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Abstract

User location data is valuable for diverse social media analytics. In this paper,

we address the non-trivial task of estimating a worldwide city-level Twitter user

location considering only historical tweets. We propose a purely unsupervised

approach (no location data is used) that is based on a synthetic geographic

sampling of Google Trends (GT) city-level frequencies of tweet nouns and three

clustering algorithms. The approach was validated empirically by using a re-

cently collected dataset, with 3,268 worldwide city-level locations of Twitter

users, obtaining competitive results when compared with a state-of-the-art Word

Distribution (WD) user location estimation method. The best overall results

were achieved by the GT noun (GTN) DBSCAN (GTN-DB) method, which is

computationally fast, and correctly predicts the ground truth locations of 15%,

23%, 39% and 58% of the users for tolerance distances of 250 km, 500 km, 1,000

km and 2,000 km.
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1. Introduction

Spatial data is a core element of several Web and social media analytics. In

effect, knowing the country, city or even more fine-grained location of a user can

help in: event detection, disaster early warnings, road traffic prediction, public

welfare activity information and tourism prediction (Ozdikis et al., 2016; Zahra

et al., 2020; Alkouz & Aghbari, 2020; Chen et al., 2020; Khatibi et al., 2019).

For instance, Zahra et al. (2020) used geotagging and a text-based Location

Indicative Words (LIW) algorithm to extract traffic locations (e.g., Downtown

Dubai) from Twitter and Instagram posts. The collected time and geolocation

data allowed to build an analytics system that was capable of detecting and

predicting road traffic jams.

The automatic inference of social media geolocation data is a non-trivial task.

Focusing on Twitter, which is a widely used microblog service, with around 326

million active users1, the geographic data are available mainly at two different

levels: single tweet Global Positioning System (GPS) latitude and longitude

coordinates (e.g., 43.4722854,−80.5448576) and user profile information (e.g.,

University of Waterloo, Waterloo, Ontario, Canada). However, recent studies

demonstrate that only a tiny fraction (1%) of tweets are geotagged with coor-

dinates and only 66% of the user profile data are reliable (Schulz et al., 2013).

In effect, users tend to turn off GPS capabilities to save battery power or en-

sure privacy. Moreover, the Twitter location profile form is free text, thus users

can add non-real locations such as “worldwide” or “right here”. Given these

limitations, diverse studies have proposed geolocation estimation methods that

are purely based on tweet Word Distribution (WD) analysis. WD methods are

based on a supervised machine learning or geographic dictionaries (LIW). Yet,

these WD works have some disadvantages, as detailed in Section 2: the training

of supervised learning WD methods requires geotagged tweets, while LIW WD

methods use a finite set of locations, often associated with a particular world

1 https://blog.hootsuite.com/twitter-statistics/
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region.

In this work, we propose a novel unsupervised learning WD approach based

on user tweet noun distributions, Google Trends (GT) statistics and spatial

clustering models. GT analyzes the relative popularity of Google search queries

across various world regions and languages (e.g., the search term “brexit” is

more popular in the United Kingdom). It is a valuable big data source that has

been mostly studied under a temporal perspective. For instance, GT was used

to explain consumer behavior changes and to detect trending topics (Jun et al.,

2018; Kwak et al., 2018). In previous work (Zola et al., 2019), we adopted

GT for a spatial analysis, in which tweet nouns (e.g., “scotland”, “brexit”,

“cricket”) were matched with country-level GT statistics, allowing to estimate

the country of interest of Twitter users. This paper extends this approach to a

more informative and challenging task: a worldwide city-level estimation of the

implicit user location context. To achieve such goal, we use tweet nouns, city-

level GT data, a synthetic sampling of most probable GT noun world location

points and spatial clustering models (one for each user). In (Paule et al., 2019),

it was shown that tweet content, and not just geographic dictionary terms, is

correlated with user location. Based on this knowledge, we particularly focus

on tweet nouns, as recently proposed in our previous work (Zola et al., 2019),

since it is assumed that users often tweet about specific sites, events, people,

organizations, and so on, which are linked with their home context or place of

interest. For instance, the term “brigittemacron” is strongly associated in GT

with French cities, such as Paris and Lyon (Section 3.1). In contrast with most

WD works, the proposed approach only uses historical tweets and freely Web

data (GT, Google Maps), thus it does not require geographic labeled Twitter

data or specialized LIW geographic dictionaries. Moreover, it assumes the entire

world region and can be applied to any language. In addition, the obtained

clustering models provide not only the most probable geographic user location

but also a measure of its spatial dispersion, which can be valuable for diverse

social media analytics (e.g., sentiment analysis, tracking consumer behavior).
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1.1. Research objective

The main research objective of our study is to investigate the usefulness of

city-level GT data, associated with historical tweet nouns, to estimate a world-

wide city-level Twitter user location. As in (Zola et al., 2019), we focus on

historical tweet nouns (e.g., sites, events, people), which are expected to have

a spatial context that is helpful for user location estimation. In contrast with

several state-of-the-art works, we address a challenging but valuable pure un-

supervised learning WD setting, which assumes no geolocation target labels

(geotagged tweets or user location profiles) and no access to geographic dic-

tionaries. To address the research goal, we propose an approach that includes

city-level GT scores for historical tweet nouns, a synthetic sampling of most

probable GT noun world location points and spatial clustering models (one for

each user).

1.2. Contributions

The main contributions of the paper are:

1. we estimate the implicit city-level geographic coordinate context of a Twit-

ter user given her/his historical tweets, which is valuable when geotagged

tweets or Twitter user location profiles are unavailable or unreliable (a

common situation in practice);

2. we propose a new unsupervised clustering approach for the user location

estimation, based on GT noun city distributions, city polygons, a syn-

thetic sampling and three clustering algorithms: Gaussian Mixture Models

(GMM), K-means and Density-Based Spatial Clustering of Applications

with Noise (DBSCAN); and

3. we create a recent Twitter user dataset (made publicly available2), with

ground truth city-level locations for 3,268 worldwide users, to compare

2 https://github.com/paolazola/Google-Trends-for-Twitter-users-location-estimation
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the proposed approach with a WD method that uses GMM and labeled

tweets (Priedhorsky et al., 2014).

The paper is structured as follows. Section 2 discusses the related work.

Section 3.1 presents the data, location estimation methods and evaluation mea-

sures. Section 4 describes the experiments and obtained results. Finally, Sec-

tion 5 concludes the paper.

2. Related work

The issue of geolocating social media users has been widely researched due to

its importance for business analytics and other real-world applications (Zheng

et al., 2018). The initial studies about Web geolocation were based on the

Internet Protocol (IP) address. For example, in Backstrom et al. (2008) a prob-

abilistic model was used to link North American Yahoo! queries with IP address

locations. Yet, Virtual Private Networks (VPNs) diminish the accuracy of the IP

location estimation. More importantly, social media typically does not disclose

IP data, thus two main alternative approaches have been proposed: Friendship

Networks (FN) or WD analysis. The FD approach uses a social network analy-

sis, in which the user location is assumed to be close to the locations of her/his

friends (Kotzias et al., 2016). This work is focused on WD geolocation, which

involves a pure analysis of user texts.

