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Abstract 

A body of evidence indicates that peripheral nerves have an extraordinary yet limited 

capacity to regenerate after an injury. Peripheral nerve injuries have confounded professionals 

in this field, from neuroscientists to neurologists, plastic surgeons, and the scientific 

community. Despite all the efforts, full functional recovery is still seldom. The inadequate 

results attained with the “gold standard” autograft procedure still encourage a dynamic and 

energetic research around the world for establishing good performing tissue engineered 

alternative grafts. Resourcing to nerve guidance conduits, a variety of methods have been 

experimentally used to bridge peripheral nerve gaps of limited size, up to 30-40 mm in length, 

in humans. Herein, we aim to summarize the fundamentals related to peripheral nerve anatomy 

and overview the challenges and scientific evidences related to peripheral nerve injury and 

repair mechanisms. The most relevant reports dealing with the use of both synthetic and natural-

based biomaterials used in tissue engineering strategies when treatment of nerve injuries is 

envisioned are also discussed in depth, along with the state-of-the-art approaches in this field.  

 

 

 

 

 

Keywords: Peripheral Nerve Regeneration, Tissue Engineering, Biomaterials 

 

 

 

 

 

 

 



2 CR Carvalho, JM Oliveira and RL Reis 

 

 INTRODUCTION 

The most significant advances in peripheral nerve repair and regeneration have been 

achieved over the last years with the improvement of technological tools. However, the study 

of nerve and its regenerative potential initiated in earlier times, possibly in the ancient Greek 

period [1]. Nevertheless, the establishment of the basic notions and modern concepts of nerve 

repair and regeneration were only developed in the twentieth century with the emergence of the 

neurosurgery field [2].  

Peripheral nerve injuries (PNIs) usually involve sensory and motor neurons and 

frequently result in axonal loss and demyelination, depending on the severity of the injury. 

Under ideal conditions, regeneration of a nerve cable is followed by remyelination, thus 

allowing a certain degree of sensory and functional recovery to be achieved. In the clinics, PNIs 

repair is based on the knowledge of physiological regenerative processes [3]. However, if no 

additional strategies are used, functional recovery following an injury remains incomplete. In 

order to address this tissue regeneration and improve clinical outcomes, the contribution of 

multidisciplinary fields is required. Interestingly, tissue engineering (TE) has allowed to take 

impressive steps towards the improvement of functional outcomes, by means of combining 

areas such as reconstructive microsurgery, transplantation and biomaterials [4]. Furthermore, 

the basic triad of TE has an important role in successful nerve regeneration, as the goal remains 

to develop and fabricate novel nerve guidance conduits (NGCs) built from a particular 

biomaterial, capable of housing cells and deliver biological and physical molecular cues, 

enhancing and guiding nerve regeneration [5]. As tubulization and the use of NGCs remains 

the base for nerve repair, the choice of adequate type(s) of biomaterials is the pillar to achieve 

the so desired regeneration [6]. In fact, it has been confirmed experimentally that engineered 

NGCs may also lead to effective nerve repair, that was earlier thought to only be restorable 

using autograft [7]. 

The topics related to the anatomy of the nervous system as well as on the innate 

mechanisms related to the natural attempts of tissue regeneration are addressed herein. A 

comprehensive overview of the biomaterial’s approaches being pursuit in nerve regeneration 

can also be found. Pre-clinical studies comprising natural, synthetic and endogenous 

biomaterials have also been extensively explored. Additionally, strategies to achieve nerve 

repair as well as challenges that need to be overcome are highlighted.  
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 Organization of the Nervous System  

In the case of an injury, in order to make an initial assessment/diagnosis and proceed 

with the appropriate treatment, it is imperative to have plain knowledge of nervous system 

anatomy. The nervous system is the instrument through which organized vertebrates keep in 

touch with its internal structures and external surroundings, reacting to changes and adapting to 

them. This system has a fundamental role in behavior control and can be divided in the central 

nervous system (CNS) and peripheral nervous system (PNS) [8]. The CNS, composed of the 

brain and its caudal prolongation, the spinal cord, is connected to the periphery by the PNS [9]. 

During the embryonic development known as ontogenesis, the CNS emerges from the neural 

plate of the ectoderm that molds into the neural groove, from which the neural tube results. 

Subsequently, the neural tube is restructured and gives origin to brain and spinal cord. This 

phenomenon is known as neurulation. Two bands of tissue called the neural crest will give 

origin to the forthcoming PNS that run along the neural tube. These are multi-potent progenitor 

cells that later form the PNS [10]. 

At an anatomical level, the CNS consists of the brain and the spinal cord, being both 

enclosed by three types of meninges [11]. The PNS consists of cranial nerves, spinal nerves and 

their roots and branches, peripheral nerves, and neuromuscular junctions, in a total of 43 pairs 

of sensory and motor nerves [12]. Bundles of axons in the PNS are referred to as nerves. These 

are composed of more than just nervous tissue. They have connective tissue participating in 

their structure, as well as blood vessels supplying the tissues with nourishment. A neuron 

consists of a cell body, known as Soma, which gives out extensions in PNS, called axons. These 

are crucial for targeting distant tissues and organs. Axons are coated with myelin sheath 

membranes, formed by Schwann cells.  

Anatomically, each individual axon is firstly protected by a myelin sheath and sheltered 

by a first layer of collagen and elastic elements, the endoneurium. A group of endoneurium 

protects axon groups into nerve fascicles, which are sheathed by the perineurium, mainly 

composed of connective tissue. Finally, several fascicles are gathered together by the 

epineurium. In the outer layer, the mesoneurium can be found, which also comprises blood 

vessels supplying oxygen and nutrients to the nerve. Any break or defect in this stratified 

structure fallouts in a programmed and permanent cell death, unless rapidly and meticulously 

reestablished [13]. Besides myelinated nerve fibers, the PNS contains unmyelinated fibers, with 

the majority found in the cutaneous nerve, the dorsal roots, and some muscle nerves. Fig. 1 
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shows the schematic representation of CNS and PNS in the human body, as well as detailed 

anatomy of peripheral nerves and neurons.  

Myelin is a constant in both PNS and CNS. Myelin found on neurons in the PNS is 

formed by Schwann cells while myelin found in the CNS is generated by oligodendrocytes. 

However, one striking difference can be pointed. In one hand, oligodendrocytes and Schwann 

cells are often compared to each other in terms of function. However, the biggest difference 

among the two resides in their ability to repair neurons after nerve damage, as Schwann cells 

promote nerve regeneration and repair, whereas oligodendrocytes inhibit neuron repair after an 

injury [14]. 

In terms of purpose, the primary function of the CNS is integration. Conversely, the 

PNS is mainly a receptor and effector organ that connects the CNS to every part of the body by 

cranial and spinal nerves, and associated ganglia. This connection is made by sensory and motor 

neurons that conduct impulses to the CNS or the periphery, respectively [15].  

 

 General Overview of Peripheral Nerve Injuries 

Neurological defects are among the most demanding clinical situations despite decades 

of research in the neurological field [16]. The reason for this relies in the complexity of the 

nervous system functions, structure and anatomy, which makes it more challenging to treat as 

compared to other tissues in the human body [17]. Opposing to the CNS, the PNS is not 

protected by a hard bone layer or by the blood-brain barrier, making it much more disposed to 

traumatisms or any kind of injuries [18]. Therefore, PNIs are considered a huge clinical burden, 

being the incidence 1 in 1,000 individuals per year [19]. The estimated numbers of PNIs range 

from 300,000 and 360,000 cases per year for Europe and the USA, respectively [20]. In fact, 

PNIs are associated to $150 billion health-care expenses per year in the USA alone [15]. These 

costs are underestimated, since “bed-days” and lack of productivity also account for monetary 

losses, worldwide. It has been assessed that 25% of patients suffering from traumatic injuries 

and undergo surgery do not return to work 1.5 years after the intervention. 
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Fig. 1 - Schematic representation of nervous system anatomy in the human body. The nervous system is divided 

in CNS (in blue) and PNS (green). A) The PNS is composed of several pairs of nerves, which transmit signals 

between afferent sensory neurons and efferent motor neurons to the CNS; B) CNS, composed of the brain and 

spinal cord, which has connections to PNS. In CNS, interneurons receive information from the periphery; C) 

A peripheral nerve contains many nerve fibers that are held together by connective tissue and bundled into nerve 

fascicles. The entire nerve is enclosed by connective tissue called epineurium. Individual fascicles are delineated 

by perineurium. Endoneurium surrounds each nerve fiber; and D) Each neuron is composed of a cell body, known 

as Soma, which contains dendrites. The axon, elongating from the cell body may present myelin sheaths. The 

spaces between the myelin sheaths are Nodes of Ranvier. In the end of the neuron there is an axon terminal, which 

releases neurotransmitters from one neuron to another.

