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Abstract. In this work we present a hybrid numerical scheme for the
solution of systems of fractional differential equations arising in several
fields of engineering. The numerical scheme can deal with both smooth
and non-smooth solutions, and, the idea behind the hybrid method
is that of approximating the solution as a linear combination of non-
polynomial functions in a region near the singularity, and by polynomials
in the remaining domain. The numerical method is then used to study
fractional RC electrical circuits.
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1 Introduction

Fractional differential equations are becoming a hot topic in mathematics and
engineering, and, in the last few decades we have witnessed a mass generalization
of classical models to their fractional version. The reason is that several physical
systems rely on memory [1,2] for their evolution, or, the fact that their rates of
evolution need not to be classical derivatives of orders 1, 2, 3 ..., but instead, can
be something in between. Therefore, fractional models allow a better modeling
of physical phenomena by capturing information that is lost when we go from
smaller scales to the usual continuum approach.

For example, fractional calculus plays an important role in control systems
based on proportional-integral-derivative controllers, known as PID, and com-
monly used in industry, in instruments and laboratory equipment [1]. In these
processes we arrive at systems of fractional differential equations that may need
to be solved numerically.
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Other important examples of application of fractional calculus are electric
circuits. As shown in the work of Gómez-Aguilar et al. [3] the use of fractional
derivatives allows a much better fit to experimental data (see that of spectroscopy
applied to an RC circuit in [3]). Since the analytical solution of fractional differ-
ential equations is only available for a small number of cases, and due to the fact
that when using discrete techniques it takes a large amount of time to transform
data from one domain to the other, in their work [3], Gómez-Aguilar et al. used
the Numerical Laplace Transform to convert the time domain into the frequency
domain (and vice-versa).

Another possibility is to discretize the integral representation of the problem
directly. Therefore, in this work, we are concerned with the numerical solution
of the linear systems of ordinary differential equations:

Dαy(t) = Ay(t) + F(t), t ∈ (0, T ] (1)
y(0) = y0, (2)

where A is a constant matrix A = [aij ]i,j=1,...,n, y = [y1 y2 . . . yn]T , F(t) =

[f1(t) f2(t) . . . fn(t)]T and y0 = [y01 y02 . . . y0n]T , where y0i = yi(0), i = 1, ..., n.
The order of the fractional derivative satisfies 0 < α < 1, and the fractional
derivative is given in the Caputo sense, that is [2]:

dαu(t)
dtα

=
1

Γ (1 − α)

∫ t

0

(t − s)−α u′(s) ds.

In this work we present a hybrid numerical scheme for the solution of systems
of fractional differential equations (FDE) arising in different fields of engineer-
ing. The numerical scheme can deal with both smooth and non-smooth solutions,
and, the idea behind the hybrid method is that of approximating the solution
as a linear combination of non-polynomial functions in a region near the singu-
larity [4], and by polynomials in the remaining domain.

The work is organized as follows. In Sect. 2 we describe the numerical method,
in Sect. 3 we present a verification of the method against an analytical solution
and we also study a fractional RC electric circuit. The paper ends with some
conclusions.

2 Numerical Method

Before presenting the numerical method, we will first present some preliminary
results on the existence and uniqueness (see [2]) of solutions for system (1)–(2).

Lemma 1. Assume that the solution y of (1)–(2) exists and is unique on [0, T ],
for a certain T > 0. If α = p

q , where p ≥ 1 and q ≥ 2 are two relatively
prime integers and if each right-hand side function Fi can be written in the
form Fi(t,y(t)) = F i(t1/q,y(t)), i = 1, . . . , n − 1, where each F i is analytic
in a neighborhood of (0, yi(0)), then the components of the unique solution of
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the problem (1)–(2), y(t) = (y1(t), . . . , yn−1(t)), can be represented in terms of
powers of t1/q:

yi(t) =
∞∑

k=0

ai
ktk/q, t ∈ [0, r), (3)

where r < T and ai
k are constants.

From the above Lemma it follows that for a fixed m ∈ N each component of the
solution of (1)–(2) can be written as a sum yi(t) = y1

i (t) + y2
i (t), i = 1, . . . , n,

where, y1
i ∈ Cm ([0, T ]) , i = 1, . . . , n, and y2

i is the non-smooth part of yi.
Note that if the order of the fractional derivative α is not of the form α = p

q ,
with p ≥ 1 and q ≥ 2 two relatively prime integers, we can always replace α with
the nearest rational number of this form, because rational numbers are dense
in the reals, and, it has been proved in [6], that the solution of (1)–(2) depends
continuously on the order of the derivative.

In order to approximate the solution of (1)–(2) we consider a nonuniform

mesh on [0, T ], as in [7]. Given N ∈ N, let i0 be an integer such that
(

N
i0

)m
α ≤ N

and
(

N
i0−1

)m
α

> N and let N ′ = N − i0 + 1. The partition on [0, T ] is defined
through the meshpoints:

t0 = 0, ti =
(

i0 + i − 1
N

)m
α

T, i = 1, 2, . . . , N ′ − 1, (4)

and the N ′ subintervals:

σ0 = [0, t1], σi = (ti, ti+1], i = 1, 2, . . . , N ′ − 1, (5)

with lengths τi = ti+1 − ti, i = 0, 1, . . . , N ′ − 1. Define also τ = maxτi with
i = 0, 1, . . . , N ′ − 1.