Most WD methods search for location named entities (Liu & Zhou, 2013;

Ngoc & Mothe, 2018), which are also known as LIW (Han et al., 2014; Lee et al.,

2015; Chi et al., 2016). Another popular WD approach is to associate words to

specific geographic areas by using a supervised learning (e.g., geotagged tweets)

(Eisenstein et al., 2010; Ozdikis et al., 2019). However, these WD methods

have limitations, assuming a finite set of locations (Han et al., 2016) or, if

the estimation is fine-grained, a small fraction of the Globe surface (Roller

et al., 2012; Laylavi et al., 2016). Moreover, few users use geotagging (e.g.,

due to privacy issues) (Schulz et al., 2013), which reduces greatly the impact of

supervised learning WD methods. Some recent studies adopt hybrid approaches,
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combining: WD and FN (e.g, (Rahimi et al., 2015; Bakerman et al., 2018)); WD

and features derived from user account Metadata (MD) (Ozdikis et al., 2016;

Dredze et al., 2013; Schulz et al., 2013); and WD, FN and MD (Williams et al.,

2017).

A relevant dimension of the geolocation analysis is the level of granularity.

Most research works that focus on Geographic Coordinates (GC) analyze tweets

related with a specific country or area (Eisenstein et al., 2010; Paule et al., 2019).

Also based on a fine-grain resolution is the work of Celik & Dokuz (2018),

which targets Socially Important Locations (SIL), such as a user’s home or

office. To the best of our knowledge, only Pontes et al. (2012) and Schulz et al.

(2013) estimated the most probable location of users given the entire world,

while other WD world location studies were focused on tweet locations (and

not users) (Backstrom et al., 2010; Priedhorsky et al., 2014; Williams et al.,

2017; Paule et al., 2019). The Twitter user location supervised WD method

proposed in Pontes et al. (2012) requires geotagged tweets, which is a limitation

(as previously discussed). As for the work of Schulz et al. (2013), it considers

an hybrid approach, combining WD with MD and the text time zone.

Table 1 summarizes the state-of-the-art studies on Web and social media

location estimation, using a chronological order and focusing on Twitter data

(source column). The Type column identifies the research approach used (WD,

FN or mixed), Lang column details the language of the texts (e.g., English) and

Period the data source collection period. The type of estimated geolocation

is detailed in columns: Target, set in terms of user (U) or tweet (T) location

goal; Level, the granularity level (e.g., Country, COORD); LIS, the location

information source (e.g., geotagged tweets); and Area, the geographic targeted

area. In the table, non disclosed elements are marked with the – symbol.

The last row of Table 1 compares the proposed research with the state-

of-the-art works. This work extends our previous study (Zola et al., 2019),

which used a simple statistical approach, based on the highest GT country

tweet noun scores, to perform a worldwide country-level Twitter user location

estimation. In this paper, we address the more challenging city-level location.
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In particular, we use city-level GT noun scores, which are combined with city

polygons to synthetically generate GT noun geographic points, used to fit spatial

clustering models. In contrast with several state-of-the-art works (e.g., Celik

& Dokuz, 2018; Do et al., 2018; Huang & Carley, 2019; Paule et al., 2019;

Ozdikis et al., 2019), a pure unsupervised WD approach is adopted and thus no

geographic labeled data (e.g., tweets or user location profiles) is required, only

historical tweet nouns and GT data. Moreover, we do not use LIW, as adopted

in (Ozdikis et al., 2016; Williams et al., 2017; Bakerman et al., 2018; Shahraki

et al., 2019), since LIW often assumes finite and rather static set of locations,

typically associated to small world regions. Instead, we use tweet nouns, which

can be dynamically updated and that can refer to geographic words and also

other terms with a location context (e.g., events, people or organizations).

3. Data and methods

3.1. Data

The Twitter data used in this study was collected by the authors in previous

work (Zola et al., 2019). We adopted this data for several reasons: it is related

with a real-world application from the alloy steel domain; it already contains a

worldwide list of users; and it is more recent than other geolocation benchmarks

(shown Table 1), thus the respective nouns should be more relevant for the GT

queries. The data consisted of an initial sample of 49,203 users that tweeted one

of the keywords {“steel price”, “steel industry”, “steel production”}, between

March 2016 to November 2017. Since very few tweets were geotagged, a semi-

automated double source verification was used in Zola et al. (2019) to set the

geolocation ground truth, which was based on metadata (the user profile location

field) and a Location Indicative Words (LIW) match from historical tweets. The

result was a country-level geolocation dataset3 with 744,830 tweets written by

3,298 users from 54 countries.

3 https://github.com/paolazola/Twitter-country-geolocation
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Table 1: Summary of the related work.

