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Abstract— This paper presents a contribution for the de-
velopment of network management tools able to auto-
matically provide QoS aware routing configurations. In
this perspective, a traffic engineering framework able to
provide near-optimal OSPF configurations is presented. The
devised solution takes into account the multiconstrained QoS
demands of a given network domain in order to improve
the quality of the OSPF weight setting process. To pursue
this objective, this work resorts to Evolutionary Algorithms,
which provide OSPF configurations based on a bi-objective
function. The proof of concept of the proposed optimization
framework resorts to a wide range of simulation studies,
clearly showing the effectiveness of the devised mechanisms.

Index Terms— Quality of Service (QoS), OSPF Routing,
Traffic Engineering

I. INTRODUCTION

Nowadays, TCP/IP networks are used as the main
infrastructure of communication of a large number of
networked applications. In this context, the research com-
munity has been faced with the challenge of enhancing
the network capabilities in providing effective Quality
of Service (QoS) support to network users [2]. As a
consequence, the success of such research efforts will
benefit the convergence of different types of applications
into a common communication infrastructure, improve the
network resource allocation management tasks and allow
the definition of Service Level Agreements [3] between
Internet Service Providers and their clients.

This paper focus on a particular aspect of the QoS
research area, presenting a traffic engineering framework
contributing for the development of network management
tools which automatically provide near-optimal routing
configurations. The Open Shortest Path First (OSPF) [4]
[5] is one of the most commonly used intra-domain
routing protocols and presents several advantages when
compared with other alternatives to control the data path
followed by network packets, as the case of the Multi-
Protocol Label Switching (MPLS) [6]. Given the actual
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importance of OSPF, this work will pursue the objective
of improving the process of OSPF weight setting and help
network administrators with useful network management
tools aiming to provide optimal network configurations.

In order to accomplish the previously mentioned ob-
jectives, this work follows the traffic engineering per-
spective of previous works (e.g [7]) where the process of
OSPF weight allocation takes into account the traffic de-
mands of a given network domain [8], [9]. The proposed
optimization framework extends this traffic engineering
perspective proposing an optimization model which has
the ability to deal with multiconstrained QoS scenarios.
In order to obtain high quality OSPF weight solutions,
and consequently an improvement of the overall net-
work performance, the proposed framework resorts to the
field of Evolutionary Computation, where Evolutionary
Algorithms (EA) are used in the context of network
optimization. Based on such concepts, an experimental
testbed able to measure the QoS performance of the
proposed solution was implemented and used for results
analysis.

The results of the proposed optimization framework
are compared with the ones obtained by commonly used
OSPF weight setting heuristics, in order to assess the
order of magnitude of the QoS level improvements. In
particular, the performance evaluation in this work fo-
cuses mainly on two perspectives: i) show the ability of
EAs obtaining near-optimal OSPF configurations under
multiconstrained QoS network constraints and ii) taking
into account the bi-objective nature of the problem, study
how effective is the proposed model in the task of
tuning the importance of each individual objective in
the optimization process. The the results presented in
this work show that this is an effective contribution for
the development of management tools inspired on the
Evolutionary Computation field, which show the ability to
automatically provide network administrators with near-
optimal network configurations.

The paper is organized as follows: Section Il presents
an overview of the problem. In Section 111, the mathemat-
ical model that gives ground the proposed optimization
framework is presented. Next, Section IV describes the
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Figure 1. Example of an ISP network scenario with distinct end-to-end
paths between nodes A and B.

heuristics and the Evolutionary Algorithm that were de-
vised for OSPF weight setting optimization. The results
obtained by the distinct methods are scrutinized in Section
V. Finally, Section VI draws the conclusions of the work
and point future directions on the research area.

Il. PROBLEM DESCRIPTION

As previously mentioned, the main objective of the
proposed optimization framework is to provide network
administrators with efficient OSPF link configurations,
taking into account the users demands, the topology and
corresponding characteristics of a given network domain
(see Figure 1). Within this perspective, this work as-
sumes that the clients demands are mapped into a matrix,
summarizing, for each source/destination router pair, a
given amount of bandwidth and end-to-end delay required
to be supported by the network domain. For instance,
there are several techniques on how to obtain traffic
demand matrices (e.g. [8], [9] ) which provide estimations
regarding the overall QoS requirements within a given
network domain.

