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Abstract

The duration of most collar arrangements provided by governments to encourage early

investment in infrastructure, renewable energy facilities, or other projects with social

objectives are finite, not perpetual. We extend the previous literature on collar-style

arrangements by providing an analytical solution for the idle and active values, as

well as the investment triggers, for projects where collars are either finite-lived or

retractable. What is the difference between these types of arrangements with their

perpetual counterpart? Lots, including different vega signs, and substantially different

values for different current price levels. Often, finite and retractable collars justify

earlier investment timing than perpetual collars. In general, we demonstrate that the

finite-lived and retractable versions have a significant impact on optimal behaviour,

relative to the perpetual case. An important consideration when negotiating the floors,

ceilings, and duration (or signalling the expected duration) of a finite or a retractable
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collar is the current price level of the output and its expected volatility over the life

of the contract.
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1 Introduction

Collars represent a viable government policy for inducing investment by offering the in-

vestor protection against the downside risk of adverse cash-flows, which are reimbursed

in part by foregoing abnormally favourable cash-flows (Adkins and Paxson, 2017). As an

alternative to the traditional model of subsidized investment grants and taxation, collars

provide governments with the benefit of only modifying the cash-flow structure without

the disadvantage of incurring any upfront investment funding. In a world of uncertainty,

collars can be evaluated within a real-option framework because of their option-like proper-

ties. This enables the value of the collar to be determined analytically along with tractable

extensions where the collars are finite-lived and retractable.

There are several examples of finite collars evaluated using numerical methods. Cou-

ture and Gagnon (2010) describe a Spanish 2007 “variable premium” that involves a floor

and cap, where the highest premium (over the market electricity price) is paid when the

electricity price is low, and zero when the price exceeds a ceiling (so the facility owner

receives all of the higher price). González (2008) provides some detail on these premium

collars. de Miera et al. (2008) illustrate how a system where a government offering guar-

antees for infrastructure projects should involve a European collar. Brandão and Saraiva

(2008) model a finite collar for a private-public partnership (PPP) toll road and compare

the project values as a function of the floors and ceilings. Shan et al. (2010) show forecast

traffic and tolls (both increasing over time) and collar option values with exercise prices in-

creasing over time. Shaoul et al. (2012) describe several rail operating contracts in the UK

that have been structured as layered downside and upside revenue sharing arrangements.

Boomsma et al. (2012) provide analytical infinite option values and 10-year finite option

values, using numerical methods. Abadie and Chamorro (2014) calculate numerically the

option value for a floor. Fernandes et al. (2016) suggest a collar-type insurance for wind

power in Brazil, where a wind generator has promised to supply power even during times

where there is little wind.

Attarzadeh et al. (2017) provide an extensive review of some applications of collars in

PPPs, with a case illustration based on a triangular fuzzy method. Buyukyoran and Gun-

des (2018) use a Monte Carlo simulation with constant traffic volatility and two periods

of traffic growth. Options are based on annual average daily traffic times constant tolls

for each of four separate periods, and “European” options are exercised each end year.

Zapata Quimbayo et al. (2019) assume that traffic (tolls) are mean reverting.

Analytical studies on perpetual floors and ceilings presume the underlying factor fol-

lows a geometric Brownian process. Takashima et al. (2010) design a PPP deal involving

government debt participation that incorporates a floor on the future maximum loss level

where the investor has the right to sell back the project whenever adverse conditions

emerge. Armada et al. (2012) make an analytical comparison of various subsidy policies
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including minimum revenue guarantees. Adkins and Paxson (2019) provide analytical

solutions for perpetual collars, floors and ceilings, plus partial floors and ceilings, and

show the sensitivity of these collars to changes in most of the parameter values. Barbosa

et al. (2018) develop a model for a feed-in tariffs contract with perpetual and finite-lived

minimum price guarantees (price-floor regime) with regulatory uncertainty.

Our major contribution is to extend the previous analysis of determining the idle (pre-

investment) and active (post-investment) values for projects having a perpetual collar-style

inducement to cases where the arrangement is either finite-lived or retractable. These

extensions make our representation more realistic thereby enhancing the credibility of our

findings. In general, we demonstrate that the finite-lived and retractable versions have a

significant impact on optimal behaviour relative to the plain perpetual collar.

Specifically, we show that when compared to the perpetual collars, (i) finite and re-

tractable collars provide substantially lower downside risk protection for the beneficiary

of the collar when market prices are low; (ii) the finite and retractable collars sensitivity

to volatility is smaller and, as for the perpetual case, can be non-monotonic; (iii) finite

and retractable collars are less sensitive to changes in the price cap; (iv) a finite-lived and

a retractable collar may induce earlier investments than a perpetual collar when the price

floor and price cap are set sufficiently low, or the investment cost and the duration of the

collar or the likelihood of not being retracted, for low price floors, are sufficiently high;

(v) an optimal level of the price cap and the duration of the finite collar exists, limiting

the capacity of those instruments to justify earlier investments; (vi) the value of the finite

collar investment opportunity is always higher than the perpetual collar investment op-

portunity value, regardless of the triggers; (vii) retractable collars may have lower triggers

than either finite or perpetual collars; (viii) naturally, the real option value of retractable

collars is highly sensitive to the probability of withdrawal; and (ix) retractable collars can

induce earlier and more valuable investments than finite collars, the same effect termed

“flighty bird in hand” in Adkins and Paxson (2016).

Finally, we illustrate how our models can be used to determine an optimal investment

subsidy along with the collar design, that induces investment for a given price level.

This paper is organized in the following way. In section 2, we outline the basic plain

real option investment model, for later comparisons. In section 3, we show the analytical

solution for perpetual collars, finite collars, and retractable collars. In section 4 further

insights are gained by performing a numerical sensitivity analysis and discussing the im-

plications and interpretations. Section 5 studies optimal incentives design, and section 6

concludes and suggests several extensions.
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2 Plain investment opportunity

Let us start by presenting the well known solution for a plain perpetual investment op-

portunity (for details see, for instance, Dixit and Pindyck (1994)).

Consider a monopolistic firm with the option to invest in a project whose value depends

on a single source of uncertainty that, in our case, corresponds to the unitary output price

P , exogenously defined, which is assumed to follow a geometric Brownian motion process:1

dP = αPdt+ σPdz, (1)

where α and σ denote the risk-neutral drift and the volatility, respectively, and dz is an

increment of the standard Wiener process. Additionally, α = r− δ, where r stands for the

risk-free rate and δ is a return shortfall, or convenience yield. Assume the project requires

an investment cost K, allowing the firm to produce a fixed output quantity Q. For the

sake of simplicity, operating costs and taxes are not considered. After investing the value

of the active project is:

V (P ) =
P

δ
Q. (2)

where Q is a scaling factor that can be set to 1, without loss of generality.