Consider the space

Vα
m = span

{
ti+jα, i, j ∈ N0, i + jα < m

}
= span {tνk , k = 1, . . . , �} , � = #Vα

m.

Taking Lemma 1 into account, if near the origin we approximate the solution
of (1)–(2) with a function spanned by elements of space Vα

m, then it will reflect the
potential non-smooth properties of the solution near the singularity. Therefore,
we define the space

Sm
τ ([0, T ]) =

{
u ∈ C([0, T ]) : u

∣∣
σ0

∈ Vα
m

∣∣
σ0

, u
∣∣
σl

∈ Pm−1

∣∣
σl

, l = 1, ..., N ′ − 1
}

,

where Pm−1 is the space of polynomials of degree less than or equal to m − 1
and σi, i = 0, 1, ...., N ′ − 1, are defined by (5).

On the first interval of the partition, σ0, we define � collocation points t0j =
cjτ0, j = 1, . . . , �, cj ∈ [0, 1], and on the remaining intervals σl, l = 1, . . . , N ′−1,
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we consider m collocation points tlj = tl +cjτl, j = 1, . . . ,m, cj ∈ [0, 1]. Noting
that each equation of system (1) can be written as [2],

yi(t) = y0i +
1

Γ (α)

∫ t

0

(t − s)α−1

(
n∑

k=1

aikyk(s) + fi(s)

)
ds, i = 1, 2, . . . , n (6)

we will then seek for a function v = [v1 v2 . . . vn]T such that vi ∈ Sm
τ ([0, T ]),

i = 1, 2, . . . , n, that satisfies

vi(t0j) = y0i +
1

Γ (α)

∫ t0j

0

(t0j − s)α−1

(
n∑

k=1

aikvk(s) + fi(s)

)
ds, (7)

where j = 1, . . . , � if p = 0 and j = 1, . . . ,m for p = 1, . . . , N ′ − 1. In order to
obtain approximations for each vi(t0j), i = 1, . . . , n, j = 1, . . . , �, we define the
Lagrange functions, L0j

∣∣
σ0

∈ Vα
m

∣∣
σ0

, j = 1, . . . , �, such that L0j(t0k) = δjk, k =
1, . . . , �. Then, we can write

L0j(t) =
�∑

i=1

βjit
νi ,

where, for each j = 1, . . . , �, the coefficients βji may be obtained by solving the
linear system L0j(t0k) = δjk, k = 1, . . . , �.

Hence, for t ∈ σ0, we use the following representation for vi ∈ Vα
m

∣∣
σ0

, i =
1, . . . , n:

yi(t) ≈ vi(t) =
�∑

k=1

vi(t0k)L0k(t).

The values vi(t0k), k = 1, ..., � are obtained by imposing that the functions
vi(t) satisfy the integral Eq. (7), for p = 0, at t = t0k, k = 1, ..., �:

vi(t0j) = y0i +
1

Γ (α)

∫ t0j

0

(t0j − s)α−1

(
n∑

k=1

aik

�∑
p=1

vk(t0p)L0p(s) + fi(s)

)
ds,

j = 1, . . . , �. (8)

yi(tlk) = y0i +
1

Γ (α)

∫ t1

0

(tlk − s)α−1

(
n∑

w=1

aiw

�∑
p=1

yw(t0p)L0p(s) + fi(s)

)
ds

+
1

Γ (α)

l−1∑
j=1

∫ tj+1

tj

(tlk − s)α−1

(
n∑

p=1

aipyp(s) + fi(s)

)
ds

+
1

Γ (α)

∫ tlk

tl

(tlk − s)α−1

(
n∑

p=1

aipyp(s) + fi(s)

)
ds,

i = 1, . . . , n, k = 1, . . . ,m.
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On each subinterval σj , j = 1, . . . , N ′ − 1, each yi will be approximated by
vi ∈ Pm−1, that is given by:

yi(t) ≈ vi(t) =
m∑

γ=1

Ljγ(t)vi(tjγ), t ∈ σj ,

where Ljγ , j = 1, . . . , N ′ − 1, γ = 1, . . . ,m, are the Lagrange polynomials
associated with the collocations points tjγ = tj + τjcγ .