This scenario tends to worsen with the increasing world population and respective 

average lifespan. Considering those, an additional number of injuries tend to appear and 

consequently a high number of treatments and surgeries will be required to allow the restoration 

of the damaged nerves [21]. Although the CNS is vastly protected and therefore less prone to 

injuries, it has a limited ability to regenerate because of the succeeding scar tissue development 

which can be created by a vast range of cell types, such as fibroblasts, neuroglia, monocytes, 

and endothelial cells [22]. In contrast, PNIs are considerably more common, but the peripheral 

nerves have a greater regeneration potential as compared to the nerves of CNS. This is because 

PNS glial cells, Schwann cells, adjust to a regenerative phenotype and have the capacity of 

triggering neuronal regenerative processes, although usually slow and in a partial manner [23]. 

The regeneration process, however, is dependent on certain factors, such as the lesion size and 

the quality of the affected nerve, the person’s health statues (e.g. diabetic or non-diabetic), age, 

and most importantly, the time period from injury to surgical reconstruction. In the case of 

lengthy time without repair, the distal nerve end and target tissues and organs are chronically 
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denervated, becoming chronically axotomized, which leads to neurons undergoing apoptosis 

[24].  

Given to their exposure, peripheral nerve damages can be caused by many types of 

events, such as traumatic injuries, complications on surgeries, congenital defects and war 

wounds. Concerning the traumatic injuries, they can also vary significantly and include tearing 

injuries, crushing or smashing, ischemia, and less prevalent types of injury such as thermal, 

electric shock and radiation [25]. Compression neuropathies are also ubiquitous among nerve 

injuries. For instance, carpal tunnel syndrome, the most common compression type of injury, 

affects 4% of the overall population [26]. A vast range of diseases can also be the root cause of 

PNIs, as is the case of diabetic peripheral neuropathies [27, 28]. Most of these traumatic events 

cause neuronal death, demyelination, and axonal degeneration resulting in persistent 

complaints, such as impaired sensory and motor nerve functionality and radiating neuropathic 

pain. Disorders concerning the PNS usually have overwhelming and life-disturbing impacts on 

patients’ daily functions and habits, which are not usually regarded as significant. There is a 

substantial lack of consideration of the impact of injury on social and emotional wellbeing, 

despite their importance to patients. There is, in fact, a strong correlation between PNIs and 

pain and depression in those patients [29]. 

Due to the great variety of peripheral nerve traumas, there was a categorization of nerve 

injuries in main domains, as an attempt to systematize them for the medical and scientific 

community.  Several degrees of injury to peripheral nerves are detailed in Table 1, which were 

firstly described by Seddon [30], and later by Sunderland [31]. 

 

Table 1 - Seddon [30] and Sunderland [31] classification of PNIs. 

Seddon and 

Sunderland 

classification  

Process 

Sunderland 

scheme of 

nerve injury 

Neurological 

deficits 
Degree of recovery 

Neurapraxia 

I 

Local myelin damage 

usually secondary to 

compression 

 
Neuritis, 

paresthesia 
Full recovery 

Axonotmesis 

II, III, IV 

 

Axon severed but 

endoneurium intact 

(optimal circumstances 

for regeneration) 

 

 
Paresthesia Full recovery 

Axon discontinuity, 

endoneurial tube 

discontinuity, 

 Paresthesia, 

dysesthesia 

Wallerian 

degeneration, 

recovery incomplete 
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perineurium and 

fascicular arrangement 

preserved 

 

Loss of continuity of 

axons, endoneurial tubes, 

perineurium and 

fasciculi; epineurium 

intact 

 

 
Dysesthesia, 

neuroma 

Wallerian 

degeneration, 

recovery incomplete 

Neurotmesis 

V 

Complete physiologic 

disruption of entire nerve 

trunk 

 Intractable pain, 

neuroma 

Wallerian 

degeneration, 

recovery incomplete 

The Seddon classification is divided into three categories according to the gravity 

of the injury: i) neurapraxia, ii) axonotmesis, and iii) neurotmesis. By its turn, Sunderland 

classification comprises five different categories: first, second, third, fourth and fifth 

degree. Seddon classification is more straightforward and therefore the most used. 

Neurapraxia is the least severe type of injury and it is not associated with long-term 

impairments and consequences. The second level, axonotmesis, is related to axon and 

myelin discontinuity or disruption. The most severe type, neurotmesis, involves the 

complete disconnection of the nerve, where a gap is formed.  

 

 Degeneration and Regeneration processes following PNIs  

Immediately after injury, the regeneration process of peripheral nerves runs in 

sequenced phases and different events occur at different levels on the injury site encompassing 

both proximal and distal sites (Fig. 2A) [32]. In the proximal position, separated axons and cell 

bodies degenerate via a programmed cell death pathway called chromatolysis [33]. In the distal 

injury end, a process called Wallerian degeneration occurs 24 to 48 hours after injury and all 

nerve components, including the distal axons and adjacent myelin starts to degenerate [34]. The 

goal of that phenomenon is related to the clearance of undesired debris. Schwann cells 

phagocytize axonal and myelin debris, until only empty endoneurial tubes remain. Normal 

nerve function depends on such type of cells, which are the myelinating glial cells of the PNS 

[35, 36].  

After debris removal, Schwann cells fill the empty endoneurial tubes and organize in 

characteristic bands or tubes of Bungner, and by this mean supporting the re-growth of axons. 

Not only Schwann cells have a crucial role, but also macrophages are recruited to the area 
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releasing growth factors and cytokines. The release of cytokines will stimulate Schwann cells 

and fibroblast proliferation and are responsible for the axonal regeneration process [37]. Ahead 

in the process, in the proximal injury end, a growth cone emerges following the path formed by 

the band of Bungner, which is of fundamental importance for the advance of the regenerating 

axon [38]. The growth cone can be seen in Fig. 2B [39]. In optimal conditions, axonal 

regeneration is very slow, occurring at a rate of approximately 1 mm/day and demanding at 

least more than one year for muscle re-innervation and initial functional recovery [40].  
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Fig. 2 – A) Progression of Wallerian Degeneration: I) A single axon with enwrapping myelinating Schwann cells 

suffers a traumatic injury; II) The axon breaks and the distal stump undergoes cellular changes. Distal to the injury, 

there is a destruction of the remaining intact axon and disintegration of myelin cover, leaving debris behind. 

Macrophages and Schwann cells, which turned to a pro-regenerative phenotype, accumulate at the lesion site and 

scavenge the debris; III) Schwann cells aligns in the Bands of Bungner. These tubes provide a permissive growth 

environment and guide extending axons towards distal targets; IV) If the axon is able to traverse the injury gap, 

the distal target becomes re-enervated and the neuron becomes fully functional; and B) The growth cone is a large 

actin-supported extension of a regenerating neurite pursuing its corresponding synaptic target. It is responsible for 

the migration and path finding during neurite extension, in which the lamellipodia and filopodia interact with the 

adjacent matrix.  

After debris removal, Schwann cells fill the empty endoneurial tubes and organize in 

characteristic bands or tubes of Bungner, and by this mean supporting the re-growth of axons. 



10 CR Carvalho, JM Oliveira and RL Reis 

 

Not only Schwann cells have a crucial role, but also macrophages are recruited to the area 

releasing growth factors and cytokines. The release of cytokines will stimulate Schwann cells 

and fibroblast proliferation and are responsible for the axonal regeneration process [37]. Ahead 

in the process, in the proximal injury end, a growth cone emerges following the path formed by 

the band of Bungner, which is of fundamental importance for the advance of the regenerating 

axon [38]. The growth cone can be seen in Fig. 2B [39]. In optimal conditions, axonal 

regeneration is very slow, occurring at a rate of approximately 1 mm/day and demanding at 

least more than one year for muscle re-innervation and initial functional recovery [40].  

1.3.1. The role of Schwann cells in injury response 

Schwann cells are among the first active components after nerve injury. Finding their 

embryologic origin in the neural crest, Schwann cells have the capacity to proliferate, produce 

and deliver neurotrophic factors, modulate the immune response, myelinate axons, migrate and 

adjust their shape and phenotype. This makes them the perfect cells towards intervening in 

neural repair [41].   

