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“Many ideas happen to us. We have intuition, we have feeling, we have 

emotion, all of that happens, we don't decide to do it. We don't control it. 

(…) We think, each of us, that we're much more rational than we are. And 

we think that we make our decisions because we have good reasons to 

make them. Even when it's the other way around. We believe in the 

reasons, because we've already made the decision.” 

 

“Friends are sometimes a big help when they share your feelings. In the 

context of decisions, the friends who will serve you best are those who 

understand your feelings but are not overly impressed by them.” 

 

Daniel Kahneman
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The neural dynamics of decision-making: an approach to different valuation 

systems 

 

Abstract 

As human beings, we are constantly making decisions. Decision-making involves the ability of 

selecting among different alternatives to produce a given outcome. Due to the crucial relevance 

of decision-making in our everyday living, its study has been progressively established in the 

scientific literature. In addition, the study of the neurobiological mechanisms underlying these 

processes has been applied to some neuropsychiatric disorders, where the decision-making 

ability is compromised. One of such examples is the case of Obsessive-Compulsive Disorder 

(OCD) – a neuropsychiatric disorder characterized by the occurrence of obsessive thoughts and 

ritualistic actions intended to reduce the anxiety provoked by these thoughts. With the repetition 

of the cycle obsessions – anxiety – compulsions – reduction of anxiety, the compulsive behavior 

is progressively established as a natural rewarding trigger. As such, patients will engage in this 

habitual pattern of compulsive behaviors – even if they are no longer being rewarding for the 

subject. For these reasons, these patients are described as over-reliant on habits and having an 

impaired ability to shift from the habit-based to the goal-directed system of decision-making. 

These characteristics make these patients ideal candidates for the study of the neural processes 

involving a pathological form of decision-making.  

In this work, we implemented a comprehensive approach for the characterization of decision-

making processing in these patients. Using a multimodal neuroimaging approach, we observed 

that OCD patients are characterized by a variety of intrinsic structural and functional brain 

alterations, in comparison to healthy controls – involving networks of brain regions that seem to 

be relevant for emotional processing. Besides these findings, we observed significant differences 

on the association between the structure of brain regions that are consistently involved in 

decision-making processing and decision-making profiles in OCD. When assessed during 

monetary risky decision-making, compared with healthy individuals, these patients present a 

significantly reduced brain response in the regions of the occipital cortex and cingulate areas; 

furthermore, they also display altered task-dependent modulation of the activity of limbic regions. 

Likewise, OCD patients also had an altered modulation of the activity of the anterior cingulate 

and basal ganglia nuclei, when receiving negative outcomes (i.e., when they perceive losses).  
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Considering these neurobiological dynamic alterations and that the disorder is known to be 

associated with an altered emotional processing, we hypothesized that there might be an 

underlying influence of emotional processing during decision-making in these patients. To 

address this, we implemented a meta-analytic investigation which revealed that the 

neurobiological mechanisms that are typically altered in emotional processing in these patients 

are preferentially associated with reward processing. Following-up on this notion, we proceeded 

to the characterization of how the emotional processing interferes with central and autonomic 

nervous systems in non-clinical samples. For this purpose, we implemented a complementary 

meta-analytic aggregation of the literature and by performing an empiric investigation where we 

studied the dynamic oscillations of the brain connectome during emotional induction. In addition, 

we addressed the relevance of emotional valence for impulsive behavior, from a psychometric 

perspective, and how affective dimensions of impulsive behavior are fingerprinted at central 

nervous system. Finally, we assessed whether the induction of an affective state influences goal-

directed decision-making, with a focus on risky decision-making. Even though we find little 

evidence for the discrimination of individual emotional categories on psychophysiological 

responses, the salience of the emotional stimuli seems to be directly associated with the 

magnitude of these responses. On top of this, we found evidence for the impact of contrasting 

emotional valences on behavioral correlates. Altogether, these results point to the notion that 

emotion might have a non-straightforward, although crucial, modulatory influence on decision-

making, mainly in neuropsychiatric contexts. Future research is needed to clarify the 

effectiveness of interventions focused on the emotional processing on the modulation of decision-

making characteristics.  
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As dinâmicas da tomada de decisão: uma abordagem a diferentes sistemas de 

valoração 

 

Resumo 

O nosso quotidiano é constantemente caracterizado por situações que requerem que tomemos 

decisões. Estes processos envolvem a capacidade de selecionar entre diferentes alternativas 

para produzir um determinado resultado. Devido à relevância da tomada de decisão no nosso 

dia a dia, o estudo destes processos tem ganho uma ênfase progressiva na investigação 

científica. Adicionalmente, o estudo dos mecanismos neurobiológicos subjacentes a estes 

processos tem sido investigado no contexto de diversas doenças neuropsiquiátricas, nas quais 

a capacidade de tomada de decisão se encontra comprometida. A Perturbação Obsessivo-

Compulsiva (POC) destaca-se como um exemplo de relevo neste âmbito. Esta patologia 

caracteriza-se pela ocorrência de pensamentos obsessivos e comportamentos ritualísticos que 

são desencadeados para reduzir a ansiedade provocada pelas obsessões. A contínua exposição 

ao ciclo obsessões – ansiedade – compulsões – redução da ansiedade leva a que as compulsões 

se estabeleçam progressivamente como recompensadores naturais. Desta forma, os pacientes 

tenderão a enveredar neste padrão de hábitos caracterizado por episódios de compulsividade, 

mesmo que estes deixem de proporcionar qualquer tipo de recompensa. Por estas razões, os 

doentes com POC são tipicamente descritos como indivíduos com uma dependência excessiva 

de hábitos e com uma disfunção na transição deste padrão comportamental para o sistema de 

tomada de decisão orientado para objetivos. Estas características levam a uma conceptualização 

dos doentes com POC como potenciais candidatos para o estudo dos processos de tomada de 

decisão, na sua forma patológica.  

Neste trabalho, procedemos à implementação de uma abordagem compreensiva para a 

caracterização da tomada de decisão nestes doentes. Através de uma investigação de 

neuroimagem multimodal, observámos que, em comparação com indivíduos saudáveis, os 

doentes com POC apresentam uma diversidade de padrões cerebrais estruturais e funcionais 

alterados, envolvendo redes de regiões cerebrais tipicamente associadas com o processamento 

emocional. Foram ainda detetadas alterações significativas na associação entre a estrutura de 

regiões tradicionalmente implicadas nos processos de tomada de decisão e o perfil de tomada 

de decisão nestes doentes. Quando avaliados num paradigma de tomada de decisão económica, 

estes indivíduos demonstram uma magnitude de resposta neurobiológica reduzida em regiões 



xiv 

 

occipitais e do córtex cingulado e uma modulação da atividade de regiões límbicas na passagem 

de níveis mais elevados para níveis mais baixos de risco. Adicionalmente, os doentes com POC 

apresentam uma modulação alterada do córtex cingulado anterior e dos gânglios da base em 

resposta a resultados negativos (ou seja, quando se apercebem de uma perda monetária).  

Atendendo às alterações das dinâmicas de resposta neurobiológica e ao facto de a doença ser 

caracterizada por um processamento emocional alterado, propusemos a hipótese de existir uma 

influência do processamento emocional na tomada de decisão nestes doentes. No sentido de 

explorar esta hipótese, realizámos uma investigação meta-analítica que evidenciou que os 

mecanismos neurobiológicos que se encontram alterados durante o processamento emocional 

nestes doentes estão preferencialmente associados ao processamento da recompensa. Assim, 

procedeu-se de seguida à caracterização de como o processamento emocional interfere com o 

sistema nervoso central e autónomo em populações não clínicas. Para este efeito, 

complementámos uma revisão sistemática da literatura com uma investigação empírica no 

sentido de estudar as dinâmicas de oscilação do conectoma cerebral humano durante a indução 

emocional. Abordámos ainda a relevância da valência emocional no comportamento impulsivo, 

à luz de uma abordagem psicométrica, e se existem assinaturas neurobiológicas de dimensões 

emocionais ao nível do sistema nervoso central. Finalmente, abordamos se a indução de estados 

emocionais contrastantes influencia de forma diferencial a tomada de decisão de risco. Apesar 

de termos detetado uma evidência reduzida no que respeita à discriminação de categorias 

emocionais individuais em correlatos psicofisiológicos, a saliência emocional dos estímulos 

parece estar diretamente associada a estas respostas. Mais ainda, obtivemos evidência para 

um impacto da indução de valências emocionais contrastantes em correlatos comportamentais. 

Globalmente, estes resultados sugerem que as emoções assumem um papel complexo, embora 

crucial, na modulação da tomada de decisão, particularmente em contextos neuropsiquiátricos. 

Investigações futuras poderão clarificar a eficácia de intervenções focadas no processamento 

emocional na modulação das características da tomada de decisão. 
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In our everyday lives, we are constantly dealing with situations that require an ability to 

make decisions effectively. Examples of these situations include very ordinary decisions, such as 

deciding what to wear in the morning, what to order in a restaurant, to more sporadic scenarios, 

including whether to invest in the stock market, to buy a new car or a house, or choosing between 

political candidates for the national elections. In all these cases, an individual selects a specific 

action among a set of alternatives to produce a specific outcome. The end result will have an 

impact on the psychological state of the decision-maker (Paulus, 2007).  

There has always been a great interest in understanding how we make decisions and 

how they are modulated, which has positioned the science of decision-making as a hot topic of 

research for several decades. Two main approaches have dominated the study of decision-

making: the first – the normative decision theory – conceptualizes the process of decision-making 

as the search for the optimal choice for a given scenario (Morgenstern & Von Neumann, 1953); 

the second – the descriptive decision theory – aims to identify a set of principles that can 

parsimoniously account for the actual choices of humans and animals (Lee, 2013). 

Historically, decision-making models were originally concerned about predicting future 

choices/outcomes, rather than studying the neurobiological mechanisms governing such 

processes (Johnson & Ratcliff, 2014). With cumulative knowledge regarding the functioning of 

the brain associated with the output of simple decisions, such as the role of the medial 

orbitofrontal cortex (mOFC) or the ventral striatum, this trend started to change. This emerging 

field – commonly recognized as neuroeconomics – aims to understand the neural mechanisms 

underlying decision-making. For this purpose, researchers in this field need to understand the 

complexity of decision-making, including systematic biases, irrational, or inelegant patterns of 

choice (Santos & Platt, 2014), which are guided by representations of gains, losses and 

probabilities (Kahneman & Tversky, 2013). 

Based on existing theoretical models of decision-making in the fields of economics, 

psychology and computer science, Rangel, Camerer and Montague (2008) proposed a 

computational framework for conceptualizing decision-making. According to the authors, the act 

of decision-making involves a set of critical phases: representation, valuation, action selection, 

outcome evaluation and learning. The first process – the representation phase – consists on 

the representation of the set of alternatives for a given decision-making scenario, as well as the 
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internal and external states relevant for those valuations. This process is of upmost importance 

for the identification of the potential sources of action to be evaluated.  

Based on the set of available alternatives, the individual then assigns a value to each 

action – the valuation phase. The scientific literature supports the existent of multiple valuation 

systems: Pavlovian, habitual and goal-directed systems. The Pavlovian system is characterized 

by an assignment of values to evolutionarily adequate responses (including preparatory behaviors 

and responses to reward). This valuation system encompasses a small set of innate behaviors, 

whose computational and neurobiological characterization is not well understood. The second 

system – the habitual system – enables the individual to assign values to an extensive amount 

of actions. Habits are implemented throughout stimulus-response (S-R) associations, which are 

formed based on repeated trial and error processes, generated in stable environments. The last 

valuation system – the goal-directed system – is established throughout stimulus-outcome-

response (S-O-R) associations. In contrast with the habitual system, the goal-directed system 

allows the updating of the value the action, when the value of the outcome associated with that 

action changes. As such, whereas the goal-directed system is determinant for the formation of 

recompensing associations, the habitual system relies on the maintenance of these learned 

associations (Aarts & Dijksterhuis, 2000). The goal-directed system plays a crucial role to face 

the ever-changing environment – allowing us to learn to select among alternative actions, based 

on their consequences (e.g., when we first select the best route to drive from home to work), 

however it demands an effortful cognitive control. To increase the efficiency, it is appropriate to 

automatize recurring decision processes as habits where we no longer need to evaluate their 

consequences (e.g., after driving to work for some time in the established route, we automatically 

follow that route) (Soares et al., 2012). Thus, the ability to shift between habit-based and goal-

directed actions is a condition for appropriate decision-making (Balleine, Delgado, & Hikosaka, 

2007).  

The valuation of the different alternatives will enable the comparison between each 

option and will guide the choice of an alternative – action selection. It has been suggested 

that the brain assigns control to the system with the less uncertain estimate of the true value of 

actions. Thus, with repeated experience the accuracy of the estimates produced by the habitual 

system will increase, meaning that this system is more likely to govern behavior. As such, 

whereas under constantly changing and unstable environments, it is optimal to assign the control 
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to the goal-directed system, in familiar, controlled and stable environments, it is more efficient 

to rely on the habitual system. 

Finally, the individual will evaluate the consequences of the action by assessing the 

desirability of the outcome generated by previous decisions – the outcome evaluation phase. 

It has been demonstrated that the activity of the mOFC plays a crucial at this phase, being 

associated with the subjective reports during the experience of a reward. On the opposite, the 

activity of the insula and anterior cingulate cortex (ACC) has been described to accompany the 

experience of negative outcomes. Furthermore, the state-of-the-art have been suggesting that the 

outcome evaluation – as expressed by the modulation of the mOFC – is influenced by prior 

expectations and beliefs. 

Most decisions involve some form of learning. For an individual to make good decisions, 

he/she needs to learn from previous experience which are the actions that conduct to the desired 

reward. Thus, the outcome evaluation from previous experiences will be used for updating the 

other steps of the decision-making process so that the quality of future decisions can be improved 

– the learning phase. For this to happen, the brain must implement a set of computations, 

including representing the most convenient alternative to a given scenario, assignment of action 

values based on the anticipated outcomes and selection of action to the most appropriate 

valuation system. 

