model termodynamic 
Bethe ansatz (TBA) and corresponding ideal strings have been proposed in Ref. [4]. This has 
allowed the study of the thermodynamic properties of the model [28,29]. The energy spectra 
of its elementary excitations can be obtained from the TBA equations in the zero temperature 
limit [9].
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An important property of the 1D Hubbard model is that its spectrum becomes conformal 
invariant in the low-energy limit. The corresponding finite-size corrections were obtained in 
Refs. [30,31]. The relation between the finite-size spectrum and the asymptotic behavior of corre-
lation functions was used to calculate the critical exponents of the general two-point correlation 
functions [32,33]. The corresponding conformal dimensions have been expressed in terms of 
dressed phase shifts associated with a preliminary pseudoparticle representation [34–40].

The conformal approach is not applicable to the zero-temperature model Mott insulating phase 
at half filling. In the small-U and scaling limits, dynamical correlation functions at low energies 
[41–44] can though be computed relying on the methods of integrable quantum field theory 
[45–47]. The wave functions of the energy eigenstates can be extracted from the coordinate BA 
solution. An explicit representation for the wave functions was given in Ref. [7].

In the u = U/4t → ∞ limit the dynamical correlation functions can be computed at zero 
temperature for all energy scales relying on the simplified form that the BA equations ac-
quire. This was achieved by a combination of analytical and numerical techniques for the whole 
range of electronic densities [48–59]. In the case of the one-electron spectral function studies of 
Refs. [54–56], the method relies on the spinless-fermion phase shifts imposed by XXX chain 
physical spins 1/2. Such fractionalized particles naturally arise from the zero spin density and 
u → ∞ electron wave-function factorization [6,7,48]. A related pseudofermion dynamical theory 
relying on a representation of the model BA solution in terms of the pseudofermions generated 
by a unitary transformation from the corresponding pseudoparticles considered in Ref. [60] was 
introduced in Ref. [61]. It is an extension of the u → ∞ method of Refs. [54–56] to the whole 
u > 0 range of the 1D Hubbard model. The use of the mobile quantum impurity model [62,63], 
which has been developed to also tackle the high-energy physics of both integrable and non-
integrable 1D correlated quantum problems, leads in the case of the 1D Hubbard model to the 
same results as the pseudofermion dynamical theory [64,65]. Further general information on the 
1D Hubbard model is given in Ref. [10].

Provided that the energy eigenstates |ν, u〉 are as well momentum eigenstates, it is well known 
[13,66] that for u > 0, T > 0, and in the TL the charge stiffness expression, Eq. (2), further 
simplifies to,

D(T ) = 1

2T L

∑
ν

pν |〈ν,u|Ĵ |ν,u〉|2 for u > 0 . (5)

Within that limit, this expression is not valid in the T = 0 regime though. The T = 0 charge 
stiffness is actually known [35,67], reading D(0) = (2t/π) δU,0 at hole concentration mz

η =
−2Sz

η/L = 1 − ne = 0 (half filling) where the η-spin z component Sz
η = −(L − Ne)/2 is the 

eigenvalue of the diagonal generator of the global η-spin SU(2) symmetry. Hence at T > 0 it is 
finite at U = 0 and vanishes for the whole u > 0 range.

A finite D(T ) for T > 0 value would imply the occurrence of ballistic charge transport. 
At T > 0 the model can behave as an ideal conductor with ballistic charge transport and thus 
D(T ) > 0 or a system without such a ballistic transport, so that D(T ) = 0. In the latter case there 
are two scenarios, the system behaving as a normal resistor if D(T ) = 0 and the diffusive conduc-
tivity contribution σ0 = limω→0 σreg(ω, T ) is finite or as an ideal insulator with D(T ) = σ0 = 0
[11,66,68].

On the one hand, a D(T ) inequality, which is derived from the more general Mazur’s inequal-
ity [69,70], provides for hole concentrations mz

η 	= 0 a finite lower bound for its value [66,71]. 
This reveals that D(T ) > 0 for mz

η 	= 0 and finite temperature [13,14]. On the other hand, at 
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mz
η = 0 that lower bound vanishes, so that the inequality is inconclusive. Whether in the TL and 

for u > 0 the charge stiffness D(T ) vanishes or is finite for T > 0 and mz
η = 0 remains actually 

an open and controversial issue, as different approaches yield contradictory results [11–18].
The results of this paper provide strong evidence that the predictions of Ref. [12] for the 

1D Hubbard model charge stiffness for T > 0 and mz
η = 0 are not correct. This is consistent 

with the numerical results of Ref. [14] and the large-u studies of Ref. [13]. The latter results 
are reached by two completely different methods: an exact method that does not rely on the 
BA and a TBA calculation [4], respectively. These studies reveal that the finite charge stiffness 
expression found in Ref. [12] for mz

η = 0 and T > 0 cannot be correct for large u > 0. The results 
of Refs. [13,14] agree with some preliminary conjectures by Zotos and Prelovšek according to 
which limu→∞ D(T ) should be zero for the 1D Hubbard model at mz

η = 0 and T > 0.
Recently, a general formalism of hydrodynamics for the 1D Hubbard model and other in-

tegrable models was introduced in Refs. [17,18]. By linearizing hydrodynamic equations, the 
closed-form expressions for the stiffnesses that were conjectured to be valid on the hydrody-
namic scale have been accessed. The stiffness is then calculated from the stationary currents 
generated in an inhomogeneous quench from bipartitioned initial states [17]. Within such an hy-
drodynamic ansatz for the stiffnesses, the studies of Refs. [17,18] clearly established vanishing at 
finite temperature of charge or spin Drude weights when the corresponding chemical potentials 
vanish, irrespective of the interaction strength. In our work we, however, take a different per-
spective. We start from the standard linear-response expressions for the charge and spin Drude 
weights and reach conclusions that are consistent with the results of Ref. [18]. Although there 
is no reasonable doubt that the hydrodynamics ansatz used in Refs. [17,18] is correct, it has, 
nevertheless, not yet been rigorously justified. Hence we believe that adding our independent 
and complementary result is a valuable contribution to the solution of this important problem. 
Actually, both methods rely on the standard assumptions behind the TBA.

Our previous results reported in Refs. [72] and [73], which have been obtained by the method 
used in this paper, provide strong evidence that in the case of the spin stiffness of the spin-1/2
XXX chain the approach of Ref. [12] used in the investigations of Ref. [74] leads to correct 
results. Specifically, that such a stiffness vanishes in the limit of zero spin density. (The appar-
ent inconsistency that the use of the approach of Ref. [12] leads to misleading results for the 
1D Hubbard model and to correct results for that spin chain is an issue discussed below in Sec-
tion 7.)

Our method to compute suitable upper bounds for the charge stiffness relies in part on the 
properties of the charge current operator matrix elements between energy and momentum eigen-
states that follow from the η-spin SU(2) symmetry operator algebra. This is similar to the method 
used in Refs. [72] and [73] for the spin stiffness of the spin-1/2 XXX chain in what its relation 
to its spin SU(2) symmetry operator algebra is concerned. The method combines the TBA [4]
with stiffness expressions in terms of current operator expectation values. It accounts though 
for the effects of complex-rapidity string deviations [9] and does not access the charge stiffness 
through the second derivative of the energy eigenvalues of the TBA relative to a uniform vector 
potential [12].

In the case of energy eigenstates of spin S of the spin-1/2 XXX chain, there are L − 2S

spins 1/2 that are paired within singlet configurations and 2S spins 1/2 that remain unpaired 
and contribute to the multiplet configurations. The spin degrees of freedom couple to a vector 
potential through such 2S unpaired spins 1/2, which are those that contribute to the spin currents.

Within the rotated-electron related representation of the 1D Hubbard model used in our 
studies, there emerge from the rotated-electrons η-spin degrees of freedom basic fractionalized 
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particles of η-spin 1/2 that are associated with η-spin SU(2) symmetry of the model. Again, in 
the case of energy eigenstates of η-spin Sη there is a number 2Sη of η-spin 1/2 fractionalized 
particles that couple to a vector potential, which are those that participate in η-spin multiplet 
configurations and contribute to the charge currents.

A trivial result is that at U = 0 the global symmetry of the Hubbard model on a bipartite lattice 
is O(4) = SO(4) ⊗ Z2. This thus applies to the 1D Hubbard model. Here the factor Z2 refers 
to the Shiba particle-hole transformation on a single spin under which the Hamiltonian is not 
invariant for U 	= 0 and SO(4) = [SU(2) ⊗ SU(2)]/Z2 contains the two SU(2) symmetries. An 
exact result of Heilmann and Lieb is that in addition to the spin SU(2) symmetry, also for u > 0
the model has a second global SU(2) symmetry [75]. It is generally called η-spin symmetry [76,
77]. Yang and Zhang considered the most natural possibility that the SO(4) symmetry inherited 
from the U = 0 Hamiltonian O(4) = SO(4) ⊗ Z2 symmetry is the model’s global symmetry for 
U > 0 [77]. The energy and momentum eigenstates are either lowest weight states (LWSs) or 
highest weight states with respect to the two SU(2) symmetry algebras [75–78]. The non-LWSs 
can be generated from the LWSs explicitly accounted for by the BA solution, which confirmed 
the completeness of the quantum problem [79–81].

At half-filling and zero spin density the 1D Hubbard model TBA dressed phase shifts and 
the corresponding S-matrices have been associated with fractionalized particles called holon, 
antiholon, and spinon. The holon and antiholon have been inherently constructed to have zero 
spin and charge +e and −e, respectively. The spinon has been inherently constructed to have no 
charge and to have spin 1/2 [82,83]. The model SO(4) symmetry group state representations 
were identified with occupancy configurations of such fractionalized particles.

The solution of the model by the quantum inverse scattering method has provided further in-
formation on its symmetries. The first steps to obtain such a solution were made in Refs. [84–86]. 
The model Hamiltoninan was mapped under a Jordan–Wigner transformation into a spin Hamil-
tonian. It commutes with the transfer matrix of a related covering vertex model [84]. The 
R-matrix of the spin model was also derived [85,86]. Alternative derivations were carried out 
by several authors [87–89]. The R-matrix was later shown to satisfy the Yang–Baxter equa-
tion [90]. An algebraic BA having as starting point the results of Refs. [84–86] was afterwards 
constructed in Refs. [91,92]. The expressions for the eigenvalues of the transfer matrix of the 
two-dimensional statistical covering model were obtained. That problem was also addressed in 
Ref. [93].

The algebraic BA introduced in Refs. [91,92] allowed the quantum transfer matrix approach 
to the thermodynamics of the 1D Hubbard model [94]. Within it, the thermodynamic quantities 
and correlation lengths can be calculated numerically for finite temperatures [95,96]. The 1D 
Hubbard model Hamiltonian was found in the TL to be invariant under the direct sum of two 
Y(sl(2)) Yangians [97]. The relation of these Yangians to the above R-matrix and the implica-
tions of one of these Yangians for the structure of the bare excitations was later clarified [98,99]. 
More recently, it was demonstrated that the Yangian symmetries of the R-matrix specialize to 
the Yangian symmetry of the model and that its Hamiltonian has an algebraic interpretation as 
the so-called secret symmetry [100].

It was found in Ref. [101] that for u > 0 the 1D Hubbard model global symmetry is actually 
larger than SO(4) and given by [SO(4) ⊗U(1)]/Z2, and thus equivalently to [SU(2) ⊗SU(2) ⊗
U(1)]/Z2

2 . (This applies as well to the model on any bipartite lattice.) Consistently with the 
model’s extended global symmetry, the quantum inverse scattering method spin and charge mon-
odromy matrices were found to have different ABCD and ABCDF forms, respectively. Those are 
actually associated with the spin SU(2) and charge U(2) = SU(2) ⊗ U(1) symmetries, respec-
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tively [92]. The latter matrix is larger than the former and involves more fields [92]. If the global 
symmetry was only SO(4) = [SU(2) ⊗ SU(2)]/Z2, the charge and spin monodromy matrices 
would have the same traditional ABCD form, which is that of the spin-1/2 XXX chain [102].

The exact rotated-electron representation used in our studies is that suitable for the further 
understanding of this basic similarity between the spin SU(2) symmetry degrees of freedom 
of the spin-1/2 XXX chain type of configurations that contribute to spin transport and the 1D 
Hubbard model η-spin SU(2) symmetry degrees of freedom type of configurations that con-
tribute to charge transport. The rotated electrons are inherently constructed to their numbers of 
singly occupied and doubly occupied lattice sites being good quantum numbers for u > 0. As fur-
ther discussed below in Section 2.3, the form of the 1D Hubbard model energy and momentum 
eigenstates wave function for u → ∞ derived in Ref. [7] reveals that in that limit such a model 
corresponds to a spin-1/2 XXX chain, an η-spin-1/2 XXX chain, and a quantum problem with 
simple lattice U(1) symmetry, respectively. In terms of the rotated electrons, whose relation to 
the electrons has been uniquely defined in Ref. [103], the energy and momentum eigenstates 
wave function has that form for the whole u > 0 range.

The degrees of freedom of the rotated electrons naturally separate into two fractionalized 
particles with spin 1/2 and η-spin 1/2, respectively, plus one basic fractionalized particle with-
out internal degrees of freedom [103,104]. (The η-spin projections +1/2 and −1/2 refer to the 
η-spin degrees of freedom of the rotated-electron unoccupied and doubly-occupied sites, respec-
tively.) The occupancy configurations of these three basic fractionalized particles generate exact 
state representations of the group associated with the spin SU(2) symmetry, η-spin SU(2) sym-
metry, and c lattice U(1) symmetry, respectively, in the global [SU(2) ⊗ SU(2) ⊗ U(1)]/Z2

2
symmetry of the model [101].

In the case of the spin-1/2 XXX chain, the translational degrees of freedom of the 2S un-
paired spins 1/2 that contribute to the spin currents are described by an average number 2S of 
holes in each TBA n-band with finite occupancy. Here n = 1, ..., ∞ is the number of singlet 
pairs bound within each of the n-band pseudoparticles considered in Ref. [73] that populate such 
a band. The n-band pseudoparticles occupancies generate the singlet configurations of the spin 
SU(2) symmetry group state representations.

Also in the case of the 1D Hubbard model charge transport, the translational degrees of free-
dom of the 2Sη unpaired η-spin 1/2 fractionalized particles that contribute to the charge currents 
are found in this paper to be described by an average number 2Sη of holes in each TBA ηn-band 
with finite occupancy. For that model, the corresponding ηn pseudoparticles occupancies gener-
ate the η-spin singlet configurations of the η-spin SU(2) symmetry group state representations. 
The difference relative to the spin-1/2 XXX chain refers to contributions from the holes in 
the charge band of the above mentioned basic fractionalized particles without internal degrees 
of freedom whose occupancy configurations generate state representations of the group asso-
ciated with the c lattice U(1) symmetry. Indeed, an average number 2Sη of such holes holes 
also contributes to the translational degrees of freedom of the 2Sη unpaired η-spin 1/2 frac-
tionalized particles that couple to the charge probes. This is related to the above mentioned 
U(2) = SU(2) ⊗U(1) symmetry in the model’s [SU(2) ⊗ SU(2) ⊗U(1)]/Z2

2 global symmetry 
referring to the charge degrees of freedom. (The remaining SU(2) symmetry refers to the spin 
degrees of freedom.) Indeed, that charge U(2) = SU(2) ⊗ U(1) symmetry includes the η-spin 
SU(2) symmetry and the c lattice U(1) symmetry beyond SO(4) = [SU(2) ⊗ SU(2)]/Z2.

The use of the above mentioned holon and spinon representations [15,82,83] provides a suit-
able description of the model both at low excitation energy relative to a ground state and more 
generally in subspaces spanned by energy and momentum eigenstates described by a vanishing 
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density of both TBA complex rapidities and η-spin strings of length one [4]. In the case of the 1D 
Hubbard model, such holons and spinons are different from the three fractionalized particles that 
naturally emerge from the exact rotated-electron degrees of freedom separation. The latter have 
operators that have simple expressions in terms of rotated-electron operators and are defined for 
the 1D Hubbard model in its full Hilbert space [103].

The charge stiffness problem under study in this paper involves summations that run over all 
energy and momentum eigenstates. This is why the holon and/or spinon (and anti-spinon) rep-
resentations are not suitable to study it. For instance, the phenomenological method in terms of 
a spinon and anti-spinon particle basis used in Ref. [15] leads to a misleading large spin stiff-
ness for the spin-1/2 XXX chain in the limit of zero spin density. The validity of that result is 
excluded by the careful investigations of Ref. [71], which indicate that transport at finite temper-
atures is dominated by a diffusive contribution, the spin stiffness being very small or zero. They 
are also excluded by the studies of Refs. [72,73] and the TBA results of Ref. [74], which find a 
vanishing spin stiffness within the zero spin density limit in the TL.

We emphasize that the electrons and the rotated electrons are for u > 0 related by a mere 
unitary transformation under which the electronic charge and spin degrees of freedom remain 
invariant. Hence a rotated electron carries the same charge and has the same spin 1/2 as an 
electron. Indeed, such a unitary transformation only changes the lattice occupancies and corre-
sponding spatial distributions of the charges and spins 1/2. The relation of the rotated electrons to 
the rotated spins 1/2, rotated η-spins 1/2, and c pseudoparticles is direct. It is uniquely defined 
for the full Hilbert space spanned by a complete set of 4L energy and momentum eigenstates 
[103,104]. The corresponding representation of the 1D Hubbard model in terms of such fraction-
alized particles is thus faithful in that space.

The holons and spinons are related to such fractionalized particles for the 1D Hubbard model 
in some reduced subspaces mentioned above for which they correspond as well to a faithful 
representation. However, the representation in terms of holons and spinons is only defined for 
the model in such subspaces. This is why in our studies we rather use the representation in terms 
of the fractionalized particles that naturally emerge from the separation of the rotated-electrons 
degrees of freedom.

In the u → ∞ limit the rotated electrons become electrons and the c pseudoparticles and 
rotated spins 1/2 of the representation used in the studies of this paper become the spinless 
fermions and XXX chain spins 1/2, respectively, of Refs. [48,49,54–56]. As mentioned above, 
such fractionalized particles naturally emerge from the u → ∞ electron wave-function factor-
ization [6,7]. That factorization includes a third factor [7] associated with the η-spin SU(2)

symmetry. It corresponds to the u → ∞ limit of the rotated η-spins 1/2 of the u > 0 representa-
tion used in this paper.

In summary, there are two main reasons why we use in our study the representation of the 
rotated-electron related three fractionalized particles. Given their simple and direct relation to 
the rotated-electrons charge and spin degrees of freedom, it allows a more clear physical descrip-
tion of the microscopic processes that control the charge properties under study. This is consistent 
with each of the set of 4L energy and momentum eigenstates that span the model Hilbert space 
being generated from the electron and rotated-electron vacuum by occupancy configurations of 
the three types of fractionalized particles under consideration that are much simpler than those 
in terms of electrons. A second reason is that, in contrast to the usual holon and spinon represen-
tation, that representation is defined for the model in its full Hilbert space. The holon and spinon 
representation applies for instance to low-energy problems whereas here we consider all ranges 
of temperatures.
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Our study refers to zero spin projection, Sz
s = 0. It addresses the problem of the charge stiff-

ness of the 1D Hubbard model in the TL within the canonical ensemble at hole concentration 
mz

η = 0 and for mz
η → 0 at temperatures T > 0. Within that ensemble for T > 0 we find that 

the charge stiffness vanishes as mz
η → 0 for fixed total η-spin projection Sz

η, including Sz
η = 0, at 

least as fast as,

D(T ) ≤ cc t2L

2T
(mz

η)
2 , (6)

where cc is a L-independent constant that smoothly varies as a function of u for the whole u > 0
range. A similar result is also reached for a canonical ensemble near the η-spin fully polarized 
sector of maximal hole concentration mz

η = 1,

D(T ) ≤ c′
c t2L

2T
(1 − mz

η)
2 , (7)

where c′
c is found to be independent of u for u > 0.

That for finite temperatures our results partially resolve the charge stiffness behavior of the 
1D Hubbard model as mz

η → 0 stems in part from the fact that they leave out, marginally, the 
grand canonical ensemble in which 〈(mz

η)
2〉 = O(1/L). (While for a canonical ensemble one 

considers that the η-spin density mz
η is kept constant, in the case of a grand-canonical ensemble 

it is the chemical potential μ that is fixed.)
However, for the canonical ensemble our study relies on a charge stiffness upper bound whose 

derivation involves a large overestimation of the elementary charge currents of the energy and 
momentum eigenstates. Hence accounting for the usual expectation of the equivalence of the 
canonical and grand canonical ensembles in the TL, one would expect that our results remain 
valid in the latter grand canonical case for any finite temperature T > 0. The canonical-ensemble 
and grand-canonical ensembles lead indeed in general to the same results in the TL except near 
a phase transition or a critical point. Since a quantum phase transition from a metallic state to 
a Mott–Hubbard insulator occurs in the u > 0 1D Hubbard model as mz

η → 0 and μ → μu for 
(μ − μu) ≥ 0 where 2μu is the Mott–Hubbard gap [1–3], Eq. (A.9) of Appendix A, this issue 
deserves the careful analysis in these limits carried out in this paper.

We have addressed such an issue in the limit of high temperatures T → ∞ for which strong 
evidence is provided that the charge stiffness indeed also vanishes within the grand-canonical 
ensemble for chemical potential μ such that (μ − μu) ≥ 0 in the μ → μu limit. Specifically, 
within that ensemble for T → ∞ we find that the charge stiffness vanishes as mz

η → 0, at least 
as fast as,

D(T ) ≤ cgc t2

2T
(mz

η)
2 , (8)

where cgc is again a L-independent constant that smoothly varies as a function of u. A similar 
result is also reached for a grand-canonical ensemble near the η-spin fully polarized sector of 
maximal hole concentration mz

η = 1,

D(T ) ≤ c′
gc t2

2T
(1 − mz

η) , (9)

where c′
gc is found to be independent of u up to O(u−2) order. That the upper bounds on the 

right-hand side of Eqs. (6) and (7) have an extra factor L as compared to those on the right-hand 
side of Eqs. (8) and (9) confirms the large overestimation of the elementary charge currents used 



426 J.M.P. Carmelo et al. / Nuclear Physics B 930 (2018) 418–498
in the case of the canonical ensemble. The found lack of ballistic transport in the half-filled 1D 
Hubbard model indicates that charge transport at finite temperatures is dominated by a diffusive 
contribution [105].

The paper is organized as follows. The 1D Hubbard model, its energy and momentum eigen-
states, symmetry, and the rotated-electron representation are the topics addressed in Section 2. 
In Section 3 useful subspaces for our charge current absolute values upper bounds and charge 
stiffness upper bounds studies are considered and expressions for the charge current operator ex-
pectation values are obtained. Useful upper bounds for absolute values of the charge current are 
then introduced in Section 4. In Section 5 a related charge stiffness upper bound is constructed 
within the canonical ensemble. Moreover, a charge stiffness upper bound is introduced in Sec-
tion 6 within the grand-canonical ensemble for T → ∞. Finally, the concluding remarks are 
presented in Section 7.

2. The model, energy eigenstates, the rotated-electron representation, and symmetry

The goal of this section is the introduction of the rotated-electron related representation used 
in our study of the expectation values of the charge current operator and charge stiffness in the 1D 
Hubbard model. Its relatively large length is justified by the complexity of the problem. However, 
the use of the representation introduced in this section simplifies the description in later sections 
of the model charge transport properties. Importantly, it has been inherently constructed to be 
that suitable to clarify the issue of the microscopic mechanisms behind such exotic properties.

2.1. The 1D Hubbard model, its energy eigenstates, and the rotated-electron representation

We consider the 1D Hubbard model Hamiltonian under periodic boundary conditions in the 
TL and in a chemical potential μ,

Ĥ = −t
∑
σ

L∑
j=1

[
c

†
j,σ cj+1,σ + h.c.

]
+ U

L∑
j=1

ρ̂j,↑ρ̂j,↓ + 2μŜz
η . (10)

It describes Ne electrons in a lattice with Na = L sites. Here c†
j,σ creates one electron of 

spin projection σ =↑, ↓ at site j = 1, ..., L, ρ̂j,σ = (n̂j,σ − 1/2), n̂j,σ = c
†
j,σ cj,σ , and Ŝz

η =
− 1

2

∑L
j=1(1 − n̂j ) with n̂j =∑σ n̂j,σ is the diagonal generator of the global η-spin SU(2) sym-

metry.
The z-component η-spin current operator Ĵ z

η and charge current operator Ĵρ are closely related 
as follows,

Ĵ z
η = (1/2) Ĵ and Ĵρ = (e) Ĵ ,

where Ĵ = −i t
∑
σ

L∑
j=1

[
c

†
j,σ cj+1,σ − c

†
j+1,σ cj,σ

]
, (11)

and e denotes the electronic charge. Hence, except for a constant pre-factor, the charge current 
operator Ĵρ equals the η-spin current operator Ĵ z

η . For simplicity, in several general expressions 

we use units such that Ĵ z
η = Ĵρ = Ĵ . We thus call Ĵ , Eq. (11), the charge current operator.
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Within the exact representation of the u > 0 1D Hubbard model in terms of rotated electrons 
used in our study, the operators that create and annihilate such rotated electrons are related to the 
corresponding electron operators as follows,

c̃
†
j,σ = V̂ † c

†
j,σ V̂ ; c̃j,σ = V̂ † cj,σ V̂ ;

ñj,σ = c̃
†
j,σ c̃j,σ where j = 1, ...,L and σ =↑,↓ . (12)

Here V̂ is the electron – rotated-electron unitary operator uniquely defined in Eq. (11) of 
Ref. [103] in terms of the 4L × 4L matrix elements between a complete set of 4L u > 0 energy 
and momentum eigenstates of the 1D Hubbard model. For all these 4L states the number NR

s,±1/2

of spin projection ±1/2 rotated-electron singly occupied sites, NR
η,−1/2 of η-spin projection 

−1/2 rotated-electron doubly occupied sites, and NR
η,+1/2 of η-spin projection +1/2 rotated-

electron unoccupied sites are good quantum numbers for u > 0 [103,104]. Hence the number 
NR

s = NR
s,+1/2 + NR

s,−1/2 of rotated-electron singly occupied sites and NR
η = NR

η,+1/2 + NR
η,−1/2

of rotated-electron unoccupied plus doubly occupied sites are conserved for u > 0 as well.
Our choice of energy and momentum eigenstates |ν, u〉 in Eqs. (2)–(5) is different at u = 0

and for u > 0. For u > 0, the energy and momentum eigenstates associated with the exact BA 
solution are chosen along with those generated from application onto them of the off-diagonal 
generators of the global η-spin SU(2) and spin SU(2) operator algebras symmetries. As reported 
in Section 1, for u > 0 the 1D Hubbard model global symmetry is [SU(2) ⊗SU(2) ⊗U(1)]/Z2

2. 
Here U(1) refers to the global c lattice U(1) symmetry, which is associated with the lattice 
degrees of freedom and is independent from the two SU(2) symmetries. Its generator is the 
operator ÑR

η =∑L
j=1(1 −∑

σ=↑,↓ ñj,σ (1 − ñj,−σ )) that counts the number NR
η = 0, 1, ..., L

of rotated-electron unoccupied plus doubly occupied sites. (Alternatively, it could be chosen to 
be the operator ÑR

s =∑L
j=1

∑
σ=↑,↓ ñj,σ (1 − ñj,−σ ) that counts the number NR

s = L − NR
η =

0, 1, ..., L of rotated-electron singly occupied sites.) The generator ÑR
η eigenvalues are thus the 

numbers of rotated-electron unoccupied plus doubly occupied sites. As justified in later sections, 
the role of such an eigenvalue in several physical quantities that emerge from the interplay of 
the model’s symmetry with its exact BA solution justifies that it is called in this paper Lη, i. e.
Lη ≡ NR

η = 0, 1, ..., L.
We denote each of the u > 0 energy and momentum eigenstates that belong to the subset of 

such states that span the Sz
s = 0 subspace considered here by |lr, Lη, Sη, Sz

η, u〉. Here lr stands 
for all quantum numbers other than Lη, Sη , Sz

η, and u > 0 needed to uniquely specify each such 
a state. This includes spin Ss , spin projection Sz

s , and a well-defined set of u independent TBA 
quantum numbers. Such states can be written as,

|lr,Lη,Sη, S
z
η, u〉 =

[
1√
Cη

(Ŝ+
η )γη

]
|lr,Lη,Sη,−Sη,u〉 , (13)

where,

γη = Sη + Sz
η = 0,1, ...,2Sη and Sz

η = −(L − Ne)/2 . (14)

Furthermore, Cη = [γη!] ∏γη

j=1[ 2Sη + 1 − j ] is a normalization constant and Ŝ+
η is the η-spin 

SU(2) off-diagonal generator,

Ŝ+
η =

L∑
(−1)j c

†
j,↓ c

†
j,↑ and thus Ŝ−

η =
(
Ŝ+

η

)†
. (15)
j=1
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Except in the u → ∞ limit, electron single occupancy, electron double occupancy, and elec-
tron non-occupancy are not good quantum numbers for the energy and momentum eigenstates 
|lr, Lη, Sη, Sz

η, u〉. For instance, upon decreasing u there emerges for ground states for which 
mz

η ≥ 0 a finite electron double occupancy expectation value, which vanishes for u → ∞ [106].
We call η-Bethe states the u > 0 energy and momentum eigenstates |lr, Lη, Sη, −Sη, u〉 that 

are LWSs of the η-spin SU(2) algebra, so that Sz
η = −Sη and thus γη = 0 in their expression, 

Eq. (13). We call Bethe states the u > 0 energy and momentum eigenstates that are both LWSs 
of the η-spin and spin SU(2) operator algebras for which Sz

α = −Sα for α = η, s. However, 
the η-Bethe states considered in this paper can either be spin LWSs or spin non-LWSs. The 
designation LWS and non-LWS refers in general in this paper to the η-spin SU(2) operator 
algebra alone. In the case of the spin SU(2) operator algebra, one always specifies spin LWS and 
spin non-LWS, respectively.

For η-Bethe states |lr, Lη, Sη, −Sη, u〉 and general energy and momentum eigenstates 
|lr, Lη, Sη, Sz

η, u〉 the electron numbers are given by,

N0
e = L − 2Sη and Ne = N0

e + 2γη , (16)

respectively, where γη = Sη + Sz
η = 0, 1, ..., 2Sη, Eq. (14).

In the case of η-Bethe states, the u > 0 charge current operator expectation values 
〈lr, Lη, Sη, −Sη, u|Ĵ |lr, Lη,Sη,−Sη, u〉, which are such states charge currents, can be expressed 
in terms of the BA solution momentum rapidity and rapidity functionals, Eqs. (A.10) and (A.11)
of Appendix A. For each u > 0 η-Bethe state, such functions are uniquely defined by the 
TBA equations, Eqs. (A.1) and (A.2) of that Appendix. Furthermore, we rely on exact sym-
metry relations to express the charge currents of general energy and momentum eigenstates 
|lr, Lη, Sη, Sz

η, u〉, Eq. (13), in terms of that of the corresponding η-Bethe state |lr, Lη, Sη, −Sη, u〉
on the right-hand side of that equation.

A V tower is within the rotated-electron representation the set of energy eigenstates 
|lr, Lη, Sη, Sz

η, u〉 with exactly the same u-independent quantum numbers lr, Lη , Sη, and Sz
η

and different u values in the range u > 0 [103]. The set of energy and momentum eigenstates 
|lr, Lη, Sη, Sz

η, u〉 that belong to the same V tower are for any u > 0 value generated by exactly 
the same occupancy configurations of the u-independent quantum numbers as the corresponding 
u = ∞ energy and momentum eigenstate |lr, Lη, Sη, Sz

η, ∞〉 = limu→∞ |lr, Lη, Sη, Sz
η, u〉. Out 

of the many choices of u = ∞ energy and momentum eigenstates, the states |lr, Lη, Sη, Sz
η, ∞〉

are those obtained from the finite-u energy and momentum eigenstates, Eq. (13), whose LWSs 
are the η-Bethe states, as limu→∞ |lr, Lη, Sη, Sz

η, u〉.
The Hilbert space remains the same for the whole u > 0 range. For any fixed u > 0, 

there is thus a uniquely defined unitary operator V̂ = V̂ (u) such that |lr, Lη, Sη, Sz
η, u〉 =

V̂ †|lr, Lη, Sη, Sz
η, ∞〉. This operator V̂ is the electron – rotated-electron unitary operator ap-

pearing in Eq. (12). It is uniquely defined in Eq. (11) of Ref. [103]. The σ =↑, ↓ electron single 
occupancy, electron double occupancy, and electron non-occupancy are good quantum numbers 
for a u → ∞ energy and momentum eigenstate |lr, Lη, Sη, Sz

η, ∞〉. This is why for all the finite-u
energy and momentum eigenstates |lr, Lη, Sη, Sz

η, u〉 belonging to the same V tower the rotated-
electron numbers NR

s,±1/2, NR
η,±1/2, NR

s = L − Lη , and NR
η = Lη are conserved as well.

2.2. Effects of the symmetry on the charge degrees of freedom

One of the few rigorous results for the Hubbard model on any bipartite lattice refers to its 
global symmetry. As was mentioned in Section 1, it is well known that on such a lattice the 
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Hamiltonian has two global SU(2) symmetries [75–78]. Consistently, in the early nineties of 
the past century it was found that for u 	= 0 the Hubbard model on a bipartite lattice has at 
least a SO(4) = [SU(2) ⊗ SU(2)]/Z2 symmetry, which contains the η-spin and spin SU(2)

symmetries [76,77]. More recently it was found in Ref. [101] that for u 	= 0 and on any 
bipartite lattice its global symmetry is actually larger and given by [SO(4) ⊗ U(1)]/Z2 =
[SU(2) ⊗ SU(2) ⊗ U(1)]/Z2

2 . (The 1/Z2
2 factor in the u > 0 model global symmetry refers 

to the number 4L of its independent representations being four times smaller than the dimension 
4L+1 of the group SU(2) ⊗ SU(2) ⊗ U(1).)

