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ABSTRACT 

Computer-Mediated Communication (CMC) has paved the way for new patterns of linguistic aggravation. Hidden behind 
the screen, anyone can comment on any other person's opinion using an offensive or injurious tone. Besides, types of 
prejudice such as homophobia, sexism, racism, xenophobia, anticlericalism, body/addiction shaming, among others, are 
easily found nowadays in social networks and other forms of interactive Web sites potentiated by Web 2.0. This increasing 

violence deserves further investigation from different academic perspectives, among which Sociolinguistics stands out. 
This paper is concerned with the design and development of a set of computer-based tools to collect articles and posts with 
the respective comment threads that can be used as sources to extract prejudice terms and allow different analyses to be 
conducted. These prejudice terms were devised using a sociolinguistic variable stratification approach. We will focus on 
the filters used to extract the relevant fields from the Web pages collected, and on the converters used to adapt formats to 
obtain a common format for information representation. We will also introduce the statistical analysis processor that 
explores the extracted data, in that format, to output a set of indicators. 
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1. INTRODUCTION 

Our team's project deals with hate speech online, i.e., the expression of prejudice and discrimination on the 

Internet. It aims to identify recurrent words, idioms and constructions, as well as communicative routines and 

patterns of pragmatic interaction, that may serve as a basis for abuse detection. The object of analysis is online 

social platforms, such as Facebook, YouTube, Twitter, and Web journal comment boards, where participants 

often engage in expressing opinions that are ideology-laden and biased against a range of social groups and 
subjects. 

The project aims to build and annotate a comparable corpus of online texts, on a range of similar topics but 

in different languages, namely Portuguese and English. This contrastive analysis will hopefully allow us to 

assess the socio-cultural similarities and differences of the two linguistic contexts in an admittedly globalized 

society. Annotation of the corpus will begin by metadata, which will stratify the texts according to 

sociolinguistic variables such as age, gender, ethnicity, nationality and social class. This will pave the way for 

studies in language variation. Structural taggers will be inserted next, providing information about the  

morpho-syntactic organization of the texts, which may carry ideological intent. Finally, content taggers will 

help design a descriptive ontology of the corpora that will lend itself to various interpretive tasks. The results 

of this extended study will help refine informatics tools of control and detection on institutional levels, 

including automatic identification of situations of risk and abuse online. 

The research question we intend to answer in this paper can be stated as follows: How to integrate into a 
single corpus posts with comments, containing prejudice terms, extracted from different social networks and 

news sites? 
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In this context, the paper focuses on the software paraphernalia that is under development to support the 

extraction from multiple sources of hate speech sentences.  

The tools and techniques we have used may not be new, but the novelty and the strength of our work so far 

is that we have managed to integrate all available tools into a unified approach. Thus, we have succeeded in 
tackling the various problems which the different sources posed and can now choose the appropriate tool and 

extraction method for each different source. Besides, we have managed to integrate the partial results into a 

global analysis tool that is automated and available through a simple Web interface. Additionally - and crucially 

- we have also started to successfully collect the metadata of each extraction. 

Section 2 presents a set of keywords for text extraction, devised according to a sociolinguistic variable 

stratification method. Section 3 introduces the approach followed to execute the tasks involved in the 

extraction. Then Sections 4 and 5 discuss in detail the extractors of material from sources such as social 

networks and newspaper sites. Section 6 presents the system of detection and analysis of discursive prejudices. 

Finally, Section 7 presents the conclusions and future work. 

2. SOCIOLINGUISTIC STRATIFICATION OF ONLINE PREJUDICE 

AND DISCRIMINATION: KEYWORDS FOR DATA EXTRACTION 

The project aims to analyze the linguistic forms and strategies of prejudice in Computer-Mediated 

Communication (CMC). As CMC is a phenomenon that brings together multiple manifestations, not only at 

the linguistic level (morphology, syntax, lexical semantics), but also (inter)actionally and pragmatically, it is 

important to cross it with the sociolinguistic variables it involves. 