 

 

An overview of neurobiological systems and their relevance for decision-making 

The central nervous system 

Several modalities are available for studying the human brain. Nonetheless, in the last 

decades, MRI has been established as the tool of preference for the assessment of brain 

structure and function, overtaking other popular modalities such as electroencephalography 

(EEG), positron-emission tomography (PET) or magnetoencephalography (MEG) (Van Horn & 

Poldrack, 2009). MRI can provide a detailed anatomical characterization of gray and white-matter 

structures with an excellent spatial resolution (1 mm3 or below). This information can be used to 
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compare structural differences (e.g., brain volume, cortical thickness, curvature) between 

populations or to assess the association between brain structure and individual traits. In addition, 

MRI information is also widely used for studying the function of the brain, by characterizing the 

blood oxygen level dependent (BOLD) response, which reflects alterations in deoxygenated 

hemoglobin (or deoxyhemoglobin; which acts as a paramagnetic agent detected with MRI) in 

response to the presentation of a stimulus (Logothetis, Pauls, Augath, Trinath, & Oeltermann, 

2001; Raichle et al., 2001; Uludağ, Müller-Bierl, & Uğurbil, 2009). In addition to task-related 

brain activity, there are also spontaneous brain fluctuations even when individuals are at rest, in 

which networks of correlated temporal patterns are identified (Smith et al., 2009). These patterns 

are thought to reflect the state of the human brain in the absence of goal-directed neuronal action 

and external input (Gusnard & Raichle, 2001) and have been extensively replicated across 

populations (Damoiseaux et al., 2006).  

Even though most studies have characterized the correlates of decision-making at the 

functional level, i.e., by approaching the variations of the BOLD signal during decision-making 

paradigms, it is also possible to assess the association between intrinsic brain patterns (either 

structural or task-independent functional patterns) and decision-making behavior. While the 

former strategy has the advantage of accounting for the dynamic variation of brain activity with 

the contingencies of the experimental paradigm, it may be affected by characteristics, such as 

effort or attention. 

 

The autonomic nervous system 

The electrodermal and cardiovascular systems have been widely used to characterize 

the role of the autonomic nervous system in the decision science field. With regards to the former 

system, whereas the skin plays a critical role on the maintenance of water balance and of 

constant core body temperature through the variation in the production of sweat (Dawson, Schell, 

& Filion, 2007), the activity of its eccrine glands has been demonstrated to be particularly 

relevant for psychologically relevant stimuli in scientific experiments (Grice & Segre, 2011). In a 

similar fashion, heart rate variations have been associated with the preparation for aversive 

events (Somsen, Van der Molen, & Orlebeke, 1983).  
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When we engage with surrounding stimuli, we experience a particular state of body and 

mind, manifested by physiological arousal and reactivity (Critchley, Eccles, & Garfinkel, 2013). 

While there is no general consensus regarding the exact role of physiological arousal on the 

modulation of decision-making behavior, it is widely recognized that the activation of the 

sympathetic nervous system is of upmost relevance for gambling behavior (Agren, Millroth, 

Andersson, Ridzén, & Björkstrand, 2019). As a matter of fact, it has been reported that 

physiological arousal is associated with the risk-level in gambling tasks both in healthy (Crone, 

Somsen, Beek, & Van Der Molen, 2004) and in pathological conditions (Bechara, Damasio, 

Damasio, & Anderson, 1994; Bechara & Damasio, 2002). For instance, heart rate (HR) 

decelerations, increased skin conductance level (SCL) (Crone et al., 2004) or elevated skin 

conductance responses (SCR) (Bechara, Damasio, & Damasio, 2000) have been associated with 

risk-taking behavior and with decision-making under ambiguity (FeldmanHall, Glimcher, Baker, 

& Phelps, 2016). 

 

 

The interplay between emotion and decision-making processing 

From a psychological perspective, when dealing with the feedback of a decision, the 

individual compares the obtained outcomes of a decision against beliefs regarding their 

likelihood. As such, it is proposed that both experienced and anticipated emotions are important 

modulators of the decision‐making process (Crone et al., 2004). This notion has been 

comprehensively explored in the affective neuroscience literature, where it has been proposed 

that emotion plays a crucial role in decision-making processing, namely on the representation of 

value (Phelps, Lempert, & Sokol-Hessner, 2014). 

The link between emotional processing and decision-making ability can be traced back 

to the famous case of Phineas Gage. After being involved in a bizarre accident, where a tamping 

iron was hurled through Gage’s brain – damaging his ventromedial prefrontal cortex (vmPFC) – 

he immediately recovered full consciousness and ability to speak and even walk with the help of 

his co-workers. Even though his intelligence, movement or speech remained intact, Gage 

survived as a different man – “Gage was no longer Gage”, in the words of his friends. Above all, 
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Gage became an irresponsible and irreverent person, without sense of compromise or respect 

for social norms. In addition, his ability to make rational decisions in personal and social matters 

was severely compromised, as well as his emotional responses (Damasio, Grabowski, Frank, 

Galaburda, & Damasio, 1994). Further research demonstrated that patients with impairments 

in emotional processing, following lesions to the vmPFC, displayed altered decision-making in 

gambling tasks (Bechara, 2004; Bechara et al., 2000).  

 

 

Impulsivity, compulsivity and decision-making 

The multi-dimensional nature of impulsivity and its relationship with decision-making 

Classical definitions of impulsivity emphasize aspects related with impaired cognitive 

control, inadequate sampling of sensory evidence (defined as reflection impulsivity), failures in 

motor inhibition, tendency to achieve immediate smaller rewards (over delayed larger rewards) 

and risk-taking behavior (Dalley, Everitt, & Robbins, 2011; Evenden, 1999). Impulsive behavior 

constitutes a multi-faceted set of constructs with a crucial role on decision-making processes 

(Dalley et al., 2011). This is corroborated by the fact that pathological levels of impulsivity – as 

those manifested in conditions such as attention deficit hyperactivity disorder (ADHD) (Garon, 

Moore, & Waschbusch, 2006), substance addiction (Grant, Contoreggi, & London, 2000), 

antisocial personality disorder (APD) (Mazas, Finn, & Steinmetz, 2000) or pathological gambling 

(Brand et al., 2005) – are characterized by impaired decision-making abilities.  

Even though most approaches focus on the sensorimotor or cognitive aspects of 

impulsive behavior, recent contributions conceptualize emotion-based rash actions as a key form 

of impulsivity (Cyders et al., 2007). This complements the classical views of impulsivity, 

highlighting the relevance of emotional drivers on the manifestation of impulsive behavior. In 

fact, it has been hypothesized that extreme mood states (either positive or negative) can have 

an impact on risky decision-making and that urgency has a different role from that of other forms 

of impulsivity in the explanation of risk-taking (Cyders et al., 2007). Altogether, this raises the 

notion that different traits of impulsivity explain different types of risky decision-making and that 
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mood-based impulsivity suppress other forms of impulsivity in the explanation of mood-based 

risk-taking and in identifying individuals at risk for pathological gambling.  

 

OCD as a decision-making disorder 

An important lesson from the Gage’s case pertains to the impact of decision-making 

impairments on several aspects of our daily life. These impairments seem to be a key feature of 

conditions associated with compulsivity – such as obsessive-compulsive disorder (OCD) – which 

is commonly acknowledged as particularly striking example of impaired decision-making ability. 

It has been proposed that OCD is a prototypic condition, resulting from dysfunctions in 

decision-making (Nestadt et al., 2016). These individuals are characterized by a reliance on 

repetitive behaviors which allows them to reduce the extreme levels of anxiety provoked by 

obsessive thoughts – i.e., compulsive behaviors function as the response that will trigger the 

reward (end of the unwanted state). As such, these repetitive behaviors will be progressively 

established as the prototypical response to unwanted stimuli. Consequently, this over-reliance 

on habitual behaviors will preclude a proper shift towards more rewarding strategies. In addition 

to these reasons, as previously mentioned, there is a large interplay between emotional 

processing and decision-making behavior. Given that OCD patients tend to display a heightened 

perception of threat and an exaggerated evaluation of the likelihood of negative outcomes 

(Sookman & Pinard, 2002), they typically demonstrate an avoidance behavior towards even the 

slightest risk (Admon et al., 2012; Frost, Steketee, Cohn, & Griess, 1994). This picture raises 

the possibility that OCD patients are good candidates for the study of abnormal decision-making.  

Even though substantial progress has been achieved regarding the neurobiological 

bases of psychiatric disorders – such as OCD – there are still many open questions for further 

investigation (Lee, 2013). In particular, a greater understanding of the neural bases of decision-

making may dramatically impact the diagnosis and treatment of OCD as well as other 

neuropsychiatric disorders (Lee, 2013; Maia & Frank, 2011). 
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Objectives 

In this project, we aimed to extend the current knowledge of the underlying processes 

of decision-making, by combining the study of neural and behavioral mechanisms. At the 

behavioral level, we approached decision-making by evaluating different valuation systems (i.e., 

habitual and goal-directed) as well as different modulators of goal-directed decisions. The neural 

mechanisms of these processes were comprehensively explored by conducting a multimodal 

investigation. Also, we explored how the dynamics of different decision-making domains are 

affected by the influence of contextual conditions, focusing on the impact of emotional induction. 

One of the goals of the project relied on the identification of potential therapeutic targets for 

neuropsychiatric disorders characterized by marked impairments of decision-making. In this 

context, we focused on OCD as a condition markedly characterized by deficits in decision-making 

processing.  

 

For this project, we defined the following aims: 

 to investigate the neural patterns of distinct valuations systems of decision-making 

across healthy individuals; 

 to characterize the neurobiological patterns of OCD – which is here used as a proxy for 

the study of impaired decision-making processing; 

 to compare decision-making processing behavior of OCD with healthy individuals and 

their relationship with neurobiological markers; 

 to understand the role of emotion-related processing for the pathophysiology of OCD and 

how this may contribute for decision-making impairments; 

 to address the impact of emotion processing on central and peripheral measures of the 

nervous system: 

 to explore the neurobiological correlates of impulsivity, namely emotion-related 

impulsivity and how they are associated with decision-making behavior; 

 to assess the impact of emotional processing on behavioral correlates of decision-

making. 
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Chapters’ overview 

This thesis is organized in five main chapters. Chapter 1 provides a comprehensive 

review of the neuroimaging literature of the neurobiological correlates of decision-making.  

Chapter 2 is focused on the characterization of OCD as a potential candidate of 

pathological decision-making ability, throughout the characterization of structural and resting-

state functional connectivity (FC) patterns of OCD (Chapters 2.1 and 2.2), by establishing the 

link between intrinsic brain patterns and behavioral profiles of risky decision-making behavior in 

OCD (Chapter 2.3). We also assess the patterns of neural activation during the anticipation and 

feedback to decision making of varying risk levels (Chapter 2.4) In the last section of the second 

chapter, we provide meta-analytic evidence for the relationship between emotional processing in 

OCD patients and reward processing (Chapter 2.5).  

On Chapter 3, we present a comprehensive characterization of the impact of emotional 

induction on the autonomic (Chapter 3.1) and central nervous system, where we characterize 

dynamic Functional Connectivity (dFC) states associated with the induction of contrasting 

affective valence (Chapter 3.2).  

On Chapter 4, we explore the association between emotional processing and decision-

making. For this purpose, we approach the psychometric properties of impulsivity and how it is 

associated with psychophysiological patterns (Chapter 4.1). Finally, we developed the 

experimental protocol to study the impact of the induction of affective states of contrasting 

hedonic valence on the behavioral responses to decision-making involving risk (Chapter 4.2).  

In the last section of this thesis, Chapter 5, we provide an integrative discussion of the 

findings reported across the different chapters, discussing the main strengths and limitations of 

this work a whole, and suggests directions for future research. The organization of the main 

themes of the thesis is summarized on Fig. 1.  
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Fig. 1. Overview of the organization of the main themes of the thesis. Black arrows refer to 
previously reported relationships between the constructs. Arrows and squares in light blue 
indicate the topics that are tackled in this thesis. 
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Abstract 

Traditional models describing the process of decision-making are typically influenced by an 

economic account to explain human decisions. In line with this perspective, humans decide in 

accordance with the maximum expected utility, i.e., aiming to maximize their gains. Accumulative 

evidence of scientific research has critically challenged this view, by demonstrating that we, as 

humans, do not make our decisions from a pure rational perspective. In this work, we intended 

to consolidate the last decades of scientific research examining the neurobiological correlates 

associated with different value modulators of goal-directed decision-making. We aggregated the 

data from neuroimaging studies assessing human decision-making under risk and uncertainty, 

temporal discounting and social decision-making. Using an activation likelihood estimation 

approach, we identified patterns of consistent brain activation across studies. Consistent patterns 

of brain activation were observed for the right insula for risk and uncertainty, norm compliance 

and reciprocity. On the other hand, choosing delayed rewards was associated with consistent 

brain activation in frontal, parietal and cingulate regions. Together, these results provide a 

comprehensive summary of decision-making processing, constituting a unique combination of 

neuroimaging findings associated with the different value modulators of decision-making. 

 

 

Highlights 

- Humans frequently decide in an unpredictable and inconsistent fashion; 

- Decision-making behavior is modulated by several variables, including risk, time or social 

modulators; 

- We report the results of a coordinate-based meta-analytic aggregation of 84 studies exploring 

the brain correlates of different modulators of goal-directed decision-making; 

- There is a considerable overlap between the meta-analytic maps associated with these value 

modulators. 
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1. Introduction 

Our everyday living is marked by a variety of aspects that require an ability to make 

effective decisions, including very basic decisions, such as choosing what to wear or what to eat, 

and more complex decisions, such as deciding to get married or buying a new car. According to 

traditional economic theories, a decision is made based on the maximum expected utility – which 

is acknowledged as the normative model of rational choice (Keeney & Raiffa, 1993). However, 

the study of decision-making is a challenging topic, given that the future consequences from an 

action are rarely predictable (Kahneman & Tversky, 2013). This uncertainty influences 

individuals’ choice, which makes these decisions frequently sudden and inconsistent in their 

nature (Wu, Sacchet, & Knutson, 2012). Thus, due to the relevance of decision-making, it is of 

upmost relevance to understand the processes underlying the normal and abnormal ability to 

make decisions.  

The study of decision-making processes has been recognized as a relevant tool for better 

understanding a multitude of behavioral and mental disorders characterized by a disturbed 

decision-making ability. Consequently, an extensive body of scientific research, referred as 

decision neuroscience, has been trying to unravel the neural mechanisms underlying specific 

decision-making processes. The increasing number of publications on this topic has been 

contributing to advances in the knowledge of the neurobiology of decision-making. Several 

conditions, such as depression (Yang et al., 2014), substance abuse, pathological gambling (Yan 

et al., 2014), eating disorders (Chan et al., 2014) and obsessive-compulsive disorder (Sachdev 

& Malhi, 2005) have been characterized by altered decision-making patterns.  