Study Typea Langb Sourcec Targetd Levele LISf Period Areag Methodh Metricsi

Cheng et al. (2010) WD EN TW U CI GTW 2009-10 USA MLE Acc@x mi

Eisenstein et al. (2010) WD EN TW T GC GTW 2010 USA CTM MAE,MdAE

Pontes et al. (2012)
WD,FN,

MD
–

FS,GP,

TW
U CI,GC GTW,MD 2011-12 W Mode

Acc,

Acc@x km

Roller et al. (2012) WD EN WP,TW T GC GTW,GWP - USA SL

Acc,

Acc@x km,

MAE,MdAE

Dredze et al. (2013) WD,MD EN TW T
CI,ST,

CO

LIW,MD,

GTW
2013 USA LIW Acc,Acc@x km

Schulz et al. (2013) WD,MD - TW T,U GC
LIW,MD,

GN
2011-12 W LIW

MAE,MdAE,

MSE

Han et al. (2014) WD
EN,

Mixed
TW U CI GTW,GN 2011-12 NA,W SL Acc@x km

Priedhorsky et al. (2014) WD,MD Mixed TW T GC GTW,MD 2012-13 W GMM CAE

Ryoo & Moon (2014) WD KR TW U GC GTW 2010-11 KR SL Acc@x km

Rahimi et al. (2015) WD,FN EN TW U GC GTW 2011-12 USA,W SL Acc@x km

Lee et al. (2015) WD EN TW T ST LIW 2013-14 USA SL R

Liu & Inkpen (2015) WD EN TW U GC -
2010,

2012

USA,

NA
AE

Acc,MAE,

MdAE

Chi et al. (2016) WD EN TW T,U CI GN, LIW - - SL
Acc,MAE,

MdAE

Dredze et al. (2016) WD,MD EN TW T CI GTW,MD 2012-15 W –
Acc,Acc@x km,

MdAE

Han et al. (2016) WD EN TW - CI GTW 2014 – SL Acc

Kotzias et al. (2016) FN EN TW U CI GTW 2013
IR,UK,

USA
TC P

Miura et al. (2016) WD,MD – TW T CI GTW,MD - - SL Acc,MdAE

Ozdikis et al. (2016) WD,MD TR TW T CI LIW,MD 2013 TR DS MAE

Williams et al. (2017)
WD,FN,

MD
EN TW T GC LIW,MD 2015-16 W TC Acc@x km

Zubiaga et al. (2017) WD,MD Mixed TW T CO GTW 2014-15 W SL
Acc,P,R,

F1,MSE

Avvenuti et al. (2018) WD EN,IT TW T GC LD 2011-15 IT,W SL Acc

Bakerman et al. (2018) WD,FN EN TW T CG LIW,GTW 2010 USA GMM CAE

Celik & Dokuz (2018) WD TR TW SIL GC GTW 2008-15 TR SL

Do et al. (2018) WD, FN EN TW U GC – 2010-11 USA SL Acc,Acc@161 km

Huang & Carley (2019) WD,MD EN TW U CO,GC MD,LIW - USA,W SL
MdAE, Acc

Acc@x km

Paule et al. (2019) WD EN TW T GC GTW 2014-16
Chicago,

New York
SL

MAE,Acc@G,

Acc@x km

Ozdikis et al. (2019) WD Mixed TW T GC GTW 2015

London,

Paris,

Berlin

SL
MdAE, Acc

Acc@x km

Shahraki et al. (2019) WD,MD EN TW T CO,CI,GC LIW,MD - USA DS Acc,MAE

Zola et al. (2019) WD Mixed TW U CO GT 2017-19 W GTN Acc,F1

This work WD Mixed TW U GC GT 2017-19 W
GMM,KM,

DBSCAN

MAE,MdAE,

Acc@x km

a Friendship Network (FN), Metadata (MD), Word Distribution (WD).

b Language: English (EN), Italian (IT), Korean (KR), Turkish (TR), combination of multiple languages (Mixed).

c Foursquare (FS), Google+ (GP), Twitter (TW), Wikipedia (WP).

d Socially Important Locations (SIL), Tweet location (T), User location (U).

e City (CI), Country (CO), Geographic Coordinates (GC), one of 50 States (ST).

f Geotagged News (GN), Geotagged Tweets (GTW), Geotagged Wikipedia (GWP), Location Indicative Words (LIW), Metadata (MD),

Internet Protocol (IP).

g Ireland (IR), Italy (IT), North America (NA), Korea (KR), United Kingdom (UK), United States of America (USA), Turkey (TR), World

(W).

h Estimation Method: Autoencoder (AE), Cascading Topic Model (CTM), Dempster-Shafer Theory (DS), Density-Based Spatial Clustering

of Applications with Noise (DBSCAN), Gaussian Mixture Model (GMM), Google Trends Nouns (GTN), K-means (KM), most common

(Mode), Location Indicative Words (LIW), Topic Clustering (TC), Supervised Learning (SL).

i Accuracy (Acc), Accuracy using a radius of x (Acc@x), x in miles (mi) or kilometers (km), Comprehensive Accuracy Error (CAE), F1-score

(F1), Mean Absolute Error (MAE), Median Absolute Error (MdAE), Mean Squared Error (MSE), Precision (P), Recall (R), Root Mean

Square Error (RMSE).
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Figure 1: Histogram of the number of total tweets per user.

Given that the country-level Twitter dataset is not fine-grained, additional

data processing procedures were implemented in this work, in order to achieve

city-level geographic coordinates. First, we have manually checked all the 3,298

users profiles, removing all accounts that were no longer available, suspended

or deleted, similarly to what was executed in Gilani et al. (2017), resulting in

3,268 users and 737,090 tweets. The Twitter API allows to retrieve a maximum

of 3,200 past tweets for each user. Nevertheless, the majority of users in our

dataset have a smaller tweet history (due to a younger account or smaller post-

ing frequency), as shown in Figure 1. Only 2,134 of the tweets were geotagged

(around 0.3%). Then, the selected 3,268 users were divided into three groups,

according to the lowest level of granularity available at the location metadata,

namely: country (A), state (B) and city (C). Examples of these group loca-

tions include: A – United States of America (USA), Italy and Australia; B –

California, Scotland and Texas; C – Mumbai, New York and Sydney. Table 2

summarizes the groups in terms of number of Users and number of Unique

locations. The last row of Table 2 shows the additional group D that represents
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the set of all users (A, B and C). We highlight that most users (73%, from C)

contain a city-level location. Since the experimental comparison (Section 4) uses

numeric distance measures for all location granularity levels, we used the Google

Maps service to set the geographic coordinates as the center of the country (for

the 414 users), state (468 users) or city (2,386 users), as a reasonable proxy for

the real coordinates. We note that in this work the ground truth data is only

used as external data (as detailed in Section 3.2.5), thus it is not used to fit the

clustering models but rather to evaluate their location estimation capabilities.

Table 2: Summary of the Twitter ground truth user datasets.

Location level Users (%) Unique locations

country (A) 414 (12.7%) 47

state (B) 468 (14.3%) 165

city (C) 2,386 (73.0%) 1,191

Total (D) 3,268 (100.0%) 1,403

Although we only targeted users that tweeted at least one English term from

the alloy steel domain (e.g., “steel price”), the collected historical tweets include

a diverse range of topics, with several of the messages being written in other

languages. Table 3 presents a summary of the main detected languages in the

adopted dataset of 3,268 users, when using the langdetect Python module

(Shuyo, 2010) for language profile estimation of the 737,090 tweets. While a

total of 32 distinct languages were detected, the majority of the tweets were

written in English (91.2%), followed by the Croatian (1.7%), Indonesian (1.2%)

and German (1.0%) languages. The percentage of extracted nouns per language

exhibits a similar pattern, most of the detected nouns are in English (89.9%),

followed by the Croatian (2.5%), Indonesian (1.4%) and German (1.1%) lan-

guages. Figure 2 shows the distribution of the number of detected languages

per user, revealing that most users (34.3%) use just one language, followed by

users that write in two (28.8%) and three (15.3%) languages. For a few users,

langdetect detected a high number of languages (e.g., 2 users were associated
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with 13 languages), thus to simply the visualization, we opted to merge all val-

ues equal or higher to seven into a single bin (≥ 7). We note that language

detection with short tweets, often with acronyms and slang, is a non-trivial

task and thus langdetect might overestimate the identification of distinct lan-

guages. However, we selected langdetect because it obtained better results

when compared with other language detection tools. For example, the textcat

from the R environment is computationally faster than langdetect but it pro-

vides a higher number of errors (e.g., “Aluminum Sheet Property” is detected

as written in the classical Latin language).

Table 3: Language distribution of the collected tweets and nouns.

Language Tweets (%) Nouns (%) Language Tweets (%) Nouns (%)

English 91.2 89.9 Tagalog 0.3 0.4

Croatian 1.7 2.5 Catalan 0.3 0.3

Indonesian 1.2 1.4 Somali 0.3 0.5

German 1.0 1.1 Italian 0.3 0.4

French 0.5 0.6 Norwegian 0.2 0.2

Dutch 0.5 0.3 Russian 0.2 0.2

Spanish 0.4 0.3 Estonian 0.2 0.1

Afrikaans 0.3 0.3 Others 1.4 1.5

Figure 3 plots the ground truth locations for all users, which are spread

on a worldwide basis, although with different regions of density. In effect, the

dataset includes a majority of users from Anglophone countries (e.g., USA, UK,

Canada) or where English has a strong presence (e.g., India), which is aligned

with the language analysis of ??. Nevertheless, the dataset also includes users

from non-Anglophone countries, such as Germany, Italy, China or Mexico.

3.2. Methodology

The proposed approach is shown in Figure 4 and it includes five steps that

are detailed in the next subsections:
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Figure 2: Histogram of the number of detected languages per user.