With this caveat in mind, our team devised a keyword table for data extraction, at the very outset of the 

project. This table covers the following elements: (i) different types of prejudice; (ii) the corresponding 

sociolinguistic variables they target; and (iii) the various keywords and expressions which, in English and 

Portuguese, are deemed typical lexical signals of prejudice expression. Ten types of prejudice were 

considered: sexism, ageism, racism, nationalism, classism, homophobia, anticlericalism, ideological shaming, 
body shaming, and addiction shaming. The former five correspond to the following classic sociolinguistic 

variables, respectively: gender, age, race (and ethnicity), nationality, and social class (Labov, 2001). Prejudice 

types six to eight correspond to the following identity categories: sexual identity, religious identity, and 

ideological/political identity (Coupland, 2007). Finally, items nine and ten correspond to physical identity and 

behavioral identity. For each of these parameters a list of keywords, especially slurs, was developed, to help 

scrape the Web for texts that express prejudice. 

This approach will cater for discursive and pragmatic analyses, with a view to identifying emerging 

ideological communities (Lambert, 2007). The aim is to know what actors - both active and passive, victimizers 

and victimized - populate the virtual world of marginalization and conflict, and what their recurrent identities 

and attitudes are in terms of linguistic expression.  

The approach for extracting and analyzing comment boards is presented in Section 3. 

3. EXTRACTION AND ANALYSIS - THE APPROACH 

As previously mentioned, the project aims to analyze verbal interaction in online comment boards. At this 

stage, we are extracting data from two types of online platforms: newspaper sites and social networks 

(YouTube and Facebook), in the Portuguese language. 

Before starting the extraction process, it is necessary to find news articles and publications that can trigger 
biased and discriminatory comments. Our approach to searching across platforms has been to use the keywords 

(see Section 2) in the platform search to find the publications that contain those keywords. After finding them 

we start the extraction. It is important to note that in addition to extracting comments we also extract the news 

articles, publications, audio-visual texts, etc., that triggered the thread of comments. As the goal of the project 

is to construct a corpus for linguists and other specialists to use in their research, we find it appropriate to keep 

the source text that gave rise to the verbal interaction. The news articles found in the newspaper sites will then 

be looked for in the respective newspaper Facebook page in order to extract the post and the comment thread 

from there. In general, we have discovered that the same news article has a greater number of comments on 
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the newspaper's Facebook page, compared to the newspaper site, in the case of Portuguese newspapers. In the 

newspaper “Correio da Manhã” (a Portuguese tabloid), we are only going to extract the comment threads on 

the newspaper's Facebook page because the contents of the comment threads on the newspaper site have 

recently stopped being accessible. Our extraction and comment analysis schema is shown in Figure 1. 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 
Figure 1. General Extraction Schema1 

Figure 1 is a simplified schema that contains all the steps from the extraction to the analysis of the 

comments. Extractors will scrape web pages (Newspaper, Facebook, YouTube) and as a result we obtain a 

file, which can be in a range of formats, such as HTML, JSON, CSV, etc., depending on each extractor. 

Subsequently the extracted files will be converted into a standard format resorting to the File Converters. In 

this case, we have chosen JSON as the standard format. Finally, comment threads in JSON format will be 
examined according to a Statistical Analysis to evaluate the Frequency of occurrence of the keywords which 

reveal prejudice and discrimination in the comments.  The results of this analysis are saved in a CSV file.  In 

the following sections we will explain all these processes in more detail.  

4. EXTRACTING POSTS/COMMENTS FROM ONLINE SOCIAL 

NETWORKS 

Extracting the posts and comment threads from Web social networks (YouTube and Facebook) is carried out 

using two freely available online tools. A detailed outline of the steps of this extraction is shown in Figure 2. 

 

                                                
1 All the icons of Figures 1, 2 and 5 were taken from the website: “The Noun Project” (https://thenounproject.com/). Accessed: 2019-04-

10. 
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Figure 2. YouTube and Facebook Extraction Schema 

On YouTube the extraction takes place using the application YouTube Comment Scraper2. To start the 

extraction, it is necessary to enter the publication link and the application automatically extracts the thread with 

all comments in JSON and CSV format. In our case, the thread was extracted in JSON format, to standardize 

all extractions. In Figure 3, a fragment of a comment thread extracted from YouTube is exhibited. 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 
 

 

Figure 3. Comment thread extracted from YouTube (fragment) 

According to Klostermann (2015), the fields extracted in each comment thread are: id - ID of the comment; 

user - name or nickname of the author of the comment; date - publishing date of the comment;  

timestamp - time an event is logged by a computer, not the time of the event itself; commentText - text of the 
comment; likes - number of likes on the comment; hasReplies - whether the comment has replies; 

numberOfReplies - number of replies; replies - whether the comment is a reply to another comment (in threaded 

conversations). 