The origin of the u > 0 global [SU(2) ⊗ SU(2) ⊗ U(1)]/Z2
2 symmetry is a local gauge 

SU(2) ⊗ SU(2) ⊗ U(1) symmetry of the U > 0 Hamiltonian t = 0 term first identified in 
Ref. [107]. This u−1 = 0 local gauge symmetry becomes for finite u = U/4t a group of per-
missible unitary transformations. (The corresponding local U(1) canonical transformation is not 
the ordinary gauge U(1) subgroup of electromagnetism. It is rather a “nonlinear” transformation 
[107].) The related global c lattice U(1) symmetry beyond SO(4) found in Ref. [101], which 
is associated with the lattice degrees of freedom and does not exist at U = 0, emerges at any 
arbitrarily small u value.

Importantly, the rotated-electrons charge and spin 1/2 are the same as those of the cor-
responding electrons and thus remain invariant under the electron – rotated-electron unitary 
transformation. That transformation only changes the lattice occupancies and corresponding spa-
tial distributions of the charges and spins 1/2. Furthermore, in the u → ∞ limit the electron – 
rotated-electron unitary operator V̂ becomes the unit operator. This is why in such a limit the 
rotated electrons become electrons.

That in the u−1 → 0 limit the rotated electrons become electrons and for u > 0 they have the 
same charge and spin 1/2 as the electrons reveals that for finite u they are quasiparticles whose 
“noninteracting” limit is u−1 = 0. In terms of the onsite repulsion, this is thus a type of turned 
upside-down “Fermi liquid”. Its exotic properties follow in part from at such u−1 = 0 “noninter-
acting” point the degrees of freedom of the electron occupancy configurations that generate from 
the electron vacuum the u−1 = 0 energy and momentum eigenstate |lr, Lη, Sη, Sz

η, ∞〉 separating 
into three types of configurations. Those refer to state representations of the two SU(2) symme-
tries and U(1) symmetry in the u−1 = 0 model local gauge SU(2) ⊗SU(2) ⊗U(1) symmetry. As 
reported below in Section 2.3, this three degrees of freedom separation persists at finite u in terms 
of the rotated-electron occupancy configurations that generate from the electron vacuum the en-
ergy and momentum eigenstate |lr, Lη, Sη, Sz

η, u〉 = V̂ †|lr, Lη, Sη, Sz
η, ∞〉. At finite u values this 

is related though to the three symmetries in the u > 0 model global [SU(2) ⊗SU(2) ⊗U(1)]/Z2
2

symmetry that stems from its u−1 = 0 local gauge SU(2) ⊗ SU(2) ⊗ U(1) symmetry.
Furthermore and as reported above, for u > 0 and at U = 0 the global symmetry is different 

and given by [SO(4) ⊗ U(1)]/Z2 and SO(4) ⊗ Z2, respectively. The factor Z2 in the U = 0
global symmetry corresponds to a discretely generated symmetry associated with a well-known 
transformation that exchanges spin and η-spin. It is an exact symmetry of the U = 0 and t 	= 0
Hamiltonian. However, it changes the sign of U when U 	= 0. That the global symmetry is differ-
ent at U = 0 and for u = U/4t > 0 plays an important role in the quantum transition that occurs 
for mz

η = 0 at U = Uc = 0. It separates two qualitatively different types of transport of charge. It 
may as well play an important role in the charge transport properties for T > 0.

Another important symmetry property that has effects on the transport of charge is that the 
U(2) = SU(2) ⊗ U(1) and SU(2) symmetries in the [SU(2) ⊗ SU(2) ⊗ U(1)]/Z2

2 global sym-
metry refer to the charge and spin degrees of freedom, respectively. We recall that the charge 
U(2) = SU(2) ⊗ U(1) symmetry includes the η-spin SU(2) symmetry and the c lattice U(1)
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symmetry beyond SO(4). The state representations of the groups associated with these two 
symmetries are found in this paper to contribute to the charge current of the u > 0 energy and 
momentum eigenstates.

That the charge and spin global symmetries are U(2) = SU(2) ⊗ U(1) and SU(2), respec-
tively, has in the present 1D case direct effects on the model’s exact BA solution. For instance 
and as reported in Section 1, it is behind the charge and spin monodromy matrices of the BA 
inverse-scattering method [8,86] having different ABCD and ABCDF forms [8].

2.3. The rotated-electron degrees of freedom separation

The rotated-electron degrees of freedom naturally separate for u > 0 into occupancy config-
urations of three basic fractionalized particles that generate exact state representations of the 
groups associated with the independent spin and η-spin SU(2) symmetries and the c lattice 
U(1) symmetry, respectively, in the model global [SU(2) ⊗ SU(2) ⊗ U(1)]/Z2

2 symmetry. This 
refers namely to a number Ls = NR

s of rotated spins 1/2, Lη = NR
η of rotated η-spins 1/2, and 

Nc = L − Lη = NR
s of c pseudoparticles without internal degrees of freedom, respectively.

The corresponding numbers of rotated spins of spin projection ±1/2 and rotated η-spins 
of η-spin projection ±1/2 are denoted by Ls,±1/2 and Lη,±1/2, respectively. They are de-
termined by corresponding numbers of rotated-electrons as they read Ls,±1/2 = NR

s,±1/2 and 

Lη,±1/2 = NR
η,±1/2. There are in addition Nh

c = Lη = NR
η c pseudoparticle holes. Lη = NR

η and 

Ls = NR
s = L − Lη are as well the number of sites of the η-spin and spin effective lattices, re-

spectively, introduced in the following. The state representations of the groups associated with 
the η-spin and spin SU(2) symmetries that are generated by rotated η-spins 1/2 and rotated 
spins 1/2 occupancy configurations, respectively, of such effective lattices are similar to those of 
an η-spin-1/2 and a spin-1/2 XXX chain on a lattice with Lη and Ls sites, respectively. This 
justifies the notations Lη and Ls for NR

η and NR
s , respectively.

The concept of a squeezed effective lattice is well known in 1D correlated systems [48,56,
108]. In the present case, the rotated η-spins 1/2 only “see” the set of Lη = NR

η sites unoccupied 
and doubly occupied by rotated electrons. The rotated η-spins 1/2 thus live in an η-spin squeezed 
effective lattice with Lη sites that corresponds to an η-spin-1/2 XXX chain. The rotated spins 
1/2 only “see” the set of Ls = L − Lη sites singly occupied by rotated electrons. They live in a 
spin squeezed effective lattice with Ls = L −Lη = NR

s sites that corresponds to a spin-1/2 XXX

chain. The c pseudoparticles live on an effective lattice identical to the original model lattice. In 
the case of the electron representation of the 1D Hubbard model, these lattices are known in the 
u → ∞ limit in which the rotated electrons become electrons [48,56,108].

The spatial coordinates of the Nc = L −Lη = Ls sites occupied by c pseudoparticles and those 
of the corresponding Nh

c = Lη unoccupied sites (c pseudoparticle holes) fully define the relative 
positions in the model’s original lattice of the spin squeezed effective lattice sites and η-spin 
squeezed effective lattice sites, respectively. The role of the c lattice U(1) symmetry is actually to 
preserve the independence of the spin and η-spin SU(2) symmetries and corresponding squeezed 
effective lattices occupancy configurations, which do not “see” each other. This is fulfilled by the 
state representations of the c lattice U(1) symmetry group by storing full information on the 
relative positions in the model’s original lattice of the spin and η-spin squeezed effective lattices 
sites, respectively.

The following relations between the numbers of the three types of fractionalized particles 
hold,



J.M.P. Carmelo et al. / Nuclear Physics B 930 (2018) 418–498 431
Ls = Ls,+1/2 + Ls,−1/2 = Nc ,

Lη = Lη,+1/2 + Lη,−1/2 = L − Nc = Nh
c ,

Ls,+1/2 − Ls,−1/2 = −2Sz
s = Ne ↑ − Ne ↓ ,

Lη,+1/2 − Lη,−1/2 = −2Sz
η = L − Ne , (17)

where Ne σ is the number of σ =↑, ↓ electrons, which equals that of σ =↑, ↓ rotated electrons. 
The u > 0 good quantum numbers Lη = NR

η and Ls = NR
s naturally emerge within the BA 

solution as Lη = L −Nc and Ls = Nc , respectively [103]. Here Nc is our notation for the number 
called N − M ′ in Ref. [4], which is the number of real charge rapidities kj of a Bethe state.

On the one hand, the electron – rotated-electron unitary transformation changes the lattice 
occupancies and corresponding spatial distributions of the rotated-electrons charges and spins 
1/2. On the other hand, the rotated-electrons charge and spin 1/2 are the same as those of the 
corresponding electrons and thus remain invariant under that transformation. This ensures that 
the rotated spins 1/2, which are the spins of the rotated electrons that singly occupy sites, are 
physical spins 1/2. The same applies to the c pseudoparticles that carry the charges of these 
rotated electrons and to the rotated η-spins 1/2 of η-spin projection +1/2 and −1/2 that describe 
the η-spin degrees of freedom of the rotated-electron unoccupied and doubly occupied sites, 
respectively. Consistently, the operators associated with the rotated spins 1/2, c pseudoparticles, 
and rotated η-spins 1/2 have explicit expressions in terms of the rotated-electron creation and 
annihilation operators, Eq. (12). Moreover, the corresponding electron – rotated-electron unitary 
operator is uniquely defined in Eq. (11) of Ref. [103]. Specifically, the local SU(2) operators 
associated the rotated η-spins 1/2 and rotated spins 1/2 are expressed in terms of rotated-electron 
creation and annihilation operators in Eqs. (29)–(31) of that reference. The c pseudoparticle 
creation and annihilation operators are expressed in terms of those of the rotated electrons in 
Eq. (33) and in Eq. (38) for β = c of Ref. [103].

For u > 0 energy and momentum eigenstates of η-spin Sη and spin Ss , a number Lη − 2Sη

of rotated η-spins 1/2 out of Lη such η-spins and a number Ls − 2Ss of rotated spins 1/2 out 
of Ls such spins are part of 
η = (Lη − 2Sη)/2 η-spin singlet pairs and 
s = (Ls − 2Ss)/2 of 
spin-singlet pairs, respectively. Subsets of n = 1, ..., ∞ such pairs refer to the internal structure 
of neutral composite ηn and sn pseudoparticles, respectively [103]. The occupancy configura-
tions of the fractionalized particles and related composite particles that generate the exact energy 
and momentum eigenstates from the electron vacuum are found to be labelled by the quantum 
numbers emerging from the model TBA solution [103,104]. This is a generalization of the rep-
resentation in terms of spins 1/2 and n-band pseudoparticles used for the spin-1/2 XXX chain 
in Refs. [72,73] to address the related problem of that model spin stiffness [74].

The rotated-electron creation and annihilation operators, Eq. (12), have been inherently con-
structed from those of the electrons to the form of the 1D Hubbard model energy and momentum 
eigenstates wave function in terms of rotated electrons being for u > 0 similar to that of the wave 
function in terms of electrons for u → ∞. The latter is given in Eq. (2.23) of Ref. [7]. It is a 
product of an η-spin 1/2 XXX chain wave function ϕ1, a spin 1/2 XXX chain wave function 
ϕ2, and a Slater determinant of fermions without internal degrees of freedom. Hence this con-
firms that in the u → ∞ limit the 1D Hubbard model corresponds to an η-spin-1/2 XXX chain, 
a spin-1/2 XXX chain, and a quantum problem with simple U(1) symmetry, respectively. The 
same applies to the whole u > 0 range within the rotated-electron representation.

Note though that for finite u values this applies only to the u-independent lr, Lη , Sη , and Sz
η

quantum number values that label the exact energy and momentum eigenstates |lr, Lη, Sη, Sz
η, u〉, 
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which includes the momentum operator eigenvalues, as well as to the occupancy configurations 
that generate such states, which in terms of rotated electrons remain the same for the whole 
u > 0 range, and to the corresponding rotated-electron wave functions. The energy eigenvalues, 
Eqs. (A.5) and (A.7) of Appendix A, and for instance the charge current operator expectation 
values, Eqs. (A.10) and (A.11) of that Appendix, of the energy and momentum eigenstates are 
though dependent on u. They have a different form from the corresponding u → ∞ energy eigen-
values and charge current operator expectation values. In the case of the latter this stems from the 
exotic overlap that occurs within matrix elements between energy and momentum eigenstates of 
the charge current operator expressed in terms of electron creation and annihilation operators, 
Eq. (11), with the rotated-electron occupancy configurations that generate such states [103].

2.4. Relation to the Bethe-ansatz solution quantum numbers

The studies of Ref. [103] have considered the relation between the TBA quantum numbers and 
the three degrees of freedom separation of the rotated-electron occupancy configurations. This 
confirms that such quantum numbers are directly associated with the occupancy configurations 
of the above considered three types of fractionalized particles that generate all Bethe states. Upon 
application onto those of the off-diagonal generators of the model’s two SU(2) symmetries, one 
then generates all 4L u > 0 energy and momentum eigenstates, as given in Eq. (13).

The exact Bethe states are populated by Ls = L −Lη rotated spins 1/2 and Lη rotated η-spins 
1/2. As mentioned above, out of those, a number Ls − 2Ss of rotated spins 1/2 are part of a 
number 
s = (Ls − 2Ss)/2 of spin-singlet pairs (α = s) and a number Lη − 2Sη of rotated 
η-spins 1/2 are part of a number 
η = (Lη − 2Sη)/2 of η-spin singlet pairs (α = η). Such 
α

spin-singlet (α = s) and η-spin singlet (α = η) pairs are bound within a set of α n-pairs con-
figurations each of which refers to the internal degrees of freedom of one neutral composite αn

pseudoparticle. Here n = 1, ..., ∞ gives the number of pairs bound within each such pseudopar-
ticles.

Consistently with TBA corresponding results, the following exact sum rules then hold for all 
u > 0 energy and momentum eigenstates, Eq. (13),


α =
∞∑

n=1

nNαn = 1

2
(Lα − 2Sα) where α = s, η ,


 ≡
∑

α=η,s


α =
∑

α=η,s

∞∑
n=1

nNαn = 1

2
(L − 2Ss − 2Sη) . (18)

Here Nαn is the number of αn pseudoparticles and 
 denotes the total number of both rotated-
spin and rotated-η-spin pairs.

For a Bethe state, the remaining Mα = 2Sα unpaired rotated spins (α = s) and rotated η-spins 
(α = η) have spin and η-spin projection +1/2, respectively. For general u > 0 energy and mo-
mentum eigenstates, the multiplet configurations of these Ms = 2Ss unpaired rotated spins and 
Mη = 2Sη unpaired rotated η-spins generate the spin and η-spin, respectively, SU(2) symmetry 
towers of non-LWSs. The SU(2) symmetry algebras off-diagonal generators that flip such un-
paired rotated spins and unpaired rotated η-spins, which for η-spin are given in Eq. (15), do not 
affect though the spin (α = s) and η-spin (α = η) singlet configurations of the 
α =∑∞

n=1 n Nαn

pairs contained in neutral composite αn pseudoparticles. Those remain unchanged.
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For general u > 0 energy and momentum eigenstates, the number Ms,±1/2 of unpaired rotated 
spins of projection ±1/2 and Mη,±1/2 of unpaired rotated η-spins of projection ±1/2 are good 
quantum numbers given by,

Mα,±1/2 = Sα ∓ Sz
α and Mα = Mα,−1/2 + Mα,+1/2 = 2Sα where α = η, s . (19)

For the Bethe states, one has that Mα,+1/2 = Mα = 2Sα and Mα,−1/2 = 0 for both α = η, s. The 
rotated η-spins (α = η) and rotated spins (α = η) numbers Lα and Lα,±1/2 in Eq. (17) can be 
written as,

Lα = 2
α + Mα = 2
α + 2Sα ,

Lα,±1/2 = 
α + Mα,±1/2 = 
α + Sα ∓ Sz
α where α = η, s , (20)

respectively.
Another important symmetry property is that the spatial lattice occupancies of the Mα = 2Sα

unpaired rotated spins (α = s) and unpaired rotated η-spins (α = η) remain invariant under the 
electron – rotated-electron unitary transformation. This means that their lattice occupancy con-
figurations are for the whole u > 0 range exactly the same as those of the corresponding electrons 
occupancy configurations. That invariance plays an important role in the transport of charge and 
spin. Indeed and as reported below for the present case of charge transport, the electronic degrees 
of freedom couple to charge and spin probes through only such Mη = 2Sη unpaired physical 
η-spins and Ms = 2Ss unpaired physical spins, respectively.

Note though that the paired rotated spins 1/2 and paired rotated η-spins 1/2 are also physical 
spins 1/2 and physical η-spins 1/2 in what their spin and η-spin degrees of freedom, respectively, 
are concerned. Only their lattice spatial occupancies are changed under the electron – rotated-
electron unitary transformation. Nevertheless, to stress that the lattice spatial occupancies of the 
unpaired spins 1/2 and unpaired η-spins 1/2 remain invariant under that transformation we omit 
the term rotated from their designation. We use more often in the following the designation phys-
ical for them.

The TBA solution contains different types of quantum numbers. Their occupancy config-
urations are within the pseudoparticle representation described by corresponding occupancy 
configurations of c pseudoparticles with no internal degrees of freedom and composite αn pseu-
doparticles plus a number Mη = 2Sη of unpaired physical η-spins and Ms = 2Ss of unpaired 
physical spins. The c branch momentum rapidity functional kc(qj ) and set of αn branches ra-
pidity functionals �αn(qj ) where α = η, s and n = 1, ..., ∞ are solutions of the coupled TBA 
integral equations introduced in Ref. [4], which are given in functional form in Eqs. (A.1) and 
(A.2) of Appendix A. For n > 1, the rapidity functionals �αn(qj ) are the real part of correspond-
ing l = 1, ..., n complex rapidities given below.

The c branch TBA quantum numbers {qj } in the argument of the momentum rapidity func-
tional kc(qj ) and corresponding c rapidity functional �c(qj ) ≡ sin(kc(qj )) and αn branch BA 
quantum numbers {qj } in the argument of the rapidity functionals �αn(qj ) are given by,

qj = 2π

L
I

β
j for j = 1, ...,Lβ where β = c, ηn, sn and n = 1, ...,∞ . (21)

Here {Iβ
j } are the quantum numbers {qj } in units of 2π/L that are successive integers or half-odd 

integers according to the following boundary conditions,

I
β
j = 0,±1,±2, ... for Iβ even ,

= ±1/2,±3/2,±5/2, ... for Iβ odd . (22)



434 J.M.P. Carmelo et al. / Nuclear Physics B 930 (2018) 418–498
The β = c, ηn, sn numbers Iβ in this equation read,

Ic = Nps ≡
∑

α=η,s

∞∑
n=1

Nαn ,

Iαn = Lαn − 1 where α = η, s and n = 1, ...,∞ . (23)

Moreover, Lβ = Nβ + Nh
β is the number of β = c, αn-band discrete momentum values qj of 

which for a given state Nβ are occupied and Nh
β are unoccupied. They read,

Lc = Nc + Nh
c = L,

Nh
c = L − Nc = Lη = 2Sη +

∞∑
n=1

2nNηn ,

Lαn = Nαn + Nh
αn where α = η, s and n = 1, ...,∞ ,

Nh
αn = 2Sα +

∞∑
n′=n+1

2(n′ − n)Nαn′ = Lα −
∞∑

n′=1

(n + n′ − |n − n′|)Nαn′ . (24)

The momentum eigenvalues can be written as,

P =
L∑

j=1

qj Nc(qj ) +
∞∑

n=1

Lsn∑
j=1

qj Nsn(qj ) +
∞∑

n=1

Lηn∑
j=1

(π − qj )Nηn(qj ) + πLη,−1/2 , (25)

where Nβ(qj ) are for β = c, ηn, sn pseudoparticle branches the β-band momentum distribu-
tion functions. They are such that Nβ(qj ) = 1 and Nβ(qj ) = 0 for occupied and unoccupied qj

values, respectively. For the c and αn branches, such values have intervals qj ∈ [q−
c , q+

c ] and 
qj ∈ [−qαn, qαn] where ignoring 1/L corrections within the TL the c-band limiting momentum 
values are such that q±

c = ±qc. Here the limiting momentum values qc and qαn are given by,

qc = π and qαn = π (Lαn − 1)/L , (26)

respectively.
That the momentum eigenvalues, Eq. (25), are additive in the quantum numbers qj in Eq. (21)

is consistent with they playing the role of β = c, αn band momentum values. The momentum 
contribution πLη,−1/2 = π(
η +Mη,−1/2) in Eq. (25) follows from both the paired and unpaired 
rotated η-spins of projection −1/2 having an intrinsic momentum given by,

qη,−1/2 = π . (27)

For a η-Bethe state one has that πLη,−1/2 = π 
η .

2.5. Internal degrees of freedom of the composite αn pseudoparticles and u → 0 n > 1 pairs 
unbinding

As for the spin-neutral composite n-band pseudoparticles of the spin-1/2 XXX chain [73], 
the problem concerning an αn pseudoparticle internal degrees of freedom and that associated 
with its translational degrees of freedom center of mass motion separate within the TL.

On the one hand, the αn-band momentum qj , Eq. (21) for β = αn, is associated with the 
latter. On the other hand, for n > 1 the internal degrees of freedom are related to the imaginary 
part of the αn rapidities,
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�αn,l(qj ) = �αn(qj ) + i (n + 1 − 2l) u where l = 1, ..., n , (28)

j = 1, ..., Lαn, α = η, s, and n = 1, ..., ∞.
Each set of l = 1, ..., n complex rapidities �αn,l(qj ) with the same real part �αn(qj ) is asso-

ciated with the l = 1, ..., n η-spin-singlet pairs (α = η) or spin-singlet pairs (α = s) bound for 
n > 1 within a neutral composite αn pseudoparticle. Each of such l = 1, ..., n rapidities actually 
describes one of the 
α =∑∞

n=1 n Nαn, Eq. (18), spin-singlet pairs (α = s) or η-spin-singlet 
pairs (α = η) of the Bethe state under consideration. The real part �αn(qj ) is the rapidity func-
tional that as reported above is for each Bethe state the solution of the coupled Eqs. (A.1) and 
(A.2) of Appendix A.

For n = 1, the rapidity �α1,1(qj ), Eq. (28) for l = n = 1, refers to a single pair and is real. 
We call unbound spin-singlet pairs (α = s) and unbound η-spin singlet pairs (α = η) of a Bethe 
state the corresponding Nα1 pairs, each referring to a single n = 1 pair configuration. Otherwise, 
the n > 1 rapidities �αn,l(qj ) imaginary part i (n + 1 − 2l) u of a u > 0 Bethe state is finite. 
The corresponding set of l = 1, ..., n complex rapidities with the same real part then describes 
the binding of the n > 1 pairs within an αn-pair configuration. Such a configuration describes 
the internal structure of a neutral composite αn pseudoparticle. We call bound spin-singlet pairs
(α = s) and bound η-spin singlet pairs (α = η) the 
α − Nα1 pairs that are bound within n > 1
αn-pair configurations. All this is again exactly as for the spin n-pairs configurations of the spin 
1/2-XXX chain [73].

In contrast to that chain, for n > 1 the imaginary part i (n + 1 − 2l) u of each set of the 
l = 1, ..., n rapidities with the same real part depends on the interaction u = U/4t and thus van-
ishes as u → 0. As discussed in more detail in Appendices B and C, such an unbinding in that 
limit of the l = 1, ..., n pairs within each u > 0 αn-pair configuration marks the qualitatively 
different physics of the U = 0 and u > 0 quantum problems, respectively. It is associated with 
the rearrangement of the η-spin and spin degrees of freedom in terms of the noninteracting elec-
trons occupancy configurations that generate the U = 0 common eigenstates of the Hamiltonian, 
momentum operator, and current operator. Indeed, as the imaginary part i (n + 1 − 2l) u of each 
set of l = 1, ..., n rapidities, the commutator of the charge current operator and the 1D Hubbard 
model Hamiltonian,

[
Ĵ , Ĥ

]
= i u4t2

∑
σ

Na∑
j=1

[c†
j,σ (cj+1,cj,σ

− cj−1,σ ) + (c
†
j+1,σ − c

†
j−1,σ )cj,σ ] n̂j,−σ , (29)

also vanishes as u → 0.
The form i (n + 1 − 2l) u of that imaginary part and of that commutator, Eq. (29), confirms 

that the u > 0 physics survives for any arbitrarily small value of u. Indeed, the l = 1, ..., n pairs 
unbinding and commutator [Ĵ , Ĥ ] vanishing occur only in the u → 0 limit. The rearrangement 
of the η-spin and spin degrees of freedom in terms of the noninteracting electrons occupancy 
configurations that occurs within the unbinding of the l = 1, ..., n pairs within each u > 0 ηn-pair 
configuration has most severe consequences on the transport of charge at hole concentration 
mz

η = 0. The effects of the u → 0 transition on the charge dynamic structure factor at mz
η = 0 is a 

problem addressed in Ref. [19]. The mechanisms behind the corresponding qualitatively different 
types of transport associated with the occurrence at hole concentration mz

η = 0 of charge ballistic 
transport at U = 0 and its absence found in this paper for u > 0 is an interesting issue discussed 
in Appendix B for mz

η → 0 and mz
η = 0 and in Appendix C for mz

η ∈ [0, 1].
Within the usual TBA notation, the set of l = 1, ..., n complex rapidities �αn,l(qj ) with the 

same real part is called an αn string. Specifically, a charge ηn string and a spin sn string. It 
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thus refers to an αn-pair configuration involving l = 1, ..., n pairs. Hence the number Nα =∑∞
n=1 Nαn of composite αn pseudoparticles of all n = 1, ..., ∞ branches of a u > 0 energy and 

momentum eigenstate equals that of corresponding TBA αn-strings of all lengths n = 1, ..., ∞. 
Such a number obeys an exact sum rule given by [103],

Nα =
∞∑

n=1

Nαn = 1

2
(Lα − Nh

α1) where α = η, s ,

Nps =
∑

α=η,s

∞∑
n=1

Nαn = 1

2
(L − Nh

s1 − Nh
η1) . (30)

Here Nps is the number of both α = η and α = s composite αn pseudoparticles of all n = 1, ..., ∞
branches also appearing in Eq. (23) and Nh

α1 is that of α1-band holes, Eq. (24) for α = η, s
and n = 1. Hence Nps is as well the number of both ηn-strings and sn-strings of all lengths 
n = 1, ..., ∞.

The TBA solution performs the electron – rotated-electron unitary transformation. Consis-
tently, it accounts for the 1D Hubbard model related symmetries and conserved rotated-electron 
numbers through the set of α = η, s TBA αn strings of length n numbers {Nαn} and c branch 
number Nc. This follows from the generators that produce all 4L energy and momentum eigen-
states, Eq. (13), from the electron and thus rotated-electron vacuum being naturally expressed in 
terms of the three fractionalized particles operators that emerge from the rotated-electron three 
degrees of freedom separation. The latter is associated with the two independent SU(2) symme-
tries and the independent U(1) symmetry in the model’s global symmetry.

Specifically, the conserved rotated-electron numbers of unoccupied sites NR
η,+1/2 and of dou-

bly occupied sites NR
η,−1/2 can be expressed in terms of energy and momentum eigenstates 

η-spin Sη, η-spin projection Sz
η, and set of TBA charge ηn strings of length n numbers {Nηn}

as NR
η,±1/2 = ∑∞

n=1 n Nηn + Sη ∓ Sz
η. Similarly, the conserved spin projection ±1/2 rotated-

electron number of singly occupied sites NR
s,±1/2 can be expressed in terms of the energy and 

momentum eigenstates spin Ss , spin projection Sz
s , and set of TBA spin sn strings of length n

numbers {Nan} as NR
s,±1/2 =∑∞

n=1 n Nsn + Ss ∓ Sz
s . Furthermore, the eigenvalue Lη = L − Ls

of the generator of the c lattice U(1) symmetry group such that Lη = NR
η,+1/2 + NR

η,−1/2 and 

Lη = L − NR
s,+1/2 − NR

s,−1/2 appears in Eq. (24) within the TBA solution through the numbers 

Nc = L − Lη and Nh
c = Lη.

As for the spin-1/2 XXX chain [72,73], for a large finite system some of the 1D Hubbard 
model αn strings of length n > 1 deviate from their TBA ideal form, Eq. (28). As discussed in 
Appendix D, the effects of such string deviations [9] are in the TL though not important for the 
problem studied in this paper.

On the one hand, for u > 0 the imaginary part of the n > 1 rapidities with the same real 
part, Eq. (28), describes the binding of the l = 1, ..., n pairs within the corresponding αn-pair 
configuration. On the other hand, in Ref. [103] it is shown that the configuration of the two rotated 
spins within each such unbound spin-singlet pair and that of the two rotated η-spins within each 
unbound η-spin singlet pair has for u > 0 a binding and anti-binding character, respectively.

3. Charge current operator expectation values and useful subspaces

Our study of the charge stiffness refers to the hole concentration interval mz
η ∈ [0, 1], yet 

the limit of particular interest for the clarification of the main issue under consideration is that of 
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mz
η → 0. This applies to that stiffness. In most cases the charge properties of physical systems are 

studied at zero spin density, mz
s = −Sz

s /L = 0. This is why for simplicity in the remaining of this 
paper we consider the 1D Hubbard model in the Sz

s = 0 subspace. For such quantum problem 
only η-spin SU(2) symmetry state representations for which Sη = 0, 1, 2, . . . is an integer are 
allowed, so that the results presented in this and following sections refer to integer η-spin values. 
However, concerning the charge quantities studied in the following similar results are obtained 
within the TL for η-spin half-integer values and |Sz

s | = 1/2.
For the 1D Hubbard model in the Sz

s = 0 subspace one has that Ms,+1/2 = Ms,−1/2 in Eq. (20), 
so that Ls,+1/2 = Ls,−1/2 = 
s + Ss where 
s =∑∞

n=1 n Nsn = (L − Lη − 2Ss)/2. The dimen-
sion of Sz

s = 0 subspaces spanned by states populated by fixed numbers Ls = L − Lη of rotated 
spins and Lη = Nh

c = L − Nc of rotated η-spins is given in Eq. (E.5) of Appendix E.

3.1. Three exact properties of the charge current operator expectation values

The following commutators play a major role in our evaluation of the charge current operator 
off-diagonal matrix elements and expectation values that contribute to the real part of the charge 
conductivity, Eq. (1),[

Ĵ , Ŝz
η

]
= 0 ;

[
Ĵ , ( �̂Sη)

2
]

= Ĵ+Ŝ−
η − Ŝ+

η Ĵ− ,[
Ĵ , Ŝ±

η

]
=
[
Ŝz

η, Ĵ
±]= ±Ĵ± ;

[
Ĵ±, Ŝ∓

η

]
= ±2Ĵ . (31)

Here as usual, ( �̂Sη)
2 = (Ŝz

η)
2 + 1

2 (Ŝ+
η Ŝ−

η + Ŝ−
η Ŝ+

η ), and the current operators Ĵ± read,

Ĵ+ = i 2t

L∑
j=1

(−1)j
(
c

†
j,↓ c

†
j+1,↑ + c

†
j+1,↓ c

†
j,↑
)

and Ĵ− = (Ĵ+)† . (32)

They are related to the transverse η-spin current operators as Ĵ±,η = (1/2) Ĵ±. The commutators 
given in Eq. (31) have exactly the same form as those associated with the spin current operator 
and corresponding spin SU(2) symmetry algebra operators considered in related studies of the 
spin-1/2 XXX chain spin stiffness [72,73].

For simplicity, we denote the η-Bethe states charge currents by 〈ĴLWS(lr, Lη, Sη, u)〉 ≡
〈lr, Lη, Sη, −Sη, u|Ĵ |lr, Lη, Sη, −Sη, u〉 and the charge currents of general u > 0 energy and 
momentum eigenstates by 〈Ĵ (lr, Lη, Sη, Sz

η, u)〉 ≡ 〈lr, Lη, Sη, Sz
η, u|Ĵ |lr, Lη, Sη, Sz

η, u〉. By com-
bining the systematic use of the commutators given in Eq. (31) with the transformation laws,

Ŝ−
η |lr,Lη,Sη,−Sη,u〉 = 0 and Ŝ+

η |lr,Lη,0,0, u〉 = Ŝ−
η |lr,Lη,0,0, u〉 = 0 , (33)

we reach the following general useful result for the current operator matrix elements between 
Sz

η = 0 energy and momentum eigenstates,

〈lr,Lη,Sη,0, u|Ĵ |lr,Lη,Sη + δSη,0, u〉 = 0 for δSη 	= ±1 . (34)

This selection rule is useful for the discussion in Appendix B of the Sz
η = 0 and T > 0 transition 

that is found to occur at U = Uc = 0, similarly to the T = 0 quantum Mott–Hubbard insulator -
metal transition. It separates two qualitatively different types of finite-temperature charge trans-
port. For Sz

η = 0 energy and momentum states whose generation from metallic LWSs involves 
small γη = Sη +Sz

η values, the calculations to reach the result, Eq. (34), are straightforward. They 
become lengthly as the γη value increases, yet remain straightforward.
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In the following we report three exact properties that play a major role in our study. The 
first property refers to the identification of the carriers that within the exact rotated-electron 
representation couple to charge probes. The 1D Hubbard model in a uniform vector potential 
�/L whose Hamiltonian is given in Eq. (4) of Ref. [109] remains solvable by the BA. The TBA 
equations for the model in a uniform vector potential are given in Eq. (9) of that reference. The 
only difference relative to the � = 0 case is the c band and ηn band momentum values qj being 
shifted to qj + �/L and qj − 2n�/L, respectively, whereas the sn band momentum values 
remain unchanged.