Figure 3: World distribution of the Twitter ground truth user locations (blue points).

1. User noun collection: all user historical tweets are extracted and the re-

spective nouns are filtered (Section 3.2.1).

2. City-level noun collection: the city-level GT scores for all the nouns of a

particular user are retrieved (Section 3.2.2).

3. Synthetic spatial sampling: city polygons are built and a synthetic geo-

graphic sampling of the GT noun frequencies is created (Section 3.2.3).
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4. Spatial clustering and user location estimation: a clustering algorithm is

fit to the user synthetic data and then the location is estimated (Sec-

tion 3.2.4).

5. Performance evaluation: evaluate the quality of the estimated user loca-

tion with respect to the ground truth (Section 3.2.5).

Figure 4: Schematic of the proposed approach.

3.2.1. User noun collection

Let U denote the set of all Twitter 3,268 users. For each user u ∈ U ,

all historical tweets are extracted (up to a maximum of 3,200 texts). The

collected tweets are preprocessed by converting the text to lowercase. Following

the procedure adopted in Zola et al. (2019), we process retweets as normal

tweets, since retweets can be informative in terms of the user context location

(e.g., retweets of a local politician or event). Then, the nouns (common and

proper) were extracted using the TextBlob Python module, since it is faster

when compared with other POS tagger tools (Loria, 2014). The result is a

sequence of nu = 〈n1, n2, ..., nlu〉 nouns for each user u ∈ U (e.g., 〈“day”,

“brigittemacron”〉), where lu is the length of the sequence. For the set of 3,268

users, the total number of unique nouns obtained is 368,852.
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3.2.2. City-level noun collection

Using the previously collected user nouns (nu, u ∈ U), the respective city-

level GT data was extracted by using the Pytrends Python module. The result

is the city noun user (CNU) distribution cnn = 〈(c1, g1), (c2, g2), ..., (cln , gln)〉

for noun n and that includes a list of ln world cities (ck), each assigned with the

respective GT score (gk). The GT scores are already normalized to the number

of searches performed within that city and they range from 100 (highest impact

given all Google searches) and 0 (lowest impact). Since cities without any noun

queries do not appear in the GT results, we opted to round all city 0 scores into

1, thus providing a minimum relevance value.

Table 4 exemplifies two different CNU distributions (cnn, n ∈ {“day”,

“brigittemacron”}). The generic term “day” is highly used by two geograph-

ically distant countries (Australia and USA), while the more specific “brigit-

temacron” noun corresponds to the wife of the President of the France and thus

it is mostly used in French cities (e.g., Paris, Lyon). We also note that the

generic term “day” exhibits a slower initial high score decay when compared

with the specific “brigittemacron” noun. For instance, the tenth score entry for

“day” is g10 = 82, while the value is much lower for “brigittemacron”, where

g10 = 50.

Table 4: Example of GT city distributions for “day” and “brigittemacron” nouns.

“day” “brigittemacron”

City GT score City GT score
Melbourne 100 Paris 100
Brisbane 95 Lyon 90
Sydney 95 Bordeaux 86
Washington 88 Nice 77
Boston 85 Strasbourg 77
Chicago 85 Clermont-Ferrand 68
New York 85 Toulouse 63
Philadelphia 85 Marseille 54
San Diego 84 Montpellier 54
Seattle 82 Dijon 50

... ...
Vancouver 0 Warsaw 0
Winnipeg 0 Zurich 0
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3.2.3. Synthetic spatial sampling

The previously obtained CNU distributions cnn are now aggregated. The

overall user u distribution is cu = 〈(c1, s1), (c2, s2), ...〉, where sj denotes the sum

of all gk scores for all nu nouns and same city cj . Table 5 provides examples of

the GT city distribution scores (cnn, five highest scores) for three nouns selected

from an Italian user: appennino (Italian mountains), lambrusco (Italian wine),

and prodi (politician). The last row of Table 5 (total) presents the overall city

distribution for the Italian user (cu).

Table 5: GT values for Italian user example.

Noun GT scores

appennino 〈(Sora,100),(Sassuolo,42),(Reggio Emilia,27),(Modena,25),(Carpi,21),...〉
lambrusco 〈(Modena,100),(Parma,72),(Bologna,49),(Puebla,17),(Milan,15),...〉
prodi 〈(Surakarta, 100),(Depok,98),(Kediri,92),(Jaber,76),(Yogyakarta,73),...〉
total 〈(Depok,128),(Modena,125),(Sora,100),(Surakarta,100),(Bologna,93),...〉

Next, the city coordinates (latitude and longitude) are extracted using the

googlegeocoder Python module. In order to avoid degenerate geolocation data

(e.g., clustering of a unique city data point for one user), we follow the sugges-

tion in Schulz et al. (2013) and construct first a city polygon area and then

we randomly sample coordinates according to the GT CNU distributions and

respective polygon areas. The city polygon Pc for city c is defined by the geo-

graphic boundaries found at the OpenStreetMap.com (OPS) Web page, which

was built by a community of mappers. In particular, the OPS administrative

boundary were used, which are recognized by governments for administrative

purposes. The OPS boundaries were manually inspected for some cities. In a

few cases, the OPS boundary points did not have the correct polygon building

sequence, such as shown in the left of Figure 5. To solve this issue, we applied

the concave hull method (Moreira & Santos, 2007), which is based on a k-nearest

neighbors algorithm. The concave hull improved all inspected problematic poly-

gons, such as exemplified in the right of Figure 5. Also, around 10% of the cities
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(often related with small remote locations) did not have OPS data. Such cases

were handled by using a city circumference that considered the city centroid

provided by the Google Maps and the radius
√

A
π , where A is the city area

obtained using WikiData4. The developed Python library for the city polygon

definition is freely available at https://github.com/CostRagno/geopolygon.
+

-

Leaflet | mplleaflet | Map data (c) OpenStreetMap contributors

+

-

Leaflet | mplleaflet | Map data (c) OpenStreetMap contributorsFigure 5: Example of the New York area obtained using OPS data (left, red polygon) and the

concave hull approach (right, green polygon).

The two dimensional synthetic dataset (with latitude and longitude values)

is used to fit a clustering model for a given user and it considers a random

uniform sampling of coordinates given the respective GT noun data and city

polygons. Let R denote a parameter that corresponds to the total number of

random samples included in the synthetic dataset for user u. Then, the number

of sampled points rc for city c is set proportionally to the GT noun overall

scores, namely rc = round(R× sc
Su

), where round represents the round to integer

function, sc is the GT city noun overall score and Su =
∑ln
i=1 si. For a particular

city c, the rc samples are created by performing a uniform coordinate sample

(latitude and longitude) within the rectangular region that includes the city

polygon Pc. If the coordinate is outside the polygon, the sampling procedure is

repeated, until rc valid samples are created.

The single parameter R controls the quality of the generated GT noun coor-

4 https://www.wikidata.org/wiki/Wikidata:Main_Page
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dinates. A high value produces a fine-grained world map but also increases the

clustering computational effort. In this paper, we set R experimentally, testing

different values in the range R ∈ {500, 1,000, 2,500, 5,000, 10,000, 15,000}.