Decision-making is thought to be dependent on the interplay between multiple 

processes, including the value representation, action valuation, response selection, learning and 

socio-emotional processing (Blakemore & Robbins, 2012; Rangel, Camerer, & Montague, 2008) 

(Figure 1). When deciding between options, individuals can rely on two different systems. The 

first system (the habit system) is established through trial-and-error: by being repeatedly exposed 

to a given contingency, i.e., stimulus-response associations), subjects learn to assign value to 

stimulus-outcomes associations (Rangel et al., 2008) and the action with the largest learned 

value will be taken and generalized for the assigning of values in future choices (Rangel & Hare, 

2010). The second system (the goal-directed system) is implemented by action-outcome 

associations. It governs our decisions when we are exposed to new, unfamiliar, scenarios and 
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updates the value of an action when the outcomes associated with that action change (Rangel 

et al., 2008). At the neurobiological level, the dorsal striatum is thought to be a critical player on 

the modulation of these systems. Two functional circuits underlying these systems have been 

described: one involving the dorsolateral striatum and mediates habits’ learning; the second 

involving the dorsomedial striatum mediates the learning of action-outcomes (Balleine, 2005). 

In addition, the orbitofrontal cortex (OFC) (Hare, O'Doherty, Camerer, Schultz, & Rangel, 2008) 

and interactions between the dorsolateral prefrontal cortex (dlPFC) and ventromedial prefrontal 

cortex (vmPFC) are thought to underline the encoding of outcome-value associations (Rudorf & 

Hare, 2014)  

  

 

Figure 1. Representation of the different phases of decision-making processing. The individual 
first represents the set of alternatives for a given decision-making scenario (the representation 
phase and assigns a value to each action (the valuation phase), which will guide the choice of 
an alternative (action selection). Finally, the individual will evaluate the consequences of the 
action by assessing the outcome (outcome evaluation phase) which will be used for updating the 
representation, valuation and action selection of decision-making scenarios (learning phase). 
Scheme adapted from Rangel et al (2008). 

 

In this integrative review, we aim to provide a further elaboration on the modulators of 

goal-directed decision-making. Below, we provide a comprehensive characterization of these 

value modulators, with an emphasis on the experimental approaches that are used to tackle 

each modulator. We also summarize the theoretical models on this topic and provide a 

description of different psychological conditions characterized by consistent alterations in 

different decision-making scenarios. 

 

1.1. The modulators of goal-directed decision-making 
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1.1.1. Risk and uncertainty 

All decisions involve some degree of risk, given that action-outcome associations are 

probabilistic. To make good decisions, the goal-directed system needs to take into account the 

likelihood of the different outcomes (Rangel et al., 2008). In this scenario, most risky choices 

require an individual to consider uncertainty associated with potential gains and losses (Wu et 

al., 2012). This modulator of decision-making has been emphasized in science fiction 

productions – such as the Matrix – which is described in a great review of the neuroeconomics 

literature (Knutson & Huettel, 2015). The authors detail a scene from the movie where Neo is 

offered by Morpheus with an irrevocable choice between two alternatives: one option (the blue 

pill) leads to the end of the story – where Neo will remain in the reality of the Matrix – an illusory 

world where humans are prevented from discovering that they are slaves to an external influence; 

the other option (the red pill) is to stay in Wonderland – where he would be able to find out what 

Matrix really is and what the machines are doing. In this example, the blue pill would correspond 

to the safe choice of keeping the ignorance of the world, whereas the red pill would unveil the 

unknown reality whereas exposing Neo with potential losses. People are described to be 

unequally sensitive to loses and winnings: typically, individuals are more sensitive to the 

possibility of losing than to the possibility of gaining (Novemsky & Kahneman, 2005). This 

scenario mimics typical experimental decision-making scenarios assessing risk-taking behavior, 

where individuals are usually presented with different options: one “safe” option, which is 

associated with a high probability of small gains, is contrasted with a “dangerous” option (or 

gamble), which is associated with a small probability of gaining a lot and a high probability of 

losing the bet. We, as humans, have a well described preference for right-skewed gambles, i.e., 

we tend to choose gambles with very low-chances of winning a lot. In a seminal work by the 

famous behavioral economists Daniel Kahneman and Amos Tversky (2013), the authors 

proposed that the reasons underlying this right-skewed preferences rely on the fact that people 

have a bias towards an overweighting of small probabilities.  

Imagine the following scenario: you are given the option to choose between a sure 

winning of 10.000€ and a 50% change of winning 30.000€. From the perspective of the 

maximization of utility, people would choose the second option as this would constitute the 

alternative giving the largest expected value (EVoptionA=10.000€*1=10.000€; 

EVoptionB=30.000€*0.5=15.000€). However, the state-of-the-art on this topic is consistent in 
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demonstrating that people tend to exhibit a preference for the sure option. In fact, individuals 

seem to be driven by the experience of positive arousal, with increased brain activity in circuits 

associated with gain anticipation, such as the nucleus accumbens (Wu, Bossaerts, & Knutson, 

2011); whereas potential losses typically elicit risk-aversion choices, dependent on the activity of 

the anterior insula (Kuhnen & Knutson, 2005). 

Rats with lesions of the nucleus accumbens core exhibited an increased risk-aversion, 

by choosing a larger, but uncertain, reward less often than control animals (Cardinal & Howes, 

2005). Previous aggregations of neuroimaging studies have identified consistent patterns of brain 

activations during reward-based decision-making. In particular, regions such as the anterior 

insula, dorsomedial prefrontal cortex, thalamus, ventromedial prefrontal cortex and the ventral 

striatum were associated with the subjective value of choice alternatives (Bartra, McGuire, & 

Kable, 2013). Dorsal and ventral striatum, thalamus, orbitofrontal cortex, anterior insula, 

cingulate cortex (anterior and posterior divisions) and prefrontal cortex were found to consistently 

underlie the processing of reward-related decision-making (Liu, Hairston, Schrier, & Fan, 2011).  

 

1.1.2. Delay discounting 

Among the scientific literature, delay is widely recognized as one key determinant of the 

human behavior with a strong influence on individuals’ actions (Lattal, 2010). When given the 

option of receiving something now or later, most of us would preferentially choose the immediate 

option. This is essentially due to the fact that having to wait for a reward reduces the subjective 

value associated with that option (Massar, Libedinsky, Weiyan, Huettel, & Chee, 2015). A 

decision increases in complexity when we have a conflict between the delay to reward and the 

magnitude of that same reward (Odum, 2011). In Aesop’s fable “The Ant and the Grasshopper”, 

the grasshopper spends the entire summer singing while the ant keeps working to save food for 

the winter time. When the winter comes, the starving grasshopper asks the ant for food. The ant 

declines the request and tell the grasshopper to dance the winter away now. The moral at the 

end focuses on the advantages of hard work over the dangerous of improvidence – as it highlights 

the relevance of being able to favor options that will result in advantageous outcomes in the 

future. Often, individuals prefer immediate rewards with smaller magnitudes in contrast with 

larger rewards delivered with delay. This phenomenon – referred as delay discounting (DD) – 

underlines an increased preference for immediate rewards with smaller outcomes over delayed 
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rewards with larger outcomes (Bickel & Marsch, 2001). An explanation of this phenomenon is 

likely to be related with the fact that an action with smaller reward in shorter time allows an 

earlier transition to the next action (Doya, 2008).  

In DD paradigms, subjects are typically asked to make choices between successive 

hypothetical options, in which the amount of the immediate option decreases across trials as a 

function of a priori contingencies of the experimental task, or as a function on the subjects’ 

response profiles. Whereas the tendency to DD is normally present across individuals, a sharp 

sensitivity to this phenomenon is associated with impulsive behavior (Steward et al., 2017) and 

characterizes a number of pathological conditions, such as attention-deficit/hyperactivity 

disorder (ADHD) (Jackson & MacKillop, 2016), schizophrenia (Brown, Hart, Snapper, Roffman, 

& Perlis, 2018), depression and borderline personality disorder (Story, Moutoussis, & Dolan, 

2016), eating disorders (Decker, Figner, & Steinglass, 2015), addiction (Havranek et al., 2017), 

among others.  

Evidence from animal models suggests that the serotonergic system plays a crucial role 

on impulsive behavior, namely in choices of larger but delayed rewards (Doya, 2008). An 

aggregation of neuroimaging studies reported that DD studies is associated with consistent 

patterns of brain activity in clusters located in several basal ganglia nuclei, temporal regions, 

insula, inferior and middle frontal cortex, parietal cortex and cingulate regions (Wesley & Bickel, 

2014). 

 

1.1.3. Social modulators: fairness and reciprocity 

The study of social decision-making is usually framed in the context of game theory – 

which refers to the search for strategies that enable individuals to converge so that they can 

maximize their outcomes (Von Neumann & Morgenstern, 2007). Within the scope of this theory, 

Nash equilibrium is acknowledged as the set of strategies from which no single player can 

increase their payoff by changing his/her strategy unilaterally (Nash, 1950). Even though the 

Nash equilibrium provides a rationale perspective to social decision-making, a large body of 

evidence has consistently demonstrated that this assumption is violated in games involving 

cooperation and/or competition (Lee, 2008). Traditional perspectives are characterized by an 
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over-simplified assumption stating that human beings’ decisions are characterized as exclusively 

self-regards (Fehr & Camerer, 2007).  

In real-life situations, trust is a crucial element to almost every transaction (Berg, 

Dickhaut, & McCabe, 1995). Economic games are a powerful approach to investigate individuals’ 

appraisals in social decision-making (Bellucci, Feng, Camilleri, Eickhoff, & Krueger, 2018). A 

behavioral paradigm, known as the trust game (TG), is implemented to mimic such situations, 

by assessing the reciprocity norm. In this game, two players – the investor (I) and the trustee (T) 

are involved. I is given an amount of money, from which he/she has to pass a proportion to T. 

The amount proposed by I is then doubled or tripled according to the experimental contingencies. 

Experiments with this paradigm highlight that Is typically invest more than half of their initial 

endowment (Camerer, 2003). However, if I predicts that T will not reciprocate, he/she will 

reduce their investment considerably (Aimone & Houser, 2012). In a similar fashion, Ts typically 

behave reciprocally to I, as the consciousness of having more money than the counterpart will 

evoke negative feelings (Chang, Smith, Dufwenberg, & Sanfey, 2011). 

Another well-known paradigm to assess cooperative behavior is the ultimatum game 

(UG) (Güth, Schmittberger, & Schwarze, 1982). In this game, one player (the “proposer”, P) is 

given a specific amount of money (e.g., 10€) and asked to give a part of the total amount to a 

second player (the “responder”, R). R may either accept or reject the offer. If R accepts the offer, 

the money is divided according to the offer between P and R; otherwise, none of the players 

receives anything. According to the predictions from game theory, players should make their 

decisions according to the maximization of their own gains. As such, P should offer R a token 

payment and R should accept any non-null offer (Kahneman, Knetsch, & Thaler, 1986). Decades 

of scientific research using this task demonstrate that, whereas there is a cultural variation in 

small-scale societies (Henrich et al., 2001), Ps typically make offers with an average of around 

40% of the total amount of money (Henrich et al., 2005; Oosterbeek, Sloof, & Van De Kuilen, 

2004). On the other side, Rs tend to reject offers below 20-30% of the total amount (Schuster, 

2017). This norm violation elicits a negative emotional response in R, which is manifested in 

behavioral and neurobiological correlates (Pillutla & Murnighan, 1996; Sanfey, Rilling, Aronson, 

Nystrom, & Cohen, 2003). The Fehr-Schmidt inequality aversion model attempts to explain such 

behavior, by proposing that individuals rely on a utility function, which expresses preferences for 

equality. According to this view, the choice of not accepting the unfair offer reflects a punishment 
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towards P in response to perceived unfairness, by enforcing the fairness norm (Fehr & Gächter, 

2002; Fehr & Schmidt, 1999). These findings highlight that Nash equilibrium has a poor fit on 

the explanation of the dynamics of cooperation during UG and related bargaining games 

(Rubinstein, 1982). Altogether, these findings have supported the view that humans and other 

animals do not only decide based on their own self-interests; rather, individuals are particularly 

sensitive to injustice (Stallen et al., 2018) and consider the welfare of others during their social 

decisions (Fehr & Fischbacher, 2003; Lee, 2008).   

In a variant of the UG, the dictator game (DG) (Kahneman et al., 1986), subjects are 

presented with similar offers. However, in this case individuals do not have the chance of 

rejecting the offer. When acting as the Ps on the DG, individuals typically offer less than in the 

UG – however, they still offer more than what would be predicted by a purely self-interest model 

(Kahneman et al., 1986; Proctor, Williamson, de Waal, & Brosnan, 2013). The Prisoner’s 

Dilemma (PD) has an experimental apparatus with the main general principles, i.e., players can 

either cooperate or maximize their own gains while prejudicing the other. Two players attempt 

to maximize their profit while predicting the opponent's imminent behavior. In the PD, a player 

would benefit by defecting irrespective of the other's move.  

Social decision-making seems to be influenced by serotonin function. Experimental 

reduction of serotonin levels conducted to a decreased cooperation in prisoner’s dilemma (Wood, 

Rilling, Sanfey, Bhagwagar, & Rogers, 2006). It has been hypothesized that serotonin affects our 

beliefs about others which will influence cooperative behavior (Crockett & Cools, 2015). A 

previous aggregation of the state of the art reported consistent activations of dorsal and ventral 

regions of the insula during social decision-making processing. Specifically, whereas the ventral 

part was associated with perceived unfairness (UG tasks), the dorsal insula is associated with 

norm compliance (TG tasks) (Bellucci et al., 2018). 

 

1.1.4. Moral decision-making 

Closely related to the concepts of fairness and norm compliance is the topic of moral 

decision-making. Moral decisions are frequently acknowledged as decisions involving moral 

principles such as harm, justice, and fairness (Killen, Smetana, & Smetana, 2006). As other 

forms of decision-making, moral decisions are very complex processes (Garrigan, Adlam, & 
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Langdon, 2018), which involve an interaction between multiple processes at different time-scales 

and levels of complexity (J. Greene & Haidt, 2002). Moral choices are typically assessed in 

paradigms involving moral dilemmas, where individuals are presented with scenarios in which 

they are asked to choose between a more utilitarian and deontological decisions. As an example 

of such scenarios, consider the following example: It is wartime. You and your fellow villagers 

are hiding from nearby enemy soldiers in a basement. Your baby starts to cry, and you cover 

your baby’s mouth to block the sound. If you remove your hand, your baby will cry loudly, and 

the soldiers will hear. They will find you, your baby, and the others, and they will kill all of you. If 

you do not remove your hand, your baby will smother to death. Do you consider that it is morally 

acceptable to smother your baby to death in order to save yourself and the other villagers? In 

practical terms, not smothering the baby will result in the death of many more people (including 

the baby himself) than deciding to smother him. As such, this should be the wisest choice in a 

dilemma like this. However, if you are like the most people, you will find this dilemma difficult to 

solve. 