Although the degeneration of axons in the distal nerve end starts roughly 2 days after 

injury, activity of Schwann cells can be distinguished before that, within hours of injury, where 

Schwann cells undergo a phenotypic change [14]. This phenotypic change will support PNR in 

several ways. Firstly, they dedifferentiate by means of acquiring a non-myelinating and 

immature Schwann cells stage phenotype. That stage is characterized by an up-regulation of 

L1, NCAM, p75NTR, and glial fibrillary acidic protein (GFAP). On the other hand, myelin-

associated genes are down-regulated, which comprise myelin transcription factor Egr2, 

organizational and mechanical supporting proteins as such as Protein 0 (P0), myelin basic 

protein (MBP) and myelin associated glycoprotein [42]. There is also an up-regulation and 

secretion of a beneficial group of trophic factors, such as nerve growth factor (NGF), brain-

derived neurotrophic factor (BDNF), ciliary neurotrophic factor (CNTF), basic fibroblast 

growth factor (bFGF), vascular endothelial growth factor (VEGF) and pleiotrophin [43]. 

Furthermore, the expression of cytokines capable of recruiting macrophages is also up-

regulated, which include tumor necrosis factor (TNF)-α, LIF, interleukin (IL)-1α, IL-1β, and 

monocyte chemoattractant protein 1 (MCP-1). Schwann cells activate a cell-intrinsic myelin 

breakdown process, which will destroy myelin by an autophagy process, roughly at the 5th day 
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after injury [23]. This is a key process intimately related to increasing the regenerative potential 

after injury. In fact, elimination of degenerated myelin is fundamental for repair since PNS 

myelin holds molecules that inhibit regeneration of severed axons, namely the myelin 

associated glycoprotein [44]. At last, Schwann cells response to injury also includes the 

formation of regeneration tracks, known as Bands of Bungner. For that, Schwann cells adopt 

the elongated spindle-shape morphology and line up in columns. To perform such task, they 

express a variety of adhesion molecules on their surface, such as N-cadherin, L1 and N-CAM. 

Extracellular matrix (ECM) molecules are also secreted, such as laminin and fibronectin. All 

the secreted molecules are considered guidance-promoting signaling molecules, important not 

only during early development, but also to create a microenvironment that mediates axon 

regrowth and guidance, allowing axons to reconnect with their target tissues [45].  

Overall, Schwann cells acquire a pro-regenerative phenotype, capable of promoting 

nerve repair, when there is a conversion of myelin-Schwann cells to repair-Schwann cells. The 

single protein capable of this transformation is c-Jun, which is rapidly up-regulated in the distal 

nerve end Schwann cells after injury [46]. 

 

 Strategies for Nerve repair 

Clinically, the straight-forward technique to repair minor nerve defects is the end-to-end 

suture [47]. However, this technique is circumscribed to a maximum gap length ranging from 

5 mm to 20 mm, depending on the nerve, since the suture must be done without creating 

excessive tension in the nerve ends. When the nerve gap length makes end-to-end suture 

unfeasible, peripheral nerve grafts are the gold standard treatment for nerve restoration. In a 

technique that dates to Philipeux and Vulpian in 1817 [48], the insertion of a graft section 

provides a physical and biological scaffolding, over which axonal outgrowth occurs. Grafts can 

be autologous, known as autografts, or allografts. The use of autografts has inherent 

disadvantages, such as donor site morbidity and reduced availability [49]. For allografts, the 

tissue is harvested from another donor, which can increase the risk of disease transmission and 

immunological response. However, related to allografts, a recent and promising alternative for 

patients who have exhausted all reconstructive methods is the vascularized composite tissue 

allotransplantation (VCA) [50]. Furthermore, tacrolimus, one of the immunosuppressant drugs 

that will accompany the patients for a life-time when subjected to this procedure, has shown to 

have positive effects in PNR [51]. 
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However, despite those seemingly good chances of recovery with grafts, incomplete 

recuperation from PNIs usually can lead to multiple negative consequences, which comprise 

numbness of affected members, chronic pain, diminishing of sensory and/or motor function and 

a disturbing permanent disability of the patients [52]. It is a fact that these outcomes are 

unsatisfactory for the demands of today’s patient lives, since only 25% of patients regain proper 

motor function, and less than 3% recuperate sensation in a full extent [53].  

Decellularized nerve conduits are another possibility for nerve repair [54]. In order to 

avoid the need of immunosuppressive drugs associated to allografts requirements, which make 

the patient more prone to acquire infection and tumors, the decellularized nerve conduits can 

eliminate the cellular components that cause immunogenic reactions. However, the native ECM 

is conserved, along with the basal lamina, the guiding mechanical cues for axonal growth is 

maintained. Several methods can be used to decellularize nerves, among them, physical 

methods such as lyophilization [55], direct pressure, and agitation [56]. Chemical methods have 

also been attempted and include digestion with alkaline or acidic solutions [57], detergents [58], 

together with the action of enzymes such as trypsin and endonucleases [59]. Various studies 

support the hypothesis that decellularized grafts are among the best options for nerve repair, 

since they can bridge more than 10-20 mm long gaps in rats [60, 61]. However, as concluded 

by the authors who performed a 10-year review of the use of allografts for PNR [54], further 

research is desirable in order to improve and standardize preparation protocols, including 

recellularization, advance their effectiveness, therefore being able to substitute the current gold 

standard, especially in the repair of long nerve defects. 

For these reasons, increasing efforts have been made over the last decades in the search 

for effective alternatives to autografts. Surgical treatment strategies in the case of PNI can be 

seen in Fig. 3. 

In an attempt to overcome the limitations of nerve grafting as well as the unsatisfactory 

outcomes, TE approaches focusing on the development of innovative biocompatible artificial 

nerve devices to assist innate regeneration processes to re-establish the peripheral nerve have 

also been reported [62, 63]. TE strategies have been a widely travelled alternative to bridge the 

nerve gap and throughout the years many types of NGCs were proposed, being some of them 

already approved by the Food and Drug Administration (FDA) [64, 65]. Since mature neurons 

are not susceptible to mitosis phenomena, it is crucial to support the re-growth of the existing 

cell bodies, providing both a protective environment and guiding paths. In this way, it is 
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possible to direct axons from the proximal to the distal site, permitting the proper linking of the 

damaged synapses connections. In brief, the protection of the injury site and performance as a 

guidance substrate are the two main reasons why tubulization is used in PNIs.  

Engineering a NGC should aim at facilitating cellular spreading and growth of damaged 

nerve tissues in 3-dimensions (3D) [66]. In addition, it is crucially important that the material 

envisioned to be used to construct the NGC is cytocompatible and has pronounced 

biomechanical properties, and suturability. If an engineered NGC does not present a proper 

cytocompatibility, it may not contribute to the growth of damaged nerves, but would instead be 

the reason of acute inflammation and even infection [67]. It must exhibit good biocompatibility 

with low inflammatory and immunogenic reactions [68]. It must also be biodegradable, and 

ideally degrade in the same rate as nerve regenerates. Otherwise, a quick degradation might 

trigger an inflammatory response [66, 69]. Regarding the mechanical properties, the NGC 

should provide sufficient mechanical strength to prevent the NGC rupture during the patient’s 

movements and physically support neural tissue regeneration. Concurrently, the NGC should 

have appropriate elasticity to be able to lessen tensions in the damaged area [67]. Two other 

major features that NGCs must possess are related to the suturability, where the suture thread 

cannot be pulled out of the material when in physical stress [70]. The second feature relates to 

the ability of a medical device to not calcify when implanted in vivo. Such characteristic must 

be previously tested and avoided at all costs, since calcification of a conduit would hinder 

regeneration in a great extent. In fact, Carvalho et al. [71] recently reported on a silk fibroin 

NGC that would or not calcify, according to the method of solvent removal and final surface 

properties.  

Furthermore, the materials used to construct NGCs should prevent the penetration of 

fibroblasts that will lead to the formation of glial scar tissue around the implant, which could 

reduce the healing chances [72]. The permeability of a conduit is also an important parameter 

to consider in the NGC design as both nutrients and oxygen must diffuse into the site of 

regeneration. 
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Fig. 3 - Strategies for nerve repair. In the case of a significant nerve gap formation where end-to-end coaptation is 

not possible, nerve grafts or engineered NGCs are required to serve as a bridge between the nerve stumps and to 

support axonal regrowth. In the case of grafts, they can be from the patient her/himself, known as the autografts. 

Allografts and xenografts are also a possibility. As an alternative, if the option falls in the NGCs, those can be 

nerves harvested from the body, which undergo a process of decellularization to avoid immunological reactions, 

maintaining the ECM for physical support. NGCs can also be manufactured and engineered with biological or 

synthetic materials, as well as a combination of both. 