Following the standard arguments, the value of a monopolistic opportunity to invest

in this project, F (P ), is given by:

F (P ) =


(V (P ∗)−K)

(
P

P ∗

)β1
for P < P ∗

V (P )−K for P > P ∗
(3)

where P ∗ corresponds to the investment trigger:

P ∗ =
β1

β1 − 1
δK, (4)

and β1 is the positive root of the characteristic quadratic equation 1
2σ

2β(β−1)+αβ−r = 0,

i.e.,

β1 =
1

2
− α

σ2
+

√(
−1

2
+

α

σ2

)2

+
2r

σ2
. (5)

3 The investment opportunity with a collar

We consider a government offering a concessionaire firm a collar arrangement that specifies

certain limitations on the unit output price P . Specifically, the price floats freely subject

1This a common assumption in the literature. However other assumptions regarding the stochastic
process occasionally appear as in Zapata Quimbayo et al. (2019), where traffic volume in a PPP is modelled
as a mean-reverting process.
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to a price floor PL (corresponding to a low price) and a price cap PH (corresponding to a

high price), where PH > PL
2, so whenever PL 6 P < PH the firm receives a unit price P ;

but, if P < PL or P > PH then the firm receives PL or PH , respectively. The firm receives

the instantaneous revenue R(P, PL, PH , Q) = min{max{PL, P}, PH}Q where Q denotes a

constant output volume, that acts as a scaling factor that can be set to 1 without loss of

generality. The collar corresponds to a portfolio of a floor and a cap, each composed of

individual floorlets and caplets.3

In this arrangement, the government compensates the firm for low cash-flows while

the firm foregoes abnormally high cash-flows. The government provides the firm with

downside protection for P < PL by paying a subsidy (PL−P ), but the firm has to transfer

the excess profit (P − PH) to the government if P > PH . By judiciously selecting PL,

PH , the parties can moderate both the levels of downside protection and upside sacrifice,

which consequently alters the pre-investment values for the collar arrangement as well as

affecting its timing.

Initially, we present the solution for an investment opportunity with a perpetual collar,

and then proceed to evaluate (i) finite-lived and (ii) retractable collars. In each case, we

derive the pre- and post-investment values (idle and active values) as well as the impact of

changing parameter values on the level of the trigger that justifies immediate investment.

3.1 Investments with perpetual collars

The solutions for an investment opportunity with a perpetual collar can be found in Adkins

and Paxson (2017). Ignoring any operating costs, Vp(P ) denotes the value of an active

project whose output price P is bounded by a price floor PL and a price cap PH . The

solution for Vp(P ) satisfies the following non-homogeneous differential equation:

1

2
σ2P 2∂

2Vp(P )

∂P 2
+ αP

∂Vp(P )

∂P
− rVp(P ) +R(P ) = 0, (6)

where R(P ) = R(P, PL, PH) = min{max{PL, P}, PH} for convenience, and R(P ) = PL

for P < PL, R(P ) = P for PL 6 P < PH , R(P ) = PH for P > PH , and

β2 =
1

2
− α

σ2
−

√(
−1

2
+

α

σ2

)2

+
2r

σ2
< 0. (7)

.

2For the particular case where PL = PH , the collar reduces to a fixed price payment.
3Our collars have a ruthless exercise characteristic so that whenever P < PL, the concessionaire receives

PL, and whenever P > PH , the government receives P − PH , while the concessionaire receives PH .
“Exercise” is ruthless, automatic, that is, occurs without either party taking an explicit action apart from
making or receiving payments. Conceivably these payments could be made every minute, or half-hour
for electricity in the UK according to the actual spot electricity rate, but perhaps conveniently payments
might be settled monthly, quarterly or annually according to the legal accounting specification, based on
averages. Once payments are made the contingent arrangement continues, in contrast to financial options.
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The general solution of (6) is:

Vp(P ) = AaP
β1 +AbP

β2 (8)

The solutions for the non-homogeneous part (the particular solutions) depend on where

P stands in relation to PL and PH . Accordingly, the particular solution for P < PL is PL/r,

for P ∈ [PL, PH) is P/δ, and for P > PH becomes PH/r. Considering that Vp(0) = 0, then

Ab = 0 for P < PL. Additionally, given that Vp(P ) has an upside limit of PH/r whenever

P > PH , then Aa must be set equal to 0 in this region. Putting together the solutions for

all the regions we get:

Vp(P ) =



A11P
β1 +

PL
r

for P < PL

A21P
β1 +A22P

β2 +
P

δ
for PL 6 P < PH

A32P
β2 +

PH
r

for P > PH

(9)

The constants A11, A21, A22, A32 are found by ensuring that Vp(P ) is continuous and

continuously differentiable along P . The solutions for the constants are as follows:4

A11 =

(
P 1−β1
H − P 1−β1

L

)
β1 − β2

(
β2 − 1

δ
− β2

r

)
(10)

A21 =
P 1−β1
H

β1 − β2

(
β2 − 1

δ
− β2

r

)
(11)

A22 = −
P 1−β2
L

β1 − β2

(
β1 − 1

δ
− β1

r

)
(12)

A32 =

(
P 1−β2
H − P 1−β2

L

)
β1 − β2

(
β1 − 1

δ
− β1

r

)
(13)

Moving back to the idle stage, the value of the perpetual American real option to invest

in a project with a perpetual collar, Fp(P ) must satisfy the following ordinary differential

equation:
1

2
σ2P 2∂

2Fp(P )

∂P 2
+ αP

∂Fp(P )

∂P
− rFp(P ) = 0. (14)

The general solution has the form Fp(P ) = BaP
β1+BbP

β2 . Considering that Fp(0) = 0

then we set Bb = 0. The arbitrary constant Ba is found using the value matching condition

(VM):

Fp(P
∗
p ) = BaP

∗
p
β1 = Vp(P

∗
p )−K, (15)

4These solutions are obtained equalizing the value and the derivatives of the first and second branches
of Equation (9) at PL, and of the second and third branches at PH .
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i.e.,

Ba =
(
Vp(P

∗
p

)
−K)

(
1

P ∗p

)β1
, (16)

and the investment trigger, P ∗p , is obtained by solving the smooth pasting condition (SP):

β1BaP
∗
p
β1−1 = V ′p(P ∗p ).

Multiplying both sides by P ∗p and using the VM condition, we get:

β1(Vp(P
∗
p )−K) = V ′p(P ∗p )P ∗p (17)

The price floor must be lower than Kr, otherwise the government guarantees that the

investment will never return a value less than K.5 Notice that the trigger P ∗p can be either

below or above PH (but above PL), which means the VM and the SP can be placed in all

of the domain P ∈ [PL,∞). Considering this domain from Equation (9), the trigger is:

P ∗p =

(
β1

(β1 − β2)A32

(
K − PH

r

)) 1
β2

> PH , for K > KH
p , (18)

where6

KH
p =

P β2H
β1

(
P 1−β2
H − P 1−β2

L

)(β1 − 1

δ
− β1

r

)
+
PH
r
, (19)

and it, P ∗p , is found by solving numerically the following equation for the remaining cases:

(β1 − β2)A22P
∗
p
β2 + (β1 − 1)

P ∗p
δ
− β1K = 0, for K0

p = PL/r < K < KH
p . (20)

From Equation (18) and as illustrated in our numerical example, the investment trigger

can exceed the price cap PH for appropriate market conditions such as high volatility or

project-specific conditions such as a high investment cost. For example, we know from the

standard model that the investment trigger increases with underlying volatility to mitigate

the chance of implementing a project having a future adverse value. Similarly, the collar

investment trigger exceeds the price cap for certain high volatilities to lessen the chance

of P falling beneath PH and indeed PL.

5When PL → Kr in the domain [PL, PH), Equation (17) becomes:

−
(
P ∗p
PL

)β2
PL

(
β1 − 1

δ
− β1

r

)
+ (β1 − 1)

P ∗p
δ
− β1

PL
r

= 0

whose only valid solution is P ∗p = PL (other possible real solutions are negative). Therefore, for any set of
parameters, limPL→Kr P

∗
p = PL. Notice that if PL = Kr, the net present value of the project (Vp(P )−K)

is positive, and, in the limit, zero when P → 0. A higher price floor produces a risk-free investment
opportunity (a positive NPV for every P ), inducing investment for any P (the threshold becomes zero).
Additionally, there is no economic reason to offer a floor above Kr since the zero threshold is achieved at
PL = Kr.