The difficulty in deciding result from conflict between dissociable psychological 

processes (Cushman & Greene, 2012). The dual-process theory has been established as one of 

the most widely accepted theories of moral decision-making (J. D. Greene, Sommerville, 

Nystrom, Darley, & Cohen, 2001). According to this view, when deciding in moral scenarios, 

individuals make moral decisions according to both, sometimes conflict, automatic (emotional) 

responses and more controlled (cognitive) responses (J. D. Greene, Morelli, Lowenberg, 

Nystrom, & Cohen, 2008). Whereas non-utilitarian, or deontological, decisions are driven by 

automatic processing, utilitarian decisions are driven by cognitive processes (J. D. Greene, 

2008). Supporting this view, previous studies in patients characterized by “emotional blunting” 

demonstrate are more likely to engage in utilitarian decisions than healthy individuals (Mendez, 

Anderson, & Shapira, 2005). In a similar fashion, patients with focal lesions of the VMPFC were 

reported to exhibit an abnormally heightened patterns of utilitarian judgements in similar moral 

dilemmas situations (Koenigs et al., 2007). A similar behavioral profile was observed after 

emotional induction, where individuals who are presented with emotional stimuli of positive 

valence have higher odds of choosing utilitarian responses to moral dilemmas (Valdesolo & 

DeSteno, 2006). Complementing this evidence, previous studies demonstrate that the 

manipulation of cognitive load, while not altering the proportion of utilitarian judgments, selective 

increases the reaction time for such decisions (J. D. Greene et al., 2008). 
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These findings seem to provide support for the idea that more decisions are primarily 

motivated by emotional drivers, which are later justified by cognitive, utilitarian, reasons (Haidt, 

2001). A different perspective suggests that these decisions represent the competitions between 

appraisal (cognitive and affective) systems, where the winning system takes control of the 

decisions (J. D. Greene, Nystrom, Engell, Darley, & Cohen, 2004). A more recent hypothesis 

suggest that moral decisions resemble typical economic decision-making scenarios, where 

cognitive and emotional processes are computed independently in different brain regions and 

are then integrated on the VMPFC which will be in charge for the computation of value (Clithero 

& Rangel, 2013; Hutcherson, Montaser-Kouhsari, Woodward, & Rangel, 2015). 

Two recent meta-analysis have aggregated the neurobiological mechanisms underlying 

moral decision-making. The first reveals that the left middle temporal gyrus (MTG), left 

precuneus, right MFG, right MTG, right inferior frontal gyrus (IFG) and left caudate display 

consistent patterns of activation during moral decisions (Garrigan, Adlam, & Langdon, 2016). 

More recently, Eres and colleagues (2018) identified a meta-analytic map corresponding to a 

global morality network, in which the authors report consistent activation in the vmPFC, 

dorsomedial prefrontal cortex (dmPFC), temporo-parietal junction (TPF), precuneus and left 

amygdala (Eres, Louis, & Molenberghs, 2018).  

Even though the study of moral decision-making provides information of upmost 

relevance for the complexity of decision-making behavior, it is worthwhile mentioning that the 

experimental paradigms implemented to address such form of decisions differ from other 

decision-making scenarios in several important ways. Namely, these experimental paradigms 

are characterized by a large heterogeneity on the type of tasks being used. First, the presentation 

of the moral decision-making stimuli is typically implemented in the form of long descriptive texts 

– as the moral dilemma previously presented – which is likely to recruit cognitive processes. 

Second, the moral decision-making scenarios can be framed in terms of personal vs impersonal 

situations. Third, the type of responses varies from choosing between alternatives or subjective 

ratings regarding the adequacy or inadequacy of a described situation. In addition, the subjects 

can be asked to respond either with respect to his/her own preference or according to the 

adequacy of the action, independently of his/her preference. For all these reasons and aiming 

to simplify the message of this manuscript, we decided not to include the aggregation of moral 

decision-making literature. 
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1.2. The current study 

Despite the advances in the understanding of the neurobiological mechanisms of 

decision-making, much remains to be explored. The publication of meta-analytic studies on this 

topic has allowed the accommodation of results from multiple studies on distinct processes of 

decision-making. However, an integrative perspective of decision-making, considering its 

complex structure is yet lacking in the literature.  

Our study was intended to provide a comprehensive analysis of the neural correlates of 

decision-making. We focused on the characterization of the mechanisms underlying the 

modulators of goal-directed behavior, focusing on the role of risk, uncertainty and on social 

modulators. Following the definition of modulators of the goal-directed system proposed by 

Rangel and collaborators, we will approach three main components: risk/uncertainty (Study 2.1), 

time (Study 2.2) and social modulators (Study 2.3).  

Finally, conjunction analyses were implemented with the goal of assessing the 

correspondence between the different meta-analytic maps obtained for each study.  

 

 

2. Methods 

 

2.1. Data sources 

The literature search was performed in multiple online databases, including PubMed, 

Scopus and ScienceDirect, to identify relevant studies in the context of decision-making. The 

following keywords were used: “magnetic resonance imaging”, “fMRI”, “neuroimaging” for the 

different modulators. For risk and uncertainty, this search was complemented with the keywords: 

“risk” and “uncertainty”; for delay discounting: “delay”, “discounting” and “intertemporal”. For 

social modulators, we replicated a recently reported strategy (Bellucci et al., 2018), which divides 

social decision-making in two main domains: trust and reciprocity (with the keywords: “trust”, 
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“trustor”, “investor”, “trustee”, “trustworthiness” and “reciprocity”) and responses to fairness 

(with the keywords: “normative decision-making”, “fair”, “altruistic punishment”, and 

“ultimatum game”. Additional sources included the Neurosynth and BrainMap (Laird, Lancaster, 

& Fox, 2005) databases, references from screened studies and from reviews on the topics of 

interest. Studies obtained from more than one database were identified as duplicates. Potential 

studies were initially screened based on titles and abstracts. Bibliographic references from these 

articles were systematically searched. 

 

2.2. Inclusion/Exclusion criteria 

A study was included if it (1) was published in English language, in a peer-reviewed 

journal; (2) used validated tasks to assess goal-directed/habit-based decision-making (Study 1), 

risk/uncertainty (Study 2.1), delay discounting (Study 2.2), social decision-making (Study 2.3); 

(3) reported stereotactic coordinates (MNI or Talairach) between contrasting conditions, (Study 

1: goal-directed vs habit-based; Study 2.1: risk-aversion vs risk-seeking; Study 2.2: immediate vs 

delayed outcomes; Study 2.3: fair vs unfair monetary offers); (4) used a sample size of more 

than five individuals; and (5) used whole-brain analyses, i.e., studies reporting results based on 

ROI analyses were not included. The process of article selection for each study is presented in a 

PRISMA diagram (Fig. 2). 

 

2.2. Data extraction 

A structured databased was constructed to extract the characteristics from individual 

studies, including sample characteristics (i.e., participants’ age, proportion of male/female 

participants and level of education), characteristics of the tasks of each study, behavioral results 

and coordinates of significant findings. Study coordinates were aggregated in Montreal 

Neurological Institute (MNI) space. In cases where foci were reported in Talairach space, a 

conversion into MNI was conducted, using mni2tal (Brett, Leff, Rorden, & Ashburner, 2001). 

 

2.3. CBMA algorithms 
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The Activation Likelihood Estimation (ALE) algorithm (Eickhoff, Bzdok, Laird, Kurth, & 

Fox, 2012) was selected to identify regions of consistent activation, using the GingerALE software 

(Eickhoff et al., 2009). ALE has been extensively used as a CBMA method (Laird et al., 2005). 

This approach allows the aggregation of individual experiments, through the interpretation of foci 

as spatial probability distributions. The contribution of each study is weighted according to each 

study’s sample size – as such, studies with higher sample sizes will have smaller Gaussian 

distributions and will represent a more reliable approximation of the real activations (Bellucci et 

al., 2018; Eickhoff et al., 2009).  

 

 

3. Results 

Articles included in each meta-analysis are presented in Tables 1 (risk and uncertainty), 

3 (delay discounting) and 5 (social decision-making). Results of individual meta-analyses are 

summarized below.  

 

Table 1. Included studies in the meta-analytic aggregation of decision-making under risk and 
uncertainty 

Author Year N % Females # Foci 

Banji et al. 2010 14 50.00% 1 

Cohen et al. 2005 16 43.75% 5 

Elliot et al. 1999 8 25.00% 19 

Feinstein et al. 2006 16 50.00% 2 

Hosseini et al. 2010 40 7.50% 19 

Hsu et al. 2005 16 18.75% 12 

Huettel et al. 2005 12 25.00% 10 

Jung et al. 2014 24 33.33% 11 

Koch et al. 2008 28 60.71% 6 

Krug et al. 2014 64 42.19% 13 

Paulus et al. 2001 12 16.67% 10 

Payzan-LeNestour et al. 2013 18 50.00% 8 

Schlosser et al. 2009 12 0.00% 7 

Volz et al. 2003 16 31.25% 9 

Volz et al. 2004 12 58.33% 14 

N – sample size; # Foci – number of foci in each experiment 
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3.2. Study 2.1: Decision-making under risk and uncertainty 

A total of 15 studies (146 foci, 305 subjects) were included in the CBMA of studies in 

risk and uncertainty (Table 1). The meta-analytic aggregation of studies involving risk and 

uncertainty revealed consistent patterns of brain activation in several brain regions of the right 

hemisphere, including: the insula, inferior (BA 47 and BA 40) and middle frontal gyrus (BA 8), 

as well as the medial dorsal nucleus. 

 
Table 2. Results from the Activation Likelihood Estimation (ALE) for risk and uncertainty 

Cluster # Volume (mm3) Extrema Value x y z Label 

1 2344 0.0195 34 24 2 RH.Sub-lobar.Insula.Gray Matter.BA 13 

  0.0116 54 18 -4 RH.Frontal Lobe.Inferior Frontal Gyrus.Gray Matter 

  0.0098 40 22 -14 RH.Frontal Lobe.Inferior Frontal Gyrus.Gray Matter.BA 47 

2 1032 0.0176 48 -52 46 RH.Parietal Lobe.Inferior Parietal Lobule.Gray Matter.BA 40 

3 880 0.0165 6 28 44 RH.Frontal Lobe.Medial Frontal Gyrus.Gray Matter.BA 8 

4 736 0.0162 10 -14 8 RH.Sub-lobar.Thalamus.Gray Matter.Medial Dorsal Nucleus 

RH – right hemisphere; BA – Broadmann area 

 

Figure 2. Results from the Activation Likelihood Estimation. Four significant clusters were 
obtained: the first with peaks on right insula and right inferior frontal gyrus, the second with the 
peak on the right inferior parietal lobule, the third with the peak on the right medial frontal gyrus, 
the last with the peak on the medial dorsal nucleus of the right hemisphere. 

 

3.3. Study 2.2: Delay discounting 



36 
 

 Seventeen studies, corresponding to 29 experiments (404 foci) were included in the 

CBMA of DD studies, representing contrasts focusing on decisions for larger delayed rewards 

against control conditions (e.g., visualization of fixation crosses) or conditions in which the 

individuals decide for smaller immediate rewards. Four clusters of consistent brain activation 

were identified: the first was located in a posterior cingulate, comprising the left and right 

hemispheres; the second cluster had two peaks on the left parietal lobe (BA 40); the other two 

peaks were located in middle and inferior divisions of the frontal gyrus, encompassing BA 9 and 

BA 46 (Table 3, Figure 3).  

 

Table 3. Included studies in the meta-analytic aggregation of delay-discounting 

Author Year N % Females # Foci 

Christakou et al. 2011 40 0% 11 

Onoda et al. 2011 30 53% 12 

Sripada et al. 2011 20 0% 15 

Peters and Buchel 2010 30 50% 25 

    19 

Bickel et al. 2009 30 70% 21 

    20 

    23 

Peters and Buchel 2009 22 64% 13 

    56 

Pine et al. 2009 24 50% 22 

    7 

    7 

    2 

    10 

Xu et al. 2009 20 50% 19 

    18 

Hoffman et al. 2008 42 29% 11 

Luhmann et al. 2008 20 65% 5 

Weber and Huettel 2008 23 48% 5 

Boettinger et al. 2007 19 42% 1 

Kable and Glimcher 2007 10 60% 22 

Monterosso et al. 2007 29 33% 6 

    5 

Wittman et al. 2007 13 62% 7 

McClure et al. 2004 14  10 

Tanaka et al. 2004 20 10% 7 

    14 

        15 

N – sample size; # Foci – number of foci in each experiment 
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A complementary analysis also evidenced consistent patterns of brain activation across 

regions such as the left caudate, right putamen and thalamus (Figure 3). Nevertheless, it is 

important to highlight that these findings were observed, considering an un-corrected significance 

level (p<.001 with a minimum volume of 100 mm3) (Figure 3).  

 

 

Figure 3. Results from the Activation Likelihood Estimation. Four significant clusters were 
obtained: the first with peaks on right insula and right inferior frontal gyrus, the second with the 
peak on the right inferior parietal lobule, the third with the peak on the right medial frontal gyrus, 
the last with the peak on the medial dorsal nucleus of the right hemisphere. In violet, uncorrected 
significant results are displayed. 
 