Otherwise, cells inside the conduit, especially if it is a long conduit, will be under a 

deleterious ischemic environment which can result in cellular hypoxia and lack of proper 

nutrients. Ideally, electrical conductivity would be preferred for a NGC used in neural TE in 

order to mimic the electrical properties of nerves and at the same time excite the neuron 

communication [73]. The parameters to be considered for the design of NGCs are summarized 

in Table 2 [74-82]. In brief, an ideal NGC should be biocompatible, biodegradable, flexible, 

kink-resistant, compliant, easy suturable, porous, neuroconductive and with suitable surface 

and overall mechanical properties [79]. Furthermore, the developed NGC should allow 

vascularization to occur in the lumen and avoid calcification in vivo. 

 

Table 2 - Design criteria for the development of NGCs.  

Ideal properties of NGCs Detailed description 

Biocompatibility 
Must be well incorporated in surrounding tissues and not cause 

inflammatory response [74]; 

Degradation Degradation rate should match nerve regeneration rate [75]; 

Porosity 
NGC must allow nutrient and oxygen exchange, limiting scar tissue 

infiltration [76];  
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Anisotropy 
The NGC conduit itself or the luminal filler should be aligned to provide 

directional guidance [77]; 

Adequate protein release 
NGC or the luminal filler should provide sustained release of growth 

factors [78]; 

Physical fit Adequate internal diameter not to compress the growing nerve [79]; 

Cellular support 
Must allow the adhesion and proliferation of relevant cell types, such as 

Schwann cells and endothelial cells[80]; 

Electrically conducting Capable of propagating electrical signals [81]; 

Vascularization 
The NGC must allow the vascularization to occur inside the NGCs, to 

nourish the regenerating tissue [82]; 

Calcification The implantable NGC must not calcify in vivo [71]; 

Suturability 
The NGC must withstand a suture being pulled out without breaking the 

biomaterial [83]. 

In the early use of NGCs made of synthetic materials, they were mainly composed by 

silicon tubes and could only repair injuries up to 10 mm. Some disadvantages on the use of that 

conduits included total lack of biodegradability, which led to inflammation and chronic foreign 

body reaction, as well as lack of swelling capacity, which would compress the nerve, thus 

hindering the regeneration process [84]. In order to overcome such difficulties, biodegradable 

NGCs have been proposed, some of which are FDA-approved and being currently used in the 

clinical setting [65]. The FDA approved NGCs can be seen in Table 3 [65]. 

 

Table 3 - Approved NGCs used in the clinical setting. 

Product name Company 
Biomaterial 

composition 

Degradation 

time 

Neuragen® 
Integra Neurosciences, NJ, 

USA 
Collagen type I 

36-48 months 

NeuraWrap™ 
Integra Neurosciences, NJ, 

USA 
Collagen type I 

36-48 months 

Neuromend™ 
Collagen Matrix, Inc, NJ, 

USA 
Collagen type I 

4-8 months 

Neuromatrix/Neuroflex™ 
Collagen Matrix, Inc, NJ, 

USA 
Collagen type I 

4-8 months 

Neurotube® 
Synovis Micro Companies 

Alliance, AL, USA 

Polyglycolic acid 

(PGA) 

6-12 months 



16 CR Carvalho, JM Oliveira and RL Reis 

 

Neurolac™ Polyganics Inc, Netherlands 
Poly(D,L-lactide-co- ε-

caprolactone (PLCL) 

16 months 

Salubridge/Salutunnel™ Salumedica LLC, GA, USA 
Polyvinyl alcohol 

(PVA) 

Non-

degradable 

Axoguard® 
Cook Biotech Products, IN, 

USA 

Porcine small intestinal 

submucosa matrix 

N/A 

Avance® AxoGen Corporation, USA Human nerve allograft N/A 

1.4.1. Biomaterials 

1.4.1.1 Synthetic biomaterials  

Regarding the synthetic materials, these are still considered very promising since the 

majority of the FDA-approved NGCs are composed of materials such as Neurotube 

(polyglycolide acid, PGA) and Neurolac (poly(L-lactide-co-ε-caprolactone, PLCL). Other 

synthetic materials widely used in PNR are polylactic acid (PLA), polylactic-co-glycolic 

(PLGA), polycaprolactone (PCL), and polyhydroxybutyrate (PHB). In brief, synthetic nerve 

conduits provide higher degree of controllability, better mechanical properties, and poor 

bioactivity as compared to their natural equivalents [65]. Moreover, these materials are known 

for low inflammatory response and effortlessness processing, which means they can be 

processed in a variety of forms, to enhance nervous tissue growth. However, in spite of the 

referred positive characteristics of synthetic polymers, a few disadvantages are also reported 

[85]. The main negative aspects are related to suboptimal biodegradation and possible toxic 

biodegradation byproducts. These drawbacks block their extended use in the clinics [86]. Fig. 

4 shows some promising results considering synthetic biomaterials applied to PNR. From Table 

4, it is also possible to find the most recent and relevant reports considering the use of synthetic 

biomaterials in PNR [87-99]. 

PLA 

PLA has been used as a nerve conduit material in a few studies.  Matsumine et al. [87] 

developed a biodegradable nerve conduit with PLA non-woven fabric and evaluated its nerve 

regeneration promoting effect. The conduit made of randomly connected PLA fibers 

demonstrated a comparable ability as the autograft to induce PNR in the buccal branch of a 7 

mm facial nerve defect. Another author developed a biodegradable multi-layer microbraided 

PLA fiber-reinforced conduit with outstanding mechanical properties, which revealed to be a 

promising tool for neuro-regeneration [88]. 
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PLLA 

PLLA is the crystalline form of PLA. In a study by Zeng et al. [89], several topographies 

were achieved in the PLLA conduit using low-pressure injection molding and thermal-induced 

phase separation, including a nano-fibrous microstructure, microspherical pores and nano-

fibrous pore walls and a ladder-like microstructure. Of all the topographies experimented, the 

nano-fibrous microstructure allowed the differentiation of neural stem cells (NSCs) into 

neurons. Also paying a lot of attention to the inner structure of the NGC, others have developed 

a conduit that consists of a porous poly(D,L-lactic acid) (PDLLA) tubular support structure 

with a micropatterned inner lumen pre-seeded with Schwann cells [90]. Such device delivered 

physical, chemical and biological guidance cues. 

PGA 

The use of PGA is not very common in PNR field. However, of the clinically available 

NGCs, PGA has the most rapid degradation rate and it is FDA-approved (Neurotube®). When 

testing Neurotube® for facial nerve repair, it was found to be an effective substitute to 

autologous nerve grafts. However, the authors reported a few limitations to this NGC, which 

consist in the fact that it can only be used with gaps of less than 30 mm, it is quite costly and 

intolerance cases have been reported [92]. When compared to other FDA-approved conduits, 

Neurotube® achieved the poorest result in terms of nerve regeneration [91]. 

PLGA 

PLGA is one of the most attractive synthetic polymers and broadly used in PNR. This 

FDA-approved material gives rise to very low inflammatory responses, and its degradation can 

be easily controlled by altering the ratio of its monomer components. Additionally, PLGA 

scaffolds have the unique ability of adhering to Schwann cells and directing their growth [100]. 

A recent study focused on producing a laminin-coated and yarn-encapsulated PLGA NGC [93]. The 

PLGA fiber yarns were fabricated through a double-nozzle electrospinning system and then the 

PLGA fibrous outer layer was collected using a general electrospinning method. The conduit 

demonstrated adequate mechanical properties as well as promising potential in promoting Schwann 

cells proliferation and migration. In another study also focused on different topographies [101], 

it was developed a hybrid-structured nerve conduit which consists of a PLGA microfibrous 

bundle wrapped in a micro/nanostructured PLGA membrane. This device demonstrated high 

capability for guiding nerve cells and promoting cell migration. Many other studies using PLGA 
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were developed, inclusively with conduits capable of releasing NTFs or other neuroprotective 

molecules such as salidriside and Nectin-like molecule 1 (NECL1) [94, 102, 103]. 

PCL 

PCL is one of the most used polymers in TE [104]. It has been broadly applied in bone 

[105], cartilage [106], cancer defects [107], and drug delivery applications [108]. It is a 

biodegradable semi crystalline linear polyester produced by ring-opening polymerisation of e-

caprolactone with a low melting point of around 60 °C. For the mentioned biodegradable 

polyesters mentioned so far, in vivo degradation rate is in the order PCL < PLA < PGA. Due to 

PCL's very low in vivo degradation rate and high drug permeability, it has been found to be 

useful in long-term implantable delivery devices [109]. Bearing in mind that polymeric 

bioabsorbable conduits can be used as drug delivery systems, Salmoria et al. [110] produced 

PCL conduits by melt extrusion technique, which were loaded with ibuprofen. PCL is also a 

very attractive polymer for the rapidly emerging and recently popular 3D printing technology. 