Concerning the coupling of the charge degrees of freedom to the vector potential, one finds 
that the η-Bethe states momentum eigenvalues, P(�), have the general form,

P(�/L) = P(0) − (Lη −
∑
n

2nNηn)
�

L
= P(0) − 2Sη

�

L
= P(0) − Mη

�

L
. (35)

Here the � = 0 momentum eigenvalue P(0) is given in Eq. (25) with Lη,−1/2 = 
η for the 
present η-Bethe states. The sum rule 

∑∞
n=1 2n Nηn = Lη − 2Sη involving the number Lη − 2Sη

of paired rotated η-spins 1/2 has been used in Eq. (35). (Such a sum rule follows from that of 
the corresponding η-spin singlet pairs, Eq. (18) for α = η.)

On the one hand, the charge currents of the � → 0 η-Bethe states can be derived from the �/L

dependence of the energy eigenvalues E(�/L) as 〈Ĵ 〉 = −dE(�/L)/d(�/L)|�=0, as given in 
Eqs. (A.10) and (A.11) of Appendix A. On the other hand, dP (�/L)/d(�/L)|�=0 gives the 
number of charge carriers that couple to the vector potential. The natural candidates are the 
numbers Lη = Nh

c of rotated η-spins 1/2. Within the TBA, their translational degrees of freedom 
are described by c band and ηn bands particle-hole processes. The form of the exact momentum 
eigenvalues, Eq. (35), reveals that only the Mη = 2Sη unpaired physical η-spins 1/2 contributing 
to the η-spin multiplet configurations couple to the vector potential �/L. Since the Lη − 2Sη

rotated η-spins 1/2 left over are those within the 
η = (Lη −2Sη)/2 neutral η-spin singlet pairs, 
this exact result is physically appealing. Consistently with results reported in the following, one 
finds that in the case of general energy and momentum eigenstates, P(�/L) rather reads

P(�/L) = P(0) − (Mη,+1/2 − Mη,−1/2)
�

L
, (36)

with P(0) given now by the general expression provided in Eq. (25). This reveals as expected 
that the coupling to the vector potential of unpaired physical η-spins 1/2 with opposite η-spin 
projections ±1/2 has opposite sign.

The total flux −2Sη � = −Mη � in Eq. (35), has been found within the u → ∞ limit in 
Ref. [13] directly from the solution of the TBA equations of 1D Hubbard model in a uniform 
vector potential, Eq. (9) of Ref. [109]. Since the lattice occupancy spatial distributions of the 
Mη = 2Sη unpaired physical η-spins 1/2 that couple to the vector potential remain invariant 
under the electron – rotated-electron unitary transformation, these results hold as well for the 
whole u > 0 range, as found here from the use of the momentum eigenvalues, Eqs. (35) and (36).

A second exact property is related to only the Mη = 2Sη unpaired physical η-spins 1/2 cou-
pling to the charge vector potential also holding for non-LWSs, as given in Eq. (36). For a η-Bethe 
state carrying an η-spin current 〈ĴLWS(lr, Lη, Sη, u)〉 all Mη = 2Sη unpaired physical η-spins 
have projection +1/2. The following exact relation that refers to the charge current of general 
energy and momentum eigenstates, Eq. (13), holds,

〈Ĵ (lr,Lη,Sη, S
z
η, u)〉 =

∑
jη,σ Mη,σ , (37)
σ=±1/2
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where the elementary currents jη,±1/2 are given by,

jη,±1/2 = ±〈ĴLWS(lr,Lη,Sη,u)〉
2Sη

= ±〈ĴLWS(lr,Lη,Sη,u)〉
Mη

. (38)

The exact expression, Eqs. (37) and (38), is derived by combining the systematic use of the 
commutators given in Eq. (31) with the energy and momentum eigenstates transformation laws 
under the η-spin SU(2) symmetry operator algebra, Eq. (33). After a suitable handling of such 
an operator algebra and transformation laws involving commutator manipulations, one finds,

〈Ĵ (lr,Lη,Sη, S
z
η, u)〉 = −Sz

η

Sη

〈ĴLWS(lr,Lη,Sη,u)〉 , (39)

where as in Eq. (14), Sz
η = −Sη + γη and γη = 1, ..., 2Sη. The relation, Eq. (39), can then be 

exactly rewritten as given in Eq. (37). For non-LWSs whose generation from η-Bethe states in 
Eq. (13) involves small γη = Sη + Sz

η values the calculations to reach the relation, Eq. (39), is 
straightforward, and remains so as the γη value increases yet becomes lengthly.

The exact relation, Eqs. (37), (38), and (39), confirms that also for non-LWSs the Mη =
Mη,+1/2 + Mη,−1/2 unpaired physical η-spins 1/2 control the η-spin current values. For each 
elementary η-spin flip process generated by application of the off-diagonal η-spin generator 
Ŝ+

η , Eq. (15), (and Ŝ−
η = (Ŝ+

η )†) onto an energy and momentum eigenstate with finite numbers 
Mη,+1/2 and Mη,−1/2, the η-spin current exactly changes by a current quantum 2jη,−1/2 (and 
2jη,+1/2). Hence each unpaired physical η-spin with η-spin projection ±1/2 carries an elemen-
tary current jη,±1/2, Eq. (38). For a η-Bethe state one has that Mη,+1/2 = 2Sη and Mη,−1/2 = 0, 
so that 〈ĴLWS(lr, Lη, Sη, u)〉 = jη,+1/2 × Mη = jη,+1/2 × 2Sη.

That in the present case of charge only the Mη = mη L unpaired physical η-spins 1/2 couple 
to the vector potential implies that all η-spin currents exactly vanish as mη → 0. This exact 
property by itself can be used to confirm that within the canonical ensemble at fixed value of Sz

η, 
in the TL, and for nonzero temperatures the charge stiffness vanishes as mz

η → 0. In addition, in 
the case of high temperature T → ∞ that result is extended in this paper to the grand-canonical 
ensemble.

The third exact property concerns the processes that contribute to the charge currents 
〈ĴLWS(lr, Lη, Sη, u)〉 on the right-hand side of Eq. (39) of general η-Bethe states described by 
groups of charge c band real momentum rapidities, charge η1 real rapidities, and n > 1 charge 
ηn complex rapidities. The third property reported in the following is a direct consequence on 
the β = c, ηn band occupancy configurations that within the TBA describe such η-spins 1/2
translational degrees of freedom of only the Mη = 2Sη unpaired physical η-spins 1/2 coupling 
to charge probes.

It is shown in Appendix A that within the TBA the η-Bethe states charge currents can be 
written in the TL in terms of c-band holes and ηn-band holes occupancies as follows,

〈ĴLWS(lr,Lη,Sη,u)〉 =
L∑

j=1

Nh
c (qj ) J h

c (qj ) +
∞∑

n=1

Lηn∑
j=1

Nh
ηn(qj ) J h

ηn(qj ) , (40)

where the hole current spectra Jh
c (qj ) and Jh

ηn(qj ) read,

Jh
c (qj ) = −Jc(qj ) = 2t sin kc(qj )

c
for qj ∈ [−π,π] and
2πρc(k (qj ))



440 J.M.P. Carmelo et al. / Nuclear Physics B 930 (2018) 418–498
Jh
ηn(qj ) = −Jηn(qj )

= 4nt
∑
ι=±1

�ηn(qj ) − i ιnu

2πσηn(�ηn(qj ))

√
1 − (�ηn(qj ) − i ιnu)2

for qj ∈ [−qηn, qηn] ,

(41)

respectively. Here Nh
c (qj ) = 1 − Nc(qj ), Nh

ηn(qj ) = 1 − Nηn(qj ), and the related c- and 
ηn-bands current spectra Jc(qj ) and Jηn(qj ), respectively, are given in Eq. (A.11) of Ap-
pendix A. Moreover, qηn = π (Lηn − 1)/L, Eq. (26), and the rapidity momentum functional 
kc(qj ) and rapidity functionals �ηn(qj ) are obtainable for each η-Bethe state from solution of 
the TBA equations, Eqs. (A.1) and (A.2) of Appendix A. Such equations also involve spin ra-
pidity functionals �sn(qj ) associated with distributions 2πσsn(�j ), besides the distributions 
2πρc(kj ) and 2πσηn(�j ) explicitly appearing in Eq. (41). The general distributions 2πρc(kj )

and 2πσαn(�j ) are defined in Eq. (A.4) of Appendix A. (The functionals qc(k) and qαn(�)

in that equation stand for the inverse functions of the rapidity momentum functional kc(q) and 
rapidity functionals �αn(q), respectively.)

That the lattice occupancy spatial distributions of the Mη = 2Sη unpaired physical η-spins 1/2
that couple to the charge probes remain invariant under the electron – rotated-electron unitary 
transformation implies that such η-spins with η-spin projection +1/2 and −1/2 refer for the 
whole u > 0 range to the η-spin degrees of freedom of original lattice sites unoccupied by bare 
electrons and onsite spin-singlet pairs of bare electrons, respectively. Their translational degrees 
of freedom are within the TBA solution described by an average number 2Sη of c band holes 
out of that band Nh

c = 2Sη +∑∞
n=1 2n Nηn holes, Eq. (24), and by an average number 2Sη of 

holes out of the Nh
ηn = 2Sη + ∑∞

n′=n+1 2(n′ − n)Nηn′ holes, Eq. (24) for α = η, of each of 
the n = 1, ..., ∞ ηn bands for which Nηn > 0 in the energy and momentum eigenstates under 
consideration.

Hence in terms of the exact solution quantum numbers, the local processes that generate the 
charge currents of the energy and momentum eigenstates refer to the relative occupancy config-
urations of the Nh

c = Lη holes and corresponding Nc = L − Lη c pseudoparticles and Nh
ηn holes 

and corresponding Nηn ηn pseudoparticles in each ηn band for which Nηn > 0. Consistently, 
the charge currents 〈ĴLWS(lr, Lη, Sη, u)〉 on the right-hand side of the charge current expression, 
Eq. (39), of general energy and momentum eigenstates can alternatively be expressed in terms 
of c-band and ηn-band holes, as given in Eq. (40), or of c and ηn pseudoparticles, Eq. (A.10) of 
Appendix A.

The third exact property refers to a total and a partial virtual elementary current cancelling 
occurring in the β = c, ηn bands of Sη = 0 and Sη > 0, respectively, η-Bethe states for which 
Nh

β > 2Sη and Nβ > 0. (Unoccupied β-bands for which Nβ = 0 do not contribute to the charge 
current.) Such a cancelling is encoded within the interplay of the current expressions, Eq. (41)
and Eq. (A.10) of Appendix A, with the TBA equations, Eqs. (A.1) and (A.2) of that Appendix. It 
also affects the charge current expression, Eq. (39), of general energy and momentum eigenstates, 
which in the case of non-LWSs involves the charge currents 〈ĴLWS(lr, Lη, Sη, u)〉 of the η-Bethe 
states from which such states are generated in Eq. (13).

On the one hand, Sη = 0 η-Bethe states whose charge current is zero lack unpaired physical 
η-spins 1/2 to couple to charge probes. Their numbers of band holes Nh

c and Nh
ηn are given 

by Nh
c = Lη = ∑∞

n=1 2n Nηn and Nh
ηn = ∑∞

n′=n+1 2(n′ − n) Nηn′ , respectively, as reported in 
Eq. (24) for Sη = 0. Consistently with the lack of unpaired physical η-spins 1/2, the virtual 
elementary currents carried by a number 

∑∞
n Nηn of c band holes and 

∑∞′ (n′ − n) Nηn′
n=1 n =n+1
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of ηn-bands holes exactly cancel those carried by an equal number 
∑∞

n=1 n Nηn of remaining c
band holes and 

∑∞
n′=n+1(n

′ − n) Nηn′ of remaining ηn-band holes, respectively. Such two sets 
of β = c, ηn bands holes describe the translational degrees of freedom of two corresponding sets 
of paired rotated η-spins 1/2 of opposite η-spin projection. Indeed, this exact total elementary 
currents cancelling involves the opposite η-spin projections within each η-spin singlet pair. As in 
the case of the unpaired physical η-spins 1/2 in the η-spin multiplet configurations that contribute 
to the charge currents, Eq. (37), paired rotated η-spins with opposite η-spin projection carry 
virtual elementary currents of opposite sign.

On the other hand, within the β = c, ηn bands of Sη > 0 η-Bethe states for which Nh
β > 2Sη

and Nβ > 0 there is a corresponding partial virtual elementary current cancellation. For such c
and ηn bands the number of holes, Eq. (24), are given by Nh

c = Lη = 2Sη +∑∞
n=1 2n Nηn and 

Nh
ηn = 2Sη +∑∞

n′=n+1 2(n′ − n) Nηn′ , respectively. There is in average in these bands a number 
2Sη of β-band holes that describe the translational degrees of freedom of the Mη = 2Sη unpaired 
physical η-spins 1/2. Hence their elementary currents contribute to the η-Bethe states charge 
currents, Eq. (40). The virtual elementary currents carried by average numbers 

∑∞
n=1 n Nηn and ∑∞

n=1 n Nηn of two sets of c band holes and 
∑∞

n′=n+1(n
′ − n) Nηn′ and 

∑∞
n′=n+1(n

′ − n) Nηn′
of two sets of ηn-bands holes that describe the translational degrees of freedom of two sets of 
paired rotated η-spins 1/2 of opposite η-spin projection remain though cancelling each other.

As mentioned above, the η-Bethe states virtual elementary charge currents cancellation is en-
coded in the interplay of the current expressions, Eqs. (40) and (41), with the TBA equations, 
Eqs. (A.1) and (A.2) of Appendix A. Only within the present exact rotated-electron related rep-
resentation is that virtual elementary currents cancellation described in terms of explicit physical 
processes. The main role of such virtual elementary current cancelling processes is to control 
the dependence on the density mη of unpaired physical η-spins 1/2 of the charge currents of the 
η-Bethe states. The mη dependence of such charge currents is smooth and continuous.

The virtual elementary charge currents partial cancelling does not occur within β = c, ηn

bands occupancies for which Nh
β = 2Sη = Mη . For such β = c, ηn bands of a Sη > 0 η-Bethe 

state all their Nh
β = 2Sη = Mη holes fully contribute to charge currents. Indeed, all such β-band 

holes describe the translational degrees of freedom of the corresponding η-Bethe state Mη = 2Sη

unpaired physical η-spins.

3.2. Simplified stiffness expression and subspaces of the fixed-Sz
η and Sz

s = 0 subspaces

The use of the exact relation, Eq. (39), in the charge stiffness expression, Eq. (5), leads to 
the following simplified stiffness expression in terms of only η-Bethe states current operator 
expectation values that is exact in the TL and valid for T > 0 and u > 0,

D(T ) = (2Sz
η)

2

2LT

L∑
Lη=2|Sz

η |

Lη/2∑
Sη=|Sz

η|

∑
lr

plr,Lη,Sη,Sz
η

|〈ĴLWS(lr,Lη,Sη,u)〉|2
(2Sη)2 . (42)

In the present case of the Sz
s = 0 subspace, the available η-spin projection absolute values are 

integers, |Sz
η| = 0, 1, 2, ..., L/2. Hence the summations on the right-hand side of Eq. (42) run 

over even integers Lη = 2|Sz
η|, 2|Sz

η| + 2, 2|Sz
η| + 4, ..., L and integers Sη = |Sz

η|, |Sz
η| + 1, |Sz

η| +
2, ..., Lη/2, respectively.

The charge stiffness upper bounds constructed in this paper rely on the use in the general 
expression, Eq. (42), of corresponding upper bounds for the absolute values of η-Bethe states 
charge currents 〈ĴLWS(lr, Lη, Sη, u)〉. Such charge currents result from microscopic processes 
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that are actually easiest to be described in terms of original lattice occupancy configurations. 
Each c pseudoparticle and ηn pseudoparticle is associated with the charge degrees of freedom of 
one and 2n sites of that lattice, respectively. We call charge pseudoparticles to both the c and ηn

pseudoparticles, their number reading,

Nρ = Nc + Nη = L − 2Sη −
∞∑

n=1

(2n − 1)Nηn . (43)

The charge only flows along the original lattice provided that the unpaired physical η-spins 
1/2 that couple to charge probes interchange site positions in it with the charge c and ηn

pseudoparticles. This occurs upon the latter moving along the original lattice. Hence one 
can consider that such charge pseudoparticles, whose current spectra Jc(qj ) = −Jh

c (qj ) and 
Jηn(qj ) = −Jh

ηn(qj ) are given in Eq. (A.11) of Appendix A, play the role of charge carriers. 
This is consistent with, for a η-Bethe state, the charge pseudoparticles carrying all L − 2Sη

electronic charges, with each c pseudoparticle and ηn pseudoparticle carrying one and 2n such 
elementary charges, respectively.

Within the canonical ensemble, the general charge stiffness expression, Eq. (42), refers to 
one of the fixed-Sz

η and Sz
s = 0 subspaces contained in the larger Sz

s = 0 subspace. The hole 
concentrations of such subspaces belong to the interval,

mz
η = −2Sz

η

L
= Mη,+1/2 − Mη,−1/2

L
∈ [0,1] . (44)

It is useful for the study of the charge currents and the introduction of suitable upper bounds 
for their absolute values to consider the subspaces contained in each fixed-Sz

η and Sz
s = 0 sub-

space. The definition of such subspaces requires a careful account for the summations on the 
right-hand side of Eq. (42). The summations 

∑L
Lη=2|Sz

η|
∑Lη/2

Sη=|Sz
η| run in that equation over 

different η-spin SU(2) multiplet towers that refer to energy and momentum eigenstates with 
the same Sz

η value and different Sη = |Sz
η|, |Sz

η| + 1, |Sz
η| + 2, ..., Lη/2 values. Their currents, 

〈Ĵ (lr, Lη, Sη, Sz
η, u)〉 = (−Sz

η/Sη) 〈ĴLWS(lr, Lη, Sη, u)〉, Eq. (39), are for Sη > |Sz
η| expressed in 

terms of η-Bethe states currents, 〈ĴLWS(lr, Lη, Sη, u)〉, whose η-spin projection S′z
η = −Sη such 

that −S′z
η > −Sz

η is different from their η-spin projection Sz
η.

The η-spin flip processes that upon successive applications of the η-spin SU(2) symmetry off-
diagonal generator Ŝ+

η onto each Sη > 0 η-Bethe state generate the non-LWSs in Eq. (13) only 
change the η-spin projections of the η-Bethe state Mη = 2Sη unpaired physical η-spins 1/2. 
Such processes do not change the c pseudoparticle occupancies, η-spin-singlet configurations, 
and Sz

s = 0 spin-singlet and spin-multiplet configurations, which remain those of the η-Bethe 

state. On the one hand, the summations 
∑L

Lη=2|Sz
η|
∑Lη/2

Sη=|Sz
η| on the right-hand side of Eq. (42)

run over energy and momentum eigenstates with the same Sz
η value. On the other hand and 

in spite of that, this symmetry invariance allows that the summation 
∑

lr
1 = dLWS

subspace(Lη, Sη)

where dLWS
subspace(Lη, Sη) is the dimension, Eq. (E.7) of Appendix E, can run over c pseudoparti-

cle occupancy configurations, η-spin-singlet configurations, and spin-singlet and spin-multiplet 
configurations of η-Bethe states with the same Lη and Sη values that have a η-spin projection 
S′z

η = −Sη different from the η-spin projection Sz
η of such energy and momentum eigenstates. 

Indeed the latter configurations are exactly the same as those of the corresponding non-LWSs 
with fixed −Sz

η < −S′z
η that contribute to the charge stiffness, Eq. (42).
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An exact property reported above of major importance for our study is that only the charge 
degrees of freedom of the Mη = 2Sη unpaired physical η-spins whose lattice spatial occupancy 
distributions remain invariant under the electron – rotated-electron unitary transformation couple 
to a uniform vector potential. It is thus convenient to divide each fixed-Sz

η and Sz
s = 0 subspace 

into a set of fixed-Sη and Sz
s = 0 subspaces that we call SzS subspaces, such that Sη ≥ −Sz

η. 

Each η-spin value Sη = |Sz
η|, |Sz

η| +1, |Sz
η| +2, ..., Lη/2 in the summation 

∑Lη/2
Sη=|Sz

η| on the right-

hand side of Eq. (42) corresponds to one such a SzS subspace. Its dimension corresponds to the 
summation 

∑L
Lη=2|Sη|

∑
lr

where 
∑L

Lη=2|Sη| is for Sη > |Sz
η| only a part of the overall summa-

tion 
∑L

Lη=2|Sz
η | in Eq. (42) and 

∑
lr

is a summation that runs over c pseudoparticle occupancy 
configurations, η-spin-singlet configurations, and Sz

s = 0 spin-singlet and spin-multiplet config-
urations. Those are associated with spin values Ss = 0, 1, ..., (L − Lη)/2 of η-Bethe states with 
the same Lη and Sη values. We emphasize that although such η-Bethe states have an η-spin pro-
jection S ′z

η = −Sη different from the η-spin projection Sz
η of the corresponding non-LWSs, due 

to the above reported symmetry invariance their configurations associated with the summation ∑L
Lη=2|Sη|

∑
lr

are identical to those of the latter states.
Accounting for that symmetry invariance, the SzS subspaces are defined here as being spanned 

by η-Bethe states with fixed density mη = Mη/L of unpaired physical η-spins 1/2 that belongs 
to the interval,

mη = Mη

L
= 2Sη

L
∈ [mz

η,1] , (45)

where the maximum density is reached for states for which lη = Lη/L = 1. Each density mη in 
that interval corresponds to one SzS subspace.

Each SzS subspace can be further divided into smaller subspaces spanned by η-Bethe states 
with fixed total number Lη of rotated η-spins. Such subspaces have Lη values in the interval 
Lη ∈ [2Sη, L]. Their dimension corresponds to the above mentioned summation 

∑
lr

that runs 
over c pseudoparticle occupancy configurations, η-spin-singlet configurations, and spin-singlet 
and spin-multiplet configurations of η-Bethe states with the same Lη and Sη values. We call 
them SzSL subspaces. The SzSL subspaces contained in a given SzS subspace are thus spanned 
by η-Bethe states with fixed densities lη = Lη/L that vary in the interval,

lη = Lη

L
∈ [mη,1] . (46)

Each pair of densities mη, lη in the ranges, Eqs (45) and (46), respectively, refers to one SzSL 
subspace.

The related dependent densities associated with the numbers Nc = L − Lη of c pseudoparti-
cles, 
η = (Lη − 2Sη)/2 of η-spin singlet pairs, and Ls = L − Lη of rotated spins 1/2, are also 
fixed for a SzSL subspace. For different SzSL subspaces, such densities hence vary in the ranges,

nc = Nc

L
= 1 − lη ∈ [0, (1 − mη)] ,

πη = 
η

L
= 1

2
(lη − mη) ∈ [0, (1 − mη)/2] ,

ls = Ls

L
= 1 − lη ∈ [0, (1 − mη)] . (47)

Each SzSL subspace can be further divided into smaller subspaces we call SzSLN subspaces. 
They are spanned by η-Bethe states whose total number of ηn pseudoparticles Nη =∑∞

Nηn ∈
n=1
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[0, 
η] is fixed. (That Nη = 0 implies that 
η = 0.) The SzSLN subspaces contained in a given 
SzSL subspace can have densities nη = Nη/L and nρ = Nρ/L in the intervals,

nη = Nη

L
∈ [0,πη] = [0, (lη − mη)/2] ,

nρ = nc + nη ∈ [(1 − lη), (2 − lη − mη)/2] . (48)

Each SzSLN subspace can be further divided into smaller subspaces we call SzSLNS sub-
spaces. They are spanned by η-Bethe states with a fixed total number Ms = 2Ss = L −Lη −2
s

of unpaired physical spins 1/2. The related dependent density πs = 
s/L = (1 − lη − ms)/2 of 
spin-singlet pairs is also fixed for a SzSLNS subspace. The SzSLNS subspaces contained in a 
SzSLN subspace can have densities ms = Ms/L = 2S/L and πs in the ranges,

ms = Ms

L
= 1 − lη − 2πs ∈ [0, (1 − lη)] ,

πs = 
s

L
= (1 − lη − ms)/2 ∈ [0, (1 − lη)/2] . (49)

Each SzSLNS subspace can be further divided into smaller subspaces that we call SzSLNSN

subspaces. They are spanned by η-Bethe states with a fixed overall number of sn pseudoparticles 
Ns =∑∞

n=1 Nsn ∈ [0, 
s]. The SzSLNSN subspaces contained in a SzSLNS subspace can have 
densities ns in the interval,

ns = Ns

L
∈ [0, (1 − lη − ms)/2] . (50)

Each SzSLNSN subspace can be further divided into smaller subspaces that are spanned by 
η-Bethe states with fixed numbers of ηn and sn pseudoparticles for all n = 1, ..., ∞ branches. 
(For the subspaces of more interest for our study these numbers are finite only for a finite number 
of n = 1, ..., ∞ branches.)

Within the above notations used in this paper to designate the subspaces contained in each 
fixed-Sz

η and Sz
s = 0 subspace of more interest for its studies, Sz, S, and L refer to the charge 

conserved numbers Sz
η, Sη, and Lη, respectively, whereas S and N refer to the spin conserved 

numbers Ss and Ns , respectively. The designations SzS, SzSL, SzSLN, SzSLNS , and SzSLNSN

only include the corresponding subset of these numbers that are fixed for the subspaces under 
consideration.

4. Useful current absolute values upper bounds

The upper bound procedures of our study are initiated in this section. Specifically, the charge 
currents 〈ĴLWS(lr, Lη, Sη, u)〉, Eq. (40), of η-Bethe states in the stiffness expression, Eq. (42), 
with largest absolute values are identified. First, the type of c and ηn bands occupancy con-
figurations that maximize such absolute values is considered. The second issue addressed in the 
following is that of the largest charge current absolute value of the reference SzSLNSN subspaces 
contained in each SzS subspace spanned by η-Bethe states as defined in Section 3.2. Finally, use-
ful further information about the charge currents of the selected reference SzSLNSN subspace is 
provided.

4.1. Compact c and αn bands occupancy configurations

It is straightforward to confirm from manipulations of the TBA equations, Eqs. (A.1) and 
(A.2) of Appendix A, general η-Bethe-states charge current expression, Eq. (40), and corre-
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sponding c and ηn-band holes current functional spectra, Eq. (41), that for SzSL subspaces the 
class of η-Bethe states that reach the largest current absolute values |〈ĴLWS(lr, Lη, Sη, u)〉| have 
asymmetrical compact hole β = c, ηn band distributions for Nh

β < Nβ and asymmetrical com-

pact pseudoparticle β = c, ηn band distributions for Nh
β > Nβ . Such a general charge current 

expression, Eq. (40), does not directly depend on the type of sn band distributions. In general 
it rather depends on the corresponding densities ms and ns through the dependence on it of the 
c and ηn-band holes current functional spectra, Eq. (41). Hence for simplicity we consider in 
general symmetrical compact sn bands distributions.

The general form of the general compact β = c, ηn, sn bands distributions of the class of 
η-Bethe states with largest current absolute values is thus,

For Nβ ≤ Nh
β where β = c, ηn :

Nβ,A(qj ) = 0 and Nh
β,A(qj ) = 1 for qj ∈ [q−

β , q−
Fβ,+] and qj ∈ [q+

Fβ,+, q+
β ]

Nβ,A(qj ) = 1 and Nh
β,A(qj ) = 0 for qj ∈ [q−

Fβ,+, q+
Fβ,+]

For Nh
β ≤ Nβ where β = c, ηn :

Nβ,A(qj ) = 1 and Nh
β,A(qj ) = 0 for qj ∈ [q−

β , q−
Fβ,−] and qj ∈ [q+

Fβ,−, q+
β ]

Nβ,A(qj ) = 0 and Nh
β,A(qj ) = 1 for qj ∈ [q−

Fβ,−, q+
Fβ,−]

For sn bands :
Nsn,S(qj ) = 1 for qj ∈ [q−

Fsn, q
+
Fsn] otherwise Nsn,S(qj ) = 0 . (51)

The two limiting occupancy momenta of each band are related to each other and are such that,

q−
Fβ,+ ∈ [q−

β , q+
β − 2πnβ ] ,

q+
Fβ,+ = q−

Fβ,+ + 2πnβ for Nβ ≤ Nh
β

q−
Fβ,− ∈ [q−

β , q+
β − 2πnh

β ] ,
q+
Fβ,− = q−

Fβ,+ + 2πnh
β for Nh

β ≤ Nβ where β = c, ηn

q±
Fsn = ±π(Nsn − 1)/L ≈ ±πnsn . (52)

The use of both the compact momentum distributions of general form, Eq. (51), and of the 
distributions 2πρc(k) = ∂qc(k)/∂k and 2πσαn(�) = ∂qαn(�)/∂�, Eq. (A.4) of Appendix A, in 
the general current expression, Eqs. (40) and (41), straightforwardly leads to the following sim-
plified form of the charge currents of the η-Bethe states associated with such compact momentum 
distributions,

〈ĴLWS(lr,Lη,Sη,u)〉

= Lt

π

∑
ι=±

(ι)

⎛
⎝τ coskc(qι

Fc,τ ) +
∞∑

n=1

τn 2n
∑

ι′=±1

√
1 − (�ηn(qι

Fηn,τ ) − i ι′nu)2

⎞
⎠ . (53)

The indices,

τ = + for Nc ≤ Nh
c

= − for Nh
c ≤ Nc ,

τn = + for Nηn ≤ Nh
ηn

= − for Nh ≤ Nηn , (54)
ηn
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refer here to the β = c, ηn bands particle-like and hole-like asymmetric compact distributions of 
such η-Bethe states. The simplified current expression, Eq. (53), involves the β = c, ηn rapidity 
functional at merely the two occupancy limiting momenta q±

Fβ,τ , Eq. (52).
Another type of compact distributions considered in our study refers to η-Bethe states for 

which they are symmetrical for all β = c, ηn, sn branches,

Nβ,S(qj ) = 1 for qj ∈ [q−
Fβ, q+

Fβ ] otherwise Nβ,S(qj ) = 0 where q±
Fβ = ±πnβ , (55)

where that q±
Fβ = ±πnβ holds in the TL upon ignoring π/L corrections.

Useful quantities are the β = c, ηn bands holes elementary currents jh
β (qj ) and β = c, ηn

pseudoparticle elementary currents jβ(qj ) = −jh
β (qj ) of a η-Bethe state generated from a 

reference η-Bethe state with compact distributions of form Eq. (51) or (55) by small β =
c, ηn band distribution deviations. They are defined as the deviations in the charge current 
〈ĴLWS(lr, Lη, Sη, u)〉, Eq. (40), upon addition onto a reference η-Bethe state with compact dis-
tributions of form, Eq. (51), of one β-band hole of momentum qj and one β pseudoparticle of 
momentum qj , respectively. Relying on techniques similar to those used in Ref. [35] for the 
excited η-Bethe states of a ground state, one finds that such β = c, ηn elementary currents read,

jh
c (qj ) = −jc(qj ) = vc(qj )

+ 1

2π

∑
ι=±

(ι)

(
τ fc c(qj , q

ι
Fc,τ ) +

∞∑
n=1

τn 2nfc ηn(qj , q
ι
Fηn,τn

)

)
,

jh
ηn(qj ) = −jηn(qj ) = −2nvηn(qj )

− 1

2π

∑
ι=±

(ι)

(
τ fηn c(qj , q

ι
Fc,τ ) +

∞∑
n′=1

τn′ 2n′ fηn ηn′(qj , q
ι
Fηn′,τn′ )

)
. (56)

The expressions of the β = c, ηn fβ β ′ functions and group velocities vβ(qj ) appearing here 
are defined in Eqs. (F.1) and (F.2) of Appendix F, respectively. In that Appendix all quantities 
involved in such expressions are also defined.

For a given η-Bethe state, the β = c, ηn bands holes current spectra J h
β (qj ) = −Jβ(qj ), 

Eq. (41), and the β = c, ηn bands holes elementary currents jh
β (qj ) = −jβ(qj ), Eq. (56), are 

related yet in general different quantities. Indeed, they are generated from the different energy 
spectra Eβ(qj ), Eq. (A.7) of Appendix A, and εβ(qj ) = Eβ(qj ) + εc

β(qj ), Eq. (F.3) of Ap-

pendix F, respectively. Therefore, jh
β (qj ) can be written as jh

β (qj ) = Jh
β (qj ) + δJ h

β (qj ) where 

δJ h
β (qj ) is a well-defined quantity that vanishes in some finite-u subspaces and more generally 

for u → ∞.
While the β = c, ηn band current spectra J h

β (qj ) = −Jβ(qj ), Eq. (41), refer to the charge 

current of a η-Bethe state, Eq. (40), the β = c, ηn band elementary currents jh
β (qj ) = −jβ(qj ), 

Eq. (56), are associated with the difference of the charge currents of two η-Bethe states whose 
β = c, ηn bands occupancies differ in the TL only in those of a finite number of β = c, ηn

pseudoparticles. In terms of β = c, ηn pseudoparticle elementary currents such current deviations 
read,

δ〈ĴLWS(lr,Lη,Sη,u)〉 =
L∑

δNc(qj ) jc(qj ) +
∞∑ Lηn∑

δNηn(qj ) jηn(qj ) . (57)

j=1 n=1 j=1
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In the present case this refers within the TL to the charge current deviation of a given η-Bethe 
state relative to that of the η-Bethe state with compact β = c, ηn bands distributions from which 
it is generated by a finite number of β = c, ηn pseudoparticle processes.