Table 4. Results from the Activation Likelihood Estimation (ALE) for delay discounting 

Cluster # Volume (mm^3) Extrema Value x y z Label 

1 1192 0.0386 0 -28 34 LH.Limbic Lobe.Cingulate Gyrus.Gray Matter.BA 31 

2 1096 0.0202 -56 -46 38 LH.Parietal Lobe.Supramarginal Gyrus.Gray Matter.BA 40 

  0.0189 -56 -54 34 LH.Parietal Lobe.Supramarginal Gyrus.Gray Matter.BA 40 

3 896 0.0305 46 42 18 RH.Frontal Lobe.Middle Frontal Gyrus.Gray Matter.BA 46 

4 848 0.0209 -42 10 28 LH.Frontal Lobe.Inferior Frontal Gyrus.Gray Matter.BA 9 

    0.0188 -44 14 34 LH.Frontal Lobe.Middle Frontal Gyrus.Gray Matter.BA 9 

LH – left hemisphere; RH – right hemisphere; BA – Broadmann area 
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Table 5. Included studies in the meta-analytic aggregation of social decision-making 

N – sample size; # Foci – number of foci in each experiment 

 

Author Year N % Females # Foci 

Aimone et al. 2014 30 50% 3 

  30  2 

  30  2 

  8  1 

Kang et al. 2011 16  4 

  16  6 

  16  9 

Lauharatanahirun et al. 2012 30  9 

McCabe et al. 2001 6  1 

Stanley et al. 2012 40 0.55 8 

  40  2 

  40  2 

    40   3 

Baumgartner et al. 2011 32  17 

Civai et al. 2012 19  12 

Corradi-Dell'Aqua et al. 2016 19  21 

Farmer et al. 2016 18  6 

Fatfout et al. 2016 23  18 

Feng et al. 2016 40  10 

Gospic et al. 2011 17  4 

Gradin  2014 25  10 

Guo et al. 2013 18  10 

Guo et al. 2013 21  13 

Gurogu et al. 2011 68  9 

Halko et al. 2009 23  22 

Harlé and Sanfey 2012 38  12 

Haruno et al. 2014 62  4 

Hu et al. 2015 23  4 

Kirk et al. 2016 50  11 

Krik et al. 2011 40  11 

Roalf 2010 27  8 

Sanfeyet al. 2003 19  17 

Servaas et al. 2015 114  32 

Verdejo-Garcia et al. 2015 19  4 

Verdejo-Garcia et al. 2015 44  13 

White et al. 2014 21  7 

White et al. 2013 20  8 

Wu et al. 2014 18  7 

Zheng et al. 2014 25  15 

Zhou et al.  2014 28   4 
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3.4. Study 2.3: Social decision-making 

 

3.4.1. Norm compliance 

For the UG, a total of 34 studies (365 foci) were included in the unfair>fair contrast and 

15 studies for the fair>unfair contrast (Table 6, Figure 4). This set of studies represents 

experiments with non-iterative interactions (i.e., each partner in the UG is only involved in only 

one decision-making scenario). While this strategy captures one-off social interactions, it does 

not assess the complexity of bidirectional and reciprocal nature of repeated exchanges, which 

are present in real-life scenarios. Here we aimed to conduct a more simplistic approach. The 

reasoning behind this relies on the fact that repetitive iterations are likely to motivate long-term 

strategic decision-making, whereas each decision-making scenario is part of a more complex 

sequential process.  

 

 

Table 6. Results from the Activation Likelihood Estimation (ALE) for norm compliance 

Cluster # Volume (mm^3) x y z Label 

1 2992 0.0436 34 24 -4 RH.Sub-lobar.Insula.Gray Matter.* 

2 2392 0.0381 -4 16 46 LH.Frontal Lobe.Medial Frontal Gyrus.Gray Matter.BA 32 

  0.0326 6 20 42 RH.Limbic Lobe.Cingulate Gyrus.Gray Matter.BA 32 

3 1552 0.034 -30 22 0 LH.Sub-lobar.Claustrum.Gray Matter.* 

4 312 0.0287 8 28 24 RH.Limbic Lobe.Cingulate Gyrus.Gray Matter.BA 32 

5 216 0.0277 36 50 16 RH.Frontal Lobe.Middle Frontal Gyrus.Gray Matter.BA 10 

6 160 0.0256 -8 58 20 LH.Frontal Lobe.Superior Frontal Gyrus.Gray Matter.BA 9 

7 152 0.0232 40 34 26 RH.Frontal Lobe.Middle Frontal Gyrus.Gray Matter.BA 9 

8 16 0.0197 -8 24 28 LH.Limbic Lobe.Cingulate Gyrus.Gray Matter.BA 32 

LH – left hemisphere; RH – right hemisphere; BA – Brodmann area 

 

3.4.2. Trust 

Regarding TG, a total of 13 articles were included in the meta-analysis for one-shot 

decisions (i.e., participants made one single proposal to each partner) and 28 studies were 

considered for iterative decisions (i.e., participants made multiple proposals for the same 

partner). Sixteen studies were included for decisions to reciprocate. Right insula, precentral, 
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inferior frontal and cingulate gyri displayed consistent patterns of increased brain activity during 

TG tasks (Table 7, Figure 5).  

 

 
Figure 4. Results from the Activation Likelihood Estimation. Eight significant clusters were 
obtained.  

 

 

Table 7. Results from the Activation Likelihood Estimation (ALE) for trust 

Cluster # Volume (mm^3) Extrema Value x y z Label 

1 1480 0.0188 42 18 2 RH.Sub-lobar.Insula.Gray Matter.BA 13 

  0.0105 50 14 4 RH.Frontal Lobe.Precentral Gyrus.Gray Matter.BA 44 

  0.0095 42 32 2 RH.Frontal Lobe.Inferior Frontal Gyrus.Gray Matter.BA 13 

2 856 0.0142 6 12 40 RH.Limbic Lobe.Cingulate Gyrus.Gray Matter.BA 32 

    0.0108 -4 18 40 LH.Limbic Lobe.Cingulate Gyrus.Gray Matter.BA 32 

LH – left hemisphere; RH – right hemisphere; BA – Broadmann area 
 

 

4. Discussion 

In this work, we performed a comprehensive systematic review and a coordinate-based 

meta-analytic aggregation of neuroimaging studies addressing different modulators of goal-

directed decision-making. We aggregated studies assessing the impact of risk/uncertainty, time 

discounting and social modulators (trust/reciprocity and norm compliance) on brain patterns of 
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activation. We observed that there were consistent patterns of brain activation of the right insula 

in decision-making scenarios involving risk and uncertainty, but also in paradigms of social 

decision-making. 

 
Figure 5. Results from the Activation Likelihood Estimation. Eight significant clusters were 

obtained.  

 

One important consideration related with temporal discounting studies pertains to the 

relevance of tasks’ framing. Even though we did not have enough experiments to statistically 

compare this, it has been reported that the comparison between delayed and immediate 

outcomes is dependent on where the proposal is framed as a reward or as a loss (Xu, Liang, 

Wang, Li, & Jiang, 2009). Following a previously reported strategy, to maximize the statistical 

power of our analysis, we decided not to focus on the distinction between gains and losses 

(Wesley & Bickel, 2014). It has been previously reported that specific modulators of the goal-

directed system of decision-making – namely DD – are intrinsically connected to cognitive 

aspects (Bickel, Yi, Landes, Hill, & Baxter, 2011), such as working memory and that there is an 

overlap between the activation maps underlying these domains (Wesley & Bickel, 2014). The 

meta-analytic maps resulting from this comprehensive aggregation of neuroimaging studies also 

point to a relevant role of emotion-related processing on different modulators of decision-making. 

Cumulative evidence has supported the notion that emotion plays a crucial role on decision-

making behavior. However, the scientific literature tackling this interference, by assessing the 
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role of experimental emotion induction on decision-making patterns across different value 

modulators, is still quite underexplored, both behaviorally and neurobiologically.  

Regarding social decision-making tasks, we focused on the study of tasks related with 

trust/reciprocity and norm compliance, while not tackling the neurobiological mechanisms 

associated with other aspects of social decision-making, such as donation. Nevertheless, 

previous research has highlighted that there are dissociable neurobiological processes 

underlying altruistic punishment and donation – as such, the systematic aggregation of these 

differential processes constitute a question for future research (Moll et al., 2018). Still within the 

social modulators of decision-making, we summarized the consistent patterns of brain activation 

associated with unfair against fair offers – however, it would be important to further distinguish 

between the consistent patterns associated with accepted against rejected unfair offers.  

Furthermore, even though it is acknowledged that the study of decision-making 

constitutes an important means to identify potential targets for the treatment of neuropsychiatric 

disorders, no meta-analytic work has aggregated the results of individual studies with 

neuropsychiatric patients. Whereas we initially considered the possibility of conducting this work, 

a preliminary literature search evidenced that the amount of studies focusing on individual 

pathologies would under-power a quantitative aggregation of neuroimaging findings.  

Meta-analytic investigations are acknowledged as having a high level of evidence by 

allowing to consider the between-studies’ variability. Nevertheless, it is of upmost relevance to 

recognize that the reproducibility of meta-analytic investigations is a considerable challenge 

across different fields of science (Lakens, Hilgard, & Staaks, 2016). As the complexity of 

information being obtained from each study increases, more challenges will be imposed to the 

aggregation of multiple studies. This may constitute a specific issue on the aggregation of 

coordinate-based neuroimaging investigations, where different experiments report the results in 

light with different coordinate systems (i.e., MNI and Talairach), considering different 

(uncorrected or corrected) thresholds for statistical significance, where the experimental tasks 

have their own specificities and so on and so forth. While we cannot account for some of these 

issues, we consider that reporting the coordinates from each of the individual studies, the 

coordinate system and the method for defining statistical significance – as we reported in this 

meta-analytic investigation – may allow future investigations to properly reproduce meta-analyses 

of coordinate-based meta-analysis or to work on top of these works. Allowing meta-analytic data 
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to be openly available enables other researchers to check whether the data from individual 

studies was properly extracted, and whether study characteristics were accurately coded (Lakens 

et al., 2016). As such, this strategy may bring important benefits for this field, by promoting 

cumulative evidence throughout an improvement of disclosure of data (Campbell, Loving, & 

Lebel, 2014). 

This work was focused on the identifications of consistent foci associated with task-

related patterns of brain activity. Current conceptualizations have been highlighting the 

importance of addressing brain functioning as a network. As such, while the variability of different 

methods for assessing task-related functional connectivity – covering several methodological 

approaches – imposes additional challenges for the quantitative aggregation of these findings, 

those approaches may provide further advances in understanding a more in-depth 

characterization of the human behavior (Gonzalez-Castillo & Bandettini, 2018). Regarding this 

same topic, recent reports have been promoting the relevance of dynamic approaches for the 

examination of resting-state and task-related functional connectivity – revealing that the human 

brain signals transition between states of connectivity over time (Zalesky, Fornito, Cocchi, Gollo, 

& Breakspear, 2014). While the origin of such oscillations are still not completely understood, it 

has been demonstrated that the performance during cognitive tasks is associated with a dynamic 

organization of the brain architecture (Shine et al., 2016). To the best of our knowledge, such 

approach has not yet extended to the study of decision-making processing, which constitutes an 

important opportunity for future research. 

Another outstanding issue pertains to the aggregation of studies assessing the 

relationship between intrinsic brain patterns, such as brain structure or patterns of resting-state 

functional connectivity. This approach has been previously proposed as a relevant strategy for 

the identification of the brain nodes associated with different psychological domains, as it is 

independent of factors such as attention or effort-related processes. The number of studies 

implementing this strategy in the context of the modulators of decision-making is still yet under-

explored, which precluded a quantitative aggregation of such studies. The aggregation of intrinsic 

brain patterns associated with task-independent functional connectivity has been previously 

included in the same pool of task-related fMRI studies (Wesley & Bickel, 2014). Nevertheless, 

according to the abovementioned reasons related with attention-dependent processing that can 

interfere with one modality, but not the other, we decided not to replicate this strategy.  
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Even though we intended to provide a comprehensive characterization of decision-

making processing, there were some topics that were not tackled in this review of the literature. 

Here, we focused on the neurobiological correlates of different value modulators of decision-

making at the time of action selection, i.e., when subjects decide between different alternatives. 

It would be also relevant to aggregate the findings from the feedback phase, i.e., when subjects 

realize the outcomes. A more conceptual note pertains to the fact that whereas we focused on 

social modulators of goal-directed decision-making, we did not include studies focused on moral 

decision-making. This decision was based on the fact that there is a large variability on the type 

of task that is usually implemented. 

Finally, given the relevance of decision-making in our everyday living, it is of crucial 

importance to characterize pathological forms of decision-making. An increasing amount of 

evidence has highlighted the relevance of impaired decision-making behavior as one key feature 

of several psychological conditions. This is particularly pronounced in conditions characterized 

by high impulsivity – such as ADHD, substance addiction or antisocial personality disorder – or 

those marked by compulsive behaviors – such as obsessive-compulsive disorder (OCD), which 

is proposed to be a disorder of decision-making (Cavedini, Gorini, & Bellodi, 2006; Sachdev & 

Malhi, 2005). As such, a proper characterization of the neurobiological mechanisms underlying 

impaired decision-making processing in these conditions constitutes an important challenge for 

future research. 

In sum, this work allowed us to aggregate the meta-analytic brain maps of distinct value 

modulators of goal-directed decision-making. We conclude that there is a substantial overlap 

between these maps and that they present patterns of meta-analytic connectivity modelling 

consistent with brain networks with relevance for emotional processing, highlighting the 

relevance of emotional-related processes for decision-making behavior. 
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CHAPTER 2.1 
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multimodal perspective 
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Supplementary Information 

 

MRI acquisition details 

 

For the structural analysis, a T1 3D MPRAGE (magnetization prepared rapid gradient 

echo) scan was performed with the following parameters: 176 sagittal slices, repetition-time (TR) 

= 2730, echo-time (TE) = 3.48 ms, slice thickness = 1 mm, slice gap = 0 mm, voxel size = 1x1 

mm2, field-of-view (FoV) = 256×256 mm, flip angle (FA) = 7°. Functional MRI images were 

collected axially using an echo-planar imaging (EPI) sequence with blood-oxygen-level-dependent 

(BOLD) contrast. The acquisition parameters were: 30 slices, TR = 2000 ms, TE = 30 ms, slice 

thickness= 3.5 mm, slice gap = 0.48 mm, voxel size = 3.5 x 3.5 mm2, FoV = 224×224 mm, FA 

= 90° and 180 volumes, total acquisition time = 6 minutes. During the resting-state scan the 

subjects were instructed to remain still, awake, with their eyes closed, as motionless as possible 

and to think of nothing in particular. None of the participants fell asleep during the acquisition. 

Comfortable foam padding was used to reduce head motion during the acquisition. 

 

 

Voxel-based Morphometry Pipeline 

 

Firstly, images were skull-striped and segmented into grey-matter (GM), white matter 

(WM) and cerebrospinal fluid (CSF) tissue classes. Afterwards, the GM images affine-registered 

to the Montreal Neurological Institute (MNI) standard space and averaged. This averaged image 

was then flipped and averaged with the non-flipped version in order to create an initial template. 