In a study recently published by Lee et al. [95], combination of stereolithography and 

electrospinning techniques allowed to fabricate a novel 3D biomimetic PCL neural scaffold 

with tunable porous structure and embedded aligned fibers. The results indicated that PCL 

fibers greatly increased the average neurite length and directed neurite extension of primary 

cortical neurons along the fiber. Quite often, polyesters are blended with other components to 

make composite NGCs which allows to improve their mechanical properties and control the 

general features of the NGCs in more detail [96, 111-114].  

PU 

Created by a water-born process, PU has recently been applied as the base material for 

the construction of a novel NGC [97]. The NGC was built through the freeze-drying technique 

and presented an asymmetric microporous structure that allowed bridging a 10-mm gap in rat 

sciatic nerve. The results, in terms of nerve regeneration, were remarkable. Inclusively, based 

on functional recovery and histology findings, the efficacy of PU NGC was superior to that of 

commercial conduit Neurotube®, to which it was compared. Recently, an antioxidant-PU 

conduit was developed using the electrospinning technique by Singh et al. [98] and further 

filled with an aligned chitosan-gelatin cryogel filler. The in vitro cellular tests with dorsal root 

ganglia (DRGs) cultures showed the aligned growth and cellular migration along the pores, 

indicating that both the outer part of the conduit as well as the luminal filling are potentially 

appropriate for PNR.  
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PVA 

PVA is another synthetic polymer used in the construction of NGCs. It is water soluble 

but non-degradable, being considered non-resorbable. There is currently FDA-approved NGCs 

made of PVA hydrogels, named SaluBridge™ and SaluTunnel™. However, such devices have 

not been validated with accessible pre-clinical or clinical studies. It can also be stated that the 

utilization of nonabsorbable conduits has declined with the crescent use of absorbable synthetic 

grafts [115]. To improve that, Stocco et al. [99] recently manufactured a conduit made of a 

patented and novel biodegradable hydrogel, oxidized PVA (OxPVA). An in vitro and in vivo 

battery of tests revealed that OxPVA scaffolds performed very similarly to the autograft group. 
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Fig. 4 – Promising results obtained with synthetic polymers applied to PNR. A) A non-woven polylactic acid 

(PLA) tube. Scale bar: 1 mm; B) SEM images of the PLLA multi-channel conduits cross-section using different 

magnification. Scale bar: 500, 100 and 10 µm, from top to bottom; C) Scanning electron micrograph of double-

walled microsphere following incorporation into PCL nerve guides; and D) Gross appearance of disk-shaped and 

tubular scaffolds made of OxPVA. A), B), C), and D) were reprinted with from [87],[89], [96] and [99], 

respectively. 

 

1.4.1.2 Natural-origin Biomaterials 

Natural-origin biopolymers used for the fabrication of NGCs typically have regenerative 

bioactivity along with appropriate mechanical properties. Natural biomaterials allow for 

improved communications between cellular components and the scaffold is also an advantage 

since cells must be stimulated to proliferate, benefiting tissue regeneration [116]. However, 

some restrictions are associated to natural-origin biomaterials, such as the batch to batch 

disparities [117]. In the section below, interesting and recent reports using natural-origin 

biomaterials for PNR applications, from proteins (e.g., silk fibroin and keratin) to 

polysaccharides (e.g., chitosan and alginate) will be reviewed. Fig. 5 shows some promising 

results obtained with natural-origin biomaterials, in particular using silk fibroin, chitosan and 

alginate polymers. The significant works considering the use of natural-origin biomaterials in 

PNR are summarized in Table 5 [118-129].  
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Table 4 - Relevant and recent published works focused on the fabrication of NGC with synthetic biomaterials. 

Conduit 

material 
Fabrication method 

Location, defect size, 

model 
Outcomes 

Year, 

reference 

PLA 

Non-woven material, melt blown process Facial nerve, 7 mm gap, rat 
Comparable ability to induce PNR as autologous 

nerve graft. 
2014, [87] 

Multi-layer, micro-braided, fiber-reinforced conduit 
Sciatic nerve, 10 mm gap, 

rat 
Successful regeneration with cables bridging the gap. 2009, [88] 

PLLA 

Low-pressure injection molding and thermal-induced 

phase separation technique, 33 inner channel NGC 

In vitro assays with NSCs 

 
81.1% of NCSs differentiated into neurons. 2014, [89] 

Porous PDLLA conduit achieved by dipping method, 

with micropatterned inner lumen by ion etching. Pre-

seeded with Schwann cells 

Sciatic nerve, 10 mm gap, 

rat 

Presence of Schwann cells did not affect results, 

speed of functional recovery was enhanced. 
2004, [90] 

PGA 
Neurotube® is fabricated to form a knitted or woven 

tubular device 

Segmental nerve defect, 10 

mm gap, rat 

Exhibited the poorest results for functional motor 

recovery in the rat model in comparison to other 

FDA-approved conduits. 

 

2009, [91] 

Facial nerve, 10–30 mm gap, 

humans 

Valid solution for this kind of defect in emergency. 

Associated to some limitation such as high cost and 

possible intolerance. 

2005, [92] 

PLGA 

PLGA fibrous outer layer produced by electrospinning and 

containing laminin coated yarns obtained by double-nozzle 

electrospinning 

In vitro assays with 

Schwann cells 

Significant higher proliferation and elongation of 

Schwann cells along the inner yarns. 
2017, [93] 

Two concentric biodegradable PLGA tubes enclosing a 

NGF reservoir. Solvent casting method 

Sciatic nerve, 15 mm gap, 

rat 

Optimal release levels of NGF; Improved muscle 

weight, myelinated nerve growth, and higher target 

connection. 

 

2017, [94] 

PCL 

3D printed conduit embedded with electrospun aligned 

nanofibers 

In vitro assays with NSCs 

and primary cortical neurons 

Increased average neurite length and directed neurite 

extension along the fiber. 

 

2017, [95] 

PCL conduits were fabricated by dipping and 

incorporate double-walled PLGA/PLA microspheres 

encapsulating GDNF 

Sciatic nerve, 15 mm gap, 

rat 

GDNF increased tissue formation within the nerve 

guide lumen and promoted the migration and 

proliferation of Schwann cells. 

 

2010, [96] 
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PU 

Mold casting followed by freeze-drying, producing a 

porous scaffold 

Sciatic nerve, 10 mm gap, 

rat 

Significantly greater efficacy of the PU conduit when 

compared to the commercial Neuratube®. 

 

2017, [97] 

Electrospun Antioxidant-PU conduit filled with freeze-

dried aligned chitosan-gelatin cryogel 

In vitro study with neuro 2a, 

C2C12 and DRGs. 

DRGs demonstrated aligned growth of the neurites 

along the pores of the cryogel inside the NGCs. 

 

2018, [98] 

PVA 

SaluBridge™, implantable wrap N/A 

No manuscripts have been published regarding this 

NGC. 

 

N/A 

Dipping technique of OxaPVA hydrogel Sciatic nerve, 5 mm gap, rat 
Axon density in the middle of the conduit 

significantly higher as compared to autograft. 
2018, [99] 
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Silk fibroin  

Silk fibroin (SF) is a fibrous protein with remarkable mechanical properties 

produced by silkworms and spiders [130]. Silk polymers consist of repetitive protein 

sequences and provide structural roles in nature, such as cocoon formation, nest building 

and web creation [131]. With very low immunological response, capacity to be 

transformed in diverse shapes and matrices, tunable degradation as well as easily 

chemically modified, SF has the potential to impact the clinical needs in terms of nerve 

regeneration [132]. Beyond PNR, SF has been extensively applied in the TERM field 

with very distinctive applications [133-135]. 

Carvalho et al. [71] produced tunable enzymatically cross-linked SF NGCs, 

resourcing to tyrosine groups present in silk structure that are known for allowing the 

formation of a covalently cross-linked hydrogel. The fact that the process involves an 

enzymatic crosslinking allows tuning several parameters in the final conduit, i.e. from its 

mechanical properties to porosity or biological properties.

 

 

Fig. 5 - Promising results obtained with natural-origin polymers applied to PNR. A) Example of an 

enzymatically crosslinked SF nerve guidance conduit developed and patented by Carvalho et al. [71] for 

application in PNR. The developed NGC presents outstanding mechanical properties, with kinking-resistant 
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capacity and suturability, as can be seen by the images (in that row); (B) Images of a 5% of degree of 

acetylation chitosan membrane, which can be further used as a NGC by rolling-up or in a different strategy, 

as a luminal filler; C) 5% degree of acetylation chitosan membrane incorporating human hair keratin, 

developed at our research institute; and D) Confocal laser microscopy showing macro-

porous alginate fibers incorporating gelatin particle porogens. Scale bars: 500 µm.