As an illustrative example, lets assume the network
scenario included in Figure 1 and consider an individual
demand between two network nodes (X and Y). If this
demand is expressed in terms of a delay target then
OSPF weight setting process should be able to compute
weights that will result in a data path with the minimum
propagation delay between X and Y (PATH 2 in this case).
However, if no delay requirements are considered, and the
only constraint between X and Y is a given bandwidth
requirement, e.g. 90Mbps, then the OSPF setting process
should would try to minimize the network congestion and
assign OSPF weights to force a data path inducing the
lowest level of losses in the traffic (PATH 1 in the case).
Considering now that in Figure 1 a given demand has
simultaneously bandwidth and delay constraints, then it is
expected that the OSPF weight setting process try to find
a data path representing a tradeoff between the bandwidth
and delay metrics. In addition, if one considers that,
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after studying the QoS demands of the network domain
users, each router pair of the domain may have specific
multiconstrained QoS requirements (i.e. congestion vs.
delay demands), then it is easy to understand the NP-hard
nature of the problem of obtaining OSPF weights able to
optimize the QoS levels of a given network domain.

I11. OPTIMIZATION MODEL FORMULATION

The mathematical model assumed in this work repre-
sents routers and transmission links by a set of nodes (V)
and a set of arcs (A) in a directed graph G = (N, A)
[10]. Additionally, ¢, represents the capacity of each link
a € A and a demand matrix D is available, where each
element dg; represents the traffic demand between each
pair of nodes s and ¢ from N.

Under this model, lets assume that, for each arc a, the
variable f,ﬁ‘(”t) represents how much of the traffic demand
between s and ¢ travels over arc a. In this way, total
load on each arc a (I,) can be defined by Eq. (1), while
the link utilization rate v, is given by Eq. (2). It is then
possible to define a congestion measure for each link
(®,), using a cost function p. This function has small
penalties for values near O but, as the values approach
the unity it becomes more expensive and exponentially
penalizes values above 1 (see Eq. 5). Using this function,
the congestion measure for a given arc can be now defined
by Eg. (3). Using the previously explained mathematical
framework, it is possible to define a linear programming
instance, where the purpose is to set the value of the
variables 5 that minimize the objective function defined
by Eqg. (4). The complete formulation considering the
single objective problem of congestion can be found in
[7]. In the following the optimal solution to this problem
is denoted by ®op.

(s,t)ENXN
Uq = l_a (2)
Ca
(ba = p(ua) (3)
=", (4)
acA
T, x €[0,1/3)
3z —2/3, z€(1/3,2/3)
~J 10z —16/3, z € [2/3,9/10)
P*) =13 704 — 178/3, z €19/10,1) ®)
500z — 1468/3,  z € [1,11/10)
5000z — 16318/3, > 11/10

In OSPF, in order to calculate the shortest network
paths, all nodes use the Dijkstra algorithm [11] and all
the traffic from a given source to a destination travels
along the shortest path. In this perspective, all arcs are
associated with an integer weight, and each path has a
length equal to the sum of its arcs. In the case of two
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or more paths have the same length, between a given
source and a destination, traffic is evenly divided among
the arcs in these paths (load balancing) [12]. Let us
assume a given solution, i.e. a weight assignment (w),
and the corresponding utilization rates on each arc(u,).
In this case, the total routing cost is expressed by Eq.
(6), for the loads and corresponding penalties (@, (w))
calculated based on the given OSPF weights. In this way,
the OSPF weight setting problem (as defined in [7]) is
equivalent to finding the optimal weight values for each
link (wope), in order to minimize the function ®(w).
The congestion measure can be normalized over distinct
topology scenarios, by using a scaling factor defined in [7]
(Eqg. (7)), where hg is the minimum hop count between
nodes s and t.

b(w) =Y Po(w) (6)
a€A
Quncar= Y dahs ()
(s,t)ENXN

Equation (8) defines the scaled congestion measure
cost and the relationships defined in Eq. (9) hold, where
®OptOSPF™ is the normalized congestion imposed by
the optimal solution to the OSPF weight setting problem.
As an additional comment, note that when ®* equals 1,
all loads are below 1/3 of the link capacity; on the other
hand, when all arcs are exactly full the value of ®* is
10 2/3. This value will be considered as a threshold that
bounds the acceptable working region of the network.