6KH
p is found solving, using Equation (18), P ∗p (KH

p ) = PH .
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Accordingly, the solution for Fp(P ) is:

Fp(P ) =


(
Vp(P

∗
p )−K

)( P

P ∗p

)β1
for P < P ∗p

Vp(P )−K for P > P ∗p

(21)

3.2 Investments with finite-lived collars

We now evaluate a collar investment that is finite-lived. As before, a government offers a

collar contract that guarantees the firm a minimum price PL while limiting the gains to a

maximum PH , but confined to a finite duration T <∞ years. The collar contract remains

in force during the period (t∗, t∗ + T ), where t∗ is the investment timing, but lapses at

period T . Thereafter, the firm’s profits depend vary according to the stochastic behaviour

of P .

Let us start with the solution for the active project. Immediately after being under-

taken, the value of a project protected by a collar that lasts for T years corresponds to

the finite integral of European caplets and floorlets. The individual caplets and floorlets

can be continuously exercised during the T years, just by being in the money. The finite

integral is equivalent to a portfolio that includes: (i) a long position in a perpetual collar,

(ii) a short position in a forward-start perpetual collar (that start after T years). As

suggested by Shackleton and Wojakowski (2007), this is possible because the individual

caplets and floorlets contained within the integral are independent, and, therefore, can be

computed as finite collar integral as the difference between the perpetual collar and the

risk neutral expectation of the forward start perpetual collar.

Additionally, if the project lasts beyond the collar period, we need to add (iii) a

long position in the expected profits that will start after T years. Combining (i) and (ii)

replicates the finite-collar, whereas (iii) captures the value in operating the project without

restrictions in P perpetually after the end of the collar.7

Accordingly, the value of an active project with a finite-lived collar is given by:

Vf (P, T ) = Vp(P )− S(P, T ) +
P

δ
e−δT . (22)

The first term, Vp(P ), is as presented in equation (9). The second term, S(P, T ),

represents the present value of a forward-start perpetual collar (a collar that starts in the

7Our generic model assumes a perpetual concession with a finite collar. Naturally, the model also applies
for finite concessions with a duration the same or less than the finite collar. In that case component (iii)
should be ignored.
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future moment T ), which is given by:8

S(P, T ) = A11P
β1N(−dβ1(P, PL)) +

PL
r
e−rTN(−d0(P, PL))

+A21P
β1 (N(dβ1(P, PL))−N(dβ1(P, PH)))

+A22P
β2 (N(dβ2(P, PL))−N(dβ2(P, PH)))

+
P

δ
e−δT (N(d1(P, PL))−N(d1(P, PH)))

+A32P
β2N(dβ2(P, PH)) +

PH
r
e−rTN(d0(P, PH)), (23)

where N(.) is the standard normal cumulative distribution, and

dβ(P, x) =
lnP − lnx+

(
r − δ + (β − 0.5)σ2

)
T

σ
√
T

, β ∈ {0, 1, β1, β2}, x ∈ {PL, PH}.

(24)

Naturally, in Equation (23) the negative sign represents the short position in the

forward-start perpetual collar. Finally, the last term represents the present value of the

expected profits that will start after T .

The value of the option to invest in a project with a finite collar, Ff (P ) must satisfy

the following ordinary differential equation:

1

2
σ2P 2∂

2Ff (P )

∂P 2
+ αP

∂Ff (P )

∂P
− rFf (P ) = 0, (25)

whose general solution is Ff (P ) = CaP
β1 + CbP

β2 . Considering the boundary at P = 0

(Ff (0) = 0) we set Cb = 0. The arbitrary constant Ca and the investment trigger P ∗f are

found using the value VM and SP conditions:

CaP
∗
f
β1 = Vf (P ∗f , T )−K (26)

β1CaP
∗
f
β1−1 = V ′f (P ∗f ). (27)

For the finite collar, no restrictions are required for the VM and SP, meaning that the

transition between the idle and the active stages can occur for any P
(
PL Q P ∗f Q PH

)
.

However, the price floor must be lower than Kr/(1− e−rT ), otherwise it produces a risk-

free profit.9 The SP condition (27), allows us to find the trigger P ∗f and can be reduced

to:10

β1(Vf (P ∗f , T )−K)− V ′f (P ∗f )P ∗f = 0. (28)

8See Appendix A.

9The maximum value of PL is found by solving Vf (0) −K = 0. Notice that Vp(0) =
PL
r

and S(0) =

PL
r
e−rT .

10Multiplying both sides by P ∗f and using the VM condition.
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Appendix B provides the equations that need to be solved to obtain P ∗f .

The value of the option to invest in the project granted with a finite-lived collar (Ff )

is:

Ff (P ) =


(Vf (P ∗f , T )−K)

(
P

P ∗f

)β1
for P < P ∗f

Vf (P, T )−K for P > P ∗f

(29)

3.3 Investments with retractable collars

In the setting of the previous section the government offers a finite collar that will be

honoured after the investment takes place. Alternatively, a temporary collar may be

offered, without specifying a date when it will be retracted (Adkins and Paxson, 2016).

This corresponds to a perpetual collar that will be withdrawn at an unknown date, both

for idle and active projects, which become an American option to invest in a project with

random-lived conditions. If the collar is withdrawn before the firm invests, the investment

opportunity becomes only dependent on the output market price, whereas if the firm

invests before the collar is withdrawn, it benefits from the collar protection only until

the retraction (random) date. This kind of policy uncertainty occurs in renewable energy

investments, as governments often change their support schemes.11 In line with Dixit and

Pindyck (1994, ch. 9), Hassett and Metcalf (1999) and, among others, Adkins and Paxson

(2019), we model policy uncertainty as a Poisson jump, with a probability of occurrence

of λdt over the short interval dt.12

The value of the active project, Vr(P ), is the solution to the following differential

equation:

1

2
σ2P 2∂

2Vr(P )

∂P 2
+ αP

∂Vr(P )

∂P
− rVr(P ) +R(P ) + λ [V (P )− Vr(P )] = 0, (30)

where R(P ) ≡ R(P, PL, PH) = min{max{PL, P}, PH}. The last term of the left-hand side

of the equation represents the loss in value that is expected due to the likelihood of the

collar withdrawal occurring in the next instant.

The solution for the homogeneous part of equation (30) has the form DaP
η1 +DbP

η2 ,

11Ritzenhofen and Spinler (2016) argue that governments revisit their policies in response to technology
innovations and budget constraints.

12Under the Poisson process, the expected time to the collar withdrawal is E[T ] = 1/λ. Poisson processes
have also been used, e.g. by Merton (1976), to model discontinuous stock returns as a mixed Brownian
motion/Poisson process.
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where

η1 =
1

2
− α

σ2
+

√(
−1

2
+

α

σ2

)2

+
2(r + λ)

σ2
(31)

η2 =
1

2
− α

σ2
−

√(
−1

2
+

α

σ2

)2

+
2(r + λ)

σ2
. (32)

.