 

One of the advantages of SF relies on the ability to be processed in a variety of 

shapes. Dinis et al. [136] developed a 3D multi-channel SF conduit through 

electrospinning system encompassing approximately 12 multi-channel guides of different 

sizes inside the main conduit, mimicking the native structure of the nerve endoneurium, 

perineurium, and epineurium. In fact, due to the outstanding properties that several silk 

NGC have demonstrated after decades of research, there is an active clinical trial 

(NCT03673449) with SilkBridge. Such device is a biocompatible SF-based matrix that 

aims at attracting the patients' native cells to regenerate the nerve, i.e. without the need to 

add cellular components previous to the implantation. The SilkBridge is also being used 

in digital nerve defects.  

Keratin 

Keratin protein has been recognized as biomaterial with high potential due to its 

excellent bioactivity and biocompatibility [137]. Lately, the hair keratin has gained much 

attention [138, 139], not only because of its properties, but because the follicle itself is a 

bizarrely proliferative organelle that illustrates an extremely arranged regenerative 

process. Also, the fact that it is potent naturally derived biomaterial, is human-derived 

and possesses cellular interaction sites making it an attractive protein in TE applications 

[140]. 

So far, little has been done concerning the application of hair keratin to PNR. All 

in vivo work done with keratin in the scope of PNR has been developed under the 

supervision of the scientist Van Dyke at the Wake Forest University [122-124, 141].  

Chitin and Chitosan  

Chitin and chitosan are two of the most popular natural biopolymers in the TE 

field, as well as in the area of nerve repair [142]. Chitin is a natural biopolymer normally 

present in the exoskeletons of arthropods and the shells of crustaceans, being the main 

sources, in fact, the marine crustaceans such as shrimp and crabs. It is a linear 

homopolymer composed of N-acetyl-D-glucosamine units that form beta-(1-4)-linkages. 

The most abundant polysaccharide in nature is cellulose, immediately followed by chitin 

[143]. On the other hand, chitosan is obtained through the partial deacetylation of chitin. 

https://www.sciencedirect.com/topics/materials-science/alginate
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It is a polysaccharide composed of D-glucosamine and N-acetyl-D-glucosamine units 

linked through beta-(1–4)-glycosidic bonds. Soluble in acidic aqueous media, chitosan, 

is finding applications in many areas, such as food, cosmetics and biomedical fields [144].  

It has early been proved that chitin and chitosan-based scaffold can allow the 

attachment, migration, and proliferation of Schwann cells as well as of DRGs, two of 

main players in the nerve regeneration process [145-148]. Furthermore, chitosan 

biomaterials encourage the aligned orientation of Schwann cell and growing axons [149-

151], which is a relevant phenomenon in the process of Wallerian degeneration and 

consequent regeneration. Additionally, chitosan-based NGCs are easily handled, and 

transparency facilitates surgical manipulation and suturing of the nerve stumps. 

Due to the recognized potential of chitosan, a chitosan-based nerve conduit under 

the name Reaxon® Nerve Guide manufactured by Medovent GmbH (Mainz, Germany), 

in accordance with the international standard DIN EN ISO 13485, was launched in the 

market in 2014. These conduits were thoroughly investigated in a report by Haastert-

Talini et al. [152], where the referred conduits combined several pre-requisites for a 

clinical acceptance; and the tube with a degree of acetylation of 5% was considered as 

the most supportive for peripheral nerve regeneration to bridge a 10 mm gap. That 

conduits were used in a critical sized nerve gap [64] and in type 2 diabetic Goto-Kakizaki 

rats [153], confirming their good in vivo performance. 

Alginate  

Alginate is a broadly used bioresorbable polysaccharide in the food industry, 

wound management or in the TE field. It is a block co-polymer consisting of beta-d-

mannuronic acid and alpha-l-guluronic acid, extracted from brown seaweed [154]. It is 

considered a biocompatible material which has no inhibitory effect on cell proliferation 

in vitro and induces reduced foreign body reaction when implanted in tissues in vivo 

[155]. It has been described that calcium ions induce specific associations between 

alginate chains, consequently forming hydrogels [156]. Using such mechanism, previous 

studies [157, 158] have shown the possibility to use alginates applied to PNR. Namely, a 

decomposable freeze-dried alginate gel covered by PGA mesh was employed in a 50 mm 

gap in a cat sciatic nerve model with positive results [157]. The same authors later 

examined the interaction between regenerating axons, Schwann cells and the implanted 

alginate gel [158], showing that alginate gel provides a good environment for axon 
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outgrowth and Schwann cell migration. In another study [128], macro-porous alginate 

fibres encapsulating primary DRGs were produced by wet spinning an alginate solution 

containing dispersed gelatine particles. Marked neurite outgrowth was evident over 150 

μm, indicating that pores and channels created within the alginate were providing a 

favourable environment for neurite development. Other studies have focused on using 

alginate as NGCs luminal fillers, with promising results [159-161].  

 

1.4.1.3 Endogenous Biomaterials/ECM proteins  

Still among the natural-origin biomaterials, ECM endogenous proteins such as 

collagen, fibrin, laminin, and hyaluronic acid (HA) have been highly investigated, since 

they naturally exist in the human body. ECM is a highly organized 3D structure that 

occupies the intercellular space, providing a physical support to tissue. It 

fundamentally acts as a natural scaffold by delivering a matrix, where cells can arrange 

within the connective tissue. Besides delivering the physical support, ECM also 

provides the chemical setting for adequate cellular behavior in terms of survival, 

differentiation and overall fate. Furthermore, Schwann cells express specific 

integrins, such as α1β1, α2β1, α6β1, α6β4, α5β1, αVβ3, that connect to ECM and encourage 

myelination through their interaction with the basal lamina [162]. The important 

interaction between ECM molecules and the nervous system can also be inferred from 

the fact that laminin, fibronectin and collagen are effectively used as coatings of tissue 

culture plastics to enhance Schwann cell and DRGs responses, such as adhesion and 

migration [163]. 

A few recent publications related to the use of endogenous biomaterials applied 

to PNR can be found in Table 6 [164-174]. Furthermore, Fig. 6 summarizes the promising 

results making use of endogenous biomaterials applied to PNR.   
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Table 5 - Relevant and recent published works focused on the fabrication of NGC with natural biomaterials. 

Conduit 

material 
Fabrication method Defect size, location, model Outcomes 

Year, 

references 

Silk fibroin 

(SF) 

Simple spider silk fibers, from 

Nephilia edulis species 

In vitro study, co-culture of ADSCs 

and Schwann cells 

Spider silk fibers represent a suitable NGC filler 

due to cells migration and elongation along the 

fibers. 

 

2018, [118] 

SF and PLLA conduit fabricated 

by electrospinning 
10 mm gap, sciatic nerve defect, rat 

The presence of silk augments VEGF secretion, 

therefore increasing neo-angiogenesis and 

stimulating nerve regeneration. 

 

2018, [119] 

SF conduit with aligned SF 

filaments in the interior 
10 mm gap, sciatic nerve defect, rat 

FluoroGold retrograde tracing and histological 

investigation, SF conduits were able to promote 

nerve regeneration with results approaching those 

provoked by the positive control autografts. 

 

2018, [120] 

Adsorption of gold nanoparticles 

onto SF fibres and electrospinning 
10 mm gap, sciatic nerve defect, rat 

Nerve conduction velocity as well as the 

compound muscle action potential was improved 

due to the presence of conductive gold 

nanoparticles. 

 

2018, [121] 

Keratin 

Human hair keratin hydrogel was 

injected in a FDA-approved 

conduit 

4 mm gap, tibial nerve defect, mice 

Robust nerve regeneration response, in part 

through activation of Schwann cells. Results 

similar to autograft. 

 

2008, [122] 

Neuragen® collagen conduit 

filled with keratin hydrogel 

10 mm gap, median nerve defect, 

Macaca fascicularis  

Confirms earlier findings in studies using rodents; 

Represents off the shelf alternative to autograft. 

 

2014, [123] 

Double wall PCL containing 

GDNF-microspheres with a 

keratin hydrogel 

10 mm gap, sciatic nerve defect, rat 

Significant increased density of both Schwann 

cells and axons, resulting in the better quality of 

the regenerated nerve through the conduit with 

keratin. 

 

2012, [124] 
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Chitosan 

Chitosan nerve guides from 

Reaxon® with a longitudinal 

chitosan film as a filler 

15 mm gap, sciatic nerve defect, 

diabetic rat 

Supported robust axonal regeneration and 

functional recovery in healthy animals but also 

demonstrated to be beneficial for the regeneration 

process in diabetic rats with relevant blood 

glucose levels. 