. D (w
UNCAP
1< @5pr < P505pr < 5000 9)

The previously explained model only takes into account
the congestion measures of the network. In order to
optimize the network behaviour in a multiconstrained QoS
perspective, it is necessary to include delay constraints in
the model. In such perspective, delay requirements were
modeled as a matrix DR, that for each pair of nodes
(s,t) € N x N (where ds; > 0) gives the delay target for
traffic between s and ¢ (denoted by DR,,).

As for the congestion model presented before, a cost
function was developed to evaluate the delay compliance
for each scenario (a given solution defined by the set of
weights in the OSPF). This function takes into account
the average delay of the traffic between the two nodes
(Delg;), a value calculated by considering all paths be-
tween s and ¢ with minimum cost and averaging the
delays in each. The delay in each path is the sum of
the propagation delays in its arcs (Dels ) and queuing
delays in the nodes along the path (Dels; 4). In some net-
work scenarios the latter component might be neglected
(e.g. if the propagation delay component has an higher
order of magnitude than queuing delays), however, if
required, the Del,; , component might be approximated,
resorting to queuing theory [13], taking into account the
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parameters such as: the capacity of the corresponding
output link (c,), the link utilization rate (I,) and more
specific parameters such as the mean packet size and the
overall queue size associated with the link.

The delay compliance ratio for a given pair (s, t) € N x
N is, therefore, defined by Eq. (10). As before, a penalty
for delay compliance can be calculated using function p
and the ~, function is defined according to Eq. (11).
This, in turn, allows the definition of a delay minimization
cost function, for a given a set of OSPF weights (w),
expressed by Eq. (12). In Eq. (12), the 4 (w) values
represent the delay penalties for each end-to-end path,
given the routes determined by the OSPF weight set w.
This function can be normalized dividing the values by
the sum of all minimum end-to-end delays, as expressed
by Eq. (13). For each pair of nodes the minimum end-
to-end delay, minDel, is calculated as the delay of the
path with minimum possible overall delay.

The optimization problem addressed in this work, that
is clearly multiobjective, can now be defined. Given a
network represented by a graph G of nodes N and
arcs A, a demand matrix D and a delay requirements
matrix DR, the aim is to find the set of OSPF weights
that simultaneously minimizes the functions ®*(w) and
7 (w).

In conclusion, the explained mathematical model will
be used for the performance analysis of the proposed
traffic engineering framework in two distinct perspectives:
i) when a single objective is considered the fitness of
an individual (encoding weight set w) is calculated using
functions ®* (w) for congestion and v*(w) for delays, and
ii) for multiobjective optimization a quite simple scheme
was devised and the fitness (f(w)) of the individual is,
in this case, derived by Eq. (14), where the o parameter
is used to tune the importance of each QoS metric in the
optimization process. This scheme, although simple, can
be effective since both cost functions are normalized in
the same range and use a similar penalization function.

Delst
dCst = DRst (10)
vst = p(dest) (11)
Yw)= Y yse(w) (12)
(s,t)ENXN
"o — (w) 3
W) Z(s,t)eNmemDelst 13)
f(w) = a®™(w) + (1 — a)y"(w) (14)

1V. ALGORITHMS AND HEURISTICS FOR OSPF
WEIGHT SETTING

This section describes how Evolutionary Algorithms
are used in this work for the objective of OSPF weight set-
ting optimization. Additionally, a set of heuristic methods
used in this work for results comparison is also explained.



A. Evolutionary Algorithms

As explained, the proposed optimization framework
resorts to the use of Evolutionary Algorithms (EAS) in
order to improve the QoS performance of a given network
domain. In the proposed EA, each individual encodes
a solution as a vector of integer values, where each
value (gene) corresponds to the weight of an arc in the
network (the values range from 1 to w,,q.). Therefore,
the size of the individual equals the number of arcs in the
graph (links in the network). The individuals in the initial
population are randomly generated, with the arc weights
taken from a uniform distribution in the allowed range.
In order to create new solutions, several reproduction
operators were used, more specifically two mutation and
two crossover operators:

« Random Mutation - replaces a given gene by a new

randomly generated value, within the allowed range
[]—a wmaz];

o Incremental/decremental Mutation - replaces a
given gene by the next or by the previous value (with
equal probabilities) and constrained to respect the
range of allowed values;

o Uniform crossover and Two-point crossover - two
standard crossover operators, applied in the tradi-
tional way [14].

All the previously mentioned operators have equal

probabilities in generating new solutions in the context
of the OSPF weight setting.