As before, the solutions for the non-homogeneous part (the particular solutions) depend

where P stands in relation to PL and PH and also of the possible transition from Vr(P ) to

V (P ). The particular solutions are the same as for the perpetual case, with an additional

term that accounts for the possible collar retraction: λ/(δ + λ)× P/δ.
The solutions for the three regions are:

Vr(P ) =



D11P
η1 +

λ

δ + λ

P

δ
+

PL
r + λ

for P < PL

D21P
η1 +D22P

η2 +
P

δ
for PL 6 P < PH

D32P
η2 +

λ

δ + λ

P

δ
+

PH
r + λ

for P > PH

(33)

The solution for the constants D11, D21, D22, D32 are found by ensuring that Vr(P ) is

continuous and continuously differentiable along P :

D11 =

(
P 1−η1
H − P 1−η1

L

)
η1 − η2

(
η2 − 1

δ + λ
− η2
r + λ

)
(34)

D21 =
P 1−η1
H

η1 − η2

(
η2 − 1

δ + λ
− η2
r + λ

)
(35)

D22 = −
P 1−η2
L

η1 − η2

(
η1 − 1

δ + λ
− η1
r + λ

)
(36)

D32 =

(
P 1−η2
H − P 1−η2

L

)
η1 − η2

(
η1 − 1

δ + λ
− η1
r + λ

)
(37)

Naturally, for the two extreme values of λ, the value of Vr(P ) converges to the expected

values, i.e. when λ → 0, the collar will never be retracted and, therefore, the value

converges to the value of the perpetual collar (Vr(P ) → Vp(P )), and when λ → ∞, the

collar will be retracted immediately, and the value converges to the plain active project

value (Vr(P )→ V (P )).13

The value of the idle project must be the solution to the following ordinary differential

13Notice that limλ→0 η1 = β1, limλ→0 η2 = β2, limλ→∞D11 = limλ→∞D21 = limλ→∞D22 =
limλ→∞D32 = 0.
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equation:

1

2
σ2P 2∂

2Fr(P )

∂P 2
+ αP

∂Fr(P )

∂P
− rFr(P ) + λ [F (P )− Fr(P )] = 0. (38)

The solution, considering the boundary condition at P = 0, is:

Fr(P ) = EaP
η1 +

λ

r + λ
F (P ), (39)

where

F (P ) = HP β1 = (V (P ∗)−K)

(
1

P ∗

)β1
P β1 . (40)

The arbitrary constant Ea is found using the VM condition:

Fr(P
∗
r ) = EaP

∗
r
η1 +

λ

r + λ
HP ∗r

β1 = Vr(P
∗
r )−K, (41)

i.e.,

Ea =

(
Vr(P

∗
r )−K − λ

r + λ
HP ∗r

β1

)(
1

P ∗r

)η1
, (42)

and the investment trigger, P ∗r , is obtained by solving the smooth pasting condition (SP):

η1(Vr(P
∗
r )−K) + (β1 − η1)

λ

r + λ
HP ∗r

β1 = V ′r (P ∗r )P ∗r . (43)

Appendix C provides the equations that need to be solved to obtain P ∗r .

4 Comparative statics

Some important features of the model are analysed with a numerical example. Consider

an investment option for which the base-case parameters in Table 1 apply.

11



Parameter Description Value

P Current price of the output $2

PL Price floor $2

PH Price cap $6

σ Volatility 0.2

r Risk-free rate 0.04

δ Return shortfall 0.03

Q Output quantity 1

K Investment cost $70

T Duration of the collar (years) 10

λ Arrival rate of the collar withdrawal 0.1

Table 1: The base case parameters.

As stated before, the value of active project with a collar can be decomposed into the

value of the plain active project and a portfolio of short positions in the caplets and long

positions in floorlets. Table 2 shows the value of the active project for different values of

the state variable and different collar maturities for the finite case (Panel A) and different

withdrawal arrival rates for the retractable case (Panel B). The protection provided by

the floor decreases as P increases, while the opposite occurs for the penalty coming from

the price cap. Additionally, we can see that adding a collar to the plain active project can

create or destroy value for the firm. Specifically, when P is closer to the price floor (PL),

the collar adds value, and the opposite occurs when P is closer to the price cap (PH).

Finally the effect of the duration of the finite collar or the likelihood of the (retractable)

collar withdrawal also has an ambiguous effect.

12



Panel A - Finite collars

T = 10 T = 25 T =∞
P = $2 P = $3 P = $6 P = $2 P = $3 P = $6 P = $2 P = $3 P = $6

Plain $66.67 $100.00 $200.00 $66.67 $100.00 $200.00 $66.67 $100.00 $200.00

Short Caplets -$0.09 -$0.64 -$9.39 -$1.56 -$4.96 -$29.51 -$14.16 -$28.05 -$90.28

Long Floorlets $2.34 $0.67 $0.04 $6.27 $2.88 $0.63 $13.43 $8.30 $3.65

Collar $68.91 $100.03 $190.65 $71.37 $97.92 $171.13 $65.93 $80.25 $113.37

Panel B - Retractable collars

λ = 0.1;E[T ] = 10 λ = 0.04;E[T ] = 25 λ = 0;E[T ] =∞
P = $2 P = $3 P = $6 P = $2 P = $3 P = $6 P = $2 P = $3 P = $6

Plain $66.67 $100.00 $200.00 $66.67 $100.00 $200.00 $66.67 $100.00 $200.00

Short Caplets -$0.42 -$1.36 -$10.18 -$2.15 -$5.40 -$25.96 -$14.16 -$28.05 -$90.28

Long Floorlets $2.29 $0.86 $0.16 $5.08 $2.48 $0.73 $13.43 $8.30 $3.65

Collar $68.54 $99.51 $189.99 $69.59 $97.09 $174.77 $65.93 $80.25 $113.37

Table 2: Decomposition of the value of an active project with a collar, for finite
durations (T = 10 and T = 25, or λ = 0.1 and λ = 0.04) and for the
perpetual case (T =∞ or λ = 0). The results are for P = $2, $3 and
$6, PL = $2, PH = $6, σ = 0.2, r = 0.04, δ = 0.03, Q = 1, K = $70.

Figure 1 illustrates these effects and compares the value of the active project with the

intrinsic value of the collar (assuming that P stays forever at the current level) and the

plain project (without collar) for different P values (moneyness of the collar).

[Figure 1 about here]

In Figure 2 we can analyse the effects of the main parameters on the value of the active

project in more detail. Figures 2(a)–2(b) show that a higher return shortfall reduces the

value of the active projects in all cases. In general, the perpetual collar has a lower

value because it imposes a perpetual cap, except when the return shortfall is high and

the current level of P is far from the cap (Figure 2(a)). Figures 2(c)–2(d) show different

sensitivities in respect to volatility. For P = $2 the value of the perpetual collar is shown

to be non-monotonic. For a low volatility, the moneyness of the long put options protection

(floorlets) dominates. As the volatility increases, the probability for entering in the in-the-

money region of the short call options position (caplets) increases, decreasing the value of

the perpetual collar. The effect of the short call position dominates after a certain level

of P , which depends on the volatility. Therefore, for low price and low uncertainty levels,

the value of the perpetual collar increases before reaching an inflection point. In general,

the value of the perpetual collar stays below that of finite-lived collar,14 and the difference

increases with σ and P . Economically, the high values of these two parameters increase

14However, it is possible to show that for a sufficiently high δ, the value of the active project with a
perpetual collar is higher than that of the finite-lived case, at the base parameter values.
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the likelihood of being above PH , which penalizes the firm while being subject to the cap.

For the case of the finite-lived, it is possible for the firm to escape from the cap penalty

after the collar period ends, which enhances its value when compared to the case of the

perpetual collar.