 

2016, [125] 

Chitosan film enhanced with 

MSCs 
10 mm gap, sciatic nerve defect, rat 

Chitosan film enhanced with MSCs improved 

functional, electrophysiological and 

histomorphometry recovery of transected sciatic 

nerves. 

 

2018, [126] 

Chitosan membranes with 

different degrees of acetylation 

Schwann cell and fibroblast in vitro 

assays 

% of acetylation were found to favor Schwann 

cells invasion and proliferation, presenting at the 

same time low fibroblast adhesion. 

 

2017, [127] 

Combination of MSCs with a 

chitosan a film 
10 mm gap, sciatic nerve defect, rat 

MSCs were useful for the injury because of the 

release of several neurotrophic factors as well as 

the synergistic effect of chitosan accelerating 

wound healing by promoting an anti-

inflammatory effect. 

 

2018, [127] 

Alginate 

Macroporous alginate fibers 

produced with a syringe pump 
In vitro assays with DRGs 

Encapsulation of primary DRGs in macro-porous 

alginate fibers resulted in marked neurite 

outgrowth over 150 μm. 

 

2017, [128] 

3D bioprinting of alginate 

scaffolds conjugated with single 

or dual RGD and YIGSR motifs 

In vitro assays with Schwann cells 

and DRGs 

Printability, mechanical stability, and neurite 

outgrowth were assessed with promising results 

to be used as luminal filler. 

2019, [129] 

  

https://www.sciencedirect.com/topics/neuroscience/sciatic-nerve
https://www.sciencedirect.com/topics/neuroscience/sciatic-nerve
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Collagen 

Collagen is, within the ECM, probably the major organizational and structural 

protein of hard and soft tissues. It provides strength, mechanical stability, structural 

integrity and plays a crucial biological role in a variety of tissues and organs including, 

bone, cartilage, tendon, skin, and cornea[175]. To achieve that, collagen is extremely 

dynamic, undergoing constant modifications to deliver proper physiologic functions 

[131].  Although collagen offers structure to our bodies, protecting and supporting the 

soft tissues, collagen is a relatively simple protein, containing a triple-helical structure 

and the presence of 4-hydroxyproline. Up to this date, 28 collagen types have been 

acknowledged. The types I, II, III, and V constitutes the essential part of collagen in 

bone, cartilage, tendon, skin, and muscle. Collagen can be extracted and purified from 

a variety of sources, typically from bovine and porcine sources. However, in recent years 

new sources are being exploited, such as marine-origin residues [176]. The fact that 

collagen is considered low immunogenic and has good permeability, biocompatibility, 

and biodegradability make it a great component for TE scaffolding strategies [177].  

Collagen use in PNR approaches is also extensively accepted, as the protein often 

exhibits cell-binding domains for aiding neuronal and glial cells attachment and 

migration. In fact, three collagen conduits are commercially available on the market: The 

FDA-approved NeuraGen® and NeuroFlex®, which are both made of type I collagen and 

RevolNerve®, which is made of type I and type III collagens from porcine skin. In a 

pioneering strategy, Neuromaix® containing collagen-based micro-structured 3D 

longitudinal guidance channels is capable of providing mechanical support to sprouting 

DRGs axons and can offer a shielding niche for nerve cells [178].  

Fibrin 

In the human body, fibrin is an integral part of the clotting cascade. When the 

coagulation cascade is triggered after an injury, thrombin activates soluble plasma protein 

fibrinogen, resulting in the formation of an insoluble fibrin milieu. Fibrin is a protein 

involved in the formation of the blood clot [179]. It has found application as a sealant 

glue in neurosurgery for decades, without any reported complications [180]. Furthermore, 

fibrin plays a critical part in PNR, where longitudinally oriented fibrin cables are formed 

spontaneously shortly after injury, as a part of the nerve regeneration process, with the 

intent to direct migration and proliferation of Schwann cells. In fact, the use of fibrin to 
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repair ilioinguinal nerve has shown to have some neuroprotective effect in the injured 

nerve, where less fibrosis and collagen deposition were found [181].  

Fibronectin 

Fibronectin, one of the most complex and intrigguing proteins, is an abundant 

soluble constituent of plasma and other body fluids and part of the insoluble ECM. It also 

mediates a wide variety of cellular interactions with the ECM and plays important roles 

in cell adhesion, migration, growth and differentiation [182]. After extensive 

characterization, it was found that fibronectin expresses the RGD motif, related to cell 

adhesion. However, fibronectin has an extensive variety of practical functions other than 

associate with cell surfaces through integrins. It binds to several biologically important 

molecules that include heparin, collagen and fibrin. The potential of including fibronectin 

for PNR was firstly realized when Whitworth et al. [183] reported a new nerve conduit 

material consisting of orientated strands of the cell adhesive fibronectin. In a 10 mm nerve 

defect in rat, the developed NGC produced the highest rate and amount of axonal 

regeneration, comparable to the one obtained for autografts. Furthermore, increased 

expression of fibronectin can be found in damaged peripheral nerve during Wallerian 

degeneration [184].  

Laminin 

Laminin is a glycoprotein naturally occurring in nerves. It is a component of ECM 

that plays a decisive part in cell-recognition, and therefore influences cell migration, 

differentiation and axonal growth [185]. Laminin can also be perceived as a fundamental 

guiding cue, since the growth cone of regenerating axons is attracted to laminin [186]. To 

make PHBV aligned nanofibers more attractive to neuronal components[187] , laminin 

was adsorbed via electrostatic interactions. Containing both topographic and chemical 

cues suited for Schwann cell alignment and elongation, the developed NGC was 

implanted in a critical sized nerve defect in rat, with 12 mm gap and proved to be suitable 

for such an application. 

 

.
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Table 6 - Relevant and recent published works focused on the fabrication of NGC with endogenous biomaterials. 

Conduit material Fabrication method Defect size, location, model Outcomes 
Year, 

references 

Collagen 

Oriented collagen tubes with 

adsorbed bFGF 
15 mm, sciatic nerve defect, rat 

The presence of bFGF revealed to be beneficial 

in terms of functional recovery. 

 

2017, [164] 

Blend of collagen and chitosan 

as luminal filler in a PCL 

conduit 

15 mm, sciatic nerve defect, rat 

Axonal regeneration and Schwann cell 

migration, inclusively inducing comparable 

functional recovery to that of the autograft 

control group. 

 

2018, [165] 

Fibrin 

Micro-suturing with fibrin glue 

coaptation 
10 mm, sciatic nerve defect, rat 

Reduced the operating time and increase the 

regeneration distance as well as increasing the 

arborizing axons. 

 

2013, [166] 

Epineural repair with fibrin-

glue embedded ADSCs 
10 mm, sciatic nerve defect, rat 

Embedding cellular components in the fibrin 

glue enhanced regeneration, as immunolabeled 

cells could be found at the neuronal repair site 

and near intraneuronal vessels indicating an 

active participation of ADSCs in the process of 

nerve angiogenesis. 

 

2016, [167] 

3D hierarchically aligned fibrin 

nanofiber hydrogel through 

electrospinning and molecular 

self-assembly and placed it 

inside chitosan conduits 

10 mm, sciatic nerve defect, rat 

In vitro, directional cell adhesion and migration 

of Schwann cells and DRGs was detected. In 

vivo, results showed that the developed NGC 

performed similarly to the autologous nerve 

graft. 

 

2017, [168] 

Fibronectin 

Chitosan conduit enriched with 

fibronectin 
15 mm, sciatic nerve defect, rat 

Fibronectin-enriched scaffolds increased 

muscle reinnervation and the number of 

myelinated fiber. 

 

2017,[170] 

Schwann cells embedded in a 

matrix of alginate/ fibronectin 
10 mm, sciatic nerve defect, rat 

Synergistic effect when both Schwann cells and 

fibronectin were combined with alginate. 

 

2003, [169] 
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Laminin 

Laminin incorporated PLCL 

nanofibers were produced by 

electrospinning 

In vitro studies with neonatal 

Schwann cells 

Schwann cells expressed bi- and tri-polar 

elongations due to the presence of laminin. 

 

2014, [171] 

Direct injection of laminin in a 

peroneal nerve crush 
Nerve crush defect, rat 

Increased axon presence, larger axon diameter, 

accelerated axon growth and maturity and 

advanced motor function recovery. 

 

2019, [172] 

Hyaluronic acid (HA) 

Electrospinning of a blending 

of HA in PCL 

In vitro cells tests with SH-

SY5Y human neuroblastoma 

cell line 

PCL/HA 95:5 exhibit the most balanced 

properties to meet the required specifications 

for neural cells. 