 

 

 

                                                
2 YouTube Comment Scraper: http://ytcomments.klostermann.ca/. 
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It is important to note that this application only extracts the comment thread and does not extract any 

information regarding the publication. Extraction on Facebook is done with the tool Netvizz3, a Facebook 

application that can be found by typing the name into the main Facebook search box. To extract the data from 

a page, it is only necessary to enter the page ID and date scope. The result of the extraction is a CSV file that 
in this case contains the comment thread and publication information (Rieder, 2013). 

According to Rieder (2013), the fields extracted by Netvizz are: position - postnumber_commentnumber 

(e.g. 0_0 for the first comment on the first post); post_id - ID of the post; post_by - author of the post; post_text 

- text of the post; post_published - publishing date of the post; comment_id - ID of the comment; comment_by 

- author of the comment (column no longer in use, remains for compatibility); is_reply - whether the comment 

is a reply to another comment (in threaded conversations); comment_message - text of the comment; 

comment_published -  publishing date of the comment; comment_like_count - number of likes on the comment; 

attachment_type -  attachment type (eg: animated_image_share); attachment_url - attachment URL. 

As the results of Facebook extraction are obtained in CSV format, it is necessary to convert them into JSON 

format. The transformation of files extracted from Facebook in CSV format to JSON format is performed by a 

script in Python. For each line of the CSV file, the Converter forms a name/value pair, where the field name 
corresponds to its column name and value is the extraction result of the respective field. For example, 

“comment_message”: “Os casamentos de Sto António são para casais (homem/mulher) e não para pares  

(2 do mesmo sexo)” [“Saint Anthony’s weddings are for man/woman couples, not for same-sex pairs”], where 

“comment_message”  is a column name and “Os casamentos de Sto António são para casais (homem/mulher) 

e não para pares (2 do mesmo sexo)” corresponds to the extraction result. The JSON generated by the converter 

is listed in Figure 4. 

In Section 5 we will explain the extractors of newspaper sites in detail. 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 4. Comment thread extracted from Facebook in JSON (fragment) 

5. EXTRACTING ARTICLES/COMMENTS FROM NEWSPAPER WEB 

PAGES 

The comment thread and article extraction from the newspaper web pages is performed by Python scripts, one 

to extract the article from the newspaper, and another script to extract comments related to the article. A detailed 

outline of the steps of this extraction is shown in Figure 5. 

The newspaper sites are dynamic Web pages, that is, they assemble content that comes from different 

sources. They use scripts that perform functions such as: database information, article comments, links to other 

news, links to different topics/news categories, etc., and fill the page with content from different sources in the 

                                                
3 Netvizz: https://apps.facebook.com/netvizz 

16th International Conference on Applied Computing 2019

183



visualization moment (i.e. when the page is requested). This means that the page content is not fully included 

in the original static page. 

An example of content that is integrated into the newspaper article page is the comment thread and, 

therefore, its extraction becomes more difficult. This is noticeable when we click on “inspect element”: on the 
newspaper page we can see we can see the HTML code with the comment thread, but when we click on “view 

page source” we cannot find the HTML code with the comment thread. The explanation for this omission is 

that “view page source” only shows the content that was found on the server. However, the final DOM 

(Document Object Model) that is rendered by the browser can be very different, because the JavaScript that is 

compiled when opening the page manipulates the DOM and integrates content that comes from the different 

sources. This leads us to see the HTML code with the comment thread when we click on “inspect element” 

(Prutsachainimmit and Nadee, 2018). 

 

 

 

 

 
 

 

 

 

 

Figure 5. Newspaper Extraction Schema 

Faced with this difficulty, it was necessary to understand the different types of scraping techniques avaliable 

and how we would apply them to carry out the extraction. Scraping can be either static or dynamic. Static 

scraping bypasses JavaScript and searches the server's Web pages without the help of a browser. This type of 

scraping extracts exactly all the information we see when we click on “view page source”. Static scraping 

works using two Python packages: Requests4 to find web pages and Beautiful Soup5 to parse HTML pages. 

Dynamic scraping uses a real browser and allows the JavaScript on the page to run. Subsequently, it queries 

the DOM to extract the content we are looking for. There are also cases where it is necessary to automate the 

browser, that is, to simulate the steps a user takes to obtain the content needed. Dynamic scraping works by 

using the Selenium6 Python package to automate the browser and interactively interact with the DOM. 