It follows from the exact properties considered in Section 3.1 that the charge currents van-
ish both in the Mη = 2Sη → 0 and Nρ = (Nc + Nη) → 0 limits, respectively. That Nρ =
(Nc + Nη) → 0 and thus Nc +∑∞

n=1 Nηn → 0 implies that Nc +∑∞
n=1 2n Nηn → 0 and thus 

that Nc + 2
η = (L − 2Sη) → 0. The η-Bethe states corresponding to these limits have com-
pact distributions. We consider two types of states. Namely, η-Bethe states that are generated 
from mη → 0 states by creation of a finite number of unpaired physical η-spins 1/2. Moreover, 
η-Bethe states that are generated from lη → 1 states and thus mη → 1 states by creation of a 
finite number of charge pseudoparticles. One finds within the TL from the use of Eq. (57) that 
the charge currents of both such two types of states can be written as,

〈ĴLWS(lr,Lη,Sη,u)〉 =
L∑

j=1

Nc(qj ) jc(qj ) +
∞∑

n=1

Lηn∑
j=1

Nηn(qj ) jηn(qj ) . (58)

Hence within the TL this charge current expression is valid for both η-Bethe states for which (i) 
mη � 1 and (ii) mη → 1 provided that lη → 1, respectively. Its validity implies that the qj sums 
in Eq. (A.10) of Appendix A and Eq. (58), respectively, lead to exactly the same charge current. 
It does not imply though that the β = c, ηn pseudoparticle current spectra Jβ(qj ), Eq. (A.11) of 
Appendix A, and β = c, ηn pseudoparticle elementary currents jβ(qj ) = −jh

β (qj ), Eq. (56), in 
these sums, respectively, are equal.

The ground state associated with each canonical ensemble is not populated by ηn pseudopar-
ticles and sn pseudoparticles with n > 1 spin-singlet pairs. The corresponding distributions refer 
to a particular case of those given in Eq. (55). Within the TL, it has c and s1 bands compact and 
symmetrical distributions,

NGS
c (qj ) = 1 for qj ∈ [q−

Fc, q
+
Fc] otherwise NA

β (qj ) = 0

NGS
s1 (qj ) = 1 for qj ∈ [q−

Fs1, q
+
Fs1] otherwise NA

β (qj ) = 0 . (59)

where, except for π/L corrections, q±
Fc = ±2kF and q±

Fs1 = ±kF for mz
η ≥ 0 and mz

s = 0.

4.2. The reference subspaces largest charge current absolute value

The T > 0 charge stiffness expression, Eq. (42), depends on the charge currents of η-Bethe 
states belonging to SzS subspaces. For each fixed density mη in the range mη ∈ [|mz

η|, 1] there 
is a large number of SzSLNS subspaces as defined in Section 3.2. They are spanned by a set of 
η-Bethe states with fixed values of lη, nη, ns , and ms in the intervals lη ∈ [mη, 1], nη ∈ [0, (lη −
mη)/2], ns ∈ [0, (1 − lη)/2], and ms ∈ [0, (1 − lη − ns)], respectively.

The use of the simplified current expression, Eq. (53), of the η-Bethe states with compact dis-
tributions, Eq. (51), plays a key role in the present analysis. From it one finds that each SzSLNS

subspace largest charge current absolute value |〈Ĵ max
LWS(lr, Lη, Sη, u)〉| has the general form,

|〈Ĵ max
LWS(lr,Lη,Sη,u)〉|lη,nη,ms,ns = Clη,nη,ms,ns t Lmη (1 − mη) , (60)

where the coefficient Clη,nη,ms,ns depends on u and on the densities lη, nη , ms , and ns .
A SzSL subspace contains a set of SzSLN subspaces, one for each density lη in the interval 

lη ∈ [mη, 1]. Within the procedures used in this paper to derive suitable upper bounds, it is con-
venient to consider three limiting reference SzSLN subspaces, which we call reference SzSLN 
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subspace 1, 2, and 3, respectively. On the one hand, each SzSL subspace only contains one refer-
ence SzSLN subspace 1 for which lη → mη and thus nη → 0. On the other hand, it contains a set 
of SzSLN subspaces for which lη → 1, each corresponding to a fixed nη density in the interval 
nη ∈ [0, (1 − mη)/2]. Out of those, it only contains one reference SzSLN subspace 2 and one 
reference SzSLN subspace 3 for which nη → (1 − mη)/2 and nη → 0, respectively.

Since lη → 1 implies that ls → 0 and thus that ms → 0 and ns → 0, the reference SzSLN 
subspaces 2 and 3 only contain one SzSLNSN subspace each, which we call reference SzSLNSN

subspaces 2 and 3, respectively. Indeed, they are at the same time SzSLN subspaces, SzSLNS

subspaces, and SzSLNSN subspaces. In contrast, a reference SzSLN subspace 1 contains a set 
of SzSLNS subspaces, one for each density ms in the interval ms ∈ [0, (1 − mη)]. Furthermore, 
inside each of the latter subspaces there is in general a set of SzSLNSN subspaces for each 
density ns in the range ns ∈ [0, (1 − mη − ms)/2]. The reference SzSLNSN subspaces 1A and 
1B considered here have a fixed density ms in the interval ms ∈ [0, (1 − mη)] and a maximum 
and a minimum density ns → (1 − mη − ms)/2 and ns → 0, respectively.

The β = c, ηn bands for which Nβ > 0 of the η-Bethe states that span the four refer-
ence SzSLNSN subspaces 1A, 1B, 2, and 3 under consideration have occupancies such that 
Nh

β = 2Sη = mηL. Hence the contributions to the charge current of such β = c, ηn bands are 
free of virtual elementary charge currents cancelling, which much simplifies the calculation of 
that current. The main effect of the virtual elementary current cancelling processes occurring 
for u > 0 in the remaining set of SzSLNSN subspaces of a SzS subspace corresponding to in-
termediate values of the densities lη ∈ [mη, 1], nη ∈ [0, (lη − mη)/2], ms ∈ [0, (1 − lη)], and 
ns ∈ [0, (1 − lη −ms)/2] that label these subspaces is that the corresponding set of largest charge 
current absolute values, Eq. (60), are in the TL continuous functions of such densities. They 
smoothly vary between the largest charge current absolute values of the reference SzSLNSN

subspaces 1A, 1B, 2, and 3 considered here.
For such limiting reference subspaces the use of the TBA equations, Eqs. (A.1) and (A.2)

of Appendix A, allows the derivation of the general simplified current expression, Eq. (53), for 
η-Bethe states with β = c, ηn, sn bands compact distributions of the general form, Eq. (51). Of-
ten such current expressions have though only simple analytical form in the u → 0 and u � 1
limits. Within the set of limiting reference SzSLNSN subspaces 1A, 1B, 2, and 3, the prob-
lem is most complex for the reference SzSLNSN subspace 1A, its analysis being addressed in 
more detail below in Section 4.3. In addition to the direct use of the equivalent charge current 
〈ĴLWS(lr, Lη, Sη, u)〉 expressions, Eq. (53) and Eq. (A.10) of Appendix A, to derive the coeffi-
cient Clη,nη,ms,ns in Eq. (60), one can use its limiting expressions, Eq. (58), which are valid in 
the mη � 1 limit and in the (1 − mη) � 1 limit provided that lη → 1.

For a reference SzSLNSN subspace 1A of a SzS subspace as defined above one has that 
nc → (1 − mη), nηn → 0 for n = 1, ..., ∞, ns1 → (1 − mη − ms)/2, and nsn → 0 for n > 1. 
Hence the coefficient Clη,nη,ms,ns , Eq. (60), only depends on u and on the subspace fixed densities 
mη and ms and is thus called here Cmη,ms . As further discussed in Section 4.3, one finds that in 
this subspace that coefficient has the limiting behaviors,

Cmη,ms = 4 for mη → 0 and ms → 0

= 2 for mη ∈ [0,1] and ms → 1 − mη

= 2 for mη → 1 and ms → 0 , (61)

for u → 0 and,
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Cmη,ms = 2

(
1 + 1

2

(
ln 2

u

)2

+O(u−4)

)
for mη → 0 and ms → 0

= 2

(
1 + 1

2

(
1 − ms

u

)2

+O(u−4)

)
for mη → 0 and ms → 1

= 2 for mη → 1 and ms → 0 , (62)

up to u−3 order, which is a good approximation for approximately u > 3/2. (Corresponding 
expansions of the coefficient Cmη,ms up to u−3 order and valid for the whole mη ∈ [0, 1] interval 
are given in Section 4.3.) For u > 0 and ms ∈ [0, (1 − mη)], the coefficient Cmη,ms smoothly 
increases upon increasing mη from mη = 0 until reaching a maximum value at an u-dependent 
intermediate density mη. Upon further increasing mη, it is a continuous decreasing function 
of mη . The largest Cmη,ms value refers for any density mη ∈ [0, 1] to the reference SzSLNSN

subspace 1 for which ms → 0.
The reference SzSLNSN subspace 1B of a SzS subspace is such that nc → (1 −mη), nηn → 0

for n = 1, ..., ∞, Nsn = 1 for n = (L − 2Sη − 2Ss)/2, and nsn′ → 0 for n′ = 1, ..., ∞ (including 
for n′ = n within the TL). In the case of this subspace, the coefficient Clη,nη,ms,ns , Eq. (60), is 
for u > 0, mη ∈ [0, 1], and ms ∈ [0, (1 − mη)] found to be independent of u and ms , so that it is 
here denoted by Cmη . It is found to read,

Cmη = 2

π

sin(πmη)

mη(1 − mη)
for mη ∈ [0,1] and ms ∈ [0, (1 − mη)] . (63)

It increases and decreases upon increasing mη within the ranges mη ∈ [0, 1/2] and mη ∈ [1/2, 1], 
respectively, reaching a maximum value 8/π at mη = 1/2. Its limiting behaviors are,

Cmη = 2 for mη → 0 and ms ∈ [0,1]
= 8/π for mη = 1/2 and ms ∈ [0,1/2]
= 2 for mη → 1 and ms → 0 . (64)

For the reference SzSLNSN subspace 2 of a SzS subspace one has that nc → 0, nη1 →
(1 − mη)/2, nηn → 0 for n > 1, and nsn → 0 for n = 1, ..., ∞. The corresponding coefficient 
Clη,nη,ms,ns , Eq. (60), only depends on u and mη, so that we call it Cmη . Its limiting behaviors 
are found to be given by,

Cmη = 2 for u → 0 , mη → 0 , and ms → 0

= 2 for u → 0 , mη → 1 , and ms → 0

= π

2u
for u � 1 , mη → 0 , and ms → 0

= 1

u
for u � 1 , mη → 1 , and ms → 0 . (65)

For u > 0 the coefficient Cmη is a continuous function of mη with a maximum value at a 
u-dependent intermediate density mη.

The reference SzSLNSN subspace 3 of a SzS subspace is such that nc → 0, Nηn = 1 for 
n = (L − 2Sη)/2, nηn′ → 0 for n′ = 1, ..., ∞ (including for n′ = n within the TL), and nsn → 0
for n = 1, ..., ∞. The coefficient Clη,nη,ms,ns , Eq. (60), again only depends on u and mη. It is here 
denoted by Cmη . Its values in the u → 0 and u � 1 limits are for the whole mη ∈ [0, 1] range 
given by,
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Cmη = 2 sin
(

π
2 mη

)
mη

for u → 0 , mη ∈ [0,1] , and ms → 0

=O(1/L) = 0 in the TL for u � 1 , mη ∈ [0,1[ , and ms → 0 , (66)

respectively. In the u → 0 limit it is thus a decreasing function of mη with limiting values,

Cmη = π for u → 0 , mη → 0 , and ms → 0

= 2 for u → 0 , mη → 1 , and ms → 0 . (67)

As mentioned above, the largest charge current absolute value, Eq. (60), and thus the cor-
responding coefficient Clη,nη,ms,ns of all remaining reference SzSLNSN subspaces contained 
in a SzS subspace is a continuous and smooth function of the densities lη ∈ [mη, 1], nη ∈
[0, (lη −mη)/2], ms ∈ [0, (1 − lη)], and ns ∈ [0, (1 − lη −ms)/2]. Such a coefficient Clη,nη,ms,ns

varies between the limiting values of those of the limiting reference SzSLNSN subspaces 1A, 1B, 
2, and 3. From analysis and comparison of the whole corresponding set of largest charge current 
absolute value |〈Ĵ max

LWS(lr, Lη, Sη, u)〉|, Eq. (60), one finds that the larger coefficients Clη,nη,ms,ns

are, on the one hand concerning the density lη ∈ [mη, 1], reached for some of the reference 
SzSLNSN subspaces contained in the reference SzSLN 1 for which lη → mη . Concerning the 
density ns ∈ [0, (1 − mη − ms)/2] of the subset of reference SzSLNSN subspaces contained in 
the reference SzSLN 1 for which lη → mη and thus nη → 0 and ms ∈ [0, (1 − mη)], one finds in 
turn that the larger coefficients Clη,nη,ms,ns in Eq. (60) are reached for the SzSLNSN subspaces 
1A for which ns → (1 − mη − ms)/2 where ms ∈ [0, (1 − mη)]. This largest charge current ab-
solute value of each SzS subspace is thus that used in the upper bound procedures considered 
in the following and within the canonical ensemble in Section 5. Actually, the absolute largest 
coefficient Clη,nη,ms,ns is found to be that of the SzSLNSN subspace 1A of all SzS subspaces for 
which ms → 0.

In Appendix C the effect of varying u on the physical microscopic processes behind the largest 
charge current absolute value of a SzS subspace reported in this section is addressed. (That such 
an effect is discussed in an Appendix follows from the remaining studies of this paper accounting 
for it but not needing its detailed analysis, which requires a relative long account that would affect 
the information flow on the main issues addressed in the following. The information provided 
in Appendix C is though physically important, its presentation in that Appendix contributing to 
the further understanding of the microscopic mechanisms behind the 1D Hubbard model charge 
transport properties.)

As discussed in Appendix B for mz
η = 0 and in Appendix C for mz

η ∈ [0, 1], the physics is 
very different (i) at u = 0 and in the u → 0 limit and (ii) for finite u. In the latter Appendix it 
is shown that due to the u → 0 unbinding of the η-spin singlet pairs that at finite u are bound 
within the composite ηn pseudoparticles, the charge carriers that interchange position with the 
Mη unpaired physical η-spins 1/2 that couple to charge probes are different in the u → 0 limit 
and for finite u. Their numbers read Nc + 2
η = L − 2Sη and Nρ = Nc + Nη, respectively.

Another issue discussed in Appendix C refers to the similarities and differences relative to 
the case of the spin stiffness and currents of the spin-1/2 XXX chain, which are studied in 
Refs. [72,73] by the upper-bound method used in this paper. There is an advantage of that upper-
bound method relative to more common numerical approximations used to address the stiffness 
problem and the charge currents contributing to it. It is that such a method directly refers to a rep-
resentation in terms of which the microscopic mechanisms under consideration in the discussions 
of Appendix C refer to elementary processes of the fractionalized particles whose configura-
tions generate the exact energy and momentum eigenstates. Indeed, in terms of processes of the 
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physical particles, the electrons, the present quantum problem is non-perturbative, so that the 
microscopic mechanisms that control the charge currents corresponds to a much more complex 
many-particle problem. This is one of the reasons why such mechanisms remain hidden under 
the use of standard numerical techniques, which usually rely on the electron representation of 
the problem.

Other techniques that rely on the direct use of the BA quantum numbers without account-
ing for their relation to the integrable models physical particles [12,15] also pause technical 
problems. This occurs for instance within the use of phenomelogical spinon and antispinon 
representations of the BA quantum numbers whose relation to the physical particles remains 
undefined [15]. Moreover, in the case of some integrable models such as the present 1D Hubbard 
model, divergences emerge at the densities at which the Mazur’s inequality is inconclusive in the 
stiffness expressions obtained from the second derivative of the energy eigenvalues relative to the 
uniform vector potential obtained from the BA. These divergences can though be avoided. This is 
accomplished if one rather expresses the stiffness in terms of charge current operator expectation 
values, as within the method used in this paper.

4.3. The SzS subspaces largest charge current absolute value

In this section we provide further useful information on the largest charge current absolute 
value |〈Ĵ max

LWS(lr, Sη, u)〉| of a reference SzSLNSN subspace 1A, which for any fixed density 
ms is the largest charge current absolute value of the corresponding SzS subspace. (Here Lη

was removed from |〈ĴLWS(lr, Lη, Sη, u)〉| because Lη = 2Sη for a reference SzSLN subspace 1 
where the SzSLNSN subspaces 1A are contained.)

For the 1D Hubbard model in a reference SzSLN subspace 1 the general η-Bethe-state charge 
current expression, Eq. (40), simplifies to,

〈ĴLWS(lr, Sη,u)〉 =
L∑

j=1

Nh
c (qj ) J h

c (qj )

where Jh
c (qj ) = 2t sin kc(qj )

2πρc(kc(qj ))
for qj ∈ [−π,π] . (68)

Moreover, for η-Bethe states with c and sn bands compact distributions of general form, Eq. (51), 
belonging to the reference SzSLN subspace 1, the charge current expression, Eq. (53), further 
simplifies for densities |mz

η| ∈ [0, 1] and mη ∈ [|mz
η|, 1],

〈ĴLWS(lr, Sη,u)〉 = τ L t

π

∑
ι=±

(ι) coskc(qι
Fc,τ ) . (69)

Thus this applies to any SzSLNSN subspace contained in a reference SzSLN subspace 1 whose 
densities ms ∈ [0, (1 − mη)] and ns ∈ [0, (1 − mη − ms)]/2 have fixed values.

In the following we consider the reference SzSLNSN subspaces 1A of interest for our upper-
bound procedures for which ns → (1 − mη − ms)/2 where the density ms has a fixed value 
in the interval ms ∈ [0, (1 − mη)]. The derivation of the c-band current spectrum Jh

c (qj ) in 
Eq. (68) involves the solution of the TBA equations, Eqs. (A.1) and (A.2), to derive the mo-
mentum rapidity function kc(qj ) and related distribution 2πρc(k

c(qj )) of the η-Bethe states that 
span the reference SzSLN subspaces 1A of a SzS subspace. This is simplest to be accomplished 
in terms of u−1 expansions of such a function and distribution, which for densities mη ∈ [0, 1]
and ms ∈ [0, (1 − mη)] leads to the following universal expansion for Jh

c (qj ) up to u−2 order,
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Jh
c (qj ) = 2t sinqj − 2t

nηs

u
sin 2qj + 6t

(nηs

u

)2
(

1 − 3

2
sin2 qj

)
sinqj . (70)

Here,

nηs = (1 − mη − ms)gs where

gs = ln 2 for ms → 0 and gs = 1 for ms → 1 − mη . (71)

gs = gs(ms) ∈ [ln 2, 1] is in these equations a continuous increasing function of the spin den-
sity ms .

For j > 2 orders u−j the calculations become a more complex technical problem. Analysis of 
the interplay of the TBA equations with those that define the charge operator expectation values 
reveals that the c-band current spectrum Jh

c (qj ) expansion terms of such j > 2 orders are state 
dependent. As an example, two current spectra expansions up to u−3 order are derived in Ap-
pendix G for η-Bethe states that span two reference SzSLNSN subspaces 1A with limiting spin 
densities ms = 0 and ms → 1 − mη , respectively. For the former spin density, the obtained ex-
pansion refers to η-Bethe states with compact distributions of general form, Eq. (51), belonging 
to the reference SzSLNSN subspaces 1A under consideration and η-Bethe states generated from 
those by a finite number of c-band particle-hole processes. It reads,

Jh
c (qj ) = 2t sinqj − 2t

(1 − mη) ln 2

u
sin 2qj + 6t

((1 − mη) ln 2)2

u2

(
1 − 3

2
sin2 qj

)
sinqj

− 4t
((1 − mη) ln 2)3

u3

(
1 − 8

3
sin2 qj

)
sin 2qj

+ 3tζ(3)

16u3

(
(1 − mη)

(
1 + 4

3
sin2 qj

)

+ 3τ

2π

∑
ι=±

(ι) cos(qι
Fc,τ )

(
sinqj − 1

3
sin(qι

Fc,τ )

))
sin 2qj . (72)

That its terms up to u−2 order and of u−3 order do not depend and depend on the limiting 
momenta qι

Fc,τ associated with the states with compact and asymmetrical c-band distributions 
considered here is consistent with their state independence and state dependence, respectively.

The expansion up to u−3 order of Jh
c (qj ) obtained in Appendix G for the reference SzSLNSN

subspaces 1A with spin ms → 1 − mη is of second order in (1 − mη − ms) � 1 and is given by,

Jh
c (qj ) = 2t sinqj − 2t

(1 − mη − ms)

u
sin 2qj

+ 6t
(1 − mη − ms)

2

u2

(
1 − 3

2
sin2 qj

)
sinqj

+ 4t

3

(1 − mη − ms)

u3 sin2 qj sin 2qj +O((1 − mη − ms)
3) . (73)

The reference SzSLNSN subspaces 1A associated with the (1 − mη − ms) � 1 limit is the only 
one for which the terms up to second order in (1 − mη − ms) of Jh

c (qj ) are state independent 
for any u > 0 value. Note that the terms of u−3 order in Eqs. (72) and (73), respectively, have a 
completely different form for the two reference SzSLNSN subspaces 1A for which ms = 0 and 
ms → 1 − mη, respectively.
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The use in the general expansion, Eq. (70), of Jh
c (qj ) up to u−2 order valid for the densi-

ties intervals mη ∈ [0, 1] and ms ∈ [0, (1 − mη)] of the reference SzSLN subspaces 1A of the 
nηs = (1 −mη) ln 2 and nηs = (1 −mη −ms) values of the function gs given in Eq. (71) specific 
to its ms = 0 and ms → 1 − mη reference SzSLNSN subspaces 1A recovers the terms up to u−2

order in Eqs. (72) and Eq. (73), respectively. The calculations reported in Appendix G to derive 
the expansions given in these equations are more complex for the ms = 0 reference SzSLNSN

subspaces 1A than for that for which ms → 1 − mη. For the former ms = 0 subspace, the dis-
tribution 2πρc(k) in the Jh

c (qj ) expression in Eq. (68) and the function qc(k) that is the inverse 
of the momentum rapidity functional kc(q) also appearing in that expression are in Appendix G
expanded in powers of u−j for all j = 1, ..., ∞ orders.

From the use of Eq. (70) in the general expression for 〈ĴLWS(lr, Sη, u)〉 in Eq. (68) with 
compact distributions of general form, Eq. (51), one finds the following expansion up to u−2

order of the charge current expression, Eq. (69), valid for the reference SzSLN subspace 1A,

〈ĴLWS(lr, Sη,u)〉 = τ L t

π

∑
ι=±

(ι) cos(qι
Fc,τ ) + τ L t

π

nηs

u

∑
ι=±

(ι) sin2(qι
Fc,τ )

− τ 3Lt

2π

(nηs

u

)2∑
ι=±

(ι) sin2(qι
Fc,τ ) cos(qι

Fc,τ ) . (74)

Here qι
Fc,τ with τ = ± and ι = ± are the c band limiting occupancy momenta in Eq. (52) for 

β = c. Terms of u−3 order of the charge current expression, Eq. (69), are derived in Appendix G
for the ms = 0 and ms → 1 − mη reference SzSLNSN subspaces 1A and the whole mη ∈ [0, 1]
range, with the results,

〈Ĵ (3)
LWS(lr, Sη,u)〉

= τ 2Lt

π

(
(1 − mη) ln 2

u

)3∑
ι=±

(ι)

(
1 − 4

3
sin2(qι

Fc,τ )

)
sin2(qι

Fc,τ )

− τ 3ζ(3)L t

32π u3

∑
ι=±

(ι){(1 − mη)

(
1 + 2

3
sin2(qι

Fc,τ )

)

− τ

2π

∑
ι′=±

(ι′) cos(qι′
Fc,τ )

(
sin(qι′

Fc,τ ) − 2 sin(qι
Fc,τ )

)
} sin2(qι

Fc,τ ) for ms = 0 , (75)

and

〈Ĵ (3)
LWS(lr, Sη,u)〉 = −τ (1 − mη − ms)L t

3π u3

∑
ι=±

(ι) sin4(qι
Fc,τ )

+O((1 − mη − ms)
3) for (1 − mη − ms) � 1 , (76)

respectively. (The expansion term of u−3 order, Eq. (76), only includes contributions up to second 
order in (1 − mη − ms) � 1.)

The following expansion of the limiting occupancy momenta qι
Fc,τ maximizes the u−3 order 

expansion of the charge current absolute value, Eq. (69), for all densities ranges |mz
η| ∈ [0, 1], 

mη ∈ [|mz
η|, 1], and ms ∈ [0, (1 − mη)] of the reference SzSLN subspaces 1A,

qι
Fc,− = π + ι πmη + 2nηs +O(u−3) for mη ∈

[
0,

1 − δu
ηs

]

2 u 2
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= π − (1 − ι)πmη for mη ∈
[

1

2
− δu

ηs,
1

2

]
,

qι
Fc,+ = π − (1 − ι)π(1 − mη) for mη ∈

[
1

2
,

1

2
+ δu

ηs

]

= π

2
+ ι π(1 − mη) + 2nηs

u
+O(u−3) for mη ∈

[
1

2
+ δu

ηs,1

]
, (77)

where ι = ± and,

δu
ηs = (1 − ms)gs

πu
+O(u−3) . (78)

The corresponding largest charge current absolute value of general form, Eq. (60), of such a 
reference SzSLN subspace can be written as,

|〈Ĵ max
LWS(lr, Sη,u)〉| = Cmη,ms t Lmη (1 − mη) , (79)

where Cmη,ms stands for the coefficient whose limiting values are provided in Eqs. (61) and (62). 
It reaches as a function of mη and for u > 0 and ms ∈ [0, (1 − mη)] a maximum value at an 
u-dependent intermediate density mη, being a continuous increasing and decreasing function of 
mη below and above that density, respectively. At fixed mη, its largest value is reached for the 
ms = 0 reference SzSLNSN subspace 1A.

The coefficient Cmη,ms limiting values valid for u → 0, which from Eq. (61) read,

Cmη,ms = 4 for mη → 0 and ms → 0

= 2 for mη ∈ [0,1] and ms → 1 − mη

= 2 for mη → 1 and ms → 0 , (80)

follow from those in Eq. (G.21) of Appendix G for the largest charge current absolute value 
derived in that Appendix for mη � 1 and (1 − mη) � 1.

Moreover, from the use of the expansion up to u−2 order of |〈Ĵ max
LWS(lr, Sη, u)〉|, Eq. (G.22)

of Appendix G, one finds that up to that order the coefficient Cmη,ms in Eq. (79) is for densities 
mη ∈ [0, 1] and ms ∈ [0, (1 − mη)] of reference SzSLN subspaces 1A given by,

Cmη,ms = 2

π

sin(πmη)

mη(1 − mη)

(
1 − 7

2

(nηs

u

)2
(

1 − 8

7
cos(πmη) − 3

7
sin2(πmη)

))

for mη ∈
[

0,
1

2
− δu

ηs

]
and ms ∈ [0, (1 − mη)]

= 2

π

sin2(πmη)

mη(1 − mη)

(
1 + 2nηs

u

(
1 + 3

2

nηs

u
cos(2πmη)

)
cos2(πmη)

)

for mη ∈
[

1

2
− δu

ηs,
1

2
+ δu

ηs

]
and ms ∈ [0, (1 − mη)]

= 2

π

sin(πmη)

mη(1 − mη)

(
1 − 7

2

(nηs

u

)2
(

1 + 8

7
cos(πmη) − 3

7
sin2(πmη)

))

for mη ∈
[

1

2
+ δu

ηs,1

]
and ms ∈ [0, (1 − mη)] . (81)

Both for mη ∈ [0, 1/2 −δu
ηs] and mη ∈ [1/2 +δu

ηs, 1] the terms of orders u−1, u−3, and remaining 
odd orders u−j where j = 5, 7, . . . of this coefficient expansion exactly vanish.
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Finally, from the use of Eqs. (G.23) and (G.24) of Appendix G one finds that the terms of 
u−3 order of the coefficient Cmη,ms in Eq. (79) are for the ms = 0 and ms → 1 − mη reference 
SzSLNSN subspaces 1A and the whole density interval mη ∈ [0, 1] given by,

C(3)
mη,ms

= 0 +O(u−4) for mη ∈
[

0,
1

2
− δu

ηs

]
and ms = 0

= sin2(2πmη)

πmη (1 − mη)
{2
(

(1 − mη) ln 2

u

)3(
1 − 4

3
sin2(2πmη)

)

+ 3ζ(3)

16u3

(
(1 − mη)

(
1 + 2

3
sin2(2πmη)

)
+ 1

π

(
1 − 1

2
cos(2πmη)

)
sin(2πmη)

)
}

+O(u−4) for mη ∈
[

1

2
− δu

ηs,
1

2
+ δu

ηs

]
and ms = 0

= 0 +O(u−4) for mη ∈
[

1

2
+ δu

ηs,1

]
and ms = 0 , (82)

and

C(3)
mη,ms

= 0 +O(u−4) for mη ∈
[

0,
1

2
− δu

ηs

]
and ms → 1 − mη

= sin4(2πmη)

3πu−3

(1 − mη − ms)

mη (1 − mη)
+O((1 − mη − ms)

3)

for mη ∈
[

1

2
− δu

ηs,
1

2
+ δu

ηs

]
and ms → 1 − mη

= 0 +O(u−4) for mη ∈
[

1

2
+ δu

ηs,1

]
and ms → 1 − mη , (83)

respectively. (The terms in Eq. (83) only include the contributions up to second order in (1 −
mη − ms) � 1.)

5. Charge stiffness upper bounds within the canonical ensemble

The function,

F UB(mη,u) ≡ |〈Ĵ max
LWS(lr, Sη,u)〉|

2Sη

= t (1 − mη)Cmη,ms , (84)

where Cmη,ms is the coefficient in Eqs. (79)–(83), is a continuous and decreasing function of mη

for u > 0, mη ∈ [0, 1], and ms ∈ [0, (1 − mη)]. It has limiting behaviors,

F UB(mη,u) = 4t (1 − mη) for mη → 0 , ms → 0 , and u → 0

= 2t (1 − mη) for mη ∈ [0,1] , ms → 1 − mη , and u → 0

= 2t (1 − mη) for mη → 1 , ms → 0 , and u → 0

= 2t sin(πmη)

πmη

for mη ∈ [0,1] , ms ∈ [0, (1 − mη)] , and u → ∞ . (85)

Its derivative with respect to mη is such that,
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∂F UB(mη,u)

∂mη

= 0 for mη → 0 , ms ∈ [0,1] , and u > 0 ,

∂F UB(mη,u)

∂mη

< 0 for mη ∈]0,1] , ms ∈ [0, (1 − mη)] , and u > 0 . (86)

It has the limiting behaviors,

∂F UB(mη,u)

∂mη

= 0 for mη → 0 , ms ∈ [0,1] , and u → 0 ,

= −4t for mη → 1 , ms → 0 , and u → 0 ,

= − 2t

mη

(
sin(πmη)

πmη

− cos(πmη)

)
for mη ∈ [0,1] , ms ∈ [0, (1 − mη)] , and u → ∞ . (87)

A first stiffness upper bound,

D∗(T ) = (2Sz
η)

2

2LT

L/2∑
Sη=|Sz

η|

∑
lr

plr,Sη,Sz
η
(F UB(mη,u))2

= t2(mz
η)

2L

2T

L/2∑
Sη=|Sz

η|

∑
lr

plr,Sη,Sz
η
C2

mη,ms
(1 − mη)

2 , (88)

is obtained within the canonical ensemble by replacing the moduli of the expectation val-
ues 〈ĴLWS(lr, Lη, Sη, u)〉 of η-Bethe states with the same Sη value in the stiffness expression, 
Eq. (42), by the upper bound of the largest absolute value of the charge current, Eq. (79).