B. Heuristics

In order to assess the order of magnitude of the im-
provements obtained by the OSPF weight setting guided
by the EAs approach, a number of heuristic methods was
implemented, namely:

o Unit - sets all arc weights to 1 (one);

o InvCap - sets arc weights to a value inversely

proportional to the capacity of the link;

o L2 - sets arc weights to a value proportional to the

physical Euclidean distance (L2 norm) of the link;

« Random - a number of randomly generated solutions

are analyzed and the best is selected. Note that the
number of solutions considered is always equal to
the number of solutions evaluated by the EA in each
problem.

The performance analysis presented in the following
section includes, for a large set of distinct QoS con-
strained scenarios, results obtained by the EAs and by
the above mentioned heuristics.

V. PERFORMANCE ANALYSIS

Figure 2 presents the experimental platform that was
implemented and used in this work for results evalua-
tion. Their main components are: a topology generator,
a traffic demand generator, an OSPF simulator, a set
of optimization heuristics and a module implementing
the proposed EA. A set of 12 networks was generated
by using the Brite topology generator [15], varying the
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Figure 2. Platform for OSPF performance evaluation.

number of nodes (V = 30, 50, 80,100) and the average
degree of each node (m = 2,3,4), which resulted in
a set of networks ranging from 57 to 390 links (graph
edges). The link bandwidth (capacity) varies between 1
and 10 Gbits/s under an uniform distribution. The network
was generated using the Barabasi-Albert model, using
a heavy-tail distribution and an incremental grow type
(parameters HS and LS were set to 1000 and 100,
respectively).

In the generated network examples, the propagation
delays were assumed as the major component of the
end-to-end delay of the networks paths, i.e. the network
queuing delays at each network node were not considered.
As previously mentioned, if additional parameters are
provided by the ISP this parameter can be also considered
by the proposed optimization framework. For each of the
twelve network instances a set of three distinct instances
of D and DR were created. A parameter (D,) determines
the expected mean of the congestion in each link (u,)
(values for D, in the experiments were 0.1, 0.2 and 0.3).
Although the values used for D, seem to be low, note
that they represent averages of the links and don’t take
the network topology into account, meaning that there
is still a high probability that a number of links get
high congestions. For generating the the DR matrices,
the method was to calculate the average of the minimum
possible delays, over all pairs of nodes. Then, a parameter
(DR,) was considered, representing a multiplier applied
to the previous value to get the matrix DR (values for
DR, in the experiments were 3, 4 and 5). Overall, a set
of 12 x 3 x 3 = 108 instances of the optimization problem
were considered.

The heuristics, the OSPF routing simulator and the
devised Evolutionary Algorithm were implemented by the
authors using in Java. The EA was run for a number
of generations ranging from 1000 to 6000, a value that
was incremented according with the number of variables
optimized by the EA. The running times varied from a
few minutes in the small networks, to a few hours in the
larger ones. In order to perform all the tests, a computing
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cluster with 46 dual Xeon nodes was used. The population
size was kept in 100 and the w,,., was set to 20. Note
that, since the EA and the Random heuristic are stochastic
methods, R runs were executed in each case (R was set
to 10 in the experiments). For a better understanding, the
results included in the following sections are grouped into
three sets:

« Single Objective optimization of 1) Congestion
and 2) Delay: The first two sets of results study
the behaviour of the optimization framework using
the single objective ®* and v* cost functions, for the
optimization of congestion and delays, respectively.

« 3) Multiobjective QoS Optimization: The last set
of results assesses the effectiveness of the proposed
model when the optimization of the OSPF weight
setting takes into account the multiobjective cost
function.

Figure 3 explains the methodology used to present the
performance analysis results included in the following
sections. In most of the figures included in the next
sections the data was plotted in a logarithmic scale, given
the exponential nature of the penalty function adopted.
Since the number of performed experiments is quite high,
it was decided to present several aggregate results to draw
conclusions. The results obtained in all the optimization
instances (up to 108) are aggregated by:

« Difficulty Level: The results obtained in all the in-
stances are aggregated by the demands levels (D, =
0.1,0.2,0.3) or by the delay requirements levels
(DR, = 3,4,5). Note that higher values of the D,
parameter (or lower values of DR,) mean harder
optimization problems, while lower values of D,
(or higher values of the DR,) mean optimization
problems that are easier to comply.

o Number of Nodes: The results are aggregated by
the number of nodes considered in the distinct opti-
mization instances.