Then, the native GM images were non-linearly registered to this template, averaged, flipped and 

re-averaged to create the final study-specific symmetric GM template (Andersson, Jenkinson, & 

Smith, 2007). Secondly, the native GM images are non-linearly registered to the study specific 

template and smoothed with a Gaussian kernel with sigma = 3 mm (corresponding to FWHM = 

7 mm). 

 

 

Preprocessing of fMRI data 
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The initial five volumes of the rs-fMRI scans were discarded to reduce possible effects of 

magnetic field inhomogeneity at the beginning of the acquisition. After slice timing correction 

and removal of motion outliers, images were non-linearly normalized to the MNI standard space, 

using an indirect pipeline, which included: co-registration of the mean functional image to the 

structural scan using a rigid body transformation; nonlinear normalization of the structural scan 

to the MNI 152 T1 template; nonlinear registration of the functional scans to MNI standard space 

through the combination of the rigid-body co-registration matrix; and warp of the nonlinear 

transformation and resampling to 2x2x2 mm3 voxel size. 

 

Table S1. Descriptive statistics, correlations (above the diagonal), and variance/covariance 
(diagonal and below, in light grey) matrix 
  STS volume Thal-Occ FC OFC-TP FC Occ-SM FC 

STS volume .005 -.262* .331** .261* 

Thal-Occ FC -.006 .105 -.276* -.329** 

OFC-TP FC .007 -.026 .086 .445** 

Occ-SM FC .007 -.038 .047 .128 

*p<.05; **p<.001 
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Abstract 

 

Obsessive Compulsive Disorder (OCD) is one of the most debilitating psychiatric conditions, 

having a dramatic impact on patients’ daily living. In this work, we aimed to explore behavioral 

and intrinsic structural and functional brain patterns of risky decision-making in OCD individuals 

to better understand this disease. Eighty individuals performed a resting state fMRI protocol. An 

independent component analysis was performed for the identification of resting-state networks. 

OCD patients displayed reduced functional connectivity (FC) in visual and sensorimotor networks. 

In addition, patients displayed altered FC between sensory networks and between default-mode 

and cerebellar networks. 
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Background 

Obsessive-Compulsive Disorder (OCD) is a psychiatric condition characterized by the 

presence of obsessive thoughts and compulsions. It has an estimated prevalence of 2-3% and 

constitutes one of the most debilitating psychiatric disorders with a severe impact on patients’ 

daily life (Karno, Golding, Sorenson, & Burnam, 1988). While OCD patients are typically aware 

of the nonsensical nature of their obsessions and compulsions, they are not able to control these 

symptoms (Graybiel & Rauch, 2000). Neurobiologically, OCD is thought to be characterized by 

an abnormal functioning within cortico-striato-thalamo-cortical (CTSC) loops.  

Meta-analytic aggregations of neuroimaging studies suggest that OCD is characterized 

by marked neurobiological alterations in structural and functional modalities. Structurally, OCD 

is characterized by consistent volumetric grey matter volume (GMV) alterations, including 

increases in the left postcentral gyrus, middle frontal, putamen, thalamus and culmen while 

displaying decreased GMV in occipital regions in temporal and insular regions (Eng, Sim, & Chen, 

2015). During executive function tasks – a domain which has been acknowledged to be severely 

compromised in OCD (Menzies et al., 2007) – is associated with several altered patterns of brain 

activation of the cerebellum, putamen, parahippocampus, postecentral gyrus, parietal cortex, 

inferior, medial and superior frontal nodes, cingulate, as well as the caudate (Eng et al., 2015). 

More recently, it has been also highlighted that OCD patients present consistent patterns of 

increased brain activity during emotional processing of the amygdala, putamen, orbitofrontal 

cortex (OFC), inferior occipital cortex and middle temporal gyrus (Thorsen et al., 2018).  

Regarding resting-state fMRI studies, the literature has demonstrated altered functional 

connectivity (FC) within the default-mode network (DMN) (Jang et al., 2010; Koçak, Kale, & 

Çiçek, 2012), between the fronto-parietal network (FPN) and DMN (Stern, Fitzgerald, Welsh, 

Abelson, & Taylor, 2012), increased amplitude of low-frequency fluctuation (ALFF) in the OFC, 

anterior cingulate cortex (ACC) and reduced ALFF in cerebellum and parietal cortex (J. Hou et 

al., 2012), as well as increased striatal-OFC FC (Jung et al., 2013). In addition, reports of whole-

brain FC have been published, indicating increased FC between nodes of the CTSC and reduced 

FC in the cerebellum, as well as in occipital and temporal cortices (J.-M. Hou et al., 2014; 

Moreira et al., 2017).  
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Despite the cumulative evidence regarding the characterization of task-related patterns 

of brain activation and the patterns of resting-state FC, a model-free characterization of the 

resting-state FC among different resting-state networks is quite underexplored. In this context, 

with this work, we aimed to characterize the patterns of within and between resting-state 

networks’ functional connectivity, using an Independent Component Analysis (ICA) approach.  

 

Methods and Materials 

 

Participants 

Forty OCD patients and 40 healthy controls (matched for sex, age and education) 

participated in this study. All participants were right-handed and had no history of neurological 

or comorbid disorders. OCD patients (all receiving medication) were characterized with a 

comprehensive clinical assessment. A semi-structured interview based on Diagnostic and 

Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV)-TR and the Yale–Brown 

Obsessive–Compulsive Scale (Y-BOCS, (Goodman et al., 1989)) were administered to establish 

the OCD diagnosis. Anxiety and depression levels were assessed using the Hamilton Anxiety 

(HAM-A) and Hamilton Depression (HAM-D) scales, respectively. The sample characterization is 

presented on Table 1. The study was conducted according to the Declaration of Helsinki 

principles and was approved by the Ethics Committee of Hospital de Braga (Portugal). The study 

goals were explained, and written informed consent was obtained from each participant. Imaging 

was performed using a clinical approved 1.5 T Siemens Magnetom Avanto MRI Scanner 

(Siemens, Erlangen, Germany). The acquisition and preprocessing parameters of structural and 

functional MRI sequences are detailed in File S1.  

 

Independent Component Analysis and identification of resting-state networks 

Resting-state network (RSN) maps were analyzed voxel-wise through a probabilistic 

independent component analysis (PICA) as implemented in Multivariate Exploratory Linear 

Optimized Decomposition into Independent Components (MELODIC), distributed with FSL 
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(Beckmann & Smith, 2004). PICA is a fully data-driven approach that enables the isolation of 

components based on the temporal correlation of the corresponding areas, while maximizing the 

spatial independence between components. Dual-regression analysis was performed to estimate 

the subject-specific components that correspond to the group-wise RSNs. Because the PICA 

approach may identify noisy components corresponding to non-biological signal, such as 

movement artifacts, the independent components were selected after visual inspection of their 

spatial distribution (Horowitz-Kraus, DiFrancesco, Kay, Wang, & Holland, 2015). Specifically, 

components that were mainly present in regions that do not generate the blood-oxygen-level-

dependent (BOLD) signal (white matter, ventricles or outside the brain) were excluded from the 

analysis. 

 

Statistical analysis 

Statistical group comparisons were conducted using two-samples t-tests, adjusted for 

confounding factors (sex and age). Intra-RSN FC was compared between groups, using a non-

parametric permutation procedure implemented in the randomize tool from FSL (Winkler, 

Ridgway, Webster, Smith, & Nichols, 2014). Threshold-free cluster enhancement (TFCE) was 

used to detect widespread significant differences and control the family-wise error rate (FWE-R) 

at α=.05. Each contrast underwent 5.000 permutations. For the analysis of inter-RSN FC, the 

time-series of each RSN were extracted and using the Fisher’s Z-transformed Pearson correlation 

coefficients, matrices of functional connectivity between pairs of RSNs were created. Individual 

correlations were statistically compared (α=.05 with FDR correction) between groups. 

 

Results 

 

Twenty-two components were obtained from the PICA. Fifteen of these components were 

found to be representative of the most typical RSNs (Figure 1a). OCD patients displayed reduced 

FC within the primary visual (PVN), high visual (HVN) and sensorimotor (SMN) networks 

(Supplementary Information). Specifically, for the PVN, there were significant differences 

between groups in one large cluster (2465 voxels), with peaks on the left calcarine and  the left 
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lingual gyrus (Figure 1b); for the HVN, patients had decreased FC in six clusters with peaks in 

distinct occipital subdivisions (Figure 1c); for the SMN, OCD patients had significantly decreased 

FC in one cluster comprising the paracentral and the supplementary motor area of the left 

hemisphere (Figure 1d).  

 

 
 

 

 

Figure 1. Resting state networks. (A) Resting state networks identified through ICA. Group ICA 
maps thresholded at Z> 3.09 (dmn, default mode network; prec, precuneus network; dan, dorsal 
attention network; vanr, ventral attention network – right; vanl, ventral attention network – left; 
an, auditory network; smn, sensorimotor network; dmn2, default mode network – 2nd 
component; pvn, primary visual network; bg, basal ganglia network; sn, salience network; psmn, 
primary sensorimotor network; cer, cerebellar network; amyg; amygdala network); (B) group 
differences within the primary visual network; (C) group differences within the high visual 
network; (D) group differences within the sensorimotor network. 

 

 

Regarding the inter-RSN FC, despite the fact that several patterns of altered FC between 

distinct RSNs were observed in OCD patients (as graphically displayed in Supplementary 

Information), the only finding remaining statistically significant after correction for multiple 



75 
 

comparisons (bold lines) was a reduction in the association between PVN and one SMN in OCD 

patients (t(79)=5.73, p<.001) and an increase of the association between a component of the DMN 

and the cerebellar network. The patterns of altered FC between different RSNs in OCD patients 

are graphically displayed on Figure 3. 

 

 

Discussion 

In this work, we aimed to characterize the patterns of resting-state FC within and between 

different resting-state networks. We observed that OCD patients are characterized by altered FC 

patterns of distinct RSNs, particularly in visual and sensorimotor networks. Patients were also 

characterized by a complex profile of connectivity between distinct resting-state networks.  

Our study demonstrated a significantly reduced FC within the visual network in OCD 

patients, which complements our previous findings of altered brain FC within occipital regions 

(Moreira et al., 2017). The involvement of sensorial-related deficits has been highlighted to play 

a crucial role in several psychiatric conditions, including maniac and depressed groups of 

patients with bipolar disorder (Shaffer et al., 2018).  

These results are in accordance with the hypothesis that one of the mechanisms 

underlying the OCD phenotype relies on the deactivation of occipital/parietal regions which are 

associated with the visual-perceptual processing of incoming rich stimuli (Gonçalves, Marques, 

Lori, Sampaio, & Branco, 2010). Previous research has highlighted that the visual network is 

involved on the allocation of attentional (particularly, visual) resources, such that an increased 

FC within this network is thought to reflect a greater demand on the allocation of resources 

(Horowitz-Kraus et al., 2015). In addition, the activity of these regions was previously associated 

with the generation of somatic arousal, possibly indicating that modulation through arousal is 

adaptive in order to promote an easier processing of relevant visual information (Gauthier, 

Anderson, Tarr, Skudlarski, & Gore, 1997). 

One note to highlight that our sample of OCD patients was under medication. As such, 

it is plausible that the medication may influence behavioral patterns of risky decision-making, 
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and even the intrinsic structural and functional connectivity patterns, in these patients. Future 

studies assessing drug-naïve OCD patients are needed to tackle this confounding effect. 

In sum, our study offers evidence for the involvement of altered sensorial-related patterns 

of brain FC, which may be underline distinct mood states, as suggested in other psychiatric 

conditions (Shaffer et al., 2018).  
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Supplementary Information 

 

MRI data acquisition 

Imaging was performed at Hospital de Braga using a clinically approved 1.5 T Siemens 

Magnetom Avanto TIM-system MRI scanner (Siemens, Erlangen, Germany) equipped with a 

standard 12 channel receive-only head coil.  

For the structural analysis, a T1 3D MPRAGE (magnetization prepared rapid gradient 

echo) scan was performed with the following parameters: 176 sagital slices, repetition-time (TR) 

= 2730, echo-time (TE) = 3.48 ms, slice thickness = 1 mm, slice gap = 0 mm, voxel size = 1x1 

mm2, field-of-view (FoV) = 256×256 mm, flip angle (FA) = 7°.  

Functional images were collected axially using an echo-planar imaging (EPI) sequence 

sensitive to the blood-oxygen-level-dependent (BOLD) contrast. The acquisition parameters were: 

30 slices, TR = 2000 ms, TE = 30 ms, slice thickness= 3.5 mm, slice gap = 0.48 mm, voxel 

size = 3.5 x 3.5 mm2  FoV = 1344×1344 mm, FA = 90° and 180 volumes.  

During the resting state scan the subjects were instructed to remain still, awake, with 

their eyes closed, as motionless as possible and to think of nothing in particular. None of the 

participants fell asleep during the acquisition. Foam pads were used in both head sides in order 

to reduce head motion during the acquisition. 

 

 

Data processing 

Rs-fMRI data was processed using a probabilistic independent component analysis 

(PICA) as implemented in MELODIC (Multivariate Exploratory Linear Optimized Decomposition 

into Independent Components), a program distributed by FSL (Beckmann and Smith 2004). 

PICA is a fully data-driven approach that enables the users to isolate components based on the 

temporal correlation of the corresponding areas, while maximizing independence between the 

components.  
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The subjects’ datasets were temporally concatenated, thus forming a single 4D dataset. 

This dataset was then used to estimate group-wise RSN with MELODIC. The software 

automatically estimated the number of components for extractionwas automatically estimated 

without specifying the number of independent components to extract.  

Dual-regression analysis was performed to estimate the subject-specific components 

that correspond to the group-wise RNS’s. The resulting components were then visually inspected. 

The components were selected for analysis when they presented activations in gray matter. From 

these components we excluded those that overlapped with vascular regions and those that 

resulted from artifacts such as head motion. 

The RSNs’ time series from each individual were initially extracted to study inter-RSNs 

functional connectivity alterations. The correlations between pairs of time-courses were then 

estimated using the “glmfit” function from Matlab. The obtained correlation coefficients were 

transformed to Z-scores using Fisher’s r to z transformation. Z values were used as inputs in two-

sample t-tests to test for group differences. Results were considered significant at p<.005 given 

the large amount of comparisons. 