For each fixed-Sz
η and Sz

s = 0 canonical ensemble, the largest value of F UB(mη, u) in the Sη

summation of Eq. (88) is that referring to the minimum Sη and Ss values, Sη = |Sz
η| = mz

η L/2 and 
Ss = |Sz

s | = 0, respectively, such that mη = mz
η and ms = mz

s = 0. This follows from the function 
F UB(mη, u) smoothly decreasing upon increasing mη. The same applies upon increasing ms at 
finite u. A second stiffness upper bound is then reached by replacing in Eq. (88) the function 
F UB(mη, u) by its largest value,

F UB(mz
η,u) = t Cmz

η,0 (1 − mz
η) for mz

η ∈ [0,1] . (89)

Here Cmz
η,0 is obtained by replacing mη and ms by mz

η and mz
s = 0, respectively, in the expression 

of the coefficient Cmη,ms . The state summations in Eq. (88) can then be performed exactly for all 
finite temperatures T > 0. Indeed, the probability distribution plr,Sη,Sz

η
in each fixed-Sz

η canonical 
ensemble is normalized as,

L/2∑
Sη=|Sz

η|

∑
lr

plr,Sη,Sz
η
= 1 . (90)

Such state summations account for the subspace dimensions and thus as well for the full Sz
s = 0

subspace dimension. For T > 0 the resulting (larger) upper bound D∗∗(T ) ≥ D∗(T ) ≥ D(T ), 
then becomes,

D∗∗(T ) =
t2 C2

mz
η,0 L

(1 − mz
η)

2 (mz
η)

2 for mz
η ∈ [0,1] and mz

s = 0 . (91)

2T
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For mz
η � 1 and mz

s = 0 its values continuously vary from,

D∗∗(T ) = 16 t2 L

2T
(mz

η)
2 , (92)

for u → 0 to,

D∗∗(T ) = 4 t2 L

2T
(mz

η)
2 , (93)

for u � 1 whereas for (1 − mz
η) � 1 and mz

s = 0 it is given by,

D∗∗(T ) = 4 t2 L

2T
(1 − mz

η)
2 , (94)

for all u > 0 values.
In the u → ∞ limit, it has the following simple expression for mz

s = 0 and the whole mz
η ∈

[0, 1] interval,

D∗∗(T ) = (2t/π)2 sin2(πmz
η)L

2T

= (2t/π)2 sin2(π(1 − mz
η))L

2T
for mz

η ∈ [0,1] and mz
s = 0 . (95)

The charge stiffness of the 1D Hubbard model was studied in Ref. [13] for large u, where 
it was shown to exactly vanish in the mz

η → 0 limit. As found in that reference, for mz
η finite 

the charge stiffness of the 1D Hubbard and that for spinless fermions alone are different even in 
the u → ∞ limit, as illustrated in Fig. 1 of that reference for a finite system. Such a different 
behavior persists in the TL and is due to the spinless-fermion phase shifts imposed by the spins 
1/2 [56].

The coefficient cc in the upper bound, Eq. (6), then smoothly varies from cc = 16 for u → 0
to cc = 4 for u � 1 whereas the coefficient c′

c in the upper bound, Eq. (7), reads c′
c = 4 for the 

whole u > 0 range. This completes our finding of a vanishing charge stiffness in the TL, L → ∞, 
within the canonical ensemble for any fixed range or even distribution of Sz

η, or any distribution 
of mz

η shrinking sufficiently fast that 〈(mz
η)

2〉L → 0.

6. Stiffness upper bounds within the grand-canonical ensemble for T → ∞

The average value of the square of the charge current |〈Ĵ (lr, Lη, Sη, Sz
η, u)〉|2, Eq. (39), in a 

fixed-Sz
η and Sz

s = 0 subspace that contains the set of SzS subspaces with η-spin values Sη =
|Sz

η|, |Sz
η| + 1, |Sz

η| + 2, . . . , reads,

〈
|〈Ĵ (lr,Lη,Sη, S

z
η, u)〉|2

〉
Sz

η

=
(2Sz

η)
2∑L

Lη=2|Sz
η|
∑Lη/2

Sη=|Sz
η|
∑

lr

|〈ĴLWS(lr,Lη,Sη,u)〉|2
(2Sη)2∑L

Lη=2|Sz
η |
∑Lη/2

Sη=|Sz
η| d

LWS
subspace(Lη,Sη)

= (2Sz
η)

2∑L
Lη=2|Sz

η |
∑Lη/2

Sη=|Sz
η |
∑

lr

|〈ĴLWS (lr,Lη,Sη,u)〉|2
(2Sη)2∑L

Lη=2|Sz
η |
∑Lη/2

Sη=|Sz
η |
∑(L−Lη)/2

Ss=0

(
L
Lη

)× (( Lη

Lη/2−Sη

)− ( Lη

Lη/2−Sη−1

))×
(( L−Lη

(L−Lη)/2−Ss

)− ( L−Lη

(L−Lη)/2−Ss−1

))

=
(2Sz

η)2∑L
Lη=2|Sz

η |
∑Lη/2

Sη=|Sz
η |
∑

lr
|〈ĴLWS(lr,Lη,Sη,u)〉|2

(2Sη)2

∑L
L =2|Sz |

∑Lη/2
S =|Sz |

∑(L−Lη)/2
Ss=0

( L
Lη

)×
(∑

{Nηn}
∏∞

n=1
(Lηn

N

))×
(∑

{N ′ }
∏∞

n′=1

(Lsn′
N

)) . (96)
η η η η ηn sn sn′
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The subspaces dimensions appearing here are defined in Appendix E and useful information on 
the corresponding states summations was given in Section 3.2.

We denote by |〈ĴLWS〉|A(lη,mη,nρ) a SzSLN subspace current absolute value average. It is given 
by,

|〈ĴLWS〉|A(lη,mη,nρ)

=
∑

l�nρ
|〈ĴLWS(l�nρ

,Lη,Sη,u)〉|∑(L−Lη)/2
Ss=0

(
L
Lη

)× (∑{(Nηn)lη ,mη,nρ }
∏∞

n=1

(Lηn

Nηn

))×
(( L−Lη

(L−Lη)/2−Ss

)− ( L−Lη

(L−Lη)/2−Ss−1

)) . (97)

Here l�nρ
denotes l�r for the set of η-Bethe states with fixed values for the densities lη, mη , and nρ

that span a SzSLN subspace and the sum 
∑

l�nρ
runs over all c-band, ηn-bands of n = 1, ..., ∞

branches, and sn-band occupancy configurations of spin Ss = 0, 1, ..., (L − Lη)/2 that gener-
ate such η-Bethe states. They have the same numbers Mη = 2Sη of unpaired η-spins 1/2 and 
Nρ = Nc +Nη, Eq. (43), of charge pseudoparticles where Nc = L −Lη. The SzSLN subspace di-
mension 

∑
l�nρ

1 is given in the denominator on the right-hand side of Eq. (97). Hence the summa-

tion 
∑

{(Nηn)lη,mη,nρ } runs over all sets of ηn pseudoparticle numbers {Nηn} that obey both the sum 

rules 
∑∞

n=1 n Nηn = (Lη −2Sη) = 
η , Eq. (18) for α = η, and Nη =∑∞
n=1 Nηn = (Lη −Nh

η1)/2, 
Eq. (30) for α = η.

For finite u a reference SzSLN subspace largest charge current absolute value is proportional 
to Mη Nρ . That in Eq. (60) it is written as proportional to mη (1 − mη) and thus to 2Sη (L − 2Sη)

follows from the expression given in that equation applying both to u → 0 and to finite u. Indeed 
and as justified in Appendix C, the carriers of charge are different for u → 0 and finite u, respec-
tively. As a result, such a largest charge current absolute value can be written as proportional to 
2Sη (L − 2Sη) and Mη Nρ for u → 0 and finite u, respectively. (If one requires it to apply both 
to the u → 0 limit and to finite u, then it should be written as given in Eq. (60).)

That each SzSLN subspace of a SzS subspace is spanned by η-Bethe states with exactly the 
same number Nρ = Nc +Nη of charge pseudoparticles simplifies the form of the current absolute 
values average, Eq. (97). Its expression can for u > 0 be written in the general form,

|〈ĴLWS〉|A(lη,mη,nρ) = Jρ 4t mη

√
2Nρ = 1

L
Jρ 4t Mη

√
2Nρ . (98)

The coefficient Jρ obeys the inequality Jρ ≤ 1, being of the order of unity. While for u > 0 the 
largest charge current absolute value of a reference SzSLN subspace is proportional to Mη Nρ , 
such a subspace average current absolute value, Eq. (97), is proportional to Mη

√
Nρ . That 

|〈ĴLWS〉|A(lη,mη,nρ) ∝ Mη

√
Nρ stems from the energy and momentum eigenstates that span the 

SzSLN subspace being generated by all possible occupancy configurations of the Nρ = Nc +Nη

charge pseudoparticles.
For all SzSLN subspaces contained in a SzS subspace the density mη = mz

η in Eq. (98) has a 
fixed value. This combined with Jρ ≤ 1 being of the order of the unity reveals that the SzSLN 
subspace in a SzS subspace whose current absolute value average, Eq. (97), is largest is that 
for which Nρ reaches its maximum value. One finds from Nρ = L − (Lη + Nh

η1)/2 where 

Nh
η1 = 2Sη +∑∞

n=2 2(n − 1)Nηn, Eq. (24) for αn = η1, that the latter maximum value refers 

to the SzS subspace minimum Nh
η1 value, which for the corresponding fixed η-spin Sη reads 

Nh
η1 = 2Sη. This gives Nρ = L − (Lη + 2Sη)/2. For general SzSLN subspaces of a SzS sub-

space for which Nh = 2Sη and thus Nρ = L − 
η one has that Nηn = 0 for n > 1, so that 
η1
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Nρ = L − (Lη +2Sη)/2 = Nc +Nη1 where Nc = L −2Sη −2Nη1 and thus Nρ = L −2Sη −Nη1. 
Further maximizing Nρ at the SzS subspace fixed Sη value corresponds to minimizing Lη, which 
gives Lη = 2Sη and thus Nη1 = 0. This corresponds to reference SzSLN subspace 1 of the SzS 
subspace under consideration for which lη → mη and thus nη → 0, so that it is indeed spanned 
by a subset of η-Bethe states for which Nρ = Nc. For such states Nρ reaches its maximum value, 
Nρ = L − 2Sη. A reference SzSLN subspace 1 current absolute value average, Eq. (97), can be 
written as,

|〈ĴLWS〉|A(mη) = Jρ1 4t mη

√
2Nρ = 1

L
Jρ1 4t Mη

√
2Nρ . (99)

Since lη = mη and nρ = 1 − lη = 1 −mη, the index A(lη, mη, nρ) in the general SzSLN subspace 
current absolute value average, Eq. (98), was for the particular case of the SzSLN subspace 1 
denoted by A(mη) in Eq. (99).

The spin degrees of freedom do not couple directly to charge probes and the charge currents 
do not depend on the spin-singlet sn pseudoparticle occupancy configurations associated with 
the sn-bands momentum distribution functions Nsn(qj ). However, for finite u the charge cur-
rent spectra of the η-Bethe states that span a reference SzSLN subspace 1 depend on the spin 
density ms and overall spin sn pseudoparticle density ns . As a consequence, the corresponding 
coefficient Jρ in Eq. (98) also depends on the densities ms and ns .

One finds that finite-u η-Bethe states contained in a reference SzSLN subspace 1 with exactly 
the same c pseudoparticle occupancy configurations have for any fixed density ms in the interval 
ms ∈ [0, (1 − mη)] the largest charge current absolute values for the SzSLNSN subspaces 1A 
for which the density ns ∈ [0, (1 − mη − ms)/2] in Eq. (48) has its largest value, ns = nmax

s =
(1 − mη − ms)/2. Only in the u → ∞ limit in which all spin configurations are degenerate have 
these states the same charge currents absolute values. Limiting examples are (i) the SzSLNSN

subspace 1A and (ii) the SzSLNSN subspace 1B. Both such SzSLNSN subspaces of a reference 
SzSLN subspace 1 have fixed densities lη → mη , nη → 0, mη ∈ [0, 1], and ms ∈ [0, (1 − mη)]. 
Their density ns is given by (i) its maximum value ns → (1 − mη − ms)/2 and (ii) minimum 
value ns → 0, respectively.

We thus consider here a subspace contained in a reference SzSLN subspace 1 that we call 
SzSLNN1 subspace. It is spanned by η-Bethe states with spin values Ss = 0, 1, ..., L − Lη whose 
overall number of sn pseudoparticles reads Ns = Ns1 = (L − Lη − 2Ss)/2 for each such a spin 
value. Hence the SzSLNN1 subspace corresponds to the set of reference SzSLNSN subspaces 1A, 
each with a fixed density ms ∈ [0, (1 − mη)]. Its current absolute value average thus reads,

|〈ĴLWS〉|A1N (mη) =
∑

l∗nρ
|〈ĴLWS(l∗nρ

,Lη,Sη,u)〉|∑(L−Lη)/2
Ss=0

(
L
Lη

)× (∑{(Nηn)lη,mη,nρ }
∏∞

n=1

(Lηn

Nηn

))× ((L−2Sη+2Ss)/2
2Ss

) ,

(100)

where 
((L−2Sη+2Ss)/2

2Ss

)
is the number of independent s1-band occupancy configurations for each 

of the spin values Ss = 0, 1, ..., L − Lη. The SzSLNN1 dimension 
∑

l∗nρ
1 is given by the denom-

inator on the right-hand side of Eq. (100). The current absolute value average, Eq. (100), can be 
written as,

|〈ĴLWS〉|A(mη,nmax
s ) = Jρ1N 4t mη

√
2Nρ = 1

Jρ1N 4t Mη

√
2Nρ . (101)
L
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The difference relative to the current absolute value average, Eq. (98), of the reference SzSLN 
subspace 1 where the SzSLNN1 subspace is contained is that Jρ1N ≥ Jρ1.

Each SzS subspace only contains one reference SzSLN subspace 1. Since a reference SzSLN 
subspace 1 only contains one SzSLNN1 subspace, a SzS subspace also only contains one 
SzSLNN1 subspace. Let 〈Ĵ (l�r , Sη, Sz

η, u)〉 denote the currents of the energy and momentum 
eigenstates that span a reduced subspace of the fixed-Sz

η and Sz
s = 0 subspace obtained by re-

placing each of its SzS subspaces by the corresponding SzSLNN1 subspace. Here l�r stands for 
all quantum numbers other than Sη, Sz

η, and u > 0 needed to uniquely define each such an energy 
and momentum eigenstate. An important quantity for our upper-bound procedures is the aver-
age value of the current square |〈Ĵ (l�r , Sη, Sz

η, u)〉|2 in the reduced subspace under consideration, 
which reads,

〈
|〈Ĵ (l�r , Sη, S

z
η, u)〉|2

〉
Sz

η 1N
=

(2Sz
η)

2∑L/2
Sη=|Sz

η|
∑

l�r
|〈ĴLWS(l�r ,Sη,u)〉|2

(2Sη)2∑L/2
Sη=|Sz

η|
∑(L−2Sη)/2

Ss=0

(
L

2Sη

)× ((L−2Sη+2Ss)/2
2Ss

) . (102)

Here 
∑

l�r 1 =∑(L−2Sη)/2
Ss=0

(
L

2Sη

)× ((L−2Sη+2Ss)/2
2Ss

)
is the dimension of that reduced subspace.

Jρ1 = max{Jρ} is in Eq. (99) for the reference SzSLN subspace 1 the largest coefficient Jρ in 
Eq. (98) of all SzSLN subspaces contained in a SzS subspace with density mη = mz

η. Moreover, 
the inequality Jρ1N ≥ Jρ1 involving the coefficients of the current absolute value averages in 
Eqs. (99) and (101) is valid for all fixed densities mη ∈ [0, 1] of the corresponding reference 
SzSLN subspace 1 and SzSLNN1 subspace belonging to the same SzS subspace. A consequence 
of such properties is that the following inequality involving the average values of the square of 
the charge current in Eqs. (96) and (102) holds,〈

|〈Ĵ (l�r , Sη, S
z
η, u)〉|2

〉
Sz

η 1N
≥
〈
|〈Ĵ (l�r ,Lη,Sη, S

z
η, u)〉|2

〉
Sz

η

. (103)

For high temperature T → ∞, the T > 0 expression of the charge stiffness, Eq. (42), simpli-
fies to,

D(T ) = (2Sz
η)

2

2LT

∑L
Lη=2|Sz

η|
∑Lη/2

Sη=|Sz
η|
∑

lr

|〈ĴLWS(lr,Lη,Sη,u)〉|2
(2Sη)2∑L

Lη=2|Sz
η|
∑Lη/2

Sη=|Sz
η| d

LWS
subspace(Lη,Sη)

=

〈
|〈Ĵ (lr,Lη,Sη, S

z
η, u)〉|2

〉
Sz

η

2LT
. (104)

A high temperature T → ∞ charge stiffness upper bound,

D�(T ) = (2Sz
η)

2

2LT

∑L/2
Sη=|Sz

η|
∑

l�r
|〈ĴLWS(l�r ,Sη,u)〉|2

(2Sη)2∑L/2
Sη=|Sz

η|
∑(L−2Sη)/2

Ss=0

(
L

2Sη

)× ((L−2Sη+2Ss)/2
2Ss

)

=

〈
|〈Ĵ (l�r ,Lη,Sη, S

z
η, u)〉|2

〉
Sz

η 1N

2LT
, (105)

such that D(T ) ≤ D�(T ) then follows from the inequality, Eq. (103).
As mentioned above, a SzSLNN1 subspace can be divided into a set of reference SzSLNSN

subspaces 1A, each with a fixed density ms ∈ [0, (1 − mη)]. In Appendix H it is shown that a 
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corresponding charge stiffness upper bound only involving the Ss = 0 contributions from the 
ms = 0 reference SzSLNSN subspace 1A is larger than that given in Eq. (105). This gives our 
ultimate charge stiffness upper bound within the grand canonical ensemble for the TL and high 
temperature T → ∞,

D��(T ) = (2Sz
η)

2

2LT

∑L/2
Sη=|Sz

η|
∑

l�r
|〈ĴLWS(l�r ,Sη,u)〉|2

(2Sη)2∑L/2
Sη=|Sz

η|
(

L
2Sη

) , (106)

where Jh
c (qj ) is the general current spectrum in Eq. (68) for Ss = 0. Up to u−2 order it is given 

in Eq. (70) for Ss = 0. It thus reads,

Jh
c (qj ) = 2t sinqj − 2t

(1 − mη) ln 2

u
sin 2qj

+ 6t

(
(1 − mη) ln 2

u

)2(
1 − 3

2
sin2 qj

)
sinqj . (107)

The general current spectrum in Eq. (68) has up to u−2 order the same universal form for all 
η-Bethe states that span the reference SzSLNSN subspaces 1A, Eq. (70) for ms ∈ [0, (1 − mη)]
and Eq. (107) at ms = 0.

In Appendix H the current spectrum, Eq. (107), is used in the charge stiffness upper bound, 
Eq. (106), to derive the following exact expansion up to u−2 order of that upper bound valid in 
the TL for mz

η ∈ [0, 1/2],

D(T ) ≤ D��(T ) = cgc t2

2T
(mz

η)
2 where cgc = 2π2

(
1 +

(
ln 2

2u

)2
)

. (108)

On the one hand, this expression applies to the mz
η � 1 limit. The charge stiffness Mazur’s 

lower bound has been derived for T → ∞ in Ref. [66]. In the Sz
s = 0 case considered in the 

upper-bound studies of this paper, one finds that the charge stiffness Mazur’s lower bound 
DMz(T ) can be written as given in Eq. (H.17) of Appendix H. From the combined use of that 
equation and Eq. (108) one finds that in the mz

η � 1 limit of more interest for our study and up 

to O(u−2) order the charge stiffness is of the form D(t) = cu t2

2T
(mz

η)
2 where the coefficient cu

obeys the double inequality,

2

⎛
⎝1 −

(
1/

√
2

2u

)2
⎞
⎠≤ cu ≤ 2π2

(
1 +

(
ln 2

2u

)2
)

for mz
η � 1 . (109)

Here 1/
√

2 ≈ 0.707 and ln 2 ≈ 0.693 have near values.
On the other hand, the use of the current spectrum, Eq. (107), in the upper bound, Eq. (106), 

trivially leads in the ne = (1 − mz
η) � 1 limit to,

D(T ) = D��(T ) = c′
gc t2

2T
(1 − mz

η) where c′
gc = 2 . (110)

In the ne = (1 −mz
η) � 1 limit the upper bound, Eq. (106), equals up to O(u−2) order the charge 

stiffness, so that the expression, Eq. (110), gives the exact asymptotic behavior in that limit of 
the charge stiffness for T → ∞ in the TL.
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On the one hand, the coefficient cgc in the upper bound, Eq. (8), smoothly slightly increases 
from cgc = 2π2 ≈ 19.74 for u → ∞ upon decreasing u at least down to u ≈ 3/2 within the 
u > 3/2 range for which its O(u−2) order expansion remains a good approximation. At u ≈ 3/2
it reads cgc = 2π2(1 + (ln 2/3)2) ≈ 20.79. On the other hand, the coefficient c′

gc in the upper 
bound, Eq. (9), reads c′

gc = 2 up to O(u−2).
This completes our finding of a vanishing charge stiffness in the TL, L → ∞, within the 

grand-canonical ensemble for T → ∞ and any fixed range or even distribution of Sz
η, or any 

distribution of mz
η shrinking sufficiently fast that 〈(mz

η)
2〉 → 0.

7. Concluding remarks

At U = 0 the charge stiffness D(T ) of the 1D Hubbard model is a simple problem in terms 
of the non-interacting electron representation. It is found to be finite at mz

η = 0, both at zero 
and finite temperature. D(T ) > 0 reaches a maximum value at T = 0, maxD(T ) = D(0) =
2t/π , behaving for low and high temperature T as [D(0) − D(T )] ∝ T 2 > 0 and D(T ) ∝ 1/T , 
respectively. (The qualitative difference of the U = 0 and u > 0 physics and the related T > 0
transition that occurs at U = Uc = 0 is an issue discussed in Appendix B for mz

η → 0 and mz
η = 0

and in Appendix C for mz
η ∈ [0, 1].)

In this paper strong evidence is provided that the charge stiffness of the 1D Hubbard model 
vanishes at mz

η = 0 for T > 0 and the whole u > 0 range in the TL within the canonical ensem-
ble. For finite temperatures this leaves out, marginally, the grand canonical ensemble in which 
〈(mz

η)
2〉 = O(1/L). However, the following properties lead us to expect that our prediction re-

mains valid at finite temperatures in the grand-canonical ensemble case, in accord with the usual 
expectation of the equivalence of ensembles in the TL.

First, we have specifically confirmed the validity of this expectation in the limit of very 
high temperature T → ∞. The corresponding high-temperature charge stiffness upper bound, 
Eq. (108), confirms that for T → ∞ the charge stiffness of the 1D Hubbard model vanishes in 
the TL in the chemical potential μ → μu limit where (μ −μu) ≥ 0 and 2μu is the Mott–Hubbard 
gap, Eq. (A.9) of Appendix A. That upper bound was computed up to u−2 order, which applies 
for approximately u > 3/2, yet it is expected that similar results apply for u > 0.

Second, at zero temperature and mz
η = 0 the charge Drude weight is given in the TL by D(0) =

2t/π at U = 0 and vanishes for u > 0 [35,67]. That it vanishes at T = 0 for u > 0 reveals that a 
finite charge stiffness D(T ) for T > 0 at mz

η = 0 would result from thermal fluctuations alone. 
That such fluctuations are largest at high temperature thus provides strong evidence that our 
T → ∞ results within the grand-canonical ensemble apply as well to all temperatures T ≥ 0.

Third, the large overestimate of the charge elementary currents we used in deriving the charge 
stiffness upper bound, Eq. (91), is consistent with such an expectation. Our canonical-ensemble 
charge stiffness upper bounds in Eqs. (91)–(94) are also valid for T → ∞. Their comparison with 
those provided in Eqs. (108) and (110) within the grand-canonical ensemble confirms an average 
charge stiffness upper bound overestimation factor c2

oe = O(L). For instance, c2
oe changes for 

u � 1 from c2
oe ≈ (2/π2)L for mz

η � 1 to c2
oe = nρ L = Nρ for mz

η → 1. (For the SzSLN sub-
space 1 that dominates the contributions to the charge stiffness, one has that 1 −mz

η = nc = nρ .) 
In terms of the charge current absolute values upper bounds derived for the canonical ensemble 
relative those constructed for the grand canonical ensemble, this means for general SzSLN sub-
spaces an average overestimation factor coe ≈ √

L that for u � 1 varies from coe ≈√
(2/π2)L

for mz
η � 1 to coe ≈√

nρ L =√
Nρ for mz

η → 1. This huge overestimate of the charge elemen-
tary BA currents used in the computation of the charge Drude weight upper bound, Eq. (91), 
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provides additional strong evidence that, as for high temperature T → ∞, the charge stiffness 
vanishes for finite temperatures within the grand-canonical ensemble in the TL for chemical 
potential μ → μu where (μ − μu) ≥ 0.

The use of the general formalism of hydrodynamics introduced in Refs. [17,18] provides fur-
ther strong evidence that the charge or spin stiffnesses vanish at finite temperatures within the 
grand canonical ensemble when the corresponding chemical potentials vanish. (Within our no-
tation, in the case of the charge degrees of freedom the chemical potential of such references 
refers to (μ − μu).) The analysis of Refs. [17,18] accounts for in the 1D Hubbard model the 
entire space of macro-states being in a one-to-one correspondence with particle-hole invariant 
commuting (fused) transfer matrices, pertaining to a discrete family of unitary irreducible rep-
resentations of the underlying quantum symmetry. According to the authors of these references, 
this readily implies vanishing finite-temperature charge or spin Drude weights when the corre-
sponding chemical potentials vanish, irrespective of the interaction strength.

The problem studied in this paper refers though to a controversial issue, as different ap-
proaches yield contradictory results [11–18,110–112]. This includes different methods based on 
the same TBA. Indeed we believe that the problem is not the TBA but rather how to use the TBA 
to access the stiffness of each specific solvable model. As mentioned in Section 1, our u > 0 and 
mz

η = 0 predictions for D(T ) agree with the conjectures of Ref. [11] and the exact u-large results 
of Ref. [13]. The latter disagree with the prediction of Ref. [12] that D(T ) should be finite in 
the TL for u > 0, T > 0, and mz

η = 0. The exact large-u results of Ref. [13], which find that 
D(T ) = 0 in the TL at mz

η = 0, reveal that the results of Ref. [12] cannot be exact. Indeed, it is 
shown that if D(T ) was finite in the TL for T > 0 at mz

η = 0, the pre-factor of the exponential of 
the Mott–Hubbard gap, Eq. (A.9) of Appendix A, would be, at least, of the order of t2/U , and 
not of the order one, as found in Ref. [12].

The method introduced in that reference for the 1D Hubbard model and used in Ref. [74] for 
the spin-1/2 XXZ chain relies on the TBA. In the case of the spin-1/2 XXZ chain, it leads 
to completely different results from the phenomenological method of Ref. [15], which however 
relies on a spinon and anti-spinon particle basis for the same TBA. The studies of Refs. [71–73]
exclude the large spin stiffness found in Ref. [15] for the spin-1/2 XXX chain spin stiffness for 
zero spin density and T > 0 in the TL.

On the one hand, the results of Refs. [72,73] provide strong evidence that those of Ref. [74]
for the spin-1/2 XXZ and XXX chains spin stiffness are correct. On the other hand, our present 
results reveal that the results Ref. [12] for the charge stiffness of the half-filled 1D Hubbard, 
which predict it to be finite at mz

η = 0 in the TL for u > 0 and T > 0, are incorrect. This is 
despite such a prediction apparently relying on the TBA-based method that has been used in 
Ref. [74] to derive the spin stiffness of the spin-1/2 XXZ and XXX chains.

The possible error source of the predictions of Ref. [12] is revealed by inspection of separate 
integrals of the individual summands occurring in the integrands of Eq. (25) of that reference. 
One finds that such separate integrals diverge at the hole concentration mz

η = 0 at which the 
general Mazur’s inequality is inconclusive. This turns out to be a fatal problem in that equation. 
Also in the case of the spin-1/2 XXX chain the separate integrals of the individual summands 
occurring in the integrands of Eqs. (24) and (25) of Ref. [15] diverge at zero spin density or 
which the general Mazur’s inequality is again inconclusive. However, there is evidence that such 
divergences can be removed in the case of models whose stiffness is finite at zero temperature. 
This is the case of the spin-1/2 XXX chain in the zero spin density limit [74]. They are though a 
fatal problem for the 1D Hubbard model for mz

η → 0, u > 0, and T > 0, whose charge stiffness 
vanishes at T = 0 for u > 0. This problem deserves though further investigations.
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Finally, the lack of charge ballistic transport in the 1D Hubbard model for u > 0 also found 
in this paper indicates that charge transport at high temperatures is dominated by a diffusive 
contribution.
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Appendix A. Functional representation for the TBA equations, η-Bethe states energy 
eigenvalues, and charge current operator expectation values

Here some TBA results needed for the studies of this paper are provided. This includes the 
1D Hubbard model TBA equations within the functional representation used in this paper. Fur-
thermore, the model’s exact energy eigenvalues and other energy scales related to them are also 
provided and the validity of the β = c, η band hole representation of the η-Bethe states charge 
currents in Eq. (40) is confirmed.

Within the pseudoparticle momentum distribution functional notation used in this paper, the 
TBA equations introduced in Ref. [4] read,

qj = kc(qj ) + 2

L

∞∑
n=1

Lsn∑
j ′=1

Nsn(qj ′) arctan

(
sin kc(qj ) − �sn(qj ′)

nu

)

+ 2

L

∞∑
n=1

Lηn∑
j ′=1

Nηn(qj ′) arctan

(
sin kc(qj ) − �ηn(qj ′)

nu

)
for j = 1, ...,L , (A.1)

and

qj = δα,η

∑
ι=±1

arcsin(�αn(qj ) − i ι u)

+ 2 (−1)δα,η

L

L∑
j ′=1

Nc(qj ′) arctan

(
�αn(qj ) − sin kc(qj ′)

nu

)

− 1

L

∞∑
n′=1

Lαn′∑
j ′=1

Nαn′(qj ′)�n n′

(
�αn(qj ) − �αn′

(qj ′)

u

)

for j = 1, ...,Lαn where α = η, s and n = 1, ...,∞ . (A.2)

The sets of j = 1, ..., L and j = 1, ..., Lαn quantum numbers qj in Eqs. (A.1) and (A.2), respec-
tively, which are defined in Eqs. (21) and (22), play the role of microscopic momentum values 
of different TBA excitation branches. The corresponding β-band momentum distribution func-
tions Nβ(qj ) where β = c, ηn, sn read Nβ(qj ) = 1 and Nβ(qj ) = 0 for occupied and unoccupied 
discrete momentum values, respectively, the rapidity functional �αn(qj ) is the real part of the 
complex rapidity, Eq. (28), and �n n′(x) is the function,
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�n n′(x) = δn,n′
{

2 arctan
( x

2n

)
+

n−1∑
l′=1

4 arctan
( x

2l′
)}

+ (1 − δn,n′)
{

2 arctan
( x

|n − n′|
)
+2 arctan

( x

n + n′
)

+
n+n′−| n−n′|

2 −1∑
l′=1

4 arctan
( x

|n − n′| + 2l′
)}

, (A.3)

where n, n′ = 1, ..., ∞. The indices α = η, s and numbers n = 1, ..., ∞ refer to different TBA 
excitation branches that as discussed in Sections 2.4 and 2.5 are associated with the αn-pair 
configurations within which n = 1, ..., ∞ η-spin singlet pairs are bound. They refer to the internal 
degrees of freedom of the neutral composite αn pseudoparticles considered in Section 2.5.

Useful quantities directly related to the rapidity momentum functional kc(q) and rapidity 
functionals �αn(q) defined for each η-Bethe state by Eqs. (A.1) and (A.2) are the general distri-
butions 2πρc(kj ) and 2πσαn(�j ) where α = η, s and n = 1, ..., ∞. (They appear in the current 
spectra, Eq. (41).) Such distributions are defined by the following derivatives,

2πρc(kj ) = ∂qc(k)

∂k
|k=kj

and thus
1

2πρc(kc(qj ))
= ∂kc(q)

∂q
|q=qj

,

2πσαn(�j ) = ∂qαn(�)

∂�
|�=�j

and thus
1

2πσαn(�αn(qj ))
= ∂�αn(q)

∂q
|q=qj

. (A.4)

The functions qc(k) and qαn(�) in these expressions stand for the inverse functions of the rapid-
ity momentum functional kc(q) and rapidity functionals �αn(q), respectively.