« Node Degree: In this case, the results are aggregated
by the node degree parameter assumed in the gener-
ation of the network topologies.

o Number of Edges: In this study, the results are
aggregated according with the number of network
edges considered in the optimization instances.

While the first study is useful to assess the respon-
siveness of the optimization methods to distinct difficulty
levels of the problem, the last three are suitable to verify
their scalability properties.

In addition, and as observed in Figure 3, the results
are plotted in two distinct colored regions: the white
area represents the acceptable working region whereas a
gray filled area is used to identify working regions with
increasing levels of service degradation, i.e. cost values
above 10 2/3. Results within the white area mean that the
obtained QoS levels obey to the demands or/and to the
delay requirements assumed in the corresponding problem
instances.
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Figure 3. Methodology used for results visualization.

TABLE I.
RESULTS FOR THE OPTIMIZATION OF CONGESTION (®*) -

AVERAGED RESULTSBY DEMAND LEVELS

Dy Unit L2 InvCap Random EA
01 8.03 215.94 1.50 75.75  1.02
0.2 99.96 771.87 57.70 498.74 1.18
03 22730 128856  326.33 892.87 1.73

A. Single Objective Optimization- Congestion

This section studies the results obtained by the different
methods in the context of network congestion optimiza-
tion.

Table I shows the obtained results for the optimization
of the congestion, for all the 12 available networks,
averaged by the demands levels (i.e. for the different
values of D,). In this table the first column represents
the demand generation parameter D,, (higher values for
this parameter indicate higher mean demands, thus harder
optimization problems). The remaining columns indicate
the congestion measure (®*(w)) for the best solution (w)
obtained by each of the methods considered in this study.
In the case of the EAs and Random heuristic the values
represent the mean value of the results obtained in the set
of runs.

A graphical representation of the values included in
Table | is given by Figure 4. It is clear that the results
for all the methods get worse with the increase of D, as
would be expected. The congestion cost values obtained
by the methods show an impressive superiority of the
EA when compared to the heuristic methods. In fact, the
EA achieves solutions which manage a very reasonable
behavior in all scenarios, while the other heuristics man-
age very poorly. Even InvCap, an heuristic quite used in
practice, gets poor results when D,, is 0.2 or 0.3 which
means that the optimization with the EAs assures good
network behavior in scenarios where demands are at least
200% larger than the ones where InvCap would assure
similar levels of congestion.

A distinct analysis of the methods performance is
provided in Tables Il and 111, presenting the results of the
optimization of the congestion averaged by the number
of nodes and by the node degree, respectively. Associated
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Figure 4. Results obtained by the different Figure 5. Congestion optimization results aver- Figure 6. Congestion optimization results aver-

methods in congestion optimization (averaged aged by number of nodes.

by Dy).

TABLE I1.
RESULTS FOR THE OPTIMIZATION OF CONGESTION (®*) -

AVERAGED RESULTSBY NUMBER OF NODES

Nodes Unit L2 InvCap Random EA

30 98.90 598.35 95.71 263.69 1.29

50 121.08 815.08 104.92 41859 1.28

80 111.62 730.71 157.50 59437 131

100 115.45  891.00 155.90 679.82 1.36
TABLE III.

RESULTS FOR THE OPTIMIZATION OF CONGESTION (®*) -
AVERAGED RESULTS BY NODE DEGREE

Dy Unit L2 InvCap Random EA
2 111.61  456.38 127.81 15575  1.23
3 121.56  861.80 156.21 49131 1.44
4 102.12  958.18 101.51 820.30 1.27

with such tables, Figures 5 and 6 illustrate the obtained
results. As observed in both figures, the results obtained
by the EAs are always within the white area of the figures,
which means that feasible solutions are obtained, i.e.
obeying to the traffic demands considered in each one
of the optimization instances.

Figure 7 presents an additional representation of the
congestion results, which are now aggregated by the
number of arcs (links). As observed, it is clear that the
results obtained by the EAs are quite scalable, since the
quality levels are not affected by the number of edges in
the network graph (note that for all the values of number
of edges the values of EAs are always within the white
area of the figures).

The results presented in this section clearly show that
the EA makes an efficient method for the optimization of
OSPF weights, in order to minimize the congestion of the
network. The results confirm the findings of other single
objective OSPF optimization works (e.g. Ericsson et al
[16]), although a precise comparison of the approaches is
impossible since the data is not available.