3.2.4. Spatial clustering and user location estimation

The obtained synthetic spatial data is used to fit a clustering model for each

user. Then, the most probable user location is set as the centroid of the largest

cluster (with more synthetic data points). All clustering experiments were im-

plemented using the scikit-learn Python library. We explore three popular

clustering algorithms that employ distinct forms of grouping items (Aggarwal &

Reddy, 2014): GMM, to represent the class of probability distribution methods;

K-means, which uses a centroid model; and DBSCAN, as a representative of a

density based approach. GMM is based on a linear combination of K Gaussian

models, called components, that represent the clusters.

Regarding the clustering setup, the GMM internal parameters (linear weights,

component means and covariances) are often estimated by using the Expecta-

tion Maximization (EM) algorithm, which was adopted in this work. As for

K-means, it is a partitional iterative algorithm that starts K initial points as

centroids. Then, given a proximity measure (e.g., Euclidean distance), each

point is assigned to the closest centroid. Once the K clusters are defined,

the centroids are updated. In this paper, the initial centroids were set using

the K-means++ algorithm (Aggarwal & Reddy, 2014). Finally, DBSCAN is a

density-based method that does not require setting the number of clusters (K)

and that is suited for large and sparse datasets, since the clusters are based

on high density point areas, where low density regions are considered noise or

outliers (Ester et al., 1996). The method contains two hyperparameters: ε, the

radius of the cluster; and MinPts, the minimum number of points needed to

create a cluster.

Both GMM and K-means require the a priori definition of the number of K

clusters. Since a different clustering model is built for each user u, we search for

the best number of clusters Ku by using an automatic grid search within the
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range Ku ∈ {1, ...,Kmax}. In this paper, the maximum number of searched clus-

ters is set experimentally, using the set of values Kmax ∈ {5, 10, 25, 50, 100}. The

automatic selection of the optimal Ku value is based on three model selection

measures: the Bayesian Information Criterion (BIC) and two Gap criteria. The

BIC is a known model selection criterion that is used here under two versions

(Schwarz et al., 1978), one for GMM and other for K-means:

Ku = {minK : q log(R)− 2LK} (BIC for GMM) (1a)

Ku = {minK : RSSK + 2 log(R)K} (BIC for K-means) (1b)

where q is the number of GMM parameters, LK is the log-likelihood function

for K. The RSSK =
∑K
k=1

∑
p∈Ck

|p − mk| corresponds to the residual sum

of squares, where Ck denotes a cluster with the centroid mk and p is a data

point. Regarding the Gap statistic, it is based on a comparison of the total

intra-cluster variation with a null reference distribution of the data. In this

work, we test two criteria for the Ku selection (Tibshirani et al., 2001):

Ku = {minK : Gap(K) ≥ Gap(K + 1)− sdK+1} (Gap1) (2a)

Ku = {K : maxGap(K)} (Gap2) (2b)

where sdK represents a standard deviation for K when using a reference Monte

Carlo sample. Regarding DBSCAN, a grid search is used to set the two hyper-

parameters: ε ∈ {0.1, 0.25, 0.5, 0.75, 1, 1.5, 2, 5, 10, 25, 50, 100} and MinPts ∈

{5, 10, 25, 50, 100}.

To demonstrate the proposed clustering approach, we select the Italian user

and three nouns from the example related with Table 5. The overall city distri-

bution cu values (last row of Table 5) ranks Depok (Indonesian city) as the most

probable user location. This occurs because prodi can refer to a famous Italian

politician but it is also an Indonesian noun, and thus several Indonesian cities

present high GT scores for this term (e.g., Surakarta, Depok). The ground truth

is an Italian city (Fidenza, the blue star in Figure 6), which is highly distant

from Depok (around 14,261 km). For this example, the clustering approach

used the K-means algorithm with 20 clusters. The left of Figure 6 shows the
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respective clusters in the world map, where each cluster is colored differently

and contains a radius that is proportional to the number of its data points.

The world map plot shows two large regions, around Italy (largest one) and In-

donesia (second largest one). The right of Figure 6 zooms the map around the

largest Italy cluster, showing that the clustering estimated location (red star)

is very close (the distance is just 90 km) to the ground truth (blue star).

Figure 6: Example of a world clustering map (left) and its zoom around Italy (right).

3.2.5. Performance evaluation

To evaluate the unsupervised clustering approaches, we use external vali-

dation measures (Aggarwal & Reddy, 2014), where the predicted coordinates

are compared with the ground truth location (not used to create the clustering

models). For a given set of users, we compute the absolute errors using the

Haversine distance (as adopted in Eisenstein et al., 2010; Shahraki et al., 2019)

in kilometers (km), which measures the shortest surface distance between two

points on a sphere, given their longitudes and latitudes. The overall distance is

obtained by computing the Mean Absolute Error (MAE) and Median Absolute

Error (MdAE). The non parametric Wilcoxon (W) signed-rank test (Hollander

et al., 2015) (p-value <0.05) is used to confirm if the MdAE values provided

by two location methods are statistically significant (paired comparison). We

also compute the Regression Error Characteristic (REC) curves (Bi & Bennett,

2003), which allow a visual comparison of the results obtained by distinct lo-

cation estimation methods, plotting in the y-axis the percentage of correctly
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classified examples (Acc@x km) for a given tolerance radius distance (x-axis).

For a maximum tolerance value (xmax), it is possible to compute the normalized

Area under the REC curve (AREC). The higher the AREC, the better are the

location estimates, with the ideal method obtaining an AREC of 1.0.

3.3. Model validation

To reduce the computational effort, and similarly what was executed in Zola

et al. (2019), preliminary experiments with a small random sample of 100 users

(3% of all users) are first used to tune the hyperparameters of the clustering

approaches. The preliminary experiment result analysis is performed using the

MAE and MdAE distance measures and the clustering algorithm execution time

(in minutes). Then, the best clustering approaches are evaluated and compared

with the baseline methods. We note that the clustering approaches do not re-

quire any labeled training data. Thus, using the standard clustering validation

practice (Aggarwal & Reddy, 2014), the user location estimation evaluation is

performing using all data points (complete set of 3,268 Twitter user accounts),

under an external target validation (since the location data was not used to

generate the clustering models). For future comparisons, the data (e.g., ground

truth, cumulative GT city noun distributions) are freely available at https://

github.com/paolazola/Google-Trends-for-Twitter-users-location-estimation.

3.4. Baseline comparisons

The proposed methodology is compared with two baseline methods: a sim-

pler GT noun city selection method and the approach proposed by (Priedhorsky

et al., 2014). The simpler First City (FCity) method considers only the CNU

distributions cu = 〈(c1, s1), (c2, s2), ...〉, selecting the city c1 related with the

highest overall score s1. Then, the geographic coordinate is the city centroid

given by Google Maps (Section 3.2.3). We also compare our methodology with

the work of Priedhorsky et al. (2014), since there are some research similarities.

As shown in Table 1, both approaches target the world map, consider a pure

text-based geolocation (WD) and use the same clustering algorithm (GMM).
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However, method proposed in Priedhorsky et al. (2014) differs substantially

from our approach since it assumes a supervised learning, in which a GMM is

fit to n-grams of Geotagged tweets (GMMG), where each word or n-gram is

mapped to a location. To implement the GMMG approach, we used as train-

ing set the collection of 2,134 geotagged tweets available in our ground truth

dataset. Yet, this GMMG training set represents only a tiny fraction of all

data, which exemplifies in our case study the limitation of using a supervised

approach based on geotagged tweets.