 

 

Sample characteristics 

The descriptive statistics for both groups are presented on Table S1. As represented, 

there were no statistically significant between-group differences with regards to age, sex and 

education level. All the patients were receiving pharmacological interventions (72.2% were 

receiving selective serotonin reuptake inhibitors, 11.1% were receiving tricyclic antidepressants 

and 16.7% were receiving combined medication). There were no significant between-group 

differences in the number of motion spikes during the EPI acquisition.  
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Table S1. Socio-demographic and clinical characteristics of patients with obsessive-compulsive 
disorder and healthy comparison subjects 

Characteristic   
OCD 

(n=40) 
HC 

(n=40) Difference 

Age, Years   26.52 ± 6.55 26.45 ± 5.39 ns 

Education, Years   13.48 ± 2.20 14.63 ± 3.20 ns 

Sex, n (%) Males   13 (32.5%) 13 (32.5%) ns 

Y-BOCS, Total Score  24.55 ± 6.75 -- -- 

Y-BOCS, Obsessions  13.18 ± 3.71 -- -- 

Y-BOCS, Compulsions  11.38 ± 3.54 -- -- 

HAM-A-, Total Score  4.83 ± 4.16 -- -- 

HAM-D-, Total Score  5.88 ± 4.65 -- -- 

Medication      

 % SSRI  72.2% -- -- 

 % TCA  11.1% -- -- 

 % combined  16.7% -- -- 

Motion Spikes   8.10 ± 4.91 6.35 ± 3.32  ns 

Values are presented as mean ± SD. Y-BOCS, Yale-Brown Obsessive Compulsive; HAM-A, 
Hamilton Anxiety Rating Scale; HAM-D, Hamilton Depression Rating Scale; SSRI, Selective 
serotonin reuptake inhibitors; TCA, tricyclic antidepressants. Spikes are volumes with high 
motion, discarded while estimating connectivity patterns. 
 
 
 
Table S2. Group differences between within resting-state networks 

Network Voxels T-score x y z Region 

PVN       

 2465 4.12 -6 -86 -2 Calcarine_L 

  4.03 0 -72 -8 Vermis_6 

  3.94 -10 -80 -10 Lingual_L 

HVN       

 287 4.26 18 -98 20  Occipital_Sup_R  

  3.67 0 -90 14  Calcarine_L  

  3.66 2 -90 6  Calcarine_L  

 82 4.07 -42 -90 -6  Occipital_Inf_L  

  3.35 -44 -88 4  Occipital_Mid_L  

 60 2.95 -12 -96 20  Occipital_Sup_L  

  2.76 -12 -94 28  Cuneus_L  

  2.65 -8 -90 30  Cuneus_L  

 48 3.73 -22 -104 -4  Occipital_Mid_L  

 11 3.28 -34 -98 -2  Occipital_Mid_L  

 3 3.02 -42 -78 -14  Occipital_Inf_L  

SMN       

 30 3.76 0 -16 70 Paracentral_L 

  3.59 -2 -18 62 Supp_Motor_Area_L 

PVN, Primary Visual Network; HVN, High Visual Network; SMN, Sensorimotor Network 
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Figure S1. Group differences between resting-state networks. Dashed and bold lines represent 
uncorrected and corrected for multiple-comparisons differences (red lines: associations 
significantly increased in the OCD group; blue lines: associations significantly reduced in the 
OCD group). 
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Abstract 

Impaired decision-making has been proposed as one of the core behavioral manifestations of 

the Obsessive-Compulsive Disorder (OCD). Here, we explored the association between structural 

brain patterns and risky decision-making in OCD. Eighty individuals underwent structural 

Magnetic Resonance Imaging. Risk-taking attitude was assessed during a risky decision-making 

task. Healthy controls displayed a positive association between the volume of striatal regions and 

risk taking, whereas this pattern was absent in OCD patients. The lack of a normal structure-

behavior relationship between striatal volume and risky choices in OCD patients may be a 

structural marker of aberrant basal ganglia function in this psychiatric condition. 
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Background 

Decision-making involves the ability of selecting among different alternatives to produce 

different outcomes (Lee, 2013) and constitutes a crucial aspect for individuals’ daily life. The 

study of these processes has been progressively established as a tool for characterizing the 

neurobiological mechanisms of distinct neuropsychiatric disorders. It has been proposed that 

alterations in decision-making may be the underlying cause of obsessive-compulsive disorder 

(OCD), as demonstrated by behavioral and neurobiological alterations in risky decision-making 

(Cavedini, Gorini, & Bellodi, 2006). 

Previous studies have proposed that OCD is characterized by an increased loss-aversion 

and that these patients present altered neurobiological responses during gambling tasks (Admon 

et al., 2012). However, given that task-related studies may be limited by the fact that brain 

activation is likely to be related with individuals’ effort or strategy, examining the relationship 

between the structure of brain regions and behavioral profiles may yield additional important 

evidence. Such approach has been previously used to demonstrate that the association between 

structural patterns and risk-taking tendencies in healthy individuals, is dependent on the 

structure of the insula and striatal regions (Cox et al., 2010). Nevertheless, there has been a 

limited use of this strategy to establish the link between intrinsic brain signatures and risk-taking 

in psychiatric conditions. To the best of our knowledge, no study has tested yet the relationship 

between the structure of brain regions and risk in OCD.  

Given that the striatum is a key component of the most widely accepted models of OCD, 

playing a crucial role on the pathophysiology of the disorder (interfering with an under-reliance 

on goal-directed behavior), and the fact that these regions are consistently activated in tasks 

associated with risk [see the meta-analytic map obtained with Neurosynth (Figure 1A)] – we 

focused on characterizing the association between the volume of striatal regions and risk in OCD 

patients. 

 

 

Method and Results 
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Thirty-nine medicated OCD patients [27 females; mean age=26.6 years, total scores of 

the Yale-Brown Obsessive-Compulsive Scale (Y-BOCS) ranging from 11 to 35 (M = 24.93, SD = 

5.69)]) and 39 healthy controls (HC, 26 females, mean age=26.4 years), with no history of 

neurological or comorbid disorders, participated in this study. All individuals were right-handed 

and provided written informed consent. A T1-weighted scan was acquired to assess brain 

structure. The volumes of the regions of interest (caudate, putamen and nucleus accumbens) 

were quantified following the brain segmentation, using a semi-automated pipeline with 

FreeSurfer (Fischl, 2012) (see Supplementary Information for a detailed description). 

Participants were then involved in an experimental apparatus comprised of a gambling task – 

whose psychometric properties have been previously demonstrated (Macoveanu et al., 2013) – 

in which they were had to choose between two decks of cards displayed face down. The “ace of 

hearts” was hidden in one of these decks. Participants had to guess the deck containing this 

card to receive a reward; or, otherwise, lose the bet. Each scenario was composed by seven 

cards, presented according to six risk levels (range of probability: 1/7 to 6/7) (Figure 1B). The 

task was presented as an even distribution of choices across all risk levels in two sessions with 

a one-minute interval.  

 Moderation analyses were conducted to assess the impact of group on the association 

between striatal volume and risk. The proportion of 1/7 choices (quantification of risk-taking) 

and was defined as the dependent variable and group as the moderator variable. To reduce the 

number of comparisons, a second-order latent variable was defined in a reflective model with 

the different striatal regions being defined as manifest variables. The second-order latent variable 

striatum was defined as the independent variable in an initial moderation model. There were 

significant moderation effects of group on the association between the latent variable striatum 

and risk (F(3,74)=3.18, p=.029, R2=.11) – HC displayed a significant positive association between 

volume and the proportion of high-risk choices (Figure 1D), whereas this association was absent 

in the OCD group.  
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Figure 1. Risky decision-making and striatal volume. A: Meta-analytic map representing the 
automated aggregation of fMRI studies involving the term “risk”, obtained with Neurosynth. B: 
Overview of the gambling task: Participants were informed about the amount of accumulated 
money and the value of the current bet; next, two decks were displayed facedown; finally, the 
location of the ace of arts was displayed and the subjects received the feedback. C: Between-
groups’ comparison of proportion of choices (top) and reaction-times (bottom) for different risk 
levels. D: Latent variable model comprising the volume of different bilateral striatal regions. 
Manifest variables (squares) correspond to each volume; latent variables are represented in 
circles. Bottom: moderation effect of group on the association between the volume of the latent 
variable “striatum” and proportion of high-risk choices. E: Decomposition of the global 
moderation effect for each striatal region. 
 

 

Given the existence of statistically significant effects on the moderation model with the latent 

variable, individual moderation effects were tested by assessing the impact of group on the 

association between each manifest variable and risk-taking. Significant uncorrected moderator 

effects of group were observed for right putamen (F(3,74)=3.50, p=.020, R2=.12), left (F(3,74)=2.76, 

p=.048, R2=.10) and right caudate (F(3,74)=3.17, p=.030, R2=.12) – HC had positive, significant 
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associations between the volume of these regions and the number of 1/7 choices (range of 

correlation coefficients: .375-.475) (Figure 1E). For the OCD group, these associations were 

observed in the negative direction, although non-statistically significant. Considering the 

individual manifest variables, significant moderator effects of group were observed for right 

putamen (F(3,74)=3.50, p=.020, R2=.12), left (F(3,74)=2.76, p=.048, R2=.10) and right caudate 

(F(3,74)=3.17, p=.030, R2=.12), with healthy controls displaying positive, significant associations 

between the volume of these regions and the number of 1/7 choices (range of correlation 

coefficients: .375-.475) (Figure 1E). For the OCD group, the associations between these volumes 

and choices on the highest risk condition are observed in the negative direction, although non-

statistically significant. 

 

 

Discussion 

In this work, we explored the association between risky decision-making with volumetric 

brain patterns in OCD patients. Even though the patterns of risk were similar between groups, it 

had distinct associations with striatal volume between OCD patients and HC. Risk was dependent 

on the structure of ventral and dorsal striatal regions in HC, such that increased volume of these 

regions is linked to the number of high-risk choices. In contrast, OCD patients displayed a null 

association between the volume of these regions and risk-taking. 

Resting-state functional connectivity patterns of the striatum were previously associated 

with task-related brain activity during risk (Kohno, Morales, Ghahremani, Hellemann, & London, 

2014). Neurotransmission of dopamine in the nucleus accumbens has been demonstrated to 

influence motivational drive (Soares-Cunha et al., 2016), highlighting the role of this brain region 

on expected reward (Knutson, Adams, Fong, & Hommer, 2001). The caudate and the putamen 

have been involved on on the encoding of specific action-outcome associations in goal-directed 

action and on the action-selection based on the expected reward value (Balleine, Delgado, & 

Hikosaka, 2007). The imbalance between the structure and function of these regions has been 

implicated on an a reduced reliance on goal-directed strategies, which is a core feature of OCD 

(Burguiere, Monteiro, Mallet, Feng, & Graybiel, 2015). 
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OCD patients are described to presented marked impairments in decision-making under 

ambiguity, but not under risk (Starcke, Tuschen-Caffier, Markowitsch, & Brand, 2010). Even 

though this investigation reveals that OCD patients display a risk-taking behavior equivalent to 

HC, the neurobiological mechanisms governing such behavior are likely to be different in this 

psychiatric condition. In sum, this study establishes a unique link between structural brain 

patterns with risky decision-making behavior, which seems to be abolished in OCD. Together, 

these findings may offer important insights regarding the pathophysiology of the disorder.  
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Supplementary Information 

 

Participants 

Patients with Obsessive-Compulsive Disorder (OCD) were recruited from the psychiatric 

department at the Hospital of Braga (Braga, Portugal). The clinical diagnosis was established by 

experienced psychiatrists, based on the Diagnostic and Statistical Manual of Mental Disorders, 

Fourth-Edition (DSM-IV-TR) and on the Mini-International Neuropsychiatric Interview (MINI). The 

severity of the disorder was assessed throughout the administration of the Yale–Brown 

Obsessive–Compulsive Scale (Y-BOCS). All the patients were receiving pharmacological 

treatment, for at least three months, including SSRI medication (72.2%), TCA (11.1%) or 

combined pharmacological treatment (16.7%). Participants were recruited from the community 

to match the group of patients, according to sex, age and education level.  

 

MRI data acquisition 

A T1-weighted MPRAGE (magnetization prepared rapid gradient echo; 176 sagittal 

slices, repetition-time =2730 ms, echo-time=3.48 ms, slice thickness = 1 mm, slice gap = 0 

mm, voxel size = 1x1x1 mm, field-of-view = 256×256 mm, flip angle = 7°) was acquired in a 

1.5 T Siemens Magnetom Avanto Scanner, equipped with a standard 12 channel receive-only 

head coil. The imaging session as performed at the Hospital of Braga (Braga, Portugal).  

Before any data processing and analysis, all the acquisitions were visually inspected to 

confirm that artifacts such as head motion did not critically affect them and that participants had 

no gross anatomical abnormalities. For the volumetric analysis, we used a semi-automated brain 

segmentation implemented with the Freesurfer software (version 4.5.0, Fischl et al., 1999). The 

preprocessing was conducted following the recommended pipeline available at 

(http://surfer.nmr.mgh.harvard.edu/). The bilateral volumes of the caudate, putamen and 

nucleus accumbens were defined according to a standard subcortical atlas (Fischl et al., 2002). 
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Data analysis 

The latent variable model was defined to derive a higher-order variable, reflecting the 

volumes of striatal regions. The reasoning behind this strategy relies on the fact that due to the 

high correlation between these brain regions, one can minimize the problem of multiple 

comparisons, by assessing a global variable that integrates information for all the individual brain 

regions. This second-order latent variable was reflected on three first-order latent variables 

corresponding to bilateral regions, which in turn was reflected in each unilateral brain volume – 

here defined as an individual manifest variable.  

The use of moderation analysis allows the determination of whether the effect of some 

putative causal variable X on outcome Y depends in one way or another on a moderator variable. 

This analysis estimates a moderation model with a single moderator (Group) of the effect of 

striatum on risk-taking (by Group). The omnibus statistical significance was assessed to test the 

null hypothesis of non-significant effects of the global model.  

Moderation analysis were implemented in the PROCESS Macro for SPSS (Bolin, 2014). 

The remaining statistical analyses, including the latent variable model and descriptive statistics 

were implemented in R Studio, with the Lavaan (Rosseel, 2012) and base packages (R Core 

Team, 2013), respectively. 

 

 

Results 

The descriptive statistics for the volume of each striatal region by group are summarized 

on Table S1 and graphically represented on Figure S1. There were no statistically significant 

between-group differences regarding any striatal region.  