B. Single Objective Optimization- Delays

In the context of the optimization of delays (cost
function ~*), Table IV represents the results obtained for
the delay optimization averaged by the parameter used
in the generation of delays requirements (DR,;). In this
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aged by node degree.
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Figure 7. Congestion optimization results averaged by number of edges.

case, the results of all methods improve when the value
is higher, since higher delay requirements are easier to
comply. Figure 8 visualizes the values of Table IV where
a good behavior of the EA is clearly visible. However,
in opposition to the congestion study, the L2 heuristic
achieves very similar results. This is explained by the
fact that in the proposed model only propagation delays
were considered and these are proportional to the length
of each link. The L2 heuristic considers the OSPF weights
to be proportional to the arc length, which means they are
also directly proportional to the delays. So, it is obvious
that the L2 heuristic exhibits a near-optimal behavior in
this problem.

As an additional comment, note that in the context of
network management, the minimization of propagation
delays, disregarding congestion, is typically not an op-
timization aim by itself. So, the results in this section
will be used mainly as a basis for comparison with the
multiobjective optimization results.

TABLE IV.
RESULTS FOR THE OPTIMIZATION OF DELAYS (y*)- AVERAGED

RESULTSBY THE DELAY REQUIREMENTS PARAMETER (DRp)

DR, Unit L2 InvCap Random EA
3 152.37 294  577.94 156.62 2.85
4 2878 125 158.85 2435 1.25
5 6.59 1.10 44.13 429 110

A different visualization of the delay optimization
results is presented in Table V, aggregating results by
the number of nodes, and in Table VI which aggregates
results by the node degree. A careful analysis of the values
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Figure 11. Delay optimization results averaged Figure 12. Results obtained by the different Figure 13. Results obtained by the different

by number of edges.

TABLE V.
RESULTS FOR THE OPTIMIZATION OF DELAYS (y*)- AVERAGED

RESULTSBY NUMBER OF NODES

DRy Unit L2 InvCap Random EA

30 60.75 184  296.22 16.84 1.82

50 115.32 2.04  417.88 7475  1.96

80 57.16  1.69 187.45 97.53 1.66

100 17.08 1.48 139.67 57.88 1.50
TABLE VI.

RESULTS FOR THE OPTIMIZATION OF DELAYS (y*)- AVERAGED
RESULTSBY NODE DEGREE

DR, Unit L2 InvCap Random EA
2 9594 171  298.69 2572 1.69
3 4509 191  198.96 53.58 1.88
4 46.71 166  283.26 105.95 1.64

included in such tables allows to conclude that, once
again, EAs and L2 heuristic achieve the best results in the
perspective of a delay cost minimization. This conclusion
is corroborated by Figures 9 and 10 showing that the
values obtained by these heuristics are clearly within the
acceptable QoS region of the figures. In opposition, Unit,
InvCap and Random heuristics achieve poor results since
their values fall into the gray filled area of the figures.
As for the case of network congestion, the results
for the delay minimization are also studied taking into
account the the number of links (Figure 11). Once again,
the scalability of both L2 and the EAs prevails, and both
methods obtain cost values which are within the white
area of the figures, i.e. obeying to the assumed delay
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methods in the multiobjective optimization (av-
eraged by D, for a = 0.5).

methods in the multiobjective optimization (av-
eraged by DR, for a = 0.5).

requirements irrespective of the considered aggregation
perspective.

C. Multiobjective Optimization

After studying the single objective perspective of
the proposed optimization framework, this section will
present the optimization results using the multiobjective
formulation of the problem, given by Eq. (14). In this
context, this section will include results showing that:

o The EA approach adopted in this work is able
to achieve OSPF solutions optimizing the overall
multiconstrained QoS performance of the network.
In particular, EAs are able to obtain good results also
showing an impressive superiority when compared
with other heuristic methods, even under unfavorable
network conditions.

« The proposed optimization framework is able to tune
the importance of each one of the QoS metrics,
resorting to simple configuration of the o parameter.