[Figure 2 about here]

Additionally, in 2(e)–2(f) and 2(g)–2(h) we see the value of the perpetual, finite and

retractable collars increase as PH and PL increase. Interestingly, for low (high) price

floors, the finite and retractable (perpetual) collars are more valuable. The level of PL

for the separation region increases as P increases, which means the current level of P

is critical in negotiating the floor level and the finite collar duration. Additionally, the

finite and retractable collars are not too sensitive to increases in PH , so there would be

little advantage after an initial arrangement of renegotiating the ceiling if the finite collar

duration is short.

[Figure 3 about here]

Figure 3 shows the effect of the (expected) duration of the finite and retractable collars.

In 3(a)–3(b) we see that the value of the active finite collar may increase or decrease as

duration T increases (producing a non-monotonic effect), depending on the level of P . The

finite collar value approaches the perpetual collar value as T approaches ∞. Referring to

the option concept of Θ (the sensitivity of the option value with respect to remaining time

to expiration) we see that, when P is closer to PH , the short position in the call options

dominates, producing an overall value increase in the active finite collar as T decreases,

i.e., Θ < 0 (Figure 3(b)). In practical terms, due to the short position, the firm benefits

as the call options approach the maturity date. On the other hand, whenever the long

position in the put option becomes dominant (if P is closer to PL and the duration is not

too long) it produces an overall value increase as T increases, revealing the traditional

Θ > 0 (Figure 3(a)). The value of the retractable collar is higher than the value of a

finite collar for long maturities if the price level is distant from the price floor. Short-

maturity finite collars are less valuable than retractable collars for low levels of P . Finally,

in 3(c)–3(d) we see that the effects of the expected duration (1/λ) of a retractable collar

are similar to those of the duration of the finite-lived collar.

In summary, when compared to the perpetual collars, (i) finite and retractable collars

provide substantially less downside risk protection for the concessionaire when P is low;

(ii) the finite and retractable collars sensitivity to volatility is smaller and both can be

non-monotonic; (iii) finite and retractable collars are less sensitive to changes in the cap

PH .

We now analyse the effect of the parameter values on the investment timing and the

value of the investment opportunity. Table 3 shows the investment triggers for different
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maturities of the finite collar (Panel A) and different arrival rate of the retractable collars

withdrawal (Panel B), both for two price floors. As expected a higher price floor hastens

investment. Somewhat surprisingly the effect of the finite collar maturity can be non-

monotonic for the lower price floor (PL = 1). As we will see in the figures below, the

likelihood of the collar withdrawal can have the same non-monotonic effect.

Panel A - Finite collars

T = 10 T = 25 T =∞
PL = 1 PL = 2 PL = 1 PL = 2 PL = 1 PL = 2

Finite $4.788 $4.764 $4.580 $4.421 $5.037 $4.519

Perpetual $5.037 $4.519 $5.037 $4.519 $5.037 $4.519

Panel B - Retractable collars

λ = 0.1;E[T ] = 10 λ = 0.04;E[T ] = 25 λ = 0;E[T ] =∞
PL = 1 PL = 2 PL = 1 PL = 2 PL = 1 PL = 2

Retractable $4.178 $4.128 $4.244 $4.097 $5.037 $4.519

Perpetual $5.037 $4.519 $5.037 $4.519 $5.037 $4.519

Table 3: Investment triggers for finite durations (T = 10 and T = 25, or λ = 0.1
and λ = 0.04) and for the perpetual case (T =∞ or λ = 0). The results
are for σ = 0.2, PL = $1 and PL = $2, PH = $6, r = 0.04, δ = 0.03,
Q = 1, K = $70.

Figures 4, 5, and 6 allow us to go deeper into the comparative static analysis of the

impact of the main parameter values on the investment triggers, showing the results for

finite, retractable and perpetual collars as well as for the plain (without collar) investment

opportunity. The impact of the price floor is analysed in Figure 4(a). As stated before,

a higher PL hastens investment, and for a high PL the investment trigger for the finite

collar stays below the price floor.15 The figure also reveals which arrangement is more

effective for hastening the investment for different levels of PL, namely that the finite and

retractable collars are preferable only for low levels of the price floor.

[Figure 4 about here]

We see in Table 3 the level of the price floor can produce different impacts of the

maturity on the investment timing. By depicting in the following figures the effects of the

parameter values for two price floors (PL = 1 and PL = 2) we are able to show that the

level of PL may have a significant impact on the investment timing order of the finite,

retractable and perpetual collars, and also on their relation with the plain investment

opportunity.

15This occurs for the PL that solves Equation (57) or (74), for the finite and retractable collars, respec-
tively.
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Figures 4(b)–4(c) depict the well known effect of uncertainty on investment timing

(a higher volatility implies a higher trigger). In particular, it shows that the trigger for

a finite-lived and a retractable collar can be smaller that of the perpetual collar for a

low price floor (PL = 1) or they can lie between those of a perpetual collar and a plain

investment for a higher price floor (PL = 2) and high volatilities. Additionally, the triggers,

depending on the levels of uncertainty, can be placed below or above the price cap PH . As

we already said, there is economic reasoning for the latter situation. When the uncertainty

is significant, the investor may find it optimal to wait and only invest for a sufficiently

large P , knowing that the firm only receives PH if the price trigger surpasses the cap, to

mitigate the larger probability of significantly lower values of P in the future, due to the

high volatility. For a low price floor, a perpetual collar may not be sufficient to hasten

investment (the trigger is above the plain project trigger) for a high volatility (Figure

4(b)).

Figures 4(d)–4(e) report the obvious positive relation between the investment cost and

the triggers. However, depending on the level of investment one type of collar contract

(either finite/retractable or perpetual) can be preferred in hastening investment. For low

investment costs when PL = 2 a perpetual collar should be set, otherwise a finite collar and

particularly a retractable collar is more effective. This figure also shows that for relatively

expensive projects, the investment takes place at output prices above the cap.

[Figure 5 about here]

Figure 5 highlights the effect of the return shortfall on the investment trigger. Figure

5(a) shows that a higher investment shortfall deters investment. This is produced by two

opposing effects: on the one hand, a higher δ reduces the active project value (see Figures

2(a) and 2(b)) and, on the other hand, a higher δ increases the cost of waiting. The former

effect dominates for the base case parameters.

Figures 5(b)–5(c) show the impact of the price cap PH on the trigger and its effec-

tiveness in promoting investment. For the base case δ, the retractable collar is the most

effective in hastening investment. However, for a higher return shortfall (δ = 0.04), three

regions appear. For a low PH , the plain project (without collar) is preferable for has-

tening the investment, as its trigger remains below the other triggers. For intermediate

levels of the price cap, the retractable collar is more effective than a perpetual collar,

whereas for high PH the perpetual collar is the one that contributes more in promoting

early investment.

In any case, it is interesting to note that the effect of the price cap on the finite collar

is non-monotonic. Initially a higher PH is able to induce earlier investments but after a

certain level of PH the opposite effect occurs. There seems to exist a limit to the capacity

of inducing earlier investment by reducing the price cap, i.e. there is an optimal level of

PH given the other parameter values. A government should not impose a lower price cap
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if its objective is to promote investment, otherwise the reverse effect will occur.

[Figure 6 about here]

As suggested in Table 3, the (expected) duration of the collar may have a non-

monotonic effect on the investment timing, which is shown in more detail in Figure 6.