Substituting in (7), for p = 1, 2, ..., N ′ − 1, we obtain the following system of
equations, from which the values vi(tlk), i = 1, . . . , n, can be obtained:

vi(tlk) = y0i +
1

Γ (α)

∫ t1

0

(tlk − s)α−1

(
n∑

w=1

aiw

�∑
p=1

vw(t0p)L0p(s)

)
ds

+
1

Γ (α)

l−1∑
j=1

∫ tj+1

tj

(tlk − s)α−1

(
n∑

p=1

m∑
γ=1

aipLjγ(s)vp(tjγ)

)
ds

+
1

Γ (α)

∫ tlk

tl

(tlk − s)α−1

(
n∑

p=1

m∑
γ=1

aipL
(k)
lγ (s)vp(tl + τckcγ)

)
ds

+
1

Γ (α)

∫ tlk

0

(tlk − s)α−1fi(s)ds,

l = 1, . . . , N ′ − 1, k = 1, . . . ,m, (9)

where L
(k)
lγ , l = 1, . . . , N ′ − 1, γ = 1, . . . ,m, are the Lagrange polynomials

associated with the points tl + τlcγck.
After solving (8) and (9), the approximate solution of system (1)–(2), v =

[vi]
n
i=1 is given by:

vi(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�∑
k=1

vi(t0k)L0k(t), t ∈ σ0

m∑
k=1

vi(tjk)Ljk(t), t ∈ σj , j = 1, . . . , N ′ − 1
. (10)

Note that it was proved in the another work by the research group [5] that
the convergence order of the method is m.

3 Numerical Results

In order to validate and illustrate the feasibility of the method, one example for
which the analytical solution is known, and a case study involving fractional RC
electric circuits are now presented. The numerical error is measured by deter-
mining the maximum error at the mesh points tj :

ετ = max
i=0,...,N ′−1, j=1,...,li

|y(tij) − v(tij)| , (11)

where l0 = � and li = m for i = 1, ..., N ′ − 1, and, v is the numerical solution.
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3.1 Validation

For validation purposes we have considered the following system:{
Dαy1(t) = y2(t)
Dαy2(t) = −y1(t) − y2(t) + tα+1 + π csc(πα)t1−α

Γ (−α−1)Γ (2−α) + πt csc(πα)
Γ (−α−1) ,

(12)

together with the conditions y1(0) = 0, y2(0) = 0. The analytical solution is
given by y1(t) = t1+α and y2(t) = πα(α + 1)t csc(πα)/Γ (1 − α) with α ∈ [0, 1].

For the numerical solution we consider a high order approximation with
m = 4. We consider Eq. (12) with several values of alpha: α = 1/4, 1/2, 2/3.

The numerical results listed in Table 1 suggest an experimental order of con-
vergence of 4, as expected. Note that with standard finite difference schemes it
would be impossible to attain such convergence rates. It should also be high-
lighted that fact that the new method is up to 338 times faster than the method
in [4].

Table 1. Error and convergence order (p) obtained for the numerical solution of
Eq. (12). SU - simulation time of the non-polynomial method [4] (the solution is a
linear combination of non-polynomial functions in the all domain) divided by the sim-
ulation time of the hybrid method.

α = 1/4 α = 1/2 α = 2/3

N N ′ ετ p N ′ ετ p SU N ′ ετ p SU

64 15 2.11 · 10−6 - 26 1.94 · 10−7 - 56 32 5.53 · 10−8 - 142

128 34 1.45 · 10−7 3.86 59 1.27 · 10−8 3.93 50 71 3.58 · 10−9 3.95 162

256 75 9.43 · 10−9 3.94 128 8.13 · 10−10 3.97 52 155 2.28 · 10−10 3.97 170

512 166 6.00 · 10−10 3.97 278 5.14 · 10−11 3.98 59 331 1.44 · 10−11 3.99 338

3.2 Case Study: Fractional RC Electrical Circuits

By following the work of Gómez-Aguilar et al. [3] the fractional differential equa-
tion governing a fractional RC electrical circuit (see Fig. 1(a)) is given by (for
more details see [3]),

dαq(t)
dtα

+ α1−α(RC)−αq(t) = Cα1−α(RC)−αE(t), α ∈ [0, 1]. (13)

We have solved the governing equation using the hybrid method (the param-
eters are shown in Fig. 1).

Note that we have considered the relationship given by Eq. (12) of [3], stating
that σR = αRC.

We compared our results with the results obtained with the numerical
Laplace transform technique, where an excellent agreement is observed. Note
that we use α = 0.96, 0.98 which are close to 1 (the classical case), but, huge
differences between the two values were observed in [3].
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Fig. 1. (a) Schematic of the RC circuit. (b) Charge vs. time. Comparison with the
results obtained by Gómez-Aguilar et al. [3] (the parameters used in the numerical
solution of Eq. (13) are given in the figure). The simulations were performed with
Mathematica 11.0 from Wolfram Research, Inc.

4 Conclusions

A hybrid numerical method was developed for the solution of systems of frac-
tional differential equations. The method can deal with both regular and singular
solutions extending in this way the results in [4] where only one equation was con-
sidered and where the non-polynomial approximation was used along all the time
interval. The numerical results suggest that the computational effort of the new
method is significantly lower and that it provides an optimal convergence order
m that is independent of α. The hybrid method is also used to study fractional
RC electrical circuits, as an alternative to the Numerical Laplace Transform.
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