 

2016, [173] 

Single-channel tubular conduits 

based on hyaluronic acid (HA) 

with and without poly-l-lactide 

acid fibers in their lumen were 

fabricated 

In vitro tests with Schwann 

cells 

impeded the leakage of the cells seeded in their 

interior and made them impervious to cell 

invasion from the exterior, while allowing 

transport of nutrients and other molecules 

needed for cell endurance. The NGC interior 

tubular surface was completely covered with 

Schwann cells. 

2016, [174] 
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Fig. 6 - Promising results obtained with natural-origin polymers applied to PNR. A) SEM micrographs of 

transverse section of the oriented collagen-chitosan filler /PCL sheath scaffold and magnification of the 

interior of the conduit; B) SEM micrograph of the aligned fibrin hydrogel nanofiber and its magnification. 

Below, a DRGs where the neurites align along the aligned fibers; C) Transversal cryosections of hyaluronic 

acid conduits cultured for 10 days with Schwann cells in their lumen, after staining with Harris’ 

hematoxylin, Alcian blue, and picrosirius red; and D) Longitudinal section of injured nerve treated with 

PBS (at left) or Laminin (at right), stained with antibodies recognizing NF-h (α-RT97, green). The bar 

graph illustrates significantly increased axon diameter (μm) with laminin treatment. A), B), C) and D) were 

reprinted with the permission from [165], [168], [174] and [172] respectively.

Laminin was also added to collagen gels in a gradient of concentrations with 

interesting effects [188]. For collagen gels without laminin, a typical bimodal response 

of neurite outgrowth was observed, with increased growth at lower concentrations of 

collagen gel. However, in the presence of higher laminin concentrations, the growth 

became independent of the gel stiffness. 

Hyaluronic acid (HA) 

HA is a linear, anionic, non-sulphated glycosaminoglycan that composes the ECM 

of all living tissues. Being a very versatile polymer, it finds applications in diverse areas. 

Furthermore, different molecular weights have an impact on the biological performances, 

being a highly tunable and adaptable polysaccharide [189]. 

Its use is widely spread in TE applications due to its biocompatibility, 

biodegradability and chemical modification easiness. HA is also a very versatile 

biomaterial, which can be prepared in the form of hydrogels, sponges, cryogels, and 

injectable hydrogels [190]. Additionally, HA degradation products seem to exert a 

positive effect in diverse TE areas as they encourage wound healing, tissue restoration, 

and vascularization [191]. The injection of HA in a nerve defect has proved to be 

beneficial for nerve regeneration, since HA groups showed an increase in myelinated 
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axon counts, as well as an increase in retrograde flow, necessary for the regenerative 

process [192]. Furthermore, the advantage of including HA also resides in the fact that it 

can reduce scar formation after nerve injury [193].  

1.4.2. The possibility of patient-specific nerve repair and NGCs 

Personalized TE and regenerative strategies propose a possible solution for 

contemporary untreatable injuries or illnesses. The use of TE triad offers the possibility 

of interminable combinations of cells, scaffolds and growth factors, suggesting endless 

possibilities to customize diagnostic tools, biomedical devices, as well as the final 

treatments [194]. Huge efforts are being carried in laboratories throughout the world to 

personalize the clinical care, catalyzing major advances in the techniques that allow the 

treatment of serious injuries and chronic diseases [195]. The customization and 

individualization of medical care carries huge advantages for the patients and the health 

care systems as well. Targeting the treatments to a specific damage of a patient is critical 

due to innate discrepancies in patient anatomies, injury shapes and gravity, as well as 

individual genetic and proteomic features [196]. The benefit is clear for the patient, i.e. a 

tailor-made treatment according to its own organism features. For the hospitals and 

healthcare systems, the fact that a treatment is 100% suited for that specific patient and 

will not fail, will save time and budget.  

Peripheral nerves are tissues with different geometries and shapes, which vary 

anatomically according to the location within the body. But more importantly, the same 

nerve may vary from person to person with age, according to their medical condition or 

type of injury [197]. Furthermore, the process of nerve regeneration and repair itself is a 

complex biological phenomenon, with vast singularities, that requires an equilibrium at a 

molecular, cellular and tissue level [198]. Overall, many advantages are envisioned when 

using 3D printing for nerve repair and regeneration: (i) fabrication of personalized NGC, 

(2) concomitant assembly of luminal fillers inside NGCs, (3) 3D bioprinting of cells 

within a bioink or into the NGCs, and (4) establishment of growth factor gradients or 

pathways [199]. 

Only recently the hypothesis of patient-specific strategies in nerve regeneration 

has risen with the development of the 3D-printing technology [200]. This was further 

permitted by the combination of 3D imaging machineries and 3D printing methods. 
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Johnson et al. [200] successfully established the combination of 3D imaging and 3D 

printing for the design and fabrication of anatomically biomimetic truly patient-specific 

nerve regeneration strategy. It allowed the fabrication of NGCs with complex anatomical 

structures and inner biofunctionalization with neurotrophic factors, to create a sensory 

and a motor pathway (Fig. 7A).  

Hu et al. [201] explored the 3D-printing technology to prepare a bio-conduit with 

designer structures for PNR, where the chosen polymer, cryoGelMA gel, was 

cellularized with ADSCs. When implanted in a 10 mm rat sciatic nerve defect, the 

results were very similar to the autograft in terms of functional recovery. Tao et al. 

[202] were able to 3D-print an hydrogel conduit with customized size, shape and 

structure, providing a physical microenvironment for axonal elongation, where the 

nanoparticles sustained release a drug to facilitate the nerve regeneration.  Zohng et al. 

[203]  described the key technology of 3D peripheral nerve fascicle reconstruction. First, 

a 3D virtual model of internal fascicles was obtained and successfully applied for 3D 

reconstruction for the median nerve (Fig. 7B). 

Exceptional technologies are emerging every day, and 3D printing promises to 

revolutionize the patient-specific healthcare, namely in PNR. 

 

 

Fig. 7 – Patient-specific and 3D printing technologies will allow improving the treatment given to 

patients in the future. A) 3D printed complex nerve pathways from 3D scanned bifurcating nerves. 

Reprinted with permission from [200]. B) Imaging of a 3D model of median nerve, for further precise 

reconstruction. Reprinted with permission from [203], Copyright © 2015, Macmillan Publishers Limited. 

https://www.sciencedirect.com/topics/chemical-engineering/nanoparticles
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/sustained-drug-release
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 CONCLUSIONS 

The complex anatomy and physiology of the PNS makes nerve’s injury very 

problematic and extremely difficult to repair. The full recovery is challenging because of 

the loss of native cues, formation of scar tissue, lack of proper vascularization, and 

inflammation. The diverse treatments used for nerve repair such as coaptation suturing, 

grafts, and conduits pose several limitations when trying to recuperate full functionality. 

Therefore, the development of new NGCs requires a clever combination of the following 

strategies: (i) the development of new polymer or combination of polymers for better 

integration with neural native tissue, (ii) additional of topographical structures to intensify 

neurite alignment and growth, and (iii) biological cues such as growth factors or cellular 

components.  

In what regards the biomaterial choice, there are numerous options to capitalize 

on different properties of each material. Although many exist and can be used, natural 

materials are known to be better integrated by host tissue when compared to synthetic 

ones, more promptly instigating the regenerative mechanisms. The biomaterial 

availability and cost are also essential parameters to consider. Therefore, and in the 

author’s opinion, SF is probably one of the most versatile biomaterials. It can be 

processed in a variety of ways and maintain outstanding mechanical 

properties/suturability and is considered non-immunogenic, with cheap and easy access 

as well as natural distribution. This biomaterial can be used to fabricate the conduit itself, 

as well as anisotropic filling scaffolds in the lumen, in order to be able to treat larger nerve 

gaps. In addition, several fabrication methods can be used for this biomaterial, including 

the crosslinking of the tyrosine groups with an enzymatic mediated system or 

functionalization with growth factors and other molecules of interest. In this context, 

conductive materials can also be used to intensify the needed neurological transmission 

and communication.  

A brief mention must also be made to the potential of 3D printing for patient-

specific nerve reconstructions. The rising of this technology allows to closely reproduce 

features of the native peripheral nerve, with the aim of possibly replace autologous nerve 

grafts. Therefore, the current and future bio-imaging modalities allied with detailed 

printing will permit the production of patient-specific nerve conduits, revolutionizing the 

field. As the scientific community makes advances on the fundamental knowledge related 
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to the biological mechanisms behind nerve injury and repair, engineers are able to 

integrate that knowledge in more complex designs, to better mimic natural nerve 

regeneration and patient specificity in respect to anatomy and biology requirements.  
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