4. Results

4.1. Hyperparameter selection of clustering methods

As explained in Section 3.3, a small random sample of 100 users was used to

set the clustering hyperparameters and select the best clustering approach. For

GMM and K-means, we performed a two-dimensional grid search with distinct

R and Kmax values, using different Ku selection criteria (BIC, Gap1 and Gap2).

As for DBSCAN, to the reduce the number of computational experiments, we

first used the default ε = 0.5 and MinPts = 5 scikit-learn implementation

values in order to set R. Then, a two-dimension grid search was executed to

select the final ε and MinPts values.

The grid search results are presented in Table 6 (for GMM and K-means) and

Tables 7 and 8 (for DBSCAN). As expected, the computational effort (Time)

tends to enlarge when the number of sampled points (R) or maximum number

of searched clusters (Kmax) increases. Overall, DBSCAN is computationally

much faster than the other two clustering approaches methods, which require

the extra Ku search. As for the distance errors, the best Table 6 MAE and

MdAE results are: GMM – R = 500, Kmax =25 and usage of BIC; K-means

– R = 1, 000, Kmax =5 and usage of Gap1 statistic. Turning to DBSCAN,

the best first grid search sets R = 15, 000 (Table 7) and then the second grid

fine tunes the other hyperparameters into ε = 0.25 and MinPts=5 (Table 8).

When comparing the best performing clustering strategies, the lowest MAE and
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MdAE values are provided by DBSCAN, followed by K-means. For example,

the best median distance is 1,344.4 km for DBSCAN, which is 134.2 km and

475.2 km lower when compared with the best K-means and GMM values.

Table 6: Grid search results for GMM and K-means (best distance values in bold).

R Kmax

GMM BIC GMM Gap1 GMM Gap2 K-means BIC K-means Gap1 K-means Gap2

MAE MdAE Time* MAE MdAE Time* MAE MdAE Time* MAE MdAE Time* MAE MdAE Time* MAE MdAE Time*

500 5 5295.6 3178.3 14.9 5301.5 3338.1 11.1 6970.3 6305.9 2.0 5069.1 2400.9 12.8 4803.1 1612.0 12.8 8766.5 8769.8 34.3

10 5725.1 3605.4 36.2 5283.7 2129.9 35.1 7235.0 6507.2 15.0 5075.3 2400.9 34.6 4720.5 2154.4 34.6 5920.3 5189.0 82.6

25 4653.6 1819.6 192.3 5710.1 4250.8 181.3 7059.1 6226.5 8.9 5039.0 2400.9 105.8 5051.0 2545.5 105.8 4876.5 2415.5 232.7

50 4938.3 2365.9 852.4 5324.0 3751.7 540.7 7182.9 6416.1 25.5 5074.5 2400.9 385.1 5341.5 2553.0 385.1 4746.7 1951.2 676.4

1,000 5 5518.8 3879.9 17.7 5125.0 2952.0 25.4 6980.3 6226.7 14.0 4917.9 2473.9 48.5 3920.6 1478.6 48.5 8799.5 8769.8 32.0

10 5228.2 3432.4 41.9 4971.3 2726.3 51.4 7164.6 6226.7 31.7 4796.8 2349.9 355.5 4968.1 1815.6 355.5 5039.5 1946.8 75.8

25 5468.7 3514.7 193.1 5196.3 2954.2 123.9 7157.2 6363.3 51.7 4620.5 2349.9 549.0 5552.8 3709.8 549.0 4797.9 1883.2 275.5

50 5519.0 3787.9 713.0 5026.9 2360.6 632.6 7087.4 6226.7 79.4 4852.8 2473.9 594.7 4448.5 2534.3 594.7 4932.4 1938.2 563.6

2,500 5 4963.6 2780.5 39.1 5449.0 3680.3 39.6 7018.5 6471.3 47.0 4766.7 2528.0 81.6 4327.6 1506.8 81.6 8400.4 8758.5 44.8

10 5306.2 3268.1 79.2 5006.2 2780.5 78.5 7172.6 6540.0 74.5 4894.4 2599.3 212.3 4589.8 1485.2 212.3 5257.1 2372.1 138.9

25 5033.9 2511.1 212.0 4841.5 3171.3 817.6 7053.9 6389.2 526.1 4784.1 2570.1 447.5 5556.5 3671.8 447.5 4843.7 2031.9 432.1

50 5174.2 2519.6 3698.6 5838.8 4015.5 1250.9 7341.0 6647.2 799.1 4882.5 2622.1 3070.4 5162.6 3287.8 3070.4 5084.4 2098.5 8578.9

5,000 5 6148.1 5021.9 121.0 5538.9 3671.3 117.6 7051.6 6215.5 170.4 5127.6 3029.3 183.6 4507.1 1532.6 183.6 8690.5 8761.2 91.5

10 4415.6 1939.6 167.5 5287.1 2964.5 133.2 6846.0 6107.2 232.3 5121.4 3029.3 305.5 4803.8 1866.2 305.5 5477.1 3180.9 234.7

25 4552.1 2088.9 1091.4 5179.5 3114.6 411.0 7256.8 6302.6 1626.1 5133.4 3029.3 2577.6 5331.6 3351.8 2577.6 5178.0 2720.2 1245.3

50 4938.3 2365.9 852.4 4933.3 2759.8 2540.9 5626.8 3782.3 4915.9 5120.3 3029.3 13062.8 4520.6 1883.5 13062.8 5320.4 2915.4 4079.8

10,000 5 5356.0 3529.4 553.3 5614.3 4294.8 426.1 7187.9 6351.2 848.4 5312.0 3283.8 941.9 4169.0 1539.6 941.9 8633.8 8761.2 380.8

10 5148.3 2509.0 1306.0 5251.2 3357.5 719.9 7230.6 6418.5 1978.0 5410.6 3457.2 1093.9 4918.1 2106.9 1093.9 5235.8 2733.0 835.5

25 4709.6 2028.3 2104.0 5191.6 2536.2 1988.1 7212.3 6351.2 6291.6 5410.6 3457.2 4473.5 5410.6 3457.2 4473.5 4994.4 2076.1 4572.1

50 5939.6 3842.8 7743.0 5428.6 3348.6 6489.2 7126.4 6353.3 8136.0 5411.8 3457.2 16471.9 5079.3 2568.9 16471.9 7013.6 6176.8 9002.8

15,000 5 5548.6 4174.5 883.3 5084.7 2563.8 1721.4 7217.6 6369.5 2396.2 5304.2 3272.7 909.8 4168.9 1522.0 909.8 8825.5 8790.8 738.6

10 5306.2 3474.7 2237.7 5050.6 3448.7 2769.2 7075.2 6181.9 6582.9 5224.7 3272.7 1406.6 4757.9 1625.1 1406.6 5251.6 2911.2 1033.5

25 4806.0 2397.0 3868.0 4876.0 2228.3 2956.4 7065.8 6316.6 15731.9 5206.1 3064.6 5451.0 5781.0 3800.9 5451.0 5212.3 2032.0 4981.1

50 5219.2 3263.9 6135.1 5397.2 2482.4 1675.6 7315.7 6427.7 13268.1 5226.0 3272.7 24415.0 4563.0 2470.2 24415.0 5001.1 1888.4 13139.7

* Time is expressed in minutes.