The energy eigenvalues have for the hole concentration range mz
η ∈ [0, 1] and the spin density 

interval mz
s ∈ [0, (1 − mz

η)] the following form,

E =
L∑

j=1

(
Nc(qj )Ec(qj ) + U/4 − μη

)

+
∑

α=η,s

∞∑
n=1

Lαn∑
j=1

Nαn(qj )Eαn(qj ) +
∑

α=η,s

2μα (Sα + Sz
α) . (A.5)

The α = η, s energy scales 2μα are here given by,

2μη = 2μ and 2μs = 2μB h , (A.6)

where μB is the Bohr magneton and h denotes a magnetic field. The spectra Ec(qj ) and Eαn(qj )

read,

Ec(qj ) = −2t coskc(qj ) − U/2 + μη − μs ,

Eαn(qj ) = n2μα + δα,η

(
2t
∑
ι=±1

{√
1 − (�ηn(qj ) − i ιnu)2

}
− nU

)

for α = η, s where n = 1, ...,∞ , (A.7)

respectively. (The corresponding momentum eigenvalues of general u > 0 energy and momen-
tum eigenstates are provided in Eq. (25).)
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On the one hand, for the metallic phase densities ranges mz
η ∈]0, 1] and mz

s ∈ [0, (1 − mz
η)]

the α = η, s energy scales 2μα in Eq. (A.5) are related to the unpaired physical η-spin (α = η)

and unpaired physical spin (α = s) energies relative to the ground state zero-energy level,

εα,−1/2 = 2μα and εα,+1/2 = 0 for α = η, s . (A.8)

On the other hand, for the mz
η = 0 Mott–Hubbard insulator phase, εs,±1/2 is given by Eq. (A.8)

whereas it reads εη,±1/2 = (μu ∓ μ) for the chemical potential interval μ ∈ [−μu, μu]. The 
energy scale μu refers to the Mott–Hubbard gap 2μu, which for the Sz

s = 0 subspace considered 
in some sections of this paper reads [1–3],

2μu = U − 4t + 8t

∞∫
0

dω
J1(ω)

ω (1 + e2ωu)
= 16 t2

U

∞∫
1

dω

√
ω2 − 1

sinh
( 2πtω

U

) . (A.9)

Here J1(ω) is a Bessel function. Its limiting behaviors are 2μu ≈ (8/π) 
√

t U e−2π
(

t
U

)
for u � 1

[3] and 2μu ≈ (U − 4t) for u � 1.
The charge currents absolute values upper bounds and charge stiffness upper bounds derived 

in this paper refer to the 1D Hubbard model in the Sz
s = 0 subspace for which h = 0 and thus the 

energy scale 2μs = 2μB h in Eq. (A.6) vanishes, 2μB h = 0. The other energy scale 2μη = 2μ

in that equation involves the chemical potential μ = μ(mz
η). At mz

η = 0 it varies in the range 
μ ∈ [−μu, μu] in spite of the electronic density remaining constant, which is a property of the 
corresponding mz

η = 0 and u > 0 Mott–Hubbard insulator quantum phase. It is an odd function 
of the hole concentration mz

η. The interval mz
η ∈]0, 1[ refers to the metallic quantum phase for 

which μ = μ(mz
η) is a continuous function of mz

η. It smoothly increases from μ = μu for mz
η → 0

to μ = (U + 4t)/2 for mz
η → 1 where the Mott–Hubbard gap, Eq. (A.9), obeys the inequality 

2μu < (U + 4t). It is finite for the whole u > 0 range and vanishes at U = 0.
Concerning the validity of the charge currents hole representation given in Eq. (40), as 

mentioned in Section 3.1, the 1D Hubbard model in a uniform vector potential �/L whose 
Hamiltonian is given in Eq. (4) of Ref. [109] remains solvable by the BA. The coupling of the 
charge degrees of freedom to the vector potential is described under the replacement on the left 
hand side of Eq. (A.1) of qj by qj + �/L and on the left hand side of Eq. (A.2) for αn = ηn of 
qj by qj − 2n �/L. This implies that kc(qj ) and �ηn(qj ) remain having the same expressions 
provided that their momentum variables qj are replaced by qj + �/L and qj − 2n �/L, respec-
tively. Hence the η-Bethe states charge currents can be derived and expressed in the TL in terms 
of c and ηn-band pseudoparticle occupancies as follows,

〈ĴLWS(lr,Lη,Sη,u)〉 = − dE

d(�/L)
|�=0 =

L∑
j=1

Nc(qj )

(
− d

d(�/L)
Ec(qj + �/L)|�=0

)

−
∞∑

n=1

Lηn∑
j=1

Nηn(qj )

(
d

d(�/L)
Eηn(qj − 2n�/L)|�=0

)

=
L∑

j=1

Nc(qj ) Jc(qj ) +
∞∑

n=1

Lηn∑
j=1

Nηn(qj ) Jηn(qj ) . (A.10)

Here E is in dE/d(�/L) the energy functional, Eq. (A.5) for Sα +Sz
α = 0 η-Bethe states, Ec(qj )

and Eηn(qj ) are given in Eq. (A.7), and the current spectra Jc(qj ) and Jηn(qj ) read,
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Jc(qj ) = − 2t sin kc(qj )

2πρc(kc(qj ))
for qj ∈ [−π,π] ,

Jηn(qj ) = −4nt
∑
ι=±1

�ηn(qj ) − i ιnu

2πσηn(�ηn(qj ))

√
1 − (�ηn(qj ) − i ιnu)2

for qj ∈ [−qηn, qηn] ,

(A.11)

respectively.
That Eq. (A.10) can be rewritten as in Eq. (40) requires that,

−
L∑

j=1

Jc(qj ) −
∞∑

n=1

Lηn∑
j=1

Jηn(qj ) = 0 . (A.12)

In the present TL one replaces the discrete momentum values qj such that qj+1 − qj = 2π/L

by a continuous momentum variable q , so that after replacing sums by integrals and overall 
multiplication by −1 this equation reads,

L

2π

π∫
−π

dq Jc(q) +
∞∑

n=1

L

2π

qηn∫
−qηn

dq Jηn(q) = 0 . (A.13)

By combining Eqs. (A.4) and (A.11) one finds that the current spectra in Eq. (A.11) can be 
written as,

Jc(q) = 2t
d

dq
coskc(q) for q ∈ [−π,π] ,

Jηn(q) = 4nt
∑
ι=±1

d

dq

√
1 − (�ηn(q) − i ιnu)2 for q ∈ [−qηn, qηn] . (A.14)

Another property used in the following is that for all η-Bethe states the relations,

kc(±π) = ±π and �ηn(±qηn) = ±�
ηn
max , (A.15)

apply. From the use of Eqs. (A.14) and (A.15) in Eq. (A.13) one confirms indeed that,

L

2π
2t (cos(π) − cos(−π)) + L

2π
4nt

×
(√

1 − (�
ηn
max − i nu)2 +

√
1 − (�

ηn
max + i nu)2

−
√

1 − (�
ηn
max + i nu)2 −

√
1 − (�

ηn
max − i nu)2

)
= 0 , (A.16)

where the trivial equality (−�
ηn
max ∓ i nu)2 = (�

ηn
max ± i nu)2 was used. (The fact that �ηn

max is 
given by ∞ is not needed for the vanishing of the quantity in Eq. (A.16).)

Appendix B. Qualitative difference of the U = 0 and u → 0 physics and the finite-T
transition at U = Uc = 0 and mz

η = 0

Here the mechanisms behind the behavior of the mz
η = 0 charge stiffness D(T ) in the TL under 

the T > 0 transition that occurs at U = Uc = 0 are discussed. Such a transition is a generaliza-
tion of the mz

η = 0 zero-temperature quantum phase transition from a metal to a Mott–Hubbard 
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insulator that also occurs at U = Uc = 0 and is driven by correlation effects. In addition, it is 
confirmed that there is no contradiction whatsoever between the charge stiffness of the 1D Hub-
bard model vanishing within the canonical ensemble for T > 0 in the TL both at mz

η = 0 and as 
mz

η → 0 for u > 0 and being finite at U = 0 in that limit and at the same hole concentration.
The general notation |ν, u〉 for the energy eigenstates used in Eqs. (2) and (3) refers to the 

whole u ≥ 0 range. Here we use it for the mz
η = 0 and mz

η → 0 energy and momentum eigen-
states. On the one hand, for u > 0 the states |ν, u〉 correspond in this Appendix to the energy 
and momentum eigenstates |lr, Sη, 0, u〉, Eq. (13) for mz

η = 0 and mz
η → 0. On the other hand, 

at U = 0 the states |ν, u〉 are instead chosen to be the common eigenstates of the momentum 
operator, current operator Ĵ , and U = 0 tight-binding Hamiltonian,

Ĥ0 = −t
∑
σ

L∑
j=1

[
c

†
j,σ cj+1,σ + h.c.

]
+ 2μŜz

η . (B.1)

This Hamiltonian is that of the 1D Hubbard, Eq. (10), at U = 0, which as given in Eq. (29)
commutes with the charge current operator, Eq. (11).

The unbinding in the u → 0 limit of the l = 2, ..., n η-spin singlet pairs within each u > 0
ηn-pair configuration that follows from the vanishing of the imaginary part i (n + 1 − 2l) u of 
the set of corresponding l = 2, ..., n complex rapidities with the same real part, Eq. (28) for 
α = η, has most severe consequences at hole concentration mz

η = 0. As discussed in Section 2.5
and Appendix C, that unbinding along with the vanishing also as u → 0 of the commutator 
[Ĵ , Ĥ ], Eq. (29), is associated with the rearrangement of η-spin and spin degrees of freedom in 
terms of the noninteracting electrons occupancy configurations that generate the U = 0 common 
eigenstates of the Hamiltonian, momentum operator, and charge current operator. Those are the 
U = 0 states |ν, u〉 = |ν, 0〉 considered here.

On the one hand and as discussed in Section 2.5, the form i (n + 1 − 2l) u of the complex 
ηn rapidities imaginary part and of the commutator [Ĵ , Ĥ ], Eq. (29), confirms that the u > 0
physics survives for any arbitrarily small value of u. On the other hand, in the u → 0 limit the 
set of energy and momentum eigenstates,

|lr, Sη,0,0+〉 ≡ lim
u→0

|lr, Sη,0, u〉 , (B.2)

remain being a complete basis in the mz
η = 0 and mz

η → 0 subspaces of the noninteracting 

U = 0 quantum problem, yet are not eigenstates of the U = 0 Hamiltonian Ĥ0, Eq. (B.1). This 
is related to the states, Eq. (B.2), being eigenstates of the c lattice U(1) symmetry generator 
ÑR

η =∑L
j=1(1 − ñj,↑ñj,↓), which counts the number of rotated-electron unoccupied plus dou-

bly occupied sites. (Here the σ =↑, ↓ operators ñj,σ are those in Eq. (12).) Indeed, that generator 
only commutes with the 1D Hubbard model Hamiltonian for the u > 0 range for which it is well 
defined. At U = 0 the quantum problem described by the Hamiltonian, Eq. (B.1), lacks the cor-
responding global c lattice U(1) symmetry.

That the U = 0 Hamiltonian, momentum operator, and charge current operator eigenstates 
|ν, 0〉 have quantum numbers distinct from those of the states |lr, Sη, 0, 0+〉, Eq. (B.2), follows 
from the non-perturbative character of the 1D Hubbard model and its corresponding different 
global SO(4) ⊗ Z2 and [SO(4) ⊗ U(1)]/Z2 symmetries for U = 0 and u > 0, respectively. In-
deed, the U = 0 and u > 0 energy and momentum eigenstates are in one-to-one correspondence 
to the representations of the SO(4) ⊗Z2 and [SO(4) ⊗U(1)]/Z2 symmetry groups, which have 
distinct structures.
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The mz
η = 0 and mz

η → 0 common eigenstates |ν, 0〉 of Ĥ0 and of the current operator can be 
written as the following superposition of the states, Eq. (B.2),

|ν,0〉 =
L/2∑
Sη=0

∑
lr

C
ν,0
lr,Sη

|lr, Sη,0,0+〉 where C
ν,0
lr,Sη

= 〈lr, Sη,0,0+|ν,0〉 . (B.3)

The charge current operator Ĵ does not commute with both ( �̂Sη)
2 and the c lattice U(1) symmetry 

generator ÑR
η , yet commutes with Ŝz

η. Hence the set of states |lr, Sη, 0, 0+〉, Eq. (B.2), con-
tributing to each state |ν, 0〉 in the expansion of Eq. (B.3) have the same eigenvalue Sz

η but may 

have different η-spin values Sη = 0, 1, 2, . . . and different ÑR
η eigenvalues Lη = 2Sη + 2
η =

0, 2, 4, . . . .
The use of the non-interacting basis associated with the representation of the U = 0 energy 

eigenstates {|ν, 0〉} in terms of simple electron occupancy configurations relative to the electronic 
vacuum, renders trivial the problem of the calculation of the real part of the conductivity σ(ω, T ), 
Eq. (1), at mz

η = 0 and U = 0. That the states |ν, 0〉 are eigenstates of the current operator Ĵ , 

implies that 〈ν, 0|Ĵ |ν′, 0〉 = 0 in Eq. (3) where ν 	= ν′, so that σreg(ω, T ) = 0. As is well known, 
Eq. (1) becomes then σ(ω, T ) = 2π D(T ) δ(ω). Trivial calculations relying onto the simple form 
in terms of electron creation operators of the generators onto the electronic vacuum of the states 
|ν, 0〉 lead to the known result that D(T ) > 0 reaches a maximum value at T = 0, maxD(T ) =
D(0), behaving for low and high temperature T as [D(0) − D(T )] ∝ T 2 > 0 and D(T ) ∝ 1/T , 
respectively.

Turning on an arbitrarily small infinitesimal u � 1 value leads to the emergence of the com-
plex ηn rapidities imaginary part i (n + 1 − 2l) u associated with the rearrangement of the 
η-spin-singlet configurations and brings about a nonzero commutator of the charge current oper-
ator with the Hamiltonian, Eq. (29). This prevents the existence of common eigenstates of these 
two operators. For any finite onsite repulsion value u > 0, the energy and momentum eigenstates 
are the states |lr, Sη, 0, u〉 on the right-hand side of Eq. (B.2), which are as well eigenstates of the 
generator ÑR

η . As found in this paper, for such eigenstates of both the Hamiltonian, Eq. (10), and 
that generator one has within the canonical ensemble that D(T ) = 0 for u > 0 in the TL both at 
mz

η = 0 and as mz
η → 0.

An interesting property is that the real-part of the conductivity sum rule remains invariant 
under the finite-temperature U = Uc = 0 transition, i.e. it has no discontinuity at U = 0. Indeed, 
it has the same value at U = 0 and for u → 0, the following relations holding,

lim
u→0

2π D(T ) =
⎡
⎣ ∞∫
−∞

dωσreg(ω,T )

⎤
⎦ |U=0 = 0 at mz

η = 0 ,

2π D(T )|U=0 = lim
u→0

∞∫
−∞

dωσreg(ω,T ) > 0 at mz
η = 0 . (B.4)

The singular behavior associated with the U = Uc = 0 transition is rather that {D(T ) = 0 and 
σreg(ω, T ) > 0} and {D(T ) > 0 and σreg(ω, T ) = 0} for any arbitrarily small infinitesimal u � 1
and at U = 0, respectively.

That the real part of the conductivity sum rule is finite and D(T ) = 0 for u → 0 implies 
that σreg(ω, T ) does not vanish in the u → 0 limit and thus that some of the off-diagonal matrix 
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elements in the σreg(ω, T ) expression between states |lr, Sη, 0, 0+〉 and |lr, Sη ±1, 0, 0+〉 allowed 
by the selection rule, Eq. (34), are non vanishing. This indeed occurs provided that the η-spin 
value differs by δSη = ±1 if Sη > 0 and by δSη = 1 if Sη = 0. This is consistent with the states 
|lr, Sη, 0, 0+〉 not being eigenstates of the current Ĵ , in contrast to the U = 0 energy eigenstates 
|ν, 0〉. For the latter states all the off-diagonal current matrix elements 〈ν, 0|Ĵ |ν′, 0〉 = 0 in Eq. (3)
vanish, so that σreg(ω, T ) = 0 and D(T ) > 0 at U = 0, as given in Eq. (B.4).

Let |ν, 0〉 be a U = 0 energy and momentum eigenstate that contributes to the charge stiffness 
D(T ), Eq. (3), so that 〈ν, 0|Ĵ |ν, 0〉 	= 0. From the use of Eq. (B.3) one may express the current 
operator expectation value 〈ν, 0|Ĵ |ν, 0〉 of such a state as follows,

〈ν,0|Ĵ |ν,0〉

=
L/2∑

Sη=|Sz
η|

∑
lr

∑
ι=±1

(
C

ν,0
lr,Sη

)∗
C

ν,0
lr,Sη+ι�(Sη + ι) 〈lr, Sη,0,0+|Ĵ |lr, Sη + ι,0,0+〉 . (B.5)

The equality given here confirms that the off-diagonal quantum overlap through the current op-
erator of the states |lr, Sη, 0, 0+〉 and |lr, S′

η, 0, 0+〉 whose Sη and S′
η values differ by δSη = ±1

is fully consistent with the U = 0 Hamiltonian, momentum operator, and charge current operator 
eigenstates |ν, 0〉 having finite current expectation value.

Appendix C. Effect of varying u = U/4t on the microscopic processes behind the largest 
charge current absolute value of a SzS subspace

As reported in Section 4.2, for each SzS subspace as defined in Section 3.2 the largest charge 
current absolute value is that of the corresponding reference SzSLN subspace 1 introduced in 
Section 4.2. This is a result that can be physically understood in terms of the microscopic mech-
anisms that contribute to the charge currents of the η-Bethe states. Here we present an analysis 
of the problem that relies on the exact properties considered in Section 3.1. In addition, we dis-
cuss the similarities and differences relative to the case of the spin stiffness and currents of the 
spin-1/2 XXX chain studied in Refs. [72,73] by the general upper-bound method used in this 
paper.

Following the analysis and results of Section 3.1, the charge currents of the η-Bethe states 
result from microscopic processes that are easiest to be described in terms of original lattice 
occupancy configurations. The corresponding charge carriers naturally describe the charge de-
grees of freedom of the rotated electrons whose operators are given in Eq. (12). Those are related 
to the electrons by a unitary transformation uniquely defined in Ref. [103]. Specifically, the 
η-Bethe-states charge currents result from processes within which a number Mη = 2Sη of un-
paired physical η-spins 1/2 that couple to charge probes interchange position with Nρ charge 
pseudoparticles belonging to the c and ηn branches. This occurs upon the charge pseudoparticles 
moving along that lattice. This relative motion is associated with the c and ηn pseudoparticle 
momentum qj and π − qj , respectively, as given in Eq. (25).

The Mη = 2Sη unpaired physical η-spins 1/2 couple to charge probes. However, the charge 
current only flows upon them interchanging positions with the charge c and ηn pseudoparticles. 
Consistently, for finite u a SzSLN subspace largest charge current absolute value is proportional 
to Mη Nρ . (SzSLN subspaces are defined in Section 3.2.) This refers to η-Bethe states for which 
Mη = Mη,+1/2 = 2Sη. Upon replacing the numbers of unpaired physical η-spins 1/2 and of 
charge pseudoparticles by those of unpaired physical spins 1/2 and of spin pseudoparticles, 
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respectively, this factor Mη Nρ is similar to that of the spin-1/2 XXX chain largest spin current 
absolute values [73].

The largest charge current absolute value of each SzSLN subspace is rather written in Eq. (60)
as proportional to mη (1 − mη) and thus to 2Sη (L − 2Sη). This follows from the expression 
given in that equation applying both to u = U/4t → 0 and to finite u. Indeed, as justified in 
the following, such a largest charge current absolute value can be written as proportional to 
2Sη (L − 2Sη) and Mη Nρ for u → 0 and finite u, respectively. If one requires it to be valid both 
for u → 0 limit and to finite u, then it should indeed be written as given in Eq. (60).

The charge current absolute value in that equation can be expressed as (Clη,nη,ms,ns /L) t Mη ×
(Nc + 2
η) where Mη = 2Sη and Nc + 2
η = L − 2Sη. The latter number involves that of a 
η-Bethe-state paired rotated η-spins 1/2, which reads 2
η =∑∞

n=1 2n Nηn. As discussed below 
for mη ∈ [0, 1] and in Appendix B for mη = 0, the physics is very different (i) both at u = 0 and in 
the u → 0 limit and (ii) for finite u. The corresponding numbers of charge carriers will be found 
to be different in these two cases and given by (i) Nc + 2
η = L − 2Sη and (ii) Nρ = Nc + Nη, 
respectively. This is why for finite u the largest charge current absolute value of each SzSLN 
subspace can be written as proportional to Mη Nρ = Mη (Nc + Nη) and thus expressed in terms 
of the number of charge pseudoparticles Nρ = Nc + Nη, Eq. (43), which refers to the Nc c pseu-
doparticles and Nη = ∑∞

n=1 Nηn ≤ 
η ηn pseudoparticles. The different charge carriers that 
within the present representation emerge as u → 0 is an issue that will be clarified below.

On the one hand, each c and ηn pseudoparticle occupies one and a number 2n = 2, 4, 6, . . . , 
respectively, of original lattice sites. Hence the set of charge pseudoparticles of a η-Bethe state 
occupy a number Nc + 2
η = Nc +∑∞

n=1 2n Nηn of sites of that lattice. On the other hand, 
each of the Mη = 2Sη unpaired physical η-spins 1/2 occupies a single site of the same lattice. 
The corresponding exact sum rule, Mη + Nc + 2
η = L, then ensures and confirms that the 
charge degrees of freedom of all the L original-lattice sites are accounted for within the exact 
rotated-electron related representation used in the studies of this paper.

The set of 2n original-lattice sites occupied by each ηn pseudoparticle refers to its internal 
degrees of freedom. It is its center of mass that moves with momentum π − qj . All 2n paired ro-
tated η-spins 1/2 move coherently with it upon processes within which they interchange position 
with the Mη unpaired physical η-spins 1/2 that singly occupy original-lattice sites.

For the η-Bethe states that span a SzSL subspace as defined in Section 3.2, both the number 
Mη = 2Sη of unpaired physical η-spins and Lη of η-spins are fixed. Hence the number Lη =
Nc + 2
η = L − 2Sη of original-lattice sites occupied by the charge pseudoparticles is fixed 
as well. In contrast, that of charge pseudoparticles, Nρ = Nc + Nη, varies from Nρ = 1 for the 
present case of Sz

s = 0 and thus Mη = 2Sη even, up to a maximum value Nρ = Nc = L − 2Sη. 
The minimum value, Nρ = 1, refers to a single composite ηn pseudoparticle with all the η-Bethe 
state n = 
η = (L − 2Sη)/2 η-spin singlet pairs bound within it. Each of the possible different 
numbers Nρ = Nc + Nη ∈ [1, (L − 2Sη)] of charge pseudoparticles refers to a SzSLN subspace 
contained in the SzSL subspace under consideration.

In the case of the 1D Hubbard model in a SzSL subspace, a second aspect to justify the 
largest charge current absolute value of that subspace must be accounted for. This in addition 
to the charge current absolute values increasing upon considering its SzSLN subspaces with an 
increasing number Nρ of charge pseudoparticles that interchange position with the fixed number 
Mη = 2Sη of unpaired physical η-spins 1/2. It refers to the current spectra and elementary cur-
rents absolute values |Jc(qj )| = |Jh

c (qj )| and |jc(qj )| = |jh
c (qj )| of the charge c pseudoparticles 

relative to those of the ηn pseudoparticles, |Jηn(qj )| = |Jh
ηn(qj )| and |jηn(qj )| = |jh

ηn(qj )|, re-
spectively. (The (i) β = c, ηn bands current spectra and (ii) β = c, ηn bands elementary currents 
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associated with the absolute values (i) |Jβ(qj )| = |Jh
β (qj )| and (ii) |jβ(qj )| = |jh

β (qj )| are given 
in (i) Eq. (41) and Eq. (A.11) of Appendix A and (ii) in Eq. (56), respectively.)

At the fixed mη and lη densities of a SzSL subspace, such spectra absolute values are in 
general functions of u and of the densities nρ , ms , and ns . It is a simple exercise to show that 
such absolute values are larger for η-Bethe states for which ns = nmax

s = (1 − lη −ms)/2. Hence 
in the following we consider the charge currents of the latter states whose current spectra at fixed 
mη and lη densities are functions of u and of the densities nρ and ms .

We recall that the η-Bethe states exact charge currents can be expressed either in terms of the 
spectra Jβ(qj ) associated with charge β = c, ηn pseudoparticles, Eq. (A.10) of Appendix A, or 
with the related spectra Jh

β (qj ) = −Jβ(qj ) associated with the β = c, ηn bands holes, Eq. (40). 
Here and in the following analysis it is more convenient to express such charge currents in 
terms of the β = c, ηn pseudoparticles spectra Jβ(qj ). The same applies to the related alternative 
particle-like and hole-like elementary currents jβ(qj ) and jh

β (qj ), respectively.

It is useful to define the average values |J̄β | and |j̄β | of the β = c, ηn quantities |Jβ(qj )| and 
|jβ(qj )|, respectively, which read,

|J̄β | = 1

2qβ

qβ∫
−qβ

dq |Jβ(q)| and

|j̄β | = 1

2qβ

qβ∫
−qβ

dq |jβ(q)| where qc = π and qηn = πnηn , (C.1)

where within the TL the discrete momentum values qj such that qj+1 −qj = 2π/L were replaced 
by a corresponding continuous momentum variable q . From manipulations of the TBA equations 
and related η-Bethe states current spectra and elementary currents expressions, one finds that the 
following exact inequalities hold for the whole u ≥ 0 range,

max{|Jc(qj )|} ≥ Cu,n max{|Jηn(qj )|} and max{|jc(qj )|} ≥ Cu,n max{|jηn(qj )|} ,

|J̄c| ≥ Cu,n |J̄ηn| and |j̄c| ≥ Cu,n |j̄ηn| , (C.2)

where Cu,n ∈ [1/2n, 1] is an increasing function of u with limiting behaviors,

Cu,n = 1

2n
for u → 0 ,

= 1 for u → ∞ . (C.3)

According to such inequalities, for large u values and all SzSLN subspaces of a SzS subspace, 
the maximum and average values of |Jc(qj )| and |jc(qj )| are larger than those of |Jηn(qj )| and 
|jηn(qj )|, respectively. Upon decreasing u, one finds that for intermediate u the maximum and 
average values of |Jc(qj )| and |jc(qj )| and those of |Jηn(qj )| and |jηn(qj )|, respectively, remain 
of the same order.

Consistently, for large and intermediate u values maximizing the number of charge pseu-
doparticles Nρ = Nc + Nη that, upon moving in the original lattice, interchange position with 
a fixed number Mη = 2Sη of unpaired physical η-spins 1/2 that couple to charge probes, gives 
the largest charge current absolute value of a SzS subspace. Indeed, for finite u such an absolute 
value is proportional to Mη Nρ = Mη (Nc + Nη). This maximization procedure then leads to the 
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largest charge current absolute value being that of the reference SzSLN subspace 1, for which 
Nρ = Nc + Nη reaches its maximum value, Nρ = Nc = L − 2Sη.

Such a procedure is similar to that used for the spin-1/2 XXX chain concerning the largest 
spin current absolute value of a fixed-spin subspace [73]. There is though a different aspect 
relative to that chain. For it, all spin pseudoparticles have internal degrees of freedom involving 
a number 2n of paired spins 1/2. The largest spin current absolute value is then reached for a 
Bethe state populated by a number (L − 2Ss)/2 of n = 1 spin pseudoparticles whose internal 
degrees of freedom correspond to one spin-singlet pair. Within a superficial comparison with 
the spin-1/2 XXX chain, one would then expect that the largest charge current absolute value 
of a 1D Hubbard model SzS subspace would be that of a η-Bethe state populated by a number 
Nρ = Nη1 = (L −2Sη)/2 of η1 pseudoparticles whose internal degrees of freedom correspond to 
one η-spin singlet pair. This is the largest charge current absolute value of the reference SzSLN 
subspace 2 as defined in Section 4.2.

However, for the 1D Hubbard model the charge pseudoparticles include both c pseudopar-
ticles without internal degrees of freedom and ηn pseudoparticles whose internal degrees of 
freedom involve a number 2n of paired η-spins 1/2. This is related to for u > 0 the charge 
degrees of freedom of the 1D Hubbard model being associated with a U(2) = SU(2) ⊗ U(1)

symmetry whereas the spin degrees of freedom of the spin-1/2 XXX chain are associated only 
with a SU(2) symmetry. As a result, the η-Bethe state with largest charge current absolute value 
is rather found to be populated by Nρ = Nc = L − 2Sη c pseudoparticles, which thus is the 
largest charge current absolute value of the reference SzSLN subspace 1.

As one decreases u to reach small u � 1 values, the coefficient Cu,n in Eqs. (C.2) and (C.3)
tends to approach the value 1/2n. The microscopic mechanisms that justify why the largest 
charge current absolute value of the reference SzSLN subspace 1 remains being the largest charge 
current absolute value of the corresponding SzS subspace become now completely different from 
those of the spin-1/2 XXX chain. Before addressing that problem, we provide useful information 
that confirms the validity of the inequalities, Eq. (C.2), for small and intermediate values of u
for which the coefficient Cu,n remains being of the order of the unity. Specifically, we consider 
densities given in Eqs. (45)–(50) in the vicinity of those of the reference SzSLN subspaces 1 to 
3 defined in Section 4.2.

The expressions of the β = c, ηn pseudoparticle spectra Jβ(qj ) and elementary currents 
jβ(qj ) given in the following refer to η-Bethe states whose c and ηn band distributions are 
compact and asymmetrical, as given in Eq. (51). They refer as well to η-Bethe states that in the 
TL are generated from those by a finite number of β = c, ηn pseudoparticle processes. Further-
more, they are also valid for η-Bethe states whose c and ηn band distributions are compact and 
symmetrical, Eq. (55), and η-Bethe states generated from those by a finite number of β = c, ηn

pseudoparticle processes.
On the one hand, for the SzSLN subspaces for which the Jβ(qj ) and jβ(qj ) expressions 

are independent of u for u > 0, such expressions are valid for all the classes of η-Bethe states 
under consideration. On the other hand, for SzSLN subspaces for which they are u dependent 
for u > 0, their universality only applies to large u. Indeed, upon decreasing u, the Jβ(qj ) and 
jβ(qj ) expressions become different for different η-Bethe states, as they become dependent on 
the specific qτ

Fβ,ι values in Eq. (52) that define such states. In addition to providing Jβ(qj ) and 
jβ(qj ) expressions that are independent of u for u > 0 and are valid for the u > 0 range, for 
simplicity in the case of u dependent expressions for u > 0 only their universal expansions up to 
u−1 order are given.
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For η-Bethe states whose densities, Eqs. (45)–(50), are in the vicinity of those of a refer-
ence SzSLNSN subspace 1B, both the Jβ(qj ) and jβ(qj ) expressions and the corresponding 
inequalities, Eq. (C.2), are independent of u for u > 0 and remain valid for the whole u > 0
range. For these η-Bethe states the following expressions are found for u > 0, mη ∈ [0, 1], and 
ms ∈ [0, (1 − mη)],

Jc(qj ) = jc(qj ) = −2t sin(qj ) for qj ∈ [−π,π] ,
Jηn(qj ) = jηn(qj ) = −2t qj

sin(πmη)

πmη

for qj ∈ [−πmη,πmη] ,

max{|Jc(qj )|} = max{|jc(qj )|} = 2t and |J̄c| = |j̄c| = 4t

π
,

max{|Jηn(qj )|} = max{|jηn(qj )|} = 2t sin(πmη) and |J̄ηn| = |j̄ηn| = t sin(πmη) . (C.4)

These exact expressions and values obey the inequalities, Eqs. (C.2) and (C.3). (As discussed 
below, for the reference SzSLNSN subspace 1B one has that Cu,n = 1 for u > 0 and Cu,n = 1/2n

for u → 0.)
For most SzSLN subspaces of a SzS subspace, the β = c, ηn spectra Jβ(qj ) and elementary 

currents jβ(qj ) depend on u. This applies for densities, Eqs. (45)–(50), in the vicinity of those 
of a reference SzSLNSN subspace 1A, for which the expansions of Jc(qj ) and Jηn(qj ) are up to 
u−1 order and for mη ∈ [0, 1] and ms ∈ [0, (1 − mη)] given by,

Jc(qj ) = −2t sin(qj ) + 2t
nηs

u
sin(2qj ) for qj ∈ [−π,π]

Jηn(qj ) = −2t qj

(
1 + 2 (1 − ms)gs

π u
sin(πmη)

)
sin(πmη)

πmη

+ 2t

u
sin

(
qj

mη

)
for qj ∈ [−πmη,πmη] . (C.5)

As given in Eq. (71), nηs = (1 − mη − ms) gs and the function gs(ms) appearing here con-
tinuously increases from gs(0) = ln 2 to gs(1 − mη) = 1 as ms increases from ms = 0 to 
ms = (1 − mη), respectively.

Up to u−1 order and for mη ∈ [0, 1] and ms ∈ [0, (1 −mη)], the corresponding expansions for 
jc(qj ) and jηn(qj ) are found to read,

jc(qj ) = Jc(qj ) − 4t
nηs

u

sin(π(1 − mη))

π(1 − mη)
sin(qj )

= −2t sin(qj ) + 2t
nηs

u
sin(2qj )

− 4t
nηs

u

sin(π(1 − mη))

π(1 − mη)
sin(qj ) for qj ∈ [−π,π]

jηn(qj ) = Jηn(qj ) − 2t (1 − mη − 2ms)

u (1 − mη)

sin(2πmη)

2πmη

sin

(
qj

mη

)

= −2t qj

(
1 + 2 (1 − ms)gs

π u
sin(πmη)

)
sin(πmη)

πmη

+ 2t

u

(
1 − (1 − mη − 2ms)

(1 − mη)

sin(2πmη)

2πmη

)
sin

(
qj

mη

)
for qj ∈ [−πmη,πmη]

where mη ∈ [0,1] and ms ∈ [0, (1 − mη)] . (C.6)
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To leading (1/u)0 order, the β = c, ηn values of max{|Jβ(qj )|}, max{|jβ(qj )|}, |J̄β |, and |j̄β |
remain being those given in Eq. (C.4). For simplicity, their u−1 corrections are not given here. 
The exact expressions and values in Eqs. (C.5) and (C.6) again obey the inequalities, Eqs. (C.2)
and (C.3).

For densities in Eqs. (45)–(50) in the vicinity of those of the reference SzSLN subspaces 2 
and 3, one finds Jc(qj ) = jc(qj ) = 2t sin(qj ) for qj ∈ [−π, π] and the whole u ≥ 0 range. More-
over, Jηn(qj ) = Jηn sinqj and jηn(qj ) = jηn sinqj where Jηn ∝ 1/u and jηn ∝ 1/u for large u, 
so that the inequalities, Eq. (C.2), are also obeyed in that limit.