As for the price cap, there is an optimal duration of the finite collar that induces the

earliest investment. If the collar lasts long enough, a finite-lived or a retractable collar

are able to induce earlier investments than a perpetual collar. A retractable collar seems

to be more effective in promoting investment than a finite collar for shorter durations.

A long-lived collar is required in order for the finite collar to be preferable. Retractable

collars are only more effective than finite collars in prompting investment if the likelihood

of the collar withdrawal is not too high. In fact, for a duration of 10 years, the equivalent

arrival rate (λ = 0.1) makes the retractable collar more attractive to promote investment.

In summary, a finite-lived or a retractable collar may induce earlier investments than

a perpetual collar when the price floor and price cap are set sufficiently low, or when the

investment cost and the duration of the collar or the likelihood of not being retracted, for

low price floors, are sufficiently high. Furthermore an optimal level of the price cap and

the duration of the finite collar exist, limiting the capacity of those instruments to promote

investment when a finite collar is used. Retractable collars are usually more effective in

promoting investment, possibly indicating that political uncertainty pays.

Figure 7 shows that the value of a finite or retractable collar increases as the uncertainty

increases. However, the effect of uncertainty is ambiguous for the perpetual collar. The

justification is similar to the one presented for the active project value (see Figure 4(c)).16

Figure 7 also reveals that the value of the finite collar dominates that of the perpetual

collar, regardless of the level of the triggers (Figures 4 and 5). However, the value of

the investment opportunity when the collar is retractable may be smaller than that of a

perpetual collar when the volatility is low.

[Figure 7 about here]

Retractable collars are usually more effective in promoting investment (Figures 4–6).

Figure 8 shows that they can not only be more effective (lower triggers), but also more

valuable for the firm, which is equivalent to being less costly to the government.17 A

retractable collar has a lower trigger if λ < 2.96 (Figure 8(a)), and simultaneously a

higher value for the firm if λ > 0.77 (Figure 8(b)). If the perceived risk of retraction is

in this region, the firm invests sooner and is less penalised by the retractable collar than

when offered a finite collar.

[Figure 8 about here]
16The remaining figures of the sensitivity analysis are available upon request.
17The cost for the government is the difference between the value of the plain investment opportunity

and the value of the investment opportunity with the collar.
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5 Designing investment incentives

Our models can easily be extended to accommodate a mix of investment incentives that

can be offered as a package. For an exogenous investment cost K, the thresholds are

obtained as a function of the price floors and caps. Notice, however, that the threshold

P ∗ can be an input, and K∗(P ∗, PL, PH) can be obtained as an output, corresponding

to the investment cost that prompts investment at P ∗. This is useful, for instance, to

determine the amount of investment subsidy, S∗, that reduces the investment cost to

K−S∗ = K∗(P0, PL, PH), making immediate investment optimal (where P0 is the current

level of P ). The triplet {S∗, PL, PH} can be manipulated to obtain the desired outcome,

ensuring that the restrictions on K are not violated (K > K0
i , i ∈ {p, f, r}).

To illustrate, let us consider the cases of perpetual and retractable collars. For the

perpetual case, the optimal subsidy depends whether P0 > PH or PL 6 P0 < PH . For

the first case, the optimal subsidy is obtained by setting P ∗p = P0 and K = K − S∗p in

Equation 18, and solving for S∗p , leading to:

S∗p = K −K∗p(P0, PL, PH) = K −

(
PH
r

+
(β1 − β2)A32P

β2
0

β1

)
(44)

provided that S∗p 6 K −KH
p .

The optimal subsidy for the other case is obtained using the same procedure in Equa-

tion (20):

S∗p = K −K∗p(P0, PL, PH) = K − 1

β1

(
(β1 − β2)A22P0

β2 + (β1 − 1)
P0

δ

)
(45)

subject to K −K0
p > S∗p > K −KH

p .

Let us now analyse the case where a subsidy is offered along with a retractable collar.

The first step for determining S∗r is to find KL
r and KH

r (see equations (74) and (75) in

Appendix C). The proper equation for finding S∗r lies in one of the three regions presented

in (73): in the upper region if K − K0
r > S∗r > K − KL

r , in the middle if K − KL
r >

S∗r > K − KH
r , or in the bottom if S∗r 6 K − KH

r . In (73), replace P ∗r by P0, H

by K−S∗
β1−1

(
β1
β1−1δ(K − S

∗
r )
)−β1

, and K by (K − S∗r ) in the proper equation, and solve

numerically for S∗r . Notice that the solution requires an interactive procedure in order to

ensure that S∗r respects the corresponding condition for the region.

6 Conclusion

In this paper we extend the previous literature on collar-style arrangements by determin-

ing the idle and active values, as well as the investment triggers, for projects where these

arrangements are either finite-lived or retractable. These extensions reveal to be more real-
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istic (when compared to the perpetual collar arrangements) and useful for decision makers

when setting the specific conditions of the contract. In general, we demonstrate that

the finite-lived and retractable versions have a significant impact on optimal behaviour,

relative to the plain perpetual collar.

Our numerical results show that there are lots of differences between perpetual and

finite/retractable collars. (i) both finite and retractable collars provide less downside

risk protection for the beneficiary of the collar when market prices are low, but allow

for substantial upside benefits when prices are very high; (ii) the finite and retractable

collars are not very sensitive to volatility changes, but, like perpetual collars, can be

non-monotonic; (iii) finite and retractable collars are hardly sensitive to changes in the

price cap, especially at low prices; (iv) finite and retractable collars may motivate earlier

investments either when the specified price cap is low, and/or the price floor is low,

especially with short duration of the collar or low likelihood of not being withdrawn; (v)

there is an optimal level of the price cap and the duration of the finite collar, which results

in a low trigger, so these (and some other policy instruments) should not necessarily be

considered separately; (vi) the value of the finite collar investment opportunity is always

higher than the perpetual collar investment opportunity value, regardless of the triggers;

(vii) retractable collars may have lower triggers than either finite or perpetual collars;

(viii) the real option value of retractable collars is highly sensitive to the probability of

withdrawal; and (ix) retractable collars can induce earlier and more valuable investments

than finite collars.

A critical consideration for negotiating the floors, ceilings, and duration (or signalling

the expected duration) of finite or retractable collars is the current price level and ex-

pected volatility over the life of the contract. Additionally, we show that the contract can

be designed and complemented with investment subsides for a desired outcome, such as

immediate investment.

For future research several additional topics could be addressed. Our model can easily

accommodate taxation, tax relief, or revenue subsidies. Two stochastic factors can be

considered (for instance, the quantity of output Q may also have a random behaviour).

However, allowing for stochastic traffic or price volatility, traffic volatility decreasing over

time in steps, or uncertain concession duration (apart from the retractable approach)

would be challenging for an analytical model. Different stepped downside and upside

sharing arrangements, as in the Adkins and Paxson (2019) Section 6 on partial collars,

could be implemented for finite collars. Additionally, the finite and the uncertain (or

retractable) duration can also be applied to several other investment incentives and in

different contexts (domestic investment or FDI). Competition can also be included, par-

ticularly in the context of mixed markets. Finally, it would be of most interest to apply

the models to real world situations, perhaps as supplements or substitutes for numerical

methods.
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A The value of a forward start collar

Shackleton and Wojakowski (2007) value separately caps and floors. Following similar

arguments the value of a forward start collar is given by:

S(P, T ) = e−rTEQ0 [Vp(PT )] , (46)

where PT if the price P at time T .