Selenium requires a WebDriver7  (the browser is automated) for the Internet browser (Mitchell, 2015; Jarmul 
and Lawson, 2017). 

In our case, the most adequate scraping technique is the dynamic one because the content of the comments 

comes from another source, as explained above. Dynamic scraping will allow us to find the information that 

comes from another source, but we also use static scraping to extract the information we want after finding it 

with dynamic scraping.Figure 6 shows a fragment of the Newspaper Article extractor (in this example we are 

extracting news from the Portuguese newspaper “Sol”), which, as already mentioned, uses dynamic scraping 

(Selenium and WebDriver) and static scraping (Beautiful Soup). 

 

                                                
4 Requests: https://2.python-requests.org/en/master/ 
5 Beautiful Soup: https://www.crummy.com/software/BeautifulSoup/bs4/doc/ 
6 Selenium: https://www.seleniumhq.org 
7 WebDriver: https://www.seleniumhq.org/projects/webdriver/ 
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All the data we want to extract from the newspaper article is on the source page, but we have decided to 

use both types of scraping, so to make it applicable to most types of content. In lines 5-14 we use dynamic 

scraping to open and load the page, and close cookie windows, etc. that appear when the page loads; and we 

use static scraping, lines 15-29, to search for the elements and extract the information. 
The WebDriver we used was Geckodriver as it is the driver used for the connection to Firefox (line 5). The 

driver runs the browser and opens the link to the page we entered in the driver.get function (line 6). 

Subsequently, we look for the tag <div> whose id is article-full and store in the variable dados (lines 13 and 

14). This tag contains all the HTML code with the information that we want to extract. 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Extractor of Newspaper Article (fragment) 

Then we use Beautiful Soup to parse this HTML and save the HTML code returned by the Selenium, 
already converted to Beautiful Soup, within the variable soup (line 15). The soup variable is the tree root parsed 

from the HTML page that will allow us to browse and search elements in the tree. Within this tree we will look 

only for the specific elements that we want to extract: title - title of the article; subtitle - subtitle of the article; 

date - date on which the article was published; shares -  number of article shares in social networks (when 

applicable); article - text of the article. 

For example, to extract the title of the article we will look in the tree for <div> whose class is “large-9 

medium-8 column artic_content” (which contains the header and body of the article) and store it in the variable 

header. Within the variable header we will look for the <header> tag, and within that tag search for the <h1> 

tag and save the text (title of the article) found in the <h1> tag in the variable titleN. This extractor stores 

information extracted in JSON format (see Figure 7). 

 

 
 

 

 

 

 

 

 

 

 
 

Figure 7. Extraction of Newspaper Article (example) 
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The comment thread extractor is shown in Figure 8 and, similarly to the previous extractor, it also uses 

dynamic and static scraping to perform the extraction. In this case, dynamic scraping plays a very important 

role because the comment thread is imported from an external source, that is, it is not in the source code of the 

main page. On the other hand, it is also important when there is an extensive list of comments, as it is necessary 
to simulate a user clicking on the button in order to see the remaining comments, otherwise the extractor only 

extracts the comments that are visible (open) in the HTML page at that time. 

The search and extraction logic of this extractor is very similar to the previous one, the main difference is 

that it opens the main page of the news article (line 6), then it will look for the url of the sub-page (in the 

<iframe> tag in the attribute src) that contains the comment thread (lines 9-11), and finally, opens it to access 

its information (line 12). When the list of comments is extensive, a button is displayed to click and see the 

remaining comments. The simulation of that click as if it were a user is performed in lines 16-22. Finally, in 

lines 27-29 the list of the comment thread is searched and stored in the variable listComments. The result of 

this extraction is an extensive HTML code that contains all the comments. 

The next step is to filter the extracted information and convert it to JSON format. To achieve this, we 

constructed a Text Filter and JSON Converter, in Flex, which looks for the information that we want to extract 
and saves it in JSON format. This phase poses significant challenges: one being that HTML is very verbose 

and so it takes several steps to extract a simple field; another is the occurrence of responses to nested comments 

within each other, which makes it difficult to identify where responses end up, given various levels of nesting. 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 
Figure 8. Extractor of the Newspaper Comment Thread (fragment) 

JSON generated by the application has the same fields as JSON extracted on YouTube. Figure 9 shows the 

JSON result of the HTML extraction. 