As one decreases u to reach u � 1 values, the coefficient Cu,n in Eqs. (C.2) and (C.3)
approaches its limiting smallest value, 1/2n. Consistently, for some of the SzSLN subspaces 
contained in a SzS subspace the maximum and average absolute values of the spectra Jηn(qj )

and elementary currents jηn(qj ) become larger than those of Jc(qj ) and jc(qj ), respectively. 
This holds particularly for large n values. The question is thus why does the largest charge cur-
rent absolute value of a SzS subspace remains that of its reference SzSLN subspace 1 for which 
Nρ = Nc and Nη =∑∞

n=1 Nηn = 0?
To clarify this interesting issue, we account for again that for finite yet arbitrarily small u

values the largest charge current absolute value of each SzSLN subspace can be written as propor-
tional to Mη Nρ = Mη (Nc + Nη). This number can be rewritten as Mη Nρ = Rρ Mη (Nc + 2
η)

and thus Mη Nρ = Rρ 2Sη (L − 2Sη). Here the exact relation Nc + 2
η = L − 2Sη was used 
and the coefficient Rρ = Nρ/(L − 2Sη) = (Nc + Nη)/(Nc + 2
η) that can be written as 
Rρ = nρ/(1 − mη) = (1 − lη + nη)/(1 − lη + 2πη) varies in the range Rρ ∈ [1/(L − 2Sη), 1]. 
Within the TL, that interval reads Rρ ∈ [0, 1] for mη < 1.

For the η-Bethe states that span a SzS subspace, the factor 2Sη (L − 2Sη) in Mη Nρ =
Rρ 2Sη (L − 2Sη) has a fixed value. Thus the changes in Mη Nρ all stem from Rρ . On the one 
hand, the maximum Rρ value, Rρ = 1, refers to Nρ = Nc and Nη = ∑∞

n=1 Nηn = 0. On the 
other hand, for reference SzSLNSN subspaces for which Nη > 0, increasing the population of 
ηn pseudoparticles with a large number n of η-spin singlet pairs leads to a strong decreasing of 
the coefficient Rρ ∈ [0, 1] from its maximum value. It turns out that for small yet finite u values 
such a decreasing in the charge current factor Mη Nρ = Rρ 2Sη (L − 2Sη) always compensates 
the increasing of the spectra Jηn(qj ) and elementary currents jηn(qj ) absolute values upon in-
creasing n. Indeed, for any arbitrarily small yet finite value of u the first of these two opposite 
processes dominates, so that the largest charge current absolute value of a SzS subspace remains 
that of its reference SzSLNSN subspace 1 for which Nρ = Nc.

The small-u increasing of the absolute values of Jηn(qj ) and jηn(qj ) upon increasing n turns 
out to be part of a mechanism that prepares and precedes a qualitative change of the physics that 
occurs upon reaching the u → 0 limit. In such a limit the competition between the two above 
effects becomes critical. However, the largest charge current absolute value of a SzS subspace 
remains that of its reference SzSLNSN subspace 1, as confirmed in the following.

The u = 0 problem is easiest to be described directly in terms of electron configurations. 
However, the understanding of the corresponding finite-u problem requires the description of the 
u → 0 limit physics in terms of the fractionalized particles emerging from the rotated electrons. 
In the case of the 1D Hubbard model, the imaginary part i (n + 1 − 2l) u of each set of η-spin 
l = 1, ..., n rapidities �ηn,l(qj ) = �ηn(qj ) + i (n + 1 − 2l) u, Eq. (28) for α = η, with the same 
real part �ηn(qj ) depends on the interaction u and thus vanishes as u → 0. This is in contrast to 
the n > 1 spin l = 1, ..., n rapidities of the spin 1/2 XXX chain with the same real part, which 
are associated with a n-band pseudoparticle [73]. For the Hubbard model, the imaginary part of 
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such a set of η-spin l = 1, ..., n rapidities describes the bounding of a number n of η-spin singlet 
pairs within one ηn pseudoparticle.

In the case of n > 1, the vanishing of the l = 1, ..., n rapidities imaginary part i (n + 1 − 2l) u
that occurs in the u → 0 limit has physical consequences. It implies that the 
η η-spin singlet 
pairs containing 2
η =∑∞

n=1 2n Nηn paired rotated η-spins 1/2 of each of the corresponding 
ηn pseudoparticles of a η-Bethe state unbound. Furthermore, although the even number of 2
η

rotated η-spins 1/2 remain contributing to η-spin-singlet configurations, concerning their trans-
lational degrees of freedom they behave as 2
η independent charge carriers. This means that 
the η-spin singlet configurations associated with both the n = 1 pair η1 pseudoparticles and the 
n > 1 pairs composite ηn pseudoparticles are rearranged in the u → 0 limit in such a away that 
such pseudoparticles cease to exist in that limit. While the ηn pseudoparticles do not exist both 
for u → 0 and at u = 0, the c pseudoparticles remain existing in the u → 0 limit yet are ill 
defined at u = 0.

A physical consequence of such c and η1 pseudoparticle behaviors is that for u → 0 the 
charge currents of the η-Bethe states rather result from microscopic processes within which 
a number Mη = 2Sη of unpaired physical η-spins in the η-spin multiplet configurations inter-
change position with Nc c pseudoparticles and the 2
η = ∑∞

n=1 2n Nηn rotated η-spins 1/2. 
Those behave as independent charge carriers in spite of remaining participating in η-spin-singlet 
configurations. Hence in the u → 0 limit the largest charge current absolute value of each SzSLN 
subspace can be written as (Clη,nη,ms /L) t Mη (Nc + 2
η). Now both each of the Mη = 2Sη un-
paired physical η-spins in the η-spin multiplet configurations, Nc c pseudoparticles, and 2
η

rotated η-spins 1/2 in η-spin-singlet configurations occupy a single site of the original lattice. 
Indeed, Mη + Nc + 2
η = L.

The new physics emerging in the u → 0 limit is accounted for the exact BA solution. Indeed, 
the ηn band spectra Jηn(qj ) and elementary currents jηn(qj ) become in the u → 0 limit of the 
form,

Jηn(qj ) = 2nJη(qj ) and jηn(qj ) = 2njη(qj ) . (C.7)

Here Jη(qj ) and jη(qj ) are the corresponding spectra and elementary currents carried by each 
of the 2n rotated η-spins 1/2 in η-spin-singlet configurations resulting in the u → 0 limit from 
one u > 0 ηn pseudoparticle. Since Nc + 2
η = L − 2Sη, the number Nc + 2
η of c pseu-
doparticles plus rotated η-spins 1/2 in η-spin-singlet configurations appearing in the expression 
(Clη,nη,ms /L) t Mη (Nc + 2
η) of the largest charge current absolute values of each SzSLN sub-
space is the same for all η-Bethe states that span a SzS subspace.

The charge current operator expectation values general exact expression, Eq. (A.10) of Ap-
pendix A, remains valid in the u → 0 limit yet the corresponding η-Bethe states are not energy 
eigenstates at u = 0. This issue and its consequences for the charge stiffness is addressed in 
Appendix B in the case of the hole concentration mz

η → 0. The expressions in Eq. (C.7) of the 
current spectra and elementary currents are consistent with at u = 0 the ηn pseudoparticles not 
existing. The ηn pseudoparticle exists for any arbitrarily small yet finite u value. Hence within the 
u → 0 limit the corresponding 2n = 2, 4, 6, . . . rotated η-spins 1/2 that emerge from it continue 
all moving with momentum π − qj . This is why such 2n rotated η-spins 1/2 have charge current 
spectra Jη(qj ) and elementary currents jη(qj ) in Eq. (C.7) that depend on the same momentum 
value qj .

The increase of the ηn pseudoparticle current spectrum (and elementary current) absolute 
value upon decreasing u is needed for its maximum value 2n |Jη(qj )| (and 2n |jη(qj )|), which 
is reached in the u → 0 limit, be compatible with the current spectrum (and elementary current) 
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of the emerging 2n = 2, 4, 6, . . . independent rotated η-spins 1/2 charge carriers reading Jη(qj )

(and jη(qj ).) That absolute value increase upon decreasing u that occurs in the womb of the ηn

pseudoparticle is a needed preparation for its dead upon it delivering in the u → 0 limit such 
2n = 2, 4, 6, . . . independent charge carriers. Due to their emergence from the ηn pseudoparticle 
in the u → 0 limit, the corresponding u → 0 physics is qualitatively different from that of finite u.

From combination of Eqs. (C.2) and (C.7), one finds the following exact inequality specific 
to the u → 0 limit, which involves the emerging rotated η-spins 1/2 current spectra Jη(qj ) and 
elementary currents jη(qj ) in Eq. (C.7),

max{|Jc(qj )|} ≥ max{|Jη(qj )|} and max{|jc(qj )|} ≥ max{|jη(qj )|} ,

|J̄c| ≥ |J̄η| and |j̄c| ≥ |j̄η| . (C.8)

The number Nc + 2
η = L − 2Sη of charge carriers that upon moving in the original lattice 
interchange position with the Mη = 2Sη of unpaired physical η-spins in the η-spin multiplet 
configurations is the same for all the η-Bethe states that span a SzS subspace. This is a necessary 
condition for the largest current absolute value remaining that of the corresponding reference 
SzSLN subspace 1. As given in Eq. (C.8), for all references SzSLNSN subspaces contained in 
such a subspace, the maximum and average values of |Jc(qj )| and |jc(qj )| are in the u → 0 limit 
larger than or equal to those of |Jη(qj )| and |jη(qj )|, respectively. This is why the largest charge 
current absolute value of a SzS subspace remains that of its reference SzSLNSN subspace 1 for 
which Nc + 2
η = Nc = L − 2Sη.

Hence, in contrast to finite u, in the u → 0 limit the number of charge carriers that upon 
moving in the original lattice interchange position with Mη = 2Sη unpaired physical η-spins does 
not play any role in the maximization of the charge current absolute value. The only property that 
determines its maximization is the relative absolute values of the charge carriers current spectra 
and elementary currents. According to the exact inequalities, Eq. (C.8), the c pseudoparticles 
indeed win such a competition.

In the case of some SzSLN subspaces, for u → 0 the expressions of the spectra Jc(qj ) and 
Jη(qj ) and elementary currents jc(qj ) and jη(qj ) in Eq. (C.8) depend on the specific qτ

Fβ,ι values 
in Eq. (52). Those define the η-Bethe states that have the largest charge current absolute value in 
that subspace. The exception for many SzSLN subspaces is for those contained in SzS subspaces 
for which mη � 1 and (1 − mη) � 1, respectively. For them, such expressions are the same for 
all η-Bethe states belonging to the same SzSLN subspace. And this applies both to η-Bethe states 
whose distributions are asymmetrical, Eq. (51), and symmetrical, Eq. (55).

For SzS subspaces corresponding to the mη � 1 and (1 − mη) � 1 limits, the charge cur-
rents can be expressed in terms of the elementary currents, as given in Eq. (58), with now 
jηn(qj ) = 2n jη(qj ). For simplicity, in the present case of the u → 0 limit we only report in 
the following expressions for the elementary currents jc(qj ) and jη(qj ) in jηn(qj ) = 2n jη(qj )

that obey the inequalities, Eq. (C.8). Besides controlling the exact expressions of the charge cur-
rents for mη � 1 and (1 − mη) � 1, Eq. (58), such elementary currents are useful for some of 
the upper-bound procedures used in this paper. Related expressions apply to the spectra Jc(qj )

and Jη(qj ) in Jηn(qj ) = 2n Jη(qj ) also appearing in Eq. (C.8). Densities in Eqs. (45)–(50) in 
the vicinity of those of the reference SzSLN subspaces 1 to 3 defined in Section 4.2 are again 
considered. Although the exact inequalities, Eq. (C.8), apply to SzS subspaces corresponding to 
the mη ∈ [0, 1] and ms ∈ [0, (1 − mη)] intervals, the limit mη → 0 for which ms ∈ [0, 1] plays a 
central role concerning the charge stiffness issue clarified in this paper.

We start by considering the reference SzSLNSN subspace 1B for which ns → 0, in contrast to 
that density maximum value ns = nmax

s = (1 − lη − ms)/2 generally considered here. Moreover, 
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for this reference SzSLNSN subspace the coefficient Cu,n in Eq. (C.3) has as singular behavior, 
reading Cu,n = 1 for finite u and Cu,n = 1/2n for u → 0. Another property is that for it the 
expression of the elementary currents is independent of the η-Bethe states that span it, as it is 
the same for all such states. The elementary current jηn(qj ) is for qj ∈ [−πmη, πmη] given 
by jηn(qj ) = 2t qj sin(πmη)/πmη for u > 0, as provided in Eq. (C.4). However, following the 
singular behavior of the coefficient Cu,n, its value is different in the u → 0 limit. For densities 
in Eqs. (45)–(50) in the vicinity of those of a reference SzSLNSN subspace 1B one finds in the 
u → 0 limit that,

jc(qj ) = −2t sin(qj ) for qj ∈ [−π,π] ,
jηn(qj ) = 2njη(qj ) where jη(qj ) = 2t sin

(qj

2

)
for qj ∈ [−πmη,πmη] ,

max{|jc(qj )|} = 2t and |j̄c| = 4t

π
,

max{|jη(qj )|} = 2t sin
(π

2
mη

)
and |j̄η| = 4t

πmη

(
1 − cos

(π

2
mη

))
. (C.9)

These exact elementary current expressions and values obey the corresponding inequality in 
Eq. (C.8).

Moreover, for densities in Eqs. (45)–(50) in the vicinity of those of a reference SzSLN sub-
space 2, the c band elementary current is for the whole u ≥ 0 range independent of the η-Bethe 
states and reads jc(qj ) = 2t sin(qj ), including in the present u → 0 limit. The elementary cur-
rents jη(qj ) in jηn(qj ) = 2n jη(qj ) have slightly different expressions for different η-Bethe 
states belonging to the subspace under consideration. For all such states, the corresponding el-
ementary current inequality in Eqs. (C.8) is obeyed. The exception is as mentioned above for 
reference SzSLN subspaces 3 contained in SzS subspaces for which mη � 1 and (1 − mη) � 1. 
In that case their expressions are for u → 0 the same for all such states. Specifically, they read 
jη(qj ) = −t sin(qj ) for mη → 0 and jη(qj ) = −2t sin(qj ) for mη → 1, so that the corresponding 
elementary current inequality in Eq. (C.8) is again obeyed. (For a reference SzSLN subspace 2 
one has that lη → 1, so that ms → 0.)

For densities in Eqs. (45)–(50) in the vicinity of those of a reference SzSLN subspace 3, 
the coefficient Cu,n in Eq. (C.3) is a continuous function of u. Furthermore, the expressions of 
the elementary currents are for the whole u ≥ 0 range independent of the η-Bethe states in that 
subspace. In the u → 0 limit they equal actually those given in Eq. (C.9), which thus obey the 
corresponding inequality in Eqs. (C.8).

For densities in Eqs. (45)–(50) near those of a reference SzSLNSN subspace 1A, which plays 
the major role in our studies, the elementary currents have in the u → 0 limit a universal form 
common to all η-Bethe states again only for mη � 1 and (1 − mη) � 1. On the one hand, 
the elementary currents jc(qj ) and jηn(qj ) associated with η-Bethe states that span reference 
SzSLNSN subspaces 1A contained in SzS subspaces with densities mη → 0 and ms ∈ [0, 1] are 
in the u → 0 limit found to read,

jc(qj ) = −4t sin
(qj

2

)
for qj ∈ [−π(1 − ms),π(1 − ms)]

= sgn{q}2t
(

cos
(
|qj | + π

2
ms

)
− cos

(π

2
ms

))
for |qj | ∈ [π(1 − ms),π] ,

jηn(qj ) = 2njη(qj ) where jη(qj )

= sgn(qj )2t

(
cos

( |qj | − π ms
)

− 1
cos

(π
ms

))

2 2n 2
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for qj ∈ [−πmη,πmη]
max{|jc(qj )|} = |jc

(π

2
(2 − ms)

)
| = 2t

(
1 + cos

(π

2
ms

))
and |j̄c| = 8t

π

(
1 − 1

2
sin
(π

2
ms

)
+ π

4
ms cos

(π

2
ms

))
,

max{|jη(qj )|} = |jη(πmη)| = |j̄η| = 2t

(
2 − 1

2n

)
cos

(π

2
ms

)
. (C.10)

Both max{|jβ(qj )|} and |j̄β | are for β = c, ηn continuous decreasing functions of the spin 
density ms . For instance, for mη → 0 and the two ms → 0 and ms → 1 reference SzSLNSN

subspaces 1A such quantities read,

lim
ms→0

max{|jc(qj )|} = |jc(π)| = 4t and lim
ms→0

|j̄c| = 8t

π
,

lim
ms→0

max{|jη(qj )|} = |jη(πmη)| = |j̄η| = 2t

(
2 − 1

2n

)
, (C.11)

and

lim
ms→1

max{|jc(qj )|} = |jc

(π

2

)
| = 2t and lim

ms→0
|j̄c| = 4t

π
,

lim
ms→1

max{|jη(qj )|} = |jη(πmη)| = |j̄η| = 0 , (C.12)

respectively.
For reference ms = 0 SzSLNSN subspace 1A contained in a SzS subspace for which mη → 1

the same elementary currents are in the u → 0 limit found to be given by,

jc(qj ) = −2t sin(qj ) for qj ∈ [−π,π]
jηn(qj ) = 2njη(qj ) where jη(qj ) = −2t sin

(qj

2

)
for qj ∈ [−π,π]

max{|jc(qj )|} = |jc

(π

2
mη

)
| = 4t and |j̄c| = 4t

π
,

max{|jη(qj )|} = |jη(πmη)| = 2t and |j̄η| = 4t

π
. (C.13)

The exact elementary current expressions and values in Eqs. (C.10)–(C.13) obey the corre-
sponding inequality in Eq. (C.8) for all η-Bethe states under consideration. (Due to the range 
ms ∈ [0, (1 − mη)], only the ms = 0 SzSLNSN subspace 1A exists in the mη → 1 limit.)

The number of electronic charges carried by each charge carrier provides a complementary 
physically appealing reason of why for u > 0 and any SzS subspace all charge pseudoparticles of 
the η-Bethe state whose charge current has largest absolute value are c pseudoparticles. Indeed, 
the charges carried by the electrons remain invariant under the electron – rotated-electron unitary 
transformation. Hence each rotated electrons carries one electronic charge. Within the charge -
spin degrees of freedom separation of the rotated-electron lattice occupancy configurations that 
generate the η-Bethe states, each c pseudoparticle carries a single electronic charge. Moreover, 
each ηn pseudoparticle carries a number 2n of electronic charges. The number, L − 2Sη, of 
electronic charges of the η-Bethe states that span a SzS subspace is the same for all of them. 
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For general η-Bethe states, a number Nc of such electronic charges are carried by Nc c pseu-
doparticles and the remaining 

∑∞
n=1 2n Nηn electronic charges are carried by Nη =∑∞

n=1 Nηn

ηn pseudoparticles.
On the one hand, the exact sum rule, Nc +∑∞

n=1 2n Nηn = L − 2Sη , thus follows from charge 
conservation. On the other hand, the values of the number of carriers Nρ = Nc +Nη of a η-Bethe 
state vary in the interval Nρ ∈ [1, (L − 2Sη)] for the corresponding set of SzSLN subspaces 
contained in a SzS subspace for which 2Sη is even. Each ηn pseudoparticle of such states carries 
2n electronic charges and accordingly is a heavier object than a c pseudoparticle. It is thus a 
physically expected and appealing result that a η-Bethe state whose L − 2Sη electronic charges 
are carried by L − 2Sη independent charge carriers, each carrying a single electronic charge, is 
that whose charge current absolute value is the largest of the corresponding SzS subspace. This 
argument is consistent with Nρ = Nc = L − 2Sη for the reference SzSLN subspace 1 of a SzS 
subspace.

Appendix D. Effects on the charge currents of the deviations from the TBA ideal strings

For a large finite system, the n > 1 complex rapidities with the same real part deviate from 
their TL ideal form, Eq. (28). This affects both the α = s spin and α = η η-spin complex ra-
pidities. In some solvable models small effects of such deviations may survive even in the TL. 
In the present case of the charge currents of the 1D Hubbard model, only the deviations of the 
n > 1 charge η complex rapidities, Eq. (28) for α = η, may have effects on the absolute values 
of the charge currents of some classes of η-Bethe states. (For an interesting study on the small 
effects of the α = η deviations on the charge degrees of freedom of the 1D Hubbard model, see 
Ref. [9].)

The set of l = 1, ..., n distorted charge α = η complex rapidities with the same real part un-
der consideration have the general form �ηn,l(qj ) = �ηn(qj ) + i (n + 1 − 2l) u + D

ηn,l
j . Here 

D
ηn,l
j = R

ηn,l
j + iδ

ηn,l
j , where Rηn,l

j and δηn,l
j are real numbers, is the fine-structure deviation 

from the TBA ideal charge ηn strings. Importantly, Dη1,1
j = 0 for the Nη1 rapidities �η1,1(qj )

of all energy and momentum eigenstates. Indeed, both the c momentum rapidities and such η1
rapidities are real and thus lack such deviations.

The n > 1 distorted complex rapidities �ηn,l(qj ) = �ηn(qj ) + i (n +1 −2l) u +D
ηn,l
j remain 

being labelled by the quantum numbers n = 2, ..., ∞ and l = 1, ..., n that refer to the number of 
η-spin singlet pairs and each of these pairs, respectively. Physically, this means that, as in the 
case of an ideal charge ηn string, for n > 1 the distorted charge ηn string associated with that 
set of complex rapidities also describes an independent configuration within which n = 2, ..., ∞
η-spin singlet pairs are bound.

The set of l = 1, ..., n TBA ideal charge ηn complex rapidities with the same real part, Eq. (28)
for α = η, obey the symmetry relation �ηn,l(qj ) = (�ηn,n+1−l (qj ))

∗. The two complex rapidi-
ties �ηn,l(qj ) and �ηn,l′(qj ) associated with two η-spin singlet pairs labelled by the quantum 
numbers l and l′ = n +1 − l, respectively, are related as �ηn,l(qj ) = (�ηn,l′(qj ))

∗ for l = 1, ..., n. 
This is actually a necessary condition for the binding of the l = 1, ..., n η-spin singlet pairs within 
the ηn-pair configuration.

Importantly and due to self-conjugacy, the deviations Dηn,l
j = R

ηn,l
j + iδ

ηn,l
j for the set 

of l = 1, ..., n complex rapidities with the same real part associated with a n > 1 distorted 
charge ηn string are also such that Dηn,l = (D

ηn,n+1−l
)∗. That the symmetry �ηn,l(qj ) =
j j
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(�ηn,n+1−l (qj ))
∗ prevails under string deformations ensures that, as for the ideal ηn strings, 

the imaginary part of the n > 1 real rapidities with the same real part associated with deformed 
charge ηn strings also describe the binding within the corresponding n-pair configurations of 
l = 1, ..., n η-singlet pairs.

As for the n > 1 complex spin rapidities of the related spin-1/2 XXX chain [72,73], the 
collapse of narrow pairs, which within our representation refers to η-singlet pair unbinding pro-
cesses, is in the TL the only aberration from the n > 1 ideal charge ηn strings that may have 
effects on the charge currents. The occurrence for the 1D Hubbard model of two types c and 
η1 of real charge rapidities that are insensitive to such effects renders them even less important 
than for the spin-1/2 XXX chain [72,73]. Indeed, for that chain there is only one branch of real 
rapidities. As in the case of its spin currents, in the TL the small effects under consideration have 
no impact whatsoever in the T > 0 stiffness upper bounds considered in Sections 5 and 6.

The very small effects of charge ηn string deviations occur through the n > 1 current spec-
tra Jηn(qj ) = −Jh

ηn(qj ), Eq. (A.11) of Appendix A and Eq. (41), in the charge currents general 
expression, Eq. (A.10) of that Appendix and Eq. (40). This applies only to η-Bethe states de-
scribed by groups of real charge c and η1 rapidities and n > 1 complex charge ηn rapidities. 
This follows from the dependence of such current spectra on the complex charge ηn rapidities 
�ηn,l(qj ) = �ηn(qj ) + i (n +1 −2l) u +D

ηn,l
j associated with n > 1 bound η-spin singlet pairs.

The charge ηn string deviations from the TBA n > 1 ideal charge ηn strings do not change the 
number of η-spin singlet pairs. Their density remains being exactly given by πη = (lη − mη)/2
for the corresponding η-Bethe states and non-LWSs. Narrow pairs refer to a string deformation 
originated by a deviation Dηn,l

j that renders the separation between two rapidities �ηn,l(qj ) and 

�ηn,l+1(qj ) in the imaginary direction less than i u. Such a separation may become narrower and 
eventually merge and split back onto the horizontal axis. (This is why such a process is called 
the collapse of a narrow pair.)

Within our representation in terms of paired rotated η-spins 1/2, each collapse of a narrow 
pair leads to the unbinding of two η-spin singlet pairs. On the one hand, for the set of n > 2
complex charge ηn rapidities with the same real part associated with n bound η-spin singlet pairs, 
it leads to the partition of the corresponding ηn-pair configuration into a ηn′-pair configuration 
where n′ = n − 2 and two unbound η-spin singlet pairs described by real charge η1 rapidities. 
The ηn′-pair configuration is described by a smaller number n′ = n − 2 of complex charge ηn

rapidities with the same real part in a charge ηn′ string of smaller length n′ = n − 2. On the other 
hand, for complex charge η2 rapidities with the same real part it leads in turn to the unbinding 
of the two η-spin singlet pairs of the corresponding η2-pair configuration. In this case this gives 
rise solely to the two unbound η-spin singlet pairs described by real charge η1 rapidities.

Hence the collapse of a narrow pair is a process that causes an increase in the value of the 
total number of ηn pseudoparticles Nη, Eq. (30) for α = η, and thus in the equal number Nη of 
charge ηn strings of all lengths n = 1, ..., ∞. It does not change though that of η-spin singlet 
pairs, 
η =∑∞

n=1 n Nηn = (Lη − 2Sη)/2, Eq. (18) for α = η. The number of rotated η-spins 
Lη = 2Sη + 2
η and the corresponding density lη > mη thus remain unchanged under such 
charge ηn string distortions.

The upper bounds used in our procedures within the canonical and grand-canonical ensembles 
rely on the largest current absolute value of η-Bethe states in each SzS subspace and on averages 
of current absolute values of η-Bethe states described by only real rapidities, respectively. In both 
cases, the η-Bethe states carrying the charge currents under consideration have density lη → mη. 
Hence they are insensitive to the collapse of narrow pairs. Indeed, the corresponding increase in 
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the number Nη of charge ηn strings of all lengths does not generate states with current absolute 
values larger than those of such η-Bethe states. This is why the collapse of narrow pairs has no 
affects whatsoever in the upper bounds used in the studies of this paper.

Appendix E. The 1D Hubbard model global symmetry group independent state 
representations and Hilbert space and subspaces dimensions

Following the 1D Hubbard model global [SU(2) ⊗ SU(2) ⊗ U(1)]/Z2
2 symmetry [101], its 

full Hilbert-space dimension 4L must equal the number of independent state representations of 
the corresponding symmetry group. In each subspace with fixed values for Ls = Nc, Lη = Nh

c , 
Ss , and Sη there are N η(Lη, Sη) ×N s(Ls, Ss) × dc(Nc) such representations. Here,

N α(Lα,Sα) = (2Sα + 1)N α
singlet(Lα,Sα) and dc =

(
L

Ls

)
=
(

L

Lη

)
for α = η, s , (E.1)

where,

N α
singlet(Lα,Sα) =

(
Lα

Lα/2 − Sα

)
−
(

Lα

Lα/2 − Sα − 1

)
for α = η, s . (E.2)

The α = η, s SU(2) dimensions are similar to the spin SU(2) dimension of the spin-1/2 XXX

chain [72,73]. The dimension dc = ( L
Nc

)
is characteristic of an U(1) symmetry and refers indeed 

to the c lattice U(1) symmetry.
One finds that,

4L =
L∑

Nc=0
(integers)

Lη∑
2Sη=0

(integers)

Ls∑
2Ss=0

(integers)

C(Lη,Ls, Sη, Ss)N η(Lη,Sη) ×N s(Ls, Ss) × dc(Nc) ,

C(Lη,Ls, Sη, Ss) = | cos
(π

2
(2Sη + Lη)

)
cos

(π

2
(2Ss + Ls)

)
| , (E.3)

where the role of the phase factor, C(Nc, Sη, Ss) = 0, 1, is to select the allowed independent 
representations of the global [SU(2) ⊗ SU(2) ⊗ U(1)]/Z2

2 symmetry.
As for the corresponding spin-singlet dimension of the XXX chain [72,73], the dimension 

Nsinglet(Sα, Mα) in Eq. (E.1) can be written as,

N α
singlet(Lα,Sα) =

∑
{Nαn}

∞∏
n=1

(
Lαn

Nαn

)
for α = η, s , (E.4)

where 
∑

{Nαn} is a summation over all sets of {Nαn} corresponding to the same number of pairs, 

α =∑∞

n=1 n Nαn = (Lα − 2Sα)/2, Eq. (18). (That the use of the alternative dimension expres-
sion, Eq. (E.4), in Eq. (E.3) leads to the same overall dimension 4L is shown in Ref. [79].)

For the problem studied in this paper, we consider the Sz
s = 0 subspace. Its SzSL subspaces 

as defined in Section 3.2 are populated by fixed numbers Lη = Nh
c = L − Nc rotated η-spins 

1/2 of which 2
η = Lη − 2Sη are paired and the remaining Mη = 2Sη physical η-spins 1/2
are unpaired. They are as well populated by fixed numbers Ls = L − Lη of rotated spins 1/2
of which 2
s = L − Lη − 2Ss are paired and the remaining Ms = 2Ss physical spins 1/2 are 
unpaired. Since for the different spin Ss integer values only states for which Sz

s = 0 contribute, 
out of the 2Ss + 1 states of each spin multiplet tower only that for which Sz

s = 0 is counted. The 
dimension of a Sz

s = 0 subspace thus reads,
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dsubspace(Lη,Sη) =
(L−Lη)/2∑

Ss=0

(2Sη + 1)N η
singlet(Lη,Sη) ×N s

singlet(Lη,Ss) × dc(Lη) , (E.5)

where accounting for that Ls = L − Lη,

N η
singlet(Lη,Sη) =

(
Lη

Lη/2 − Sη

)
−
(

Lη

Lη/2 − Sη − 1

)
=
∑
{Nηn}

∞∏
n=1

(
Lηn

Nηn

)
,

N s
singlet(Lη,Ss) =

(
L − Lη

L/2 − Lη/2 − Ss

)
−
(

L − Lη

L/2 − Lη/2 − Ss − 1

)
=
∑
{Nsn}

∞∏
n=1

(
Lsn

Nsn

)
,

dc(Lη) =
(

L

Lη

)
. (E.6)

The summations 
∑

{Nηn} and 
∑

{Nsn} run again over all sets of {Nηn} and {Nsn}, respectively, 
corresponding to the same number of singlet pairs. That number is given by 
η =∑∞

n=1 n Nηn =
(Lη − 2Sη)/2 for the η-spin singlet pairs. For the Sz

s = 0 subspace the number of spin-singlet 
pairs reads 
s =∑∞

n=1 n Nsn = (L − Lη − 2Ss)/2.
An important subspace of a SzSL subspace is that spanned by the corresponding η-Bethe 

states whose dimension is given by,

dLWS
subspace(Lη,Sη) =

(L−Lη)/2∑
Ss=0

N η
singlet(Lη,Sη) ×N s

singlet(Lη,Ss) × dc(Lη) . (E.7)

Appendix F. Quantities in the expression of the pseudoparticle elementary currents

The f functions in the elementary currents expression, Eq. (56), read,

fβ β ′(qj , qj ′)

= vβ(qj )2π �β,β ′(qj , qj ′) + vβ ′(qj ′)2π �β ′,β(qj ′ , qj )

+ 1

2π

∑
ι=±1

θ(Nc) |vc(q
ι
Fc,τ )|2π �c,β(qι

Fc,τ , qj )2π �c,β ′(qι
Fc,τ , qj ′)

+ 1

2π

∑
ι=±1

∞∑
n=1

θ(Nηn) |vηn(q
ι
Fηn,τn

)|2π �ηn,β(qι
Fηn,τn

, qj )2π �ηn,β ′(qι
Fηn,τn

, qj ′)

+ 1

2π

∑
ι=±1

∞∑
n=1

θ(Nsn) |vsn(ιqFsn)|2π �sn,β(ιqFsn, qj )2π �sn,β ′(ιqFsn, qj ′) , (F.1)

where the β = c, ηn, sn bands group velocities vβ(qj ) are within the TL continuum q represen-
tation given by,

vβ(q) = ∂εβ(q)

∂q
where β = c, ηn, sn . (F.2)

The β = c, ηn, sn band energy dispersions εβ(qj ) appearing here read,
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εβ(qj ) = Eβ(qj ) + εc
β(qj ) ; εc

β(qj ) = t

π

∫
{Qι

τ }
dk 2π �̄c β

(
sin k

u
,
�

β
0 (qj )

u

)
sin k

for j = 1, ...,Lβ , (F.3)

where the β = c, ηn, sn bands energy spectrum Eβ(qj ) is provided in Eq. (A.7) of Appendix A
with the rapidity functionals �c

0(qj ) = sin kc
0(qj ) and �αn

0 (qj ) being those of a η-Bethe state 
with compact distributions of general form, Eq. (51). The integration 

∫
{Qι

τ } dk is defined as,

∫
{Qι

τ }
dk =

Q−−∫
−π

dk +
π∫

Q+−

dk for mη ≤ 1/2 (τ = − hole like)

=
Q++∫

Q−+

dk for mη ≥ 1/2 (τ = + particle like) . (F.4)

The momentum rapidity variable k integration limiting parameters Qι
τ are given by,

Qι
τ = kc(qι

Fc,τ ) where ι = ± and τ = ± . (F.5)

In this expression qι
Fc,τ stands for the c band compact domains limiting momenta, Eq. (52) for 

β = c.
In the case of excited states of a ground state whose c band distribution is compact and sym-

metrical as given in Eq. (59), the corresponding limiting occupancy momentum rapidities Qι
τ in 

Eq. (F.5) rather read Q±+ = ±Q for such a ground state where Q = kc(qFc) and qFc = π(1 −mη).
For η-Bethe states generated by a finite number of c band processes from those with c and 

s1 bands compact distributions of general form, Eq. (51), belonging to the ms = 0 reference 
SzSLNSN subspace 1A, the related group velocity, Eq. (F.2) for β = c, is up to O(u−2) order 
and for mη ∈ [0, 1] found to be given by,

vc(qj ) = 2t sinqj − 2t
(1 − mη) ln 2

u
sin 2qj − τ 2t

ln 2

2πu

(∑
ι=±

(ι) cos(qι
Fc,τ )

)
cosq

+ 6t (1 − mη)
2
(

ln 2

u

)2(
1 − 3

2
sin2 qj

)
sinqj

− τ 2t
(1 − mη)

2π

(
ln 2

u

)2
(∑

ι=±
(ι) cos(qι

Fc,τ )

)
sinq

− τ 2t
(1 − mη)

2π

(
ln 2

u

)2
(∑

ι=±
(ι) sin2(qι

Fc,τ )

)
cosq

− 2t
1

8π2

(
ln 2

u

)2
(∑

ι=±
sin(2qι

Fc,τ )

)
cosq

+ 2t
1

2

(
ln 2

)2

sin(q−
Fc,τ + q+

Fc,τ ) cosq . (F.6)

4π u
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The terms that depend on the momenta qι
Fc,τ where τ = ± and ι = ± are state dependent. The 

expression corresponding to the subset of terms that are state independent gives exactly the c
band current spectrum in Eq. (72).