The value of perpetual collar starting at level PT is given by Equation (9):

Vp(PT ) =



A11P
β1 +

PL
r

for PT < PL

A21P
β1 +A22P

β2 +
P

δ
for PL 6 PT < PH

A32P
β2 +

PH
r

for PT > PH

(47)

or in a compact notation:

Vp(PT ) =

(
A11PT

β1 +
PL
r

)
1PT<PL

+

(
A21PT

β1 +A22PT
β2 +

PT
δ

)
1PL6PT<PH

+

(
A32PT

β2 +
PH
r

)
1PT>PH , (48)

where the indicator 1condition equals 1 if the condition is met or 0 otherwise.

From the Appendix A of Shackleton and Wojakowski (2007):

e−rTEQ0

[
P βT 1PT<PL

]
= eq(β)TP βN(−dβ(P, PL)) (49)

e−rTEQ0

[
P βT 1PL6PT<PH

]
= e−rTEQ0

[
P βT 1PT>PL

]
− e−rTEQ0

[
P βT 1PT>PH

]
= eq(β)TP β (N(dβ(P, PL))−N(dβ(P, PH))) (50)

e−rTEQ0

[
P βT 1PT>PH

]
= eq(β)TP βN(dβ(P, PH)), (51)

where

dβ(P, x) =
lnP − lnx+

(
r − δ + (β − 0.5)σ2

)
T

σ
√
T

, β ∈ {0, 1, β1, β2}, x ∈ {PL, PH};

(52)

q(0) = −r, q(1) = −δ, q(β1) = 0, q(β2) = 0.
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Rearranging, we obtain:

S(P, T ) = A11P
β1N(−dβ1(P, PL)) +

PL
r
e−rTN(−d1(P, PL))

+A21P
β1 (N(dβ1(P, PL))−N(dβ1(P, PH)))

+A22P
β2 (N(dβ2(P, PL))−N(dβ2(P, PH)))

+
P

δ
e−δT (N(d0(P, PL))−N(d0(P, PH)))

+A32P
β2N(dβ2(P, PH)) +

PH
r
e−rTN(d1(P, PH)). (53)

B The investment trigger equations for finite-lived collars

Considering the three regions of Vp (Equation (9)) and depending on the value of K,

Equation (28) becomes one of the following three equations, which must be solved to find

the investment trigger P ∗f :

Z(P ∗f ) +



(β1 − 1)
P ∗f
δ
e−δT + β1

(
PL
r
−K

)
= 0 for K0

f < K < KL
f

(β1 − β2)A22P
∗
f
β2 + (β1 − 1)

(
P ∗f
δ

+
P ∗f
δ
e−δT

)
−β1K = 0 for KL

f 6 K < KH
f

(β1 − β2)A32P
∗
f
β2 + (β1 − 1)

P ∗f
δ
e−δT

+β1

(
PH
r
−K

)
= 0 for K > KH

f

(54)
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where

Z(P ) =− β1S(P, T )− S′(P )P

=− (β1 − β2)
[
A22P

β2 (N(dβ2(P, PL))−N(dβ2(P, PH)))

+A32P
β2N(dβ2(P, PH))

]
− (β1 − 1)

P

δ
e−δT (N(d1(P, PL))−N(d1(P, PH)))

− β1
[
PL
r
e−rTN(−d0(P, PL)) +

PH
r
e−rTN(d0(P, PH))

]
(55)

K0
f =

PL
r

(
1− e−rT

)
(56)

KL
f =

1

β1

(
Z(PL) + (β1 − 1)

PL
δ
e−δT + β1

PL
r

)
(57)

KH
f =

1

β1

(
Z(PH) + (β1 − β2)A32PH

β2 + (β1 − 1)
PH
δ
e−δT + β1

PH
r

)
. (58)

Appendix B.1 provides the derivative of the forward start collar, S′(P ).

B.1 Partial derivative of the forward start collar

Starting with the value of the forward start collar (Equation (23)) and noting that:

N(d) =

∫ d

−∞

1√
2π
e−

u2

2 du (59)

∂dβ(P, x)

∂P
=

1

Pσ
√
T

(60)

∂N (±dβ(P, x))

∂P
=
∂ (±N (dβ(P, x)))

∂dβ(P, x)

∂dβ(P, x)

∂P
= ± 1

Pσ
√

2πT
e−

dβ(P,x)2

2 (61)

∂P βN (±dβ(P, x))

∂P
=
N (±dβ(P, x)) ∂P β

∂P
+
P β∂N (±dβ(P, x))

∂P

= βP β−1N (±dβ(P, x))± P β−1

σ
√

2πT
e−

dβ(P,x)2

2 (62)
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∂

[
PL
r
e−rTN (−d0 (P, PL)) +

PH
r
e−rTN (d0 (P, PH))

]
∂P

=
e−rT

rPσ
√

2πT

[
PHe

− 1
2
d0(P,PH)2 − PLe−

1
2
d0(P,PL)

2
]

(63)

∂
[
P
δ e
−δT (N (d1 (P, PL))−N (d1 (P, PH)))

]
∂P

=
1

δ
e−δT [N (d1 (P, PL))−N (d1 (P, PH))]

+
e−δT

δσ
√

2πT

[
e−

1
2
d1(P,PL)

2

− e−
1
2
d1(P,PH)2

]
(64)

∂
[
A21P

β1 (N (dβ (P, PL))−N (dβ1 (P, PH)))
]

∂P

= β1A21P
β1−1 (N (dβ1 (P, PL))−N (dβ1 (P, PH)))

+
A21P

β1−1

σ
√

2πT

[
e−

1
2
dβ(P,PL)

2

− e−
1
2
dβ(P,PH)2

]
(65)

∂
[
A22P

β2 (N (dβ2 (P, PL))−N (dβ2 (P, PH)))
]

∂P

= β2A22P
β2−1 (N (dβ2 (P, PL))−N (dβ2 (P, PH)))

+
A22P

β2−1

σ
√

2πT

[
e−

1
2
dβ2 (P,PL)

2

− e−
1
2
dβ2 (P,PH)2

]
(66)

∂
[
A11P

β1N (−dβ1 (P, PL)) +A32P
β2N (dβ2 (P, PH))

]
∂P

β11A11P
β1−1N (−dβ (P, PL))− A11P

β1−1

σ
√

2πT
e−

1
2
dβ1 (P,P2)

2

+ β2A32P
β2−1N (dβ2 (P, PH)) +

A32P
β2−1

σ
√

2πT
e−

1
2
dβ2 (P,PH)2 (67)

dβ (P, x) =
lnP − lnx+

(
r − δ + (β − 0.5)σ2

)
T

σ
√
T

= d0 (P, x) + βσ
√
T (68)
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dβ (P, x)2 =
(
d0 (P, x) + βσ

√
T
)2

= d0 (P, x)2 + 2d0 (P, x)βσ
√
T + β2σ2T

= d0 (P, x)2 + 2β (lnP − lnx) + 2
(
0.5σ2β(β − 1) + (r − δ)β

)
T

= d0 (P, x)2 + 2β (lnP − lnx) + 2rT (69)

Using the above substitutions, gather the terms involving e−
1
2
d0(P,PL)

2

− e−rT

rPσ
√

2πT
e−

1
2
d0(P,PL)

2

+
e−δT

δσ
√

2πT
e−

1
2
d1(P,PL)

2

+
A21P

β1−1

σ
√

2πT
e−

1
2
dβ1 (P,PL)

2

+
A22P

β2−1

σ
√

2πT
e−

1
2
dβ2 (P,PL)

2

− A11P
β1−1

σ
√

2πT
e−

1
2
dβ1 (P,PL)

2

=− PLe
−rT

rPσ
√

2πT
e−

1
2
d0(P,PL)

2

+
PLe

− 1
2
d0(P,PL)

2

Pσ
√

2πT
e−

1
2
d0(P,PL)

2

+
A21P

β1
L e−rT

Pσ
√

2πT
e−λd0(P,PL)

2

+
A22P

β2
L e−rT

Pσ
√

2πT
e−

1
2
d0(P,PL)

2

−
A11P

β1
L e−rT

Pσ
√

2πT
e−

1
2
da(P,PL)

2

=
e−rT e−

1
2
d0(P,PL)

2

Pσ
√

2πT

[
−PL
r

+
PL
δ

+A21P
β1
L +A22P

β2
L −A11P

β1
L

]
=0, (70)

after substituting for A11, A21, A22.