Table 7: Grid search results for DBSCAN (Time is expressed in minutes, best distance values

in bold).

R MAE MdAE Time

500 7615.9 6719.0 0.0

1,000 6961.3 6343.8 0.1

2,500 5233.1 4355.5 0.2

5,000 5265.7 2822.2 0.2

10,000 4790.0 1860.8 0.3

15,000 4119.0 1767.8 0.4
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Table 8: Grid search results for DBSCAN when R = 15, 000 (best distance values in bold).

MinPts Metric
ε

0.1 0.25 0.5 0.75 1 1.5 2 5 10 25 50 100

5

MAE 4002.8 3576.0 4119.0 3944.3 4816.5 5114.1 5254.2 4574.5 4833.5 4603.4 6001.8 7245.6

MdAE 1645.0 1344.4 1767.8 1686.3 2203.4 2560.7 3288.6 1503.1 1760.1 2056.8 5482.9 6369.5

Time 0.3 0.3 0.4 0.3 0.4 0.4 0.4 0.7 1.6 2.9 3.4 5.1

10

MAE 4926.7 4012.5 4515.1 4196.6 4816.5 5114.1 5252.7 4581.4 4833.5 4603.5 6001.8 7245.6

MdAE 3909.8 1767.1 1904.4 1884.3 2203.4 2560.7 3288.6 1503.1 1760.1 2056.8 5482.9 6369.5

Time 0.4 0.4 0.4 0.4 0.4 0.4 0.5 0.7 1.2 2.3 3.4 5.6

25

MAE 7509.5 5312.9 5230.7 5031.2 5582.0 5037.7 5250.5 4575.0 4833.5 4716.7 6001.8 7245.6

MdAE 6335.2 5312.8 5078.5 4988.1 5248.9 2560.7 3288.6 1455.9 1760.1 2126.4 5482.9 6369.5

Time 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.7 1.1 2.1 3.1 4.9

50

MAE 8052.1 6997.9 6805.7 6782.2 6639.4 6265.4 5094.9 4442.6 4826.7 4716.4 6001.8 7245.6

MdAE 6535.1 6201.2 6367.2 6566.4 6544.1 6225.9 3596.6 1455.9 1620.4 2126.4 5482.9 6369.5

Time 0.3 0.4 0.4 0.4 0.4 0.5 0.5 0.8 1.3 2.4 3.4 5.5

100

MAE 8054.4 7498.9 7276.9 7334.8 7520.3 7294.1 6900.2 4444.1 4819.3 4700.3 5870.9 7245.6

MdAE 6933.5 6744.2 6631.1 6670.6 6996.2 6896.9 6543.2 1487.1 1620.4 2156.8 5240.4 6369.5

Time 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.7 1.2 2.2 3.4 5.6

4.2. Geolocation estimation results

In this section, we compare the proposed GT Noun (GTN) clustering ap-

proach with the baseline methods: FCity and GMMG (Section 3.4). Following

the results of Section 4.1, we selected the two best clustering algorithm setups

(DBSCAN and K-means), namely:

• GTN-DB: DBSCAN with R = 15, 000, ε = 0.25 and MinPts = 5;

• GTN-KM: K-means using Gap1 criterion, R = 1, 000 and Kmax = 5.

Table 9 summarizes the obtained results, in terms of MAE, MdAE and

Wilcoxon test for MdAE significance (column W), for the four geolocation meth-

ods and Table 2 user datasets. For all datasets, the proposed clustering methods

provide better MAE and MdAE values when compared with the baseline meth-

ods. In particular, most of the MdAE comparisons with baseline methods are

statistically significant. We note that GMMG provided the worst geolocation

23



performance, which is a natural result since it is a supervised learning method

and very few tweets are geotagged. The other baseline, FCity, is ranked at third

place, which confirms the usefulness of the proposed clustering approach. Re-

garding the comparison of the two clustering approaches, Table 9 does not show

a clear winner. An important result is that GTN-DB obtained a significantly

better MdAE value for dataset C (City), which contains the coordinates with

the lowest level of granularity and that corresponds to the majority of the users

(73%). Overall (dataset D), GTN-KM provides the best MdAE results (but

without a significant difference) and GTN-DB obtains the best MAE.

Table 9: Geolocation distance results (best values in bold).

Country (A) State (B) City (C) Total (D)

Method MAE MdAE W∗ MAE MdAE W∗ MAE MdAE W∗ MAE MdAE W∗

GTN-DB 4284.3 1904.7 k,f,g 3559.9 1545.4 f,g 4267.0 1365.2 k,f,g 4167.9 1548.3 f,g

GTN-KM 4760.2 1270.4 d,f,g 3141.4 1451.6 f,g 4550.6 1433.0 d,f,g 4375.3 1421.5 f,g

FCity 5387.3 2356.3 g 4720.0 2567.0 g 5453.5 2834.5 g 5340.0 2607.7 g

GMMG 7773.8 7579.9 5237.0 4776.3 6949.1 6685.7 6807.8 6582.2

∗ – statistically significant under a pairwise comparison with: GTN-DB (d), GTN-KM (k), FCity (f) or

GMMG (g).

The clustering models provide a spatial dispersion model that is more in-

formative than just the final estimated location. In this work, we indirectly

measure this informative value by adopting a cluster tolerance analysis, which

considers the minimum distance between the ground truth and any of the L

centroids of the largest KL clusters. Table 10 presents the respective results

when KL is increased from 1 (no cluster tolerance) to 3 (tolerance of 2 clus-

ters). The obtained results show an interesting reduction in terms of MAE and

MdAE distance values for both clustering approaches. For example, the GTN-

DB MdAE value is reduced by 594.8 km (decrease of 38%) when the best of

two (KL = 2) centroid estimates is considered, a value that further diminishes

by 207.0 km when a cluster tolerance of 2 (KL = 3) is admitted (decrease of

52% when compared with KL =1). Thus, the distinct centroid locations (in this
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case, related with the second and third largest clusters) contain valuable spatial

locations that can be used when several probable locations are needed or when

the first location prediction fails.

Table 10: Geolocation distance results for the cluster tolerance analysis.