For the ms → 1 −mη reference SzSLNSN subspace 1A and mη ∈ [0, 1] all terms of the c-band 
group velocity under consideration are up to O(u−2) order state independent and read,

vc(qj ) = 2t sinqj − 2t
(1 − mη − ms)

u
sin 2qj

+ 6t
(1 − mη − ms)

2

u2

(
1 − 3

2
sin2 qj

)
sinqj . (F.7)

Note that up to that order the group velocity vc(qj ) exactly equals the current spectrum Jh
c (qj ) =

−Jc(qj ), Eq. (73).
Finally, for mη = 0 and the set of fixed ms density reference SzSLNSN subspaces 1A refer-

ring to the interval ms ∈ [0, 1] all terms of the c-band group velocity vc(qj ) are up to O(u−2)

order state independent and that velocity exactly equals the current spectrum Jh
c (qj ) = −Jc(qj ), 

Eq. (70), and thus reads,

vc(qj ) = 2t sinqj − 2t
nηs

u
sin 2qj + 6t

(nηs

u

)2
(

1 − 3

2
sin2 qj

)
sinqj

where nηs = (1 − ms)gs for mη = 0 and ms ∈ [0,1] . (F.8)

Here gs = gs(ms) is the function in Eq. (71).
The phase shifts 2π �β,β ′(qj , qj ′) in Eq. (F.1) where β and β ′ refers to c, ηn, and sn branches 

are a generalization of those considered in Ref. [103] to η-Bethe states with compact distributions 
of general form, Eq. (51), and η-Bethe states generated from them by small c and ηn bands 
distributions deviations. For all such states they have the form,

2π �β,β ′(qj , qj ′) = 2π �̄β,β ′
(
r, r ′) where r = �

β
0 (qj )/u and r ′ = �

β ′
0 (qj ′)/u , (F.9)

and the rapidity functionals are those of the corresponding η-Bethe states with compact distri-
butions. The rapidity dressed phase shifts 2π �̄β,β ′ on the right-hand side of Eq. (F.9) are the 
solution of well-defined integral equations. Those are provided in the following for the reference 
SzSLNSN subspace 1, as defined in Section 4.2. (That subspace plays a central role in the upper 
bound procedures used in the studies of this paper.)

For the case of η-Bethe states with compact distributions of general form, Eq. (51), belonging 
to the reference SzSLNSN subspace 1 and η-Bethe states generated from them by small c and ηn

bands distributions deviations, a first set of rapidity dressed phase shifts 2π �̄β,β ′ obey integral 
equations by their own,

�̄s1,c

(
r, r ′)= − 1

π
arctan(r − r ′) +

B/u∫
−B/u

dr ′′ Gτ (r, r
′′) �̄s1,c

(
r ′′, r ′) , (F.10)

�̄s1,ηn

(
r, r ′)= − 1

π2 u

∫
{Qι

τ }
dk cosk

arctan
(

sin k/u−r ′
n

)
1 + (r − sin k/u)2

+
B/u∫

dr ′′ Gτ(r, r
′′) �̄s1,ηn

(
r ′′, r ′) , (F.11)
−B/u
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and

�̄s1,sn

(
r, r ′)

= δ1,n

1

π
arctan

( r − r ′

2

)
+(1 − δ1,n)

1

π

{
arctan

( r − r ′

n − 1

)
+ arctan

( r − r ′

n + 1

)}

− 1

π2 u

∫
{Qι

τ }
dk cosk

arctan
(

sin k/u−r ′
n

)
1 + (r − sin k/u)2 +

B/u∫
−B/u

dr ′′ Gτ(r, r
′′) �̄s1,s1

(
r ′′, r ′) . (F.12)

The kernel Gτ(r, r ′) is given by,

Gτ(r, r
′) = − 1

2π

[
1

1 + ((r − r ′)/2)2

][
1 + τ

2

(
tτ (r) + tτ (r

′) + lτ (r) − lτ (r
′)

r − r ′

)]
.

(F.13)

Here

tτ (r) = 1

π

∑
ι=±

(ι) arctan

(
r − sinQι

τ

u

)
, (F.14)

and

lτ (r) = 1

π

∑
ι=±

(ι) ln

(
1 +

(
r − sinQι

τ

u

)2
)

. (F.15)

A second set of rapidity dressed phase shifts are expressed in terms of those in
Eqs. (F.10)–(F.12) as follows,

�̄c,c

(
r, r ′)= 1

π

B/u∫
−B/u

dr ′′ �̄s1,c

(
r ′′, r ′)

1 + (r − r ′′)2 , (F.16)

�̄c,ηn

(
r, r ′)= − 1

π
arctan

( r − r ′

n

)
+ 1

π

B/u∫
−B/u

dr ′′ �̄s1,ηn

(
r ′′, r ′)

1 + (r − r ′′)2 , (F.17)

and

�̄c,sn

(
r, r ′)= − 1

π
arctan

( r − r ′

n

)
+ 1

π

B/u∫
−B/u

dr ′′ �̄s1,sn

(
r ′′, r ′)

1 + (r − r ′′)2 . (F.18)

The remaining rapidity dressed phase shifts can be expressed either in terms of those in 
Eqs. (F.16)–(F.18) only,

�̄ηn,c

(
r, r ′)= 1

π
arctan

( r − r ′

n

)
− 1

π u

∫
{Qι

τ }
dk cosk

�̄c,c

(
sin k/u, r ′)

n[1 + (
r−sin k/u

n
)2] , (F.19)

�̄ηn,ηn′
(
r, r ′)= �n,n′(r − r ′)

2π
− 1

π u

∫
ι

dk cosk
�̄c,ηn′

(
sin k/u, r ′)

n[1 + (
r−r sin k/u

n
)2] , (F.20)
{Qτ }
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�̄ηn,sn′
(
r, r ′)= − 1

π u

∫
{Qι

τ }
dk cosk

�̄c,sn′
(
sink/u, r ′)

n[1 + (
r−sin k/u

n
)2] , (F.21)

or in terms of both those in Eqs. (F.10)–(F.12) and in Eqs. (F.16)–(F.18),

�̄sn,c

(
r, r ′)= − 1

π
arctan

( r − r ′

n

)
+ 1

π u

∫
{Qι

τ }
dk cosk

�̄c,c

(
sink/u, r ′)

n[1 + (
r−sin k/u

n
)2]

−
B/u∫

−B/u

dr ′′�̄s1,c

(
r ′′, r ′) �

[1]
n,1(r − r ′′)

2π
; n > 1 , (F.22)

�̄sn,ηn′
(
r, r ′)= 1

π u

∫
{Qι

τ }
dk cosk

�̄c,ηn′
(
sin k/u, r ′)

n[1 + (
r−sin k/u

n
)2]

−
B/u∫

−B/u

dr ′′�̄s1,ηn′
(
r ′′, r ′) �

[1]
n,1(r − r ′′)

2π
; n > 1 , (F.23)

�̄sn,sn′
(
r, r ′)= �n,n′(r − r ′)

2π
+ 1

π u

∫
{Qι

τ }
dk cosk

�̄c,sn′
(
sin k/u, r ′)

n[1 + (
r−sin k/u

n
)2]

−
B/u∫

−B/u

dr ′′�̄s1,sn′
(
r ′′, r ′) �

[1]
n,1(r − r ′′)

2π
. (F.24)

In the above equations, �n n′(x) is the function given in Eq. (A.3) of Appendix A and �[1]
n n′(x)

is its derivative,

�
[1]
n,n′(x) = ∂�n,n′(x)

∂x
= δn,n′

{ 1

n[1 + ( x
2n

)2] +
n−1∑
l′=1

2

l′[1 + ( x
2l′ )

2]
}

+ (1 − δn,n′)
{ 2

|n − n′|[1 + ( x
|n−n′| )2]

+ 2

(n + n′)[1 + ( x
n+n′ )2] +

n+n′−|n−n′ |
2 −1∑
l′=1

4

(|n − n′| + 2l′)[1 + ( x
|n−n′|+2l′ )

2]
}

.

(F.25)

The phase-shift integral equations given here are an extension of those provided in Ref. [103], 
which refer to η-Bethe states generated from ground states by small c and ηn bands distributions 
deviations.

The phase shifts suitable to the set of subspaces considered in the analysis of Section 4.2
other than the reference SzSLNSN subspace 1 to which Eqs. (F.10)–(F.24) apply either are easily 
expressed in terms of those defined by these equations under suitable densities interchange or are 
straightforwardly computed.
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Appendix G. Useful u � 1 expansions in powers of u−l′ for l′ = 1, ..., ∞

The expansion terms of u−j order j > 2 of the c-band current spectrum Jh
c (qj ), Eq. (68), are 

state dependent. To illustrate this property, in this Appendix such a current spectrum is expanded 
up to u−3 order for the ms = 0 and ms → 1 − mη reference SzSLNSN subspaces 1A and the 
whole mη ∈ [0, 1] range. We consider the η-Bethe states of a general reference SzSLNSN sub-
space 1A whose β = c, ηn, sn compact distributions have limiting momenta of the form given in 
Eq. (77). The corresponding c band distribution 2πρc(k) is then defined by the equation,

2πρc(k) = 1 + cosk

π u

B∫
−B

d�
2πσs1(�)

1 +
(

sin k−�
u

)2 where B = �
β
0 (qFs1) = �

β
0 (kF↓) , (G.1)

and the distribution 2πσs1(�) obeys the related equation,

2πσs1(�) = 1

π u

∫
{Qι

τ }
dk

2πρc(k)

1 +
(

�−sin k
u

)2 − 1

2π u

B∫
−B

d�′ 2πσs1(�
′)

1 +
(

�−�′
2u

)
)2 . (G.2)

The integration 
∫
{Qι

τ } appearing here and its limiting parameters Qι
τ are defined in Eqs. (F.4) and 

(F.5) of Appendix F, respectively.
As given in Eq. (A.4) of Appendix A, the distributions 2πρc(k) and 2πσs1(�) are related to 

the inverse functions qc(k) and qs1(�) of the rapidity momentum functional kc(q) and s1 branch 
rapidity functional �s1(q), respectively, as,

2πρc(k) = ∂qc(k)

∂k
and 2πσs1(�) = ∂qs1(�)

∂�
. (G.3)

Furthermore, for the present subspace the distributions 2πρc(k) and 2πσs1(�) obey the sum 
rules,

∫
{Qι

τ }
dk 2πρc(k) = 2π(1 − mη) and

B∫
−B

d�2πσs1(�) = π(1 − mη − ms) . (G.4)

We start by considering the case of the ms = 0 reference SzSLNSN subspace 1A for densities 
mη ∈ [0, 1]. As for a ground state [5], in the present more general case of energy and momentum 
eigenstates whose distributions are of the form, Eq. (51), one can use the Fourier transform of 
2πσs1(�) to reach from the use of Eq. (G.2) the following alternative exact relation,

2πσs1(�) = 1

4u

∫
{Qι

τ }
dk

2πρc(k)

cosh
(

π
2u

(� − sin k)
) . (G.5)

The use of this 2πσs1(�) expression in Eq. (G.1) reveals that the distribution 2πρc(k) obeys the 
following integral equation,

2πρc(k) = 1 + cosk

∫
{Qι

τ }
dk′ �(k, k′)2πρc(k

′) , (G.6)

where the kernel reads,
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�(k, k′) = 1

4π

∞∫
−∞

d�
1

(u2 + �2)

1

cosh
(

π
2u

(� + sin k − sink′)
) . (G.7)

In order to derive a large-u expansion of the distribution 2πρc(k), it is convenient to introduce 
the following integral representation of the integrand factor 1/ cosh(πx/2u) in Eq. (G.7) where 
x = � + sin k − sink′,

1

cosh
(

πx
2u

) = 1

π

∞∫
0

dy
cos

( xy
2u

)
cosh

( y
2

) . (G.8)

The use of this expression in Eq. (G.7) leads to,

�(k, k′) = 1

2π u

∞∫
0

dy
cos

(
(sin k−sin k′)y

2u

)
1 + ey

. (G.9)

This expression is suitable for deriving the following �(k, k′) large-u expansion,

�(k, k′) = ln 2

2π u
+

∞∑
l′=1

(−1)l
′

2π u
ζ(2l′ + 1)

(
1 − 1

22l′

)(
sin k − sink′

2u

)2l′

= ln 2

2π u
+ 1

π

∞∑
l′=1

(−1)l
′ ζ(2l′ + 1)

(2u)2l′+1

(
1 − 1

22l′

)

×
2l∑

l′′=0

(−1)l
′′
(sin k′)l′′

(
2l

l′′

)
(sin k)2l′−l′′ . (G.10)

From the use of this large-u expansion in Eq. (G.6) accounting for the first sum rule in 
Eq. (G.4), the following u−l′ expansion obeyed by the distribution 2πρc(k), which contains all 
infinite orders l′ = 1, 2, ..., ∞, is straightforwardly derived,

2πρc(k) = 1 − (1 − mη) ln 2

u
cosk

+ cosk

∞∑
l′=1

ζ(2l′ + 1)

(2u)2l′+1

(
1 − 1

22l′

)

×
2l∑

l′′=0

(−1)l
′+l′′Ml′′

2l′

l′′
(sin k)2l′−l′′ for ms = 0 , (G.11)

where

Ml′′ = 1

π

∫
{Qι

τ }
dk′ 2πρc(k

′) (sin k′)l′′ . (G.12)

The function qc(k) in Eq. (G.3), such that 2πρc(k) = ∂qc(k)/∂k and qc(0) = 0, which is the 
inverse function of kc(q), obeys a corresponding equation expanded in powers of u−l′ ,
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qc(k) = k − (1 − mη) ln 2

u
sink

+
∞∑

l′=1

ζ(2l′ + 1)

(2u)2l′+1

(
1 − 1

22l′

) 2l′∑
l′′=0

(−1)l
′+l′′Ml′′

(2l′ − l′′ + 1)

(
2l

l′′

)
(sin k)2l′−l′′+1 . (G.13)

In contrast to ground-state particle-like symmetrical and compact c band distributions, 
Eq. (59), for which the coefficients Ml′′ , Eq. (G.12), vanish for l′′ odd integers, in the case of the 
η-Bethe states considered here the contributions from such l′′ odd integers is behind 2πρc(k) not 
being a pure even function. This also implies that qc(k) is not a pure odd function. Note though 
that qc(0) = 0 and qc(±π) = ±π , as straightforwardly follows from analysis of Eq. (G.13).

Equations (G.11) and (G.12) can be solved order by order in u−1. Accounting for the first sum 
rule in Eq. (G.4), this gives for instance up to u−3 order the following expansions for 2πρc(k)

and qc(k),

2πρc(k) = 1 + (1 − mη) ln 2

u
cosk

− 3ζ(3)

32u3

(
(1 − mη)(1 + 2 sin2 k)

+ τ

π

∑
ι=±

(ι)

(
2 cos(qι

Fc,τ ) sin k − 1

4
sin(2qι

Fc,τ )

))
cosk , (G.14)

and

qc(k) = k + (1 − mη) ln 2

u
sink

− 3ζ(3)

32u3

(
(1 − mη)

(
1 + 2

3
sin2 k

)

+ τ

π

∑
ι=±

(ι)

(
cos(qι

Fc,τ ) sin k − 1

4
sin(2qι

Fc,τ )

))
sin k , (G.15)

respectively.
Inversion of this qc(k) expansion gives up to u−3 order the following expression for the ra-

pidity momentum functional kc(qj ),

kc(qj ) = qj − (1 − mη) ln 2

u
sinqj

+ ((1 − mη) ln 2)2

u2 cosqj sinqj − ((1 − mη) ln 2)3

u3

(
1 − 3

2
sin2 qj

)
sinqj

+ 3ζ(3)

32u3

(
(1 − mη)

(
1 + 2

3
sin2 qj

)

+ τ

π

∑
ι=±

(ι)

(
cos(qι

Fc,τ ) sinqj − 1

4
sin(2qι

Fc,τ )

))
sinqj . (G.16)

The use of the expansions, Eqs. (G.14) and (G.16), in the current spectrum Jh
c (qj ) expression, 

Eq. (68), readily leads to the expansion up to u−3 order of that spectrum given in Eq. (72).
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In the case of the ms → 1 − mη reference SzSLNSN subspace 1A also considered here, one 
straightforwardly finds from the use of Eqs. (G.1)–(G.4) that for mη ∈ [0, 1] and up to second 
order in (1 − mη − ms) � 1 the c-band distribution 2πρc(k) is for mη ∈ [0, 1] given by,

2πρc(k) = 1 + (1 − mη − ms)

u

cosk

1 +
(

sin k
u

)2

+O((1 − mη − ms)
3) for (1 − mη − ms) � 1 . (G.17)

This result actually holds true as well for any s1-band distribution other than that considered in 
Eqs. (G.2) and (G.4).

That 2πρc(k), Eq. (G.17), is an even function of k implies that the function qc(k) in Eq. (G.3)
is an odd function of that variable. Hence it reads,

qc(k) = k + (1 − mη − ms) arctan

(
sin k

u

)
+O((1 − mη − ms)

3) for (1 − mη − ms) � 1 . (G.18)

Expanding qc(k) up to u−3 order in u−1 and second order in (1 −mη −ms) and inverting that 
expansion gives up to u−3 order the following expression for the rapidity momentum functional 
kc(qj ),

kc(qj ) = qj − (1 − mη − ms)

u
sinqj + (1 − mη − ms)

2

u2 cosqj sinqj

+ (1 − mη − ms)

3u3 sin3 qj +O((1 − mη − ms)
3) . (G.19)

The use of the expansions, Eqs. (G.17) and (G.19), in the current spectrum Jh
c (qj ) expression, 

Eq. (68), leads to the expansion up to u−3 order of that spectrum provided in Eq. (73).
Finally, the largest charge current absolute value of reference SzSLNSN subspaces 1A in 

Eq. (79) is derived in some limits of interest. For such subspaces the current deviation functional, 
Eq. (57), simplifies to,

δ〈ĴLWS(lr, Sη,u)〉 =
L∑

j=1

δNc(qj ) jc(qj ) . (G.20)

By combining the exact property that 〈ĴLWS(lr, Sη, u)〉 = δ〈ĴLWS(lr, Sη, u)〉 for both mη → 0
and mη → 1 with the use of the c-band distribution that maximizes the corresponding absolute 
value |〈ĴLWS(lr, Sη, u)〉| = |δ〈ĴLWS(lr, Sη, u)〉| in the u → 0 limit, one finds,

|〈Ĵ max
LWS(lr, Sη,u)〉| = 4t Lmη (1 − mη) for mη → 0 , ms ∈ [0,1] , and u → 0

= 2t Lmη (1 − mη) for mη ∈ [0,1] , ms → 1 − mη , and u → 0 ,

= 2t Lmη (1 − mη) for mη → 1 , ms → 0 , and u → 0 . (G.21)

The use of the expansions up to u−3 order of Jh
c (qj ), Eqs. (72) and (73), in the general charge 

current expression, Eq. (68), for c and s1 bands compact distributions of general form, Eq. (51), 
belonging to reference SzSLNSN subspaces 1A leads up to u−2 order to the 〈ĴLWS(lr, Sη, u)〉
expansion, Eq. (74), in the cases of ms = 0 and ms → 1 −mη reference SzSLNSN subspaces 1A, 
respectively. Up to u−3 order that leads to the expansions in Eqs. (75) and (76), respectively.
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Moreover, the use of the specific limiting occupancy momenta qι
Fc,τ , Eq. (77), that maximize 

the absolute values of the 〈ĴLWS(lr, Sη, u)〉 expansions in Eqs. (74), (75), and (76) leads for 
general reference SzSLNSN subspaces 1A up to u−2 order to,

|〈Ĵ max
LWS(lr, Sη,u)〉|
= 2t L sin(πmη)

π

(
1 − 7

2

(nηs

u

)2
(

1 − 8

7
cos(πmη) − 3

7
sin2(πmη)

))
+O(u−4)

for mη ∈
[

0,
1

2
− δu

ηs

]
and ms ∈ [0, (1 − mη)]

= 2t L sin2(πmη)

π
+ t Lnηs sin2(2πmη)

π u

(
1 + 3nηs

2u
cos(2πmη)

)
+O(u−3)

for mη ∈
[

1

2
− δu

ηs,
1

2
+ δu

ηs

]
and ms ∈ [0, (1 − mη)]

= 2t L sin(πmη)

π

(
1 − 7

2

(nηs

u

)2
(

1 + 8

7
cos(πmη) − 3

7
sin2(πmη)

))
+O(u−4)

for mη ∈
[

1

2
+ δu

ηs,1

]
and ms ∈ [0, (1 − mη)] . (G.22)

Both for mη ∈ [0, 1/2 −δu
ηs] and mη ∈ [1/2 +δu

ηs, 1] the terms of orders u−1, u−3, and remaining 
odd orders u−j where j = 5, 7, . . . of this maximum current absolute value expansion exactly 
vanish.

In the case of the expansions of u−3 order in Eqs. (75) and (76) specific to the ms = 0 and 
ms → 1 − mη reference SzSLNSN subspaces 1A, respectively, this leads to,

|〈Ĵ max(3)
LWS (lr, Sη,u)〉|
= 0 +O(u−4) for mη ∈

[
0,

1

2
− δu

ηs

]
and ms = 0

= 2t L sin2(2πmη)

π u3 {((1 − mη) ln 2)3
(

1 − 4

3
sin2(2πmη)

)

+ 3ζ(3)

64

(
(1 − mη)

(
1 + 2

3
sin2(2πmη)

)
+
(

1 − 1

2
cos(2πmη)

)
sin(2πmη)

π

)
}

+O(u−4) for mη ∈
[

1

2
− δu

ηs,
1

2
+ δu

ηs

]
and ms = 0

= 0 +O(u−4) for mη ∈
[

1

2
+ δu

ηs,1

]
and ms = 0 , (G.23)

and

|〈Ĵ max(3)
LWS (lr, Sη,u)〉|
= 0 +O((1 − mη − ms)

3) for mη ∈
[

0,
1

2
− δu

ηs

]
and ms → 1 − mη

= − t L sin4(2πmη)
(1 − mη − ms) +O((1 − mη − ms)

3)

3πu3
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for mη ∈
[

1

2
− δu

ηs,
1

2
+ δu

ηs

]
and ms → 1 − mη ,

= 0 +O((1 − mη − ms)
3) for mη ∈

[
1

2
+ δu

ηs,1

]
and ms → 1 − mη , (G.24)

respectively.

Appendix H. Derivation of the T → ∞ charge stiffness upper bound and comparison to 
the Mazur’s lower bound

The first goal of this appendix is to confirm that the charge stiffness upper bound in Eq. (106)
is larger than that given in Eq. (105). At fixed density ms , the charge currents 〈ĴLWS(lr, Sη, u)〉 =∑L

j=1 Nh
c (qj ) Jh

c (qj ) in Eq. (68) are the same for all 
(L/2−Sη+Ss

2Ss

)
independent spin configura-

tions with the same spin Ss = 0, 1, ..., (L − 2Sη)/2. Those generate the spin degrees of freedom 
of the η-Bethe states that span a SzSLNN1 subspace as defined in Section 6 and thus contribute 
to the charge stiffness upper bound, Eq. (105). Indeed, such currents only depend on the density 
ms common to all such spin configurations through the dependence on that density of the charge 
current spectrum J h

c (qj ) = −Jc(qj ) in Eq. (68).
At fixed density mη, the charge currents in Eq. (68) directly depend on the occupancy con-

figurations of the Nc = (L − 2Sη) = L (1 − mη) charge c pseudoparticles over the available 
j = 1, ..., L c-band discrete momentum values qj of which Nh

c = 2Sη = L mη are unoccupied. 
Such currents also depend on the density mη common to all such charge configurations through 
the dependence on that density of the charge current spectrum Jh

c (qj ) = −Jc(qj ) in Eq. (68). The 
set of j = 1, ..., L c-band discrete momentum values {qj } are exactly the same for all η-Bethe 
states that span the SzSLNN1 subspace under consideration.

Hence concerning the spin occupancy configurations and c-band occupancy configurations 
that generate such states, only the latter determine the form of the charge currents in Eq. (68). 
The only effect of the spin degrees of freedom onto the charge currents is the ms dependence of 
the current spectrum Jh

c (qj ) = −Jc(qj ) in Eq. (68).
The SzSLNN1 subspace considered here can be divided into references SzSLNSN subspaces 

1A, each with a fixed spin belonging to the set Ss = 0, 1, ..., (L − 2Sη)/2. One can then choose 
the fixed-Ss reference SzSLNSN subspace 1A whose corresponding charge stiffness upper bound 
is larger than that in Eq. (105), which is defined within the whole SzSLNN1 subspace. It fol-
lows from the above properties that such a fixed-Ss subspace is that for which the average 
|J̄c| = 1

L

∑L
j=1 |Jc(qj )|, Eq. (C.1) of Appendix C for β = c, of the absolute value |Jc(qj )| of 

the charge current spectrum Jh
c (qj ) = −Jc(qj ) in Eq. (68) is largest. Such an average is inde-

pendent of the qj occupancies and runs over all j = 1, ..., L such momentum values. Within the 
TL, one replaces the discrete momentum values qj such that qj+1 − qj = 2π/L by a continuum 
momentum variable q . By replacing the sum 

∑L
j=1 by an integral it is found that up to u−2 order 

such an average value reads,

|J̄c| = 4t

π

(
1 + 3

(
(1 − mη − ms)gs

u

)2
)

, (H.1)

where gs = gs(ms) is the function in Eq. (71).
Suitable analysis of this expression reveals that |J̄c(qj )| is largest for the Ss = 0 reference 

SzSLNSN subspace 1A. This follows from the inequality,



494 J.M.P. Carmelo et al. / Nuclear Physics B 930 (2018) 418–498
ln 2 >
(1 − mη − ms)

(1 − mη)
gs for ms ∈ [0,1 − mη] where gs ∈ [ln 2,1] . (H.2)

One finds that the derivative ∂gs(ms)/∂ms is such that ∂gs(ms)/∂ms |ms=0 = 0 at ms = 0 and 
∂gs(ms)/∂ms |ms > 0 for ms ∈]0, (1 − mη)]. The use of such derivative behaviors confirms the 
validity of the inequality, Eq. (H.2).

Although for simplicity here it was confirmed that the charge stiffness upper bound in 
Eq. (106) is larger than that given in Eq. (105) for the approximate u > 3/2 range for which 
the u−2 order expansions of these upper bounds apply, the validity of the result can be shown to 
apply to the whole u > 0 range. That here its validity was confirmed up to u−2 order stems from 
the charge stiffness upper bound, Eq. (106), being computed in the following to that order.

The second goal of this Appendix is to determine an exact expression for that charge stiffness 
upper bound up to u−2 order and in the TL for the hole concentration range mz

η ∈ [0, 1/2]. 
We start by decomposing the current Jc(qj ) = −Jh

c (qj ), Eq. (107), into a polynomial in Nc =
L − 2Sη,

Jc(qj ) =
2∑

μ=0

αμ(qj )N
μ
c , (H.3)

where

α0(qj ) = −2t sinqj , α1(qj ) = 2t
ln 2

Lu
sin 2qj ,

α2(qj ) = −6t
(ln 2)2

L2 u2

(
1 − 3

2
sin2 qj

)
sinqj . (H.4)

We use a simplified notation within which Nc(qj ) =: νj ∈ {0, 1} are the binary occupation 
numbers and Nc =∑j νj = L −2Sη. The main technical step is the evaluation of the many-body 
sum (which is just the sum over 

∑
l∗ in Eq. (106) without the constant 1/(2Sη)

2 prefactor),

INc =
∑

{νj }∈{0,1}L

⎛
⎝ L∑

j=1

νjJj

⎞
⎠

2

δNc,
∑

j νj
=

2∑
μ,μ′=0

φμ,μ′(Nc)Nμ+μ′
, (H.5)

where Jj = Jc(qj ) and,

φμ,μ′(Nc) =
∑

{νj }∈{0,1}L
δNc,

∑
j νj

L∑
j,k=1

αμ(qj )αμ′(qk) νj νk . (H.6)

This object is in turn evaluated via writing its discrete Laplace transform,

φ̃μ,μ′(λ) =
L∑

Nc=0

eλNcφμ,μ′(Nc) (H.7)

=
∑
{νj }

(
L∏

n=1

eλνn

)∑
j,k

αμ(qj )αμ′(qk) νj νk (H.8)

= (1 + eλ)L−2e2λ

j 	=k∑
αμ(qj )αμ′(qk) + (1 + eλ)L−1eλ

∑
αμ(qj )αμ′(qj ) (H.9)
j,k j
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= (1 + eλ)L−2eλAμ,μ′ , (H.10)

where we accounted for that 
∑

j αμ(qj ) = 0 for all μ and defined the sums, or integrals,

Aμ,ν :=
∑
j

αμ(qj )αμ′(qj ) � L

2π

π∫
−π

dq αμ(q)αμ′(q) , (H.11)

which can be straightforwardly computed. From there we read,

φμ,μ′(Nc) =
(

L − 2

Nc − 1

)
Aμ,μ′ and φμ,μ′(0) = φμ,μ′(L − 1) = 0 . (H.12)

Plugging all that to the charge stiffness upper bound, Eq. (106), we find,

D��(T ) = (2Sz
η)

2

2LT

∑L/2
Sη=|Sz

η|
∑2

μ,μ′=0
1

(2Sη)2

(
L−2

L−2Sη−1

)
Aμ,μ′(L − 2Sη)

μ+μ′

∑L/2
Sη=|Sz

η|
(

L
2Sη

) . (H.13)

Next we perform an asymptotic analysis of this expression, accounting for that L → ∞ within 
the present TL. First we note that,(

L − 2

L − 2Sη − 1

)
� 2Sη(L − 2Sη)

L2

(
L

2Sη

)
. (H.14)

Then we realize that both sums over the binomial symbols in the numerator and the denominator 
of the expression, Eq. (H.13), become sharply peaked around Sη = S∗ = L/4, under the condition 
that,

|Sz
η| <

L

4
, (H.15)

and thus mz
η ∈ [0, 1/2].

Finally, the charge stiffness upper bound, Eq. (106), then reads within the TL and for mz
η ∈

[0, 1/2],

D��(T ) = (2Sz
η)

2

2LT

2∑
μ,μ′=0

Aμ,μ′L−2(L/2)μ+μ′

=
(

2Sz
η

L

)2
π2t2

T

(
1 +

(
ln 2

2u

)2

+O(u−4)

)
, (H.16)

which can indeed be written as given in Eq. (108).
The charge stiffness Mazur’s lower bound has been derived for T → ∞ in Ref. [66]. In the 

zero-spin case considered in the upper-bound studies of this paper one finds that the charge 
stiffness Mazur’s lower bound DMz(T ) is such that,

D(t) ≥ DMz(T ) = cMz t2

2T
(mz

η)
2

where cMz = 2 (1 − (mz
η)

2)

(1 + (mz
η)2)

(
1 + ( 1 )2 1

z 2

) . (H.17)
u 8(1+(mη) )
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On the one hand, for (1 − mz
η) � 1 and up to O(u−2) order the upper bound, Eq. (110), 

equals the charge stiffness. Hence one finds to such an order that in that limit for which cMz ≈
2(1 − mz

η)(1 − (1/4u)2) the use of the Mazur’s lower bound leads to the inequality,

D(T ) = 2t2

2T
(1 − mz

η) ≥ 2t2

2T
(1 − mz

η)

(
1 −

(
1

4u

)2
)

for (1 − mz
η) � 1 . (H.18)

For (1 − mz
η) � 1 the Mazur’s lower bound thus equals the charge stiffness only in the u → ∞

limit.
On the other hand, for mz

η � 1 one finds up to O(u−2) order that cMz ≈ 2(1 − ((1/
√

2)/2u)2)

and the charge stiffness is of the form D(t) = cu t2

2T
(mz

η)
2 where the coefficient cu obeys the 

double inequality given in Eq. (109).
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