Similarly, gathering the terms involving e−
1
2
d0(P,PH)2

PHe
−rT

rPσ
√

2πT
e−

1
2
d0(P,PH)2 − e−δT

δσ
√

2πT
e−

1
2
d1(P,PH)2 − A21P

β1−1

σ
√

2πT
e−

1
2
dβ1 (P,PH)2

− A22P
β2−1

σ
√

2πT
e−

1
2
dβ2 (P,PH)2 +

A32P
β2−1

σ
√

2πT
e−

1
2
dβ2 (P,PH)2

=
PHe

−rT

rPσ
√

2πT
e−

1
2
d0(P,PH)2 − PHe

−rT

δPσ
√

2πT
e−

1
2
d0(P,PH)2 −

A21P
β1
H e−rT

Pσ
√

2πT
e−

1
2
d0(P,PH)2

−
A22P

β2
H e−rT

Pσ
√

2πT
e−

1
2
d0(P,PH)2 +

A32P
β2
H e−rT

Pσ
√

2πT
e−

1
2
d0(P,PH)2

=
e−rT e−

1
2
d0(P,Pk)

2

Pσ
√

2πT

[
PH
r
− PH

δ
−A21P

β1
H −A22P

β2
H +A32P

β2
H

]
=0. (71)
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The remaining parts reduce to:

S′(P, T ) =β1A11P
β1−1N(dβ1(P, PL)) +

1

δ
e−δT (N(d1(P, PL))−N(d1(P, PH)))

+ β1A21P
β1−1 (N(dβ1(P, PL))−N(dβ1(P, PH)))

+ β2

[
A22P

β2−1 (N(dβ2(P, PL))−N(dβ2(P, PH))) +A32P
β2−1N(dβ2(P, PH))

]
.

(72)

C The investment trigger equations for retractable collars

Notice that Vr has three regions coming from Vp (Equation (9)), and, therefore, Equation

(43) reduces to one of the following three equations:

(β1 − η1)
λ

r + λ
HP ∗r

β1 + (η1 − 1)
δ

δ + λ

P ∗r
δ

+η1

(
PL
r + λ

−K
)

= 0 for K0
r < K < KL

r

(η1 − η2)D22P
∗
r
η2 + (β1 − η1)

λ

r + λ
HP ∗r

β1

+(η1 − 1)
P ∗r
δ
− η1K = 0 for KL

r 6 K < KH
r

(η1 − η2)D32P
∗
r
η2 + (β1 − η1)

λ

r + λ
HP ∗r

β1

+(η1 − 1)
δ

δ + λ

P ∗r
δ

+ η1

(
PH
r + λ

−K
)

= 0 for K > KH
r

(73)

where HP ∗r
β1 = F (P ∗r ) is defined by Equation (40), with H ≡ (V (P ∗)−K) (P ∗)−β1 ,

K0
r = PL/(r + λ), and KL

r and KH
r are found solving numerically the following nonlinear

equations:

(β1 − η1)
λ

r + λ

KL
r

β1 − 1

(
(β1 − 1)PL
β1δKL

r

)β1
+ (η1 − 1)

δ

δ + λ

PL
δ

+ η1

(
PL
r + λ

−KL
r

)
= 0,

(74)

(η1 − η2)D32PH
η2 + (β1 − η1)

λ

r + λ

KH
r

β1 − 1

(
(β1 − 1)PH
β1δKH

r

)β1
+ (η1 − 1)

δ

δ + λ

PH
δ

+ η1

(
PH
r + λ

−KH
r

)
= 0. (75)
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(b) Retractable

PL = $2;PH = $6;σ = 0.2; r = 0.04; δ = 0.03;Q = 1;K = $70.

Figure 1: The active project value: 1(a) for finite collars with different maturi-
ties (T = 10, 25) and 1(b) for retractable collars with different arrival
rates of the collar withdrawal (λ = 0.04, 0.1); for both cases the per-
petual collar, the intrinsic value of the collar (assuming that P stays
forever at the current level) and the plain project (without collar) are
included.
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(h)

P = $2 and $3;PL = $2;PH = $6;σ = 0.2; r = 0.04; δ = 0.03;Q = 1;K = $70;T = 10;λ = 0.1.

Figure 2: The sensitivity analysis of the effect of the main parameters : 2(a)–
2(b) for the rate of return shortfall, 2(c)–2(d) for the impact volatility,
2(e)–2(f) for the impact of the price cap, 2(g)–2(h) for price floor.
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(d)

P = $2, and $3;PL = $2;PH = $6;σ = 0.2; r = 0.04; δ = 0.03;Q = 1;K = $70;T = 10;λ = 0.1.

Figure 3: The sensitivity analysis of the effect of the (expected) duration of the
collar on the project active value: 3(a)–3(b) for the duration of the
finite collar, and 3(c)–3(d) for the expected duration of the retractable
collar.
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(e) PL = 2

PH = $6;σ = 0.2; r = 0.04; δ = 0.03;Q = 1;K = $70;T = 10;λ = 0.1.

Figure 4: The sensitivity analysis of the effect on the investment trigger of the
price floor (4(a)), volatility (4(b)–4(c)) and the investment cost (4(d)–
4(e)).
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(c) δ = 0.04

PL = $2;σ = 0.2; r = 0.04;Q = 1;K = $70;T = 10;λ = 0.1.

Figure 5: The sensitivity analysis of the effect on the investment trigger of the
return shortfall (5(a)), and the price cap (5(b)–5(c)).
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(b)

PL = $2;PH = $6;σ = 0.2; r = 0.04; δ = 0.03;Q = 1;K = $70;T = 10;λ = 0.1.

Figure 6: The sensitivity analysis of the effect on the investment trigger of the
(expected) duration of the collar on the project active value: 6(a) for
the duration of the finite collar, and 6(b) for the expected duration
of the retractable collar.

32



Retractable

Perpetual

Finite

Plain

0.0 0.1 0.2 0.3 0.4

5

10

15

20

25

30

35

σ

V
al
u
e
(i
d
le
p
ro
je
ct
)

P = $2;PL = $2;PH = $6; r = 0.04; δ = 0.03;Q = 1;K = $70;T = 10;λ = 0.1.

Figure 7: The sensitivity analysis of the effect of volatility on the project value.
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(b) σ = 0.2

P = $2;PL = $2;PH = $6;σ = 0.2; r = 0.04; δ = 0.03;Q = 1;K = $70;T = 10.

Figure 8: A comparison of the trigger and project value for the finite and re-
tractable collars, for different λ.
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