 

 

 

 

 

 

 

 

 
 

Figure 9. Newspaper Comment Thread in JSON format (fragment of a comment) 
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It is important to point out that this whole extraction process (newspaper article extractor, comment thread 

extractor and text filter and JSON converter) is specific to the newspaper “Sol”. This means that for each 

newspaper it is necessary to create new extractors and a new text filter and JSON Converter, since each 

newspaper has a different web page. 
In Section 6 the analysis of comments to identify discriminatory and prejudice discourse will be discussed. 

6. PREJUDICE DISCOURSE DETECTION AND ANALYSIS 

It is important to remember that the final objective of the extraction process previously presented is to collect 

a stream of comment threads to build a comparable linguistic corpus that will be studied mainly in terms of 
verbal interaction in CMC. After extracting the comments, it is necessary to analyze if the comment thread 

exhibits a prejudiced and discriminatory stance. To carry out this analysis, we have constructed a Python script 

that does the statistical analysis for the occurrence of keywords in the comments. This analysis performed by 

the Python script compares the comment text with the keywords table, which is in JSON format. The code 

fragment shown in Figure 10 aims to search for the keywords (presented in Section 2) in the comments. When 

it finds them, it creates a triple analysis with the keyword, the number of occurrences of the keyword and the 

total number of words that the comment has. 

 

 

Figure 10. Statistical analysis for the occurrence of keywords in the comments (fragment) 

This script in Python does the statistical analysis by: type of prejudice in a comment thread; frequency with 
which this concept appears in a particular comment; total number of comments that have keywords out of the 

total number of comments of the thread; which keywords are present in the comments and how often they 

appear in the comment thread; which type of prejudice is present in the comment thread; which is the most 

prevalent prejudice in a comment thread. 

The analysis that is performed for a file with a comment thread can also be performed for a directory that 

contains several files with comment threads. The output of the statistical analysis for the occurrence of 

keywords in the comments is exported to a CSV file. An example of this result is shown in Figure 11. This 

example corresponds to the JSON sample of YouTube extraction in Figure 3.  

Figure 11. Result of statistical analysis for the occurrence of keywords in the comments 
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Finally, we have built a Web interface that integrates: the statistical analysis module; another module to fill 

in missing metadata fields; another component that allows for the inclusion of new categories of prejudice 

types and sociolinguistic variables, and for the addition of new keywords in English and Portuguese to each 

sociolinguistic variable. 
Additionally, after performing the statistical analysis and populating the missing metadata, it still stores the 

resulting Json file in the database. 
Section 7 presents our conclusions and future work. 

7. CONCLUSION 

With the globalized rise in online communication, people worldwide are spending increasing amounts of time, 

attention, and energy on social networks (Facebook, YouTube, Twitter, Reddit, etc.). They navigate these 

platforms on a daily basis, and use them to socialize, connect, express opinions and, crucially, absorb opinions. 

Dialogue exchange with virtual strangers allows Internet surfers to discuss and argue about a variety of topics, 
some of which are often openly polemical, without ever coming face to face with one another. The anonymity 

and distance that characterize this interaction are partly to blame for a generalized willingness to offend and a 

rising propensity to discriminate, persecute and express prejudice. 

Our goal is to extract these interactions (comment threads) from various sources and analyze them. To 

examine the different types of discriminatory discourse we have created a table with keywords, categorized by 

type of prejudice and the respective sociolinguistic variables. To collect the dialogue texts and extract the 

comment threads from Facebook and YouTube, as well as to extract the comment threads from the newspaper 

page and the newspaper article, we are using two existing tools and creating two scripts. As the output format 

is not always the same, it is necessary to create scripts that convert the extraction outputs to JSON. Finally, as 

we intend to analyze the type of discourse present in the comments, we have created a script to perform several 

analyses, one of which is to identify the prejudiced keywords in the comments and to count how often they 
appear in each comment and in the thread in general. Our project is aligned with many others in the CMC 

Community (Cougnon et al., 2019; Pahor de Mati et al., 2019; Franza and Fišer, 2019; Beißwenger et al., 

2019a; Beißwenger et al., 2019b; Lombart, 2019), projects conducting various studies related to social media 

discourse, in particular socially unacceptable discourse. In our case, we aim at integrating multiple sources and 

analyzing a broader group of social variables. 

As future work we intend to implement extractors for other Portuguese and English newspapers. Another 

goal is to extract Twitter and Instagram comments. We also aim to improve the extraction of YouTube 

comment threads, that is, to create a script to extract information about publication, similar to the extractor of 

the newspaper article. 
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