1) Multiconstrained Optimization example (with o =

0.5): As an introductory comment, note that from the
set of methods discussed before, only the EA and the
Random heuristic can be used to perform multiobjective
optimization by considering the optimization of function
f in Equation (14), as the aim. In all other heuristic meth-
ods, the solution is built disregarding the cost function, so
the results for multiobjective optimization can be pasted
from the ones obtained in the previous sub-sections. In
this way the results of the methods are presented in terms
of the values for the two objective functions (®* and v*),
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Figure 14. Results obtained by the Random heuristic and by the EAs
for distinct values of the o parameter.

since the value of f for these solutions can be easily
obtained and it does not represent any real QoS measure
of the network.

The results included in this section present the be-
haviour of the methods in multiobjective optimization, for
the specific case of o = 0.5. However, the comparison
between the methods performance for different values of
this parameter will produce similar conclusions. In this
perspective, in Figures 12 and 13 the optimization results
are plotted with the two objective functions in each axis.
The former shows the results averaged by the demand
levels (D,) and the latter by the delay requirements
parameter (DR,). The good overall network behavior
of the solutions provided by the EA is clearly visible
in both figures. In fact the EA results are quite good,
both in absolute terms, regarding the network behavior
in terms of congestion and delays, and when compared
to all other alternative methods. As observed in Figures
12 and 13, it is easy to see that no single heuristic is
capable of acceptable results in both aims simultaneously.
As example, L2 behaves well in the delay minimization
but fails completely in congestion; InvCap achieves ac-
ceptable congestion performance only for lower values of
D, but fails completely in the delays.

EAs, on the other hand, are capable of a good com-
promise between both optimization targets. As before,
the results obtained by EAs are always within the white
area of the figures, even in this multiobjective perspective.
This means that the OSPF solutions devised by EAs are
capable of proving a network configurations able to obey
simultaneously to the traffic demands and delay requests.

2) Tunning QoS Performance with the o parameter:
This section studies the responsiveness of the proposed
optimization model for distinct values of the o parameter.
Within such purpose, three distinct values for o will be
tested: 0.25, 0.5 and 0.75. The value of 0.5 considers each
aim to be of equal importance, while the 0.25 favors the
minimization of delays and 0.75 will give more weight
to congestion. In this way, if the proposed optimization
framework was correctly defined, the optimization results
obtained by the EAs (an also by the Random heuristic)
should corroborate this theoretical adaptive behaviour.

In Table VII the results obtained were aggregated by
the parameter «. The same results are also visualized in
Figure 14 showing the results of the EA and Random
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TABLE VII.
OVERALL RESULTS FOR THE MULTIOBJECTIVE OPTIMIZATION -

AVERAGED BY «

« Random EA
(b* ,Y* @* ,Y*
0.25 | 54447 10799 | 2.02 233

0.5 | 506.45 130.81 | 1.68 2.49
0.75 | 468.04 17582 | 1.61 292
TABLE VIII. TABLE IX.

EA: MULTIOBJECTIVE
OPTIMIZATION - AVERAGED BY
NUMBER OF NODE DEGREE

EA: MULTIOBJECTIVE
OPTIMIZATION - AVERAGED BY
NUMBER OF NODES

a Nodes EA «a Degred EA
@* ,Y* @* ,Y*
30 225 220 2 1.66 2.05
0.25 | 50 195 2.82 025 3 243 253
80 195 2.16 4 198 241
100 1.94 215 2 151 218
30 158 225 05 | 3 191 271
05 | 50 1.78 2.96 4 163 259
80 162 237 2 145 239
100 175 2.38 075| 3 189 3.30
30 156 2.76 4 150 3.07
0.75 | 50 166 331
80 1.68 2.79
100 155 281

heuristic for distinct values of «. The results shown in the
figure make clear its effect, once it is possible to observe
different trade-offs between the two objectives. Indeed,
when « increases the results on congestion improve,
while the reverse happens to the delay minimization. The
intermediate value of « (0.5) provides a good compromise
between the two objectives. As observed, despite that both
EAs and the Random heuristic show a correct responsive-
ness the the changes in the o parameter, only EA results
are within the with area of the figures. In counterpoint, the
congestion and delay cost values obtained by the random
heuristic are quite high, representing a degradation of the
QoS levels of the network.