KL

Method Metric 1 2 3

GTN-DB
MAE 4167.9 2687.1 1952.4

MdAE 1548.3 953.5 746.5

GTN-KM
MAE 4375.3 2460.3 1592.6

MdAE 1421.5 1139.0 941.4

When considering the single prediction model, where the location is set as

the centroid of the largest cluster (KL = 1), an additional method comparison

is provided by the REC analysis, which shows clear differences among the meth-

ods. The REC curves are plotted in the left of Figure 7, where the maximum

tolerance was set to xmax =18,000 km (the value that sets ACC@x equal to

100%). The best overall curve is provided by GTN-DB, corresponding to the

highest normalized area (AREC of 0.77), which is slightly better than GTN-KM

(1 percentage point) and substantially higher when compared with FCity (7 per-

centage points) and GMMG (15 percentage points). We particularly highlight

that GTN-DB consistently outperforms other methods for smaller tolerance dis-

tances (shown in the right of Figure 7), which are more useful in practice. For

example, when a very small tolerance range is set (250 km), GTN-DB correctly

classifies 15% of the users, while FCity accurately classifies 10% of the locations

and GTN-KM only predicts well 2% of the examples. In effect, GTN-DB pro-

vides an interesting range of predictive ACC@x values: 15% for x =250 km,

23% for x =500 km, 39% for x =1,000 km, 58% for x =2,000 km and 70% for

x =4,000 km. For demonstration purposes, Figure 8 shows examples of GTN-

DB quality predictions, within a 1,000 km tolerance distance (1,268 blue points,

39% of the users), and lower-class estimations, with location distances higher
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than 10,000 km (595 red points, 18% of the users). The quality predictions

cover regions that are predominant in the dataset, such as USA, India, Europe

and Australia. As for the high error estimates, several are related with anglo-

phone mismatches between USA, Australia and UK (e.g., 142 users assigned by

GTN-DB to Australia are from USA).
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FCity 10% 16% 27% 44% 61%

GMMG 1% 5% 15% 28% 37%

Figure 7: REC curves for the geolocation estimation methods (left plot, xmax =18,000) and

examples of some ACC@x km values (right table).

5. Conclusions and discussion

Spatial data is a key element for several social media analytics systems.

In this paper, we address the challenging task of inferring the most probable

implicit city-level context location of worldwide Twitter users based only on

a Word Distribution (WD) analysis of historical tweets. To achieve this, we

propose a novel unsupervised approach that includes several steps. For each

user, it first filters the tweet nouns, retrieving the respective city-level Google

Trends (GT) scores. Then, it creates a synthetic spatial dataset based on city

polygons and a sampling of the most probable overall GT Noun (GTN) world
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Figure 8: World distribution of the GTN-DB predictions with a ground truth location distance

lower than 1,000 km (blue points) and higher than 10,000 km (red points).

location points. Finally, the spatial dataset is used to fit a clustering model and

the user location is estimated as the centroid of the largest data point cluster.

To validate the proposed approach, we analyzed a recently collected Twit-

ter dataset with 3,268 ground truth worldwide city-level user locations. First,

preliminary experiments using a small random sample of 100 users were used

to tune three clustering algorithms, namely Gaussian Mixture Models (GMM),

K-means and Density-Based Spatial Clustering of applications with Noise (DB-

SCAN). Then, the best clustering approaches, GTN DBSCAN (GTN-DB) and

GTN K-means (GTN-KM), were further analyzed by considering all 3,268 users

and several location performance measures using haversine distances, includ-

ing Mean Absolute Error (MAE), Median Absolute Error (MdAE), normalized

area under the Regression Error Characteristic (AREC) curve and accuracy for

a tolerance distance of x (Acc@x). The clustering results were compared with

two baselines, the highest GT score city (FCity) and a GMM fit to n-grams

of Geotagged tweets (GMMG) (Priedhorsky et al., 2014). Both clustering ap-

proaches (GTN-DB and GTN-KM) outperformed the baseline methods when

considering the MAE, MdAE and AREC location measures.
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5.1. Research implications

In terms of theoretical implications, an innovative aspect of our research is

that we study the impact of GT for a social media spatial location rather than

the more common temporal evolution analysis (e.g., Jun et al., 2018; Kwak et al.,

2018). In particular, this paper presents the first WD attempt to use freely avail-

able city-level GT data to infer the worldwide location of Twitter users. When

compared with state-of-the-art WD works, the proposed clustering approach

presents several advantages. First, it does not require any Twitter geographic

labeled data (e.g., geotagged tweets or user metadata), which are needed by

supervised learning WD approaches (e.g., Celik & Dokuz, 2018; Ozdikis et al.,

2019). Second, it does not use a static geographic dictionary, such as adopted by

Location Indicative Words (LIW) methods (e.g., Ozdikis et al., 2016; Shahraki

et al., 2019), which is often designed for a specific language and world region.

In contrast, the GTN clustering approach automatically assigns nouns from any

written language to world regions. Thus, the extracted nouns are more flexible

(reflecting not only location sites but also events, people or organizations) and

they can be dynamically updated (as they arise in recent tweets). Moreover,

while this work specifically addresses only a single user context location (e.g.,

home, place of interest), the obtained clustering models provide a spatial disper-

sion model, which can be used in additional analyses (e.g., study of consuming

behaviours or traveling patterns).

As for practical implications, we recommend the GTN-DB approach, which

requires much less computation when compared with GTN-KM (it is around 160

times faster, as shown in Section 4.1). Also, our experimental results favor GTN-

DB for several relevant geolocation analyses, such as: lowest MAE and MdAE

distances for city-level users (dataset C from Table 2, which is the largest with

2,386 users); lowest MdAE values for a cluster tolerance of 1 and 2; and highest

accuracy values for several low tolerance distances (ACC@x). We highlight the

last results, since GTN-DB obtained interesting user location accuracy values of

15%, 23%, 39% and 58% for tolerance distances of 250 km, 500 km, 1,000 km and

2,000 km. Thus, when no geotagged tweets or reliable user location metadata
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are available (which often occurs in practice), GTN-DB can be used as a valuable

tool to infer a spatial context that can be used to support social media spatial

analytics (e.g., sentiment analysis, monitoring consumer behavior). Another

practical contribution is the creation of a recent Twitter location user dataset,

related with the alloy steel domain, which is made publicly available, allowing

other researchers to compare different approaches against GTN-DB.

5.2. Limitations and future work

While interesting results were achieved by GTN-DB, the depth and accuracy

of the research needs to be improved. For instance, we analyzed the worldwide

locations of 3,298 users related with only one case study (alloy steel prices).

Also, we considered all historical nouns (maximum of 3,200 tweets per user).

A richer analysis could be provided by considering additional user locations

from other application domains and different historical time periods (e.g., last

3 months). Moreover, some high error estimates were obtained by GTN-DB

(e.g., 18% of the users present GTN-DB location distances higher than 10,000

km). The proposed approach uses all nouns. While some nouns are location

specific (e.g., “brigittemacron”), others are more universal (e.g., “day”) and

thus have less informative value, potentially prejudicing the GTN-DB location

performance. To address these limitations, in future work we intend to consider

more users from additional case studies, such as related with commodity prices

(e.g., gold, coffee) or road traffic events. Furthermore, we wish to extend the

proposed approach by studying the temporal effect of tweet nouns and their

city-level GT frequencies (e.g., comparing one year of historical data versus one

month) and by targeting smaller world regions (e.g., considering just the USA

country, in order to estimate the user state). Also, we plan to explore hybrid

approaches, in which GTN-DB is combined with other location methods, such as

LIW or friendship networks (use of social network analysis). Another interesting

research direction is the application of a semi-supervised learning approach, in

which a small sample of geotagged tweets or users could be used to enhance the

GTN-DB location performance. For instance, by applying statistical measures,
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such as Term Frequency-Inverse Document Frequency (TF-IDF) or Information

Gain (IG) (Oliveira et al., 2016), on a shorter set of labeled data to filter the

more generic and less relevant nouns.
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