A distinct analysis of the influence of the o parameter
in the results obtained by the EAs is presented in Tables
VIII and IX. In Table VIII the results are averaged by
the o parameter and by the number of nodes considered
in the optimization instances. In the case of Table IX,
the aggregation of results is based on the « parameter
and the node degree. Based on this information Figures
15, 16, 17 and 18 study the responsiveness of the cost
values for congestion and delay in response to changes in
the « parameter. A detailed analysis of the figures will
allow to conclude that, irrespective of the aggregation
type of the results, there is always an improvement of
the network congestion performance (and a decrease of
the network delay performance) whenever an increase in
the o parameter occurs. As expected, a decrease of the
o parameter will benefit the delay performance of the
network. These results clearly show the correct behaviour
of the proposed traffic engineering framework, being able
to tune the QoS performance of a given network domain.

The last set of results included in this section analyze
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Figure 15. Congestion cost values obtained by
the EAs for distinct values of the o parameter

and number of nodes. number of nodes.

EA: Delay Cost Values (by node degree and o parameter)
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Figure 16. Delay cost values obtained by the
EAs for distinct values of the o parameter and
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Figure 17. Congestion cost values obtained by

the EAs for distinct values of the « parameter
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Figure 18. Delay cost values obtained by the EAs Figure 19. Results obtained by the EAs (aver-

for distinct values of the o parameter and node aged by D).
degree.

the EA optimization results for distinct values of the
« parameter and, simultaneously, for distinct difficulty
levels of the QoS demands considered in the optimization
instances (both for traffic demands and delay requests).
The results are summarized in Table X and Table XI and
a graphical analysis is presented in Figures 19 and 20.

In the figures the trade-offs between the two objec-
tives are clear. In Figure 19, the obtained delay and
congestion cost values are averaged for distinct values
of traffic demands (D, = 0.1,0.2 and 0.3). Moreover,
three distinct lines are plotted, each one representing the
results obtained assuming distinct values of « (0.25, 0.5
and 0.75). A careful analysis of Figure 19 allows to
conclude that, within a given demand value, the plots are
shifted towards the upper left region of the graph as the «
value increases. This corroborates the optimization model
underpinning concept, in which higher values of « lead
to an improvement in the congestion metric but, at the
same time, a penalization in the delay performance.

The results plotted in Figure 20 show the obtained
delay and congestion cost values averaged now for distinct
values of the delay requests (DR, = 3,4 and 5). As
in the case of Figure 19, the results clearly show the
correctness of the system dynamics, as the delay and
congestion performance of distinct experimental scenarios
is controlled by the o parameter. As observed, network
configurations assuming lower values for o induce a better
delay performance in the network, which is obtained at
expense of a congestion performance degradation.
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Figure 20. Results obtained by the EAs (aver-
aged by DRy).

TABLE X.
EA: MULTIOBJECTIVE

OPTIMIZATION - AVER. BY D,

TABLE XI.
EA: MULTIOBJECTIVE

OPTIMIZATION - AVER. BY DR,,.

o D EA o DR EA
(b* ,Y* (b* ,Y*
0.1 | 1.28 1.85 3 2.63 4.03
025 | 02 | 164 219 025 | 4 177 160
03 | 315 295 5 1.67 1.36
01 | 117 192 3 195 422
0.5 0.2 | 147 232 0.5 4 159 178
03 | 241 323 5 151 148
01 | 110 212 3 189 5.05
075 | 0.2 | 1.35 258 075 | 4 148 2.03
03 | 238 4.05 5 146 1.68

V1. CONCLUSIONS AND FURTHER WORK

This paper describes a traffic engineering framework
that gives ground to the development of network man-
agement tools able to provide network administrators
with near-optimal OSPF configurations. Resorting to a
simulated experimental testbed, a large set of multicon-
strained QoS scenarios was considered to demonstrate
the effectiveness of the use of Evolutionary Algorithms
for the NP-hard problem of the OSPF weight setting
problem. In particular, the results obtained by the pro-
posed optimization methodology are compared with the
ones obtained by commonly used OSPF weight setting
heuristics, clearly showing the superiority of the proposed
solution. Moreover, the results presented here show that
the Evolutionary Computation research field can be an
effective contribution for the development of network
management tools automatically providing enhanced con-



figuration to improve the QoS level performance of a
given network domain.

Even taking into account the quality of the results
presented in this work, future work is expected to be
carried out in order to consider more specific EAs to
handle the OSPF weight setting problem (e.g. [17], [18]).
An additional objective is to adapt the proposed traffic
engineering framework to class-based networks where
distinct traffic classes are expected to have different QoS
requirements, meaning that different paths might be used
for routing packets from distinct traffic classes [19].
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