The model for the global variable striatum yielded statistically significant effects 

(F(3,74)=3.18, p=.029). The interaction between volume and risk was a significant predictor in this 

model (Table S2). The moderator had a statistically significant effect on the dependent variable 

(F(1,74)=9.14, p=.003), accounting for 10.9% of its variance (R2=.109) (Table S3).   
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Table S1: Descriptive Statistics of each striatal volume, by group 

  HC   OCD   t-test 

 Mean SD Sk K  Mean SD Sk K   

LCau 3690.96 424.01 0.34 -0.43  3741.19 469.07 0.45 0.36  t(76)=-0.50, p=.621 

RCau 3870.24 415.06 0.63 -0.63  3936.51 519.56 0.45 -0.02  t(76)=-0.62, p=.536 

LPut 6073.23 620.77 0.22 -0.53  5980.52 773.58 -0.24 0.65  t(76)=0.58, p=.561 

RPut 5724.57 581.67 0 -0.69  5768.96 717.78 0.24 0.18  t(76)=-0.30, p=.765 

LNacc 670.83 81.75 -0.17 -0.63  683.82 99.59 -0.41 -0.29  t(76)=-0.63, p=.531 

RNacc 608.22 99.72 -0.35 -0.29   635.09 117.44 -0.14 -0.55   t(76)=-1.1, p=.280 

Sk – Skewness; K – Kurtosis; LCau – Left Caudate, RCau – Right Caudate, LPut – Left Putamen, 

RPut – Right Putamen, LNacc – Left Nucleus Accumbens, RNacc – Right Nucleus Accumbens. 

 

 

 

Figure S1: Violin plots representing Between-groups’ comparisons on different striatal regions. 

The x-axis represents each brain region; the y-axis corresponds to the standardized brain volume 

of each structure.  

 

Given that this global model yielded statistically significant moderator effects, we next 

decomposed the global interaction by assessing the statistical significance of each individual 

striatal volume. It was noted that the models corresponding to the left caudate (Model 2; 
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F(3,74)=2.76, p=.048), right caudate (Model 3; F(3,74)=3.17, p=.029) and right accumbens (Model 7; 

F(3,74)=3.50, p=.020) yielded statistical significance at the omnibus level. 

 

Table S2: Effects of individual predictors on risk-taking 

Model Variable B SE t p LLCI ULCI 

Model 1 constant 0.1111 0.0118 9.403 0 0.0875 0.1346 

Global Striatum 0.0002 0.0001 2.8425 0.0058 0 0.0003 

 Group -0.0001 0.0167 -0.007 0.9945 -0.0333 0.0331 

  Striatum*Group -0.0002 0.0001 -3.0232 0.0034 -0.0003 -0.0001 

Model 2 constant -0.1886 0.1052 -1.7923 0.0772 -0.3982 0.0211 

LCau LCau 0.0001 0 2.8368 0.0059 0 0.0001 

 Group 0.3413 0.1428 2.3904 0.0194 0.0568 0.6258 

  LCau*Group -0.0001 0 -2.3969 0.0191 -0.0002 0 

Model 3 constant -0.2222 0.1118 -1.9881 0.0505 -0.4449 0.0005 

RCau RCau 0.0001 0 2.9709 0.004 0 0.0001 

 Group 0.4061 0.1442 2.8165 0.0062 0.1188 0.6934 

  RCau*Group -0.0001 0 -2.8251 0.0061 -0.0002 0 

Model 4 constant -0.1838 0.1197 -1.5354 0.1289 -0.4223 0.0547 

LPut LPut 0 0 2.4501 0.0166 0 0.0001 

 Group 0.3155 0.1527 2.0654 0.0424 0.0111 0.6198 

  LPut*Group -0.0001 0 -2.0487 0.044 -0.0001 0 

Model 5 constant -0.19 0.12 -1.5839 0.1175 -0.429 0.049 

RPut RPut 0.0001 0 2.4967 0.0148 0 0.0001 

 Group 0.363 0.155 2.3415 0.0219 0.0541 0.6719 

  RPut*Group -0.0001 0 -2.3405 0.022 -0.0001 0 

Model 6 constant 0.08 0.1033 0.7746 0.441 -0.1258 0.2858 

LNacc LNacc 0 0.0002 0.2729 0.7857 -0.0003 0.0003 

 Group 0.1478 0.1349 1.0959 0.2767 -0.1209 0.4165 

  LNacc*Group -0.0002 0.0002 -1.0748 0.2859 -0.0006 0.0002 

Model 7 constant -0.0011 0.0732 -0.0144 0.9885 -0.147 0.1448 

RNacc RNacc 0.0002 0.0001 1.5089 0.1356 -0.0001 0.0004 

 Group 0.2954 0.098 3.0144 0.0035 0.1001 0.4907 

  RNacc*Group -0.0005 0.0002 -3.0027 0.0036 -0.0008 -0.0002 

LCau – Left Caudate, RCau – Right Caudate, LPut – Left Putamen, RPut – Right Putamen, LNacc 

– Left Nucleus Accumbens, RNacc – Right Nucleus Accumbens. 

 

In addition, even though no omnibus significance was obtained for Models 4 and 5 (left 

and right putamen), it was noted that the moderator effect in these models produced significant 

highest order effects (F(1,74)=4.20, p=.044 and (F(1,74)=5.48, p=.022), respectively), accounting for 

changes in the explained variance of 5.2% and 6.8%, respectively (Table S4). 
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Table S3: Test of highest order unconditional interaction (moderator effects) 

Model R2-change F df1 df2 p 

Global Model 0.1094 9.14 1 74 0.0034 

Model 2 0.0698 5.7449 1 74 0.0191 

Model 3 0.0956 7.9809 1 74 0.0061 

Model 4 0.0524 4.1973 1 74 0.044 

Model 5 0.0679 5.4779 1 74 0.022 

Model 6 0.0152 1.1553 1 74 0.2859 

Model 7 0.1067 9.016 1 74 0.0036 

 

 

Table S4: Conditional effects of striatal volume for each group 

Model group Effect se t p LLCI ULCI 

Model 1 HC 0.0002 0.0001 2.8425 0.0058 0 0.0003 

Global OCD 0 0 -1.2003 0.2338 -0.0001 0 

Model 2 HC 0.0001 0 2.8368 0.0059 0 0.0001 

Lcau OCD 0 0 -0.436 0.6641 -0.0001 0 

Model 3 HC 0.0001 0 2.9709 0.004 0 0.0001 

Rcau OCD 0 0 -0.8073 0.4221 -0.0001 0 

Model 4 HC 0 0 2.4501 0.0166 0 0.0001 

Lput OCD 0 0 -0.2202 0.8263 0 0 

Model 5 HC 0.0001 0 2.4967 0.0148 0 0.0001 

Rput OCD 0 0 -0.6365 0.5264 0 0 

Model 6 HC 0 0.0002 0.2729 0.7857 -0.0003 0.0003 

Lacc OCD -0.0002 0.0001 -1.3616 0.1775 -0.0004 0.0001 

Model 7 HC 0.0002 0.0001 1.5089 0.1356 -0.0001 0.0004 

Racc OCD -0.0003 0.0001 -2.862 0.0055 -0.0005 -0.0001 
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Abstract 

Obsessive-compulsive disorder (OCD) is characterized by the presence of ritualistic behaviors 

that allow the reduction, or even the neutralization, of the anxiety provoked by obsessions. This 

profile of excessive rumination and indecision has motivated the view of OCD as a disorder of 

decision-making. Most contributions addressing decision-making in OCD patients focused on 

cognitive aspects of decision-making. In this study, we aimed to extend the current state-of-the-

art by characterizing changes in decision-making patterns during affective, or “hot” decision-

making behavior in OCD patients. In a functional magnetic resonance imaging investigation, we 

assessed risky decision-making in a sample of 34 OCD patients and 33 sex and age matched 

healthy individuals. OCD patients were characterized by altered brain functioning during the 

anticipation and feedback periods of gambling scenarios. During risky decisions, patients had 

significant reduced activation in the posterior cingulum, lingual gyrus and anterior cingulate 

cortex (ACC); in addition, significant group*risk interactions were found within the calcarine, 

precuneus, amygdala and ACC. During the losses feedback, significant group-by-risk interactions 

involving the orbitofrontal cortex, ACC and putamen were observed, where OCD patients were 

characterized by hyper-reactivity to unexpected losses. These results support the idea that OCD 

is characterized by abnormal patterns of brain function during risky decision-making in a set of 

brain regions that have been consistently implicated in the processing of reward prediction 

errors. Together, these findings suggest that OCD patients may display alterations in affective 

“hot” processes implicated in decision-making behavior, which may underlie an increased 

indecisiveness and intolerance to uncertainty in these patients.  
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Background 

 Obsessive compulsive disorder (OCD) is a psychiatric disorder characterized by the 

presence of intrusive and repetitive thoughts that cause extreme levels of anxiety (obsessions) 

and by repetitive behaviors or mental acts overly repeated in ritualistic, stereotyped succession 

(compulsions) (Abramowitz, Taylor, & McKay, 2009; Graybiel & Rauch, 2000). Although OCD 

patients present a conscious awareness of the exaggerated nature of the ritualistic acts, these 

behaviors allow them to reduce/neutralize the anxiety and the negative affect related with the 

obsessions (Graybiel & Rauch, 2000). As such, these behavioral patterns will be continuously 

reinforced and will progressively be established as natural rewards (Koch et al., 2018). 

Depending on the severity of the disorder, these behaviors may be propagated for hours, as the 

OCD patient keeps facing the “what if?” question, i.e., fearing that something bad may happen 

if he/she does not produce the ritual (Graybiel & Rauch, 2000). This uncertainty-related scheme 

appears to generalize to symptoms’ unrelated domains, making these patients highly indecisive 

when choosing between simple alternatives in many real-life situations (Tolin, Abramowitz, 

Brigidi, & Foa, 2003). Consequently, OCD patients frequently engage in a pathological state of 

rumination and doubt regarding whether a particular choice was properly concluded. This has 

motivated the conceptualization of OCD as a disorder of decision-making (Sachdev & Malhi, 

2005). Several studies have, in fact, demonstrated that OCD patients display behavioral and 

neurobiological alterations during decision-making performance in laboratorial settings (Cavedini, 

Gorini, & Bellodi, 2006; Cavedini et al., 2002). Nevertheless, previous reports have 

demonstrated that the contingencies of the behavioral task may selectively impact patients’ 

performance: when the task is built on explicit and stable rules - such as the Iowa Gambling Task 

(IGT) - patients will display a behavioral profile similar to healthy individuals; on the other hand, 

when the decision-making task has implicit rules – such as the Game of Dice Task (GDT) - OCD 

patients are characterized by overt alterations (Starcke, Tuschen-Caffier, Markowitsch, & Brand, 

2010).  

 The link between OCD and decision-making impairments may be better interpreted in 

the context of the apparent overlap between the neurobiological impairments underlying OCD 

and the neural mechanisms that are recruited during decision-making. Abnormal functioning 

within cortico-striato-thalamo-cortical (CTSC) loops have been continuously proposed as a critical 

pathway for the manifestation and progression of OCD symptoms both during rest and during 
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symptom provocation (Cavedini et al., 2006; Saxena, Brody, Schwartz, & Baxter, 1998; Ting & 

Feng, 2011). Meta-analytic evidence implicates several components of these loops as critical 

hubs for decision-making ability (Krain, Wilson, Arbuckle, Castellanos, & Milham, 2006). In fact, 

there is evidence of a desynchronization between fronto-limbic and fronto-striatal regions during 

decision-making in OCD patients (Paulus, 2007; Sachdev & Malhi, 2005). As a consequence, it 

has been suggested that these individuals may experience an altered processing of reward 

history and choice-valuation or, in other words, an altered homeostatic processing of decision-

making (Paulus, 2007).  

 Despite the growing literature exploring the neurobiological underpinnings of decision-

making in OCD patients, most contributions for the study of these processes rely on mainly 

cognitive or “cool”, deliberative, division of decision-making processing, as approached by tasks 

involving ambiguity (Krain et al., 2006). In contrast, the study of “hot”, affective processing, 

involving risky choices (Kerr & Zelazo, 2004) is still substantially underexplored in these patients. 

As such, with this study we aimed to add to the current state-of-the-art a comprehensive study 

of how OCD patients respond to risky decision-making. For this purpose, we conducted an fMRI 

investigation in which patients and sex and age matched healthy individuals performed a forced-

choice gambling task. We aimed to characterize the behavioral profiles of risky decision-making 

in OCD patients, as well as the neural responses associated with the decision and feedback to 

different risk levels.  

 

 

Methods and Materials 

Participants 

Sixty-seven right-handed individuals (34 OCD patients and 33 HC) without history of 

neurological disorders participated in this study. OCD diagnosis was established by a semi-

structured interview based on Diagnostic and Statistical Manual of Mental Disorders, Fourth 

Edition (DSM-IV)-TR and the Yale–Brown Obsessive–Compulsive Scale (Y-BOCS, (Goodman et 

al., 1989)). OCD patients were also characterized for anxiety and depression symptoms, with 



105 
 

Hamilton Anxiety (HAM-A) and Hamilton Depression (HAM-D) scales (Maier, Buller, Philipp, & 

Heuser, 1988), respectively. The sample characterization is presented on Table 1. 

The study was conducted according to the principles of the Declaration of Helsinki and 

was approved by the Ethics Committee of Hospital de Braga (Portugal). The study goals were 

explained, and written informed consent was obtained from each participant.  

 

Gambling task 

During the fMRI session, participants performed a card gambling task, adapted from 

Macoveanu and colleagues (2013). The experimental task was implemented in two separate 

runs. In each trial, participants were informed about the accumulated reward and of the value 

of the upcoming bet. Afterwards, participants were presented with a screen displaying seven 

cards face down, randomly distributed into two decks. The “ace of hearts” was hidden in one of 

these decks. Participants had to guess the deck containing this card to receive a reward; or, 

otherwise, lose the bet (Figure 1A). The task was comprised of distinct risk levels, with a 

parametric variation of the odds (range of probability: 1/7 to 6/7) (Figure 1B). The task was 

presented as an even distribution of choices across all risk levels, enabling us to study risk-

seeking and risk-avoidance behavior. In this study, we focused on the analysis of the risk-taking 

behavior.  

 

MRI acquisition 

Imaging was performed using a clinical approved 1.5 T Siemens Magnetom Avanto MRI 

Scanner (Siemens, Erlangen, Germany) using a 12-channel receive-only head coil. A structural 

T1-weighted 3D MPRAGE (magnetization prepared rapid gradient echo) scan was acquired, using 

the following parameters: 176 sagittal slices, repetition-time (TR) = 2730 ms, echo-time (TE) = 

3.48 ms, slice thickness = 1 mm, slice gap = 0 mm, voxel size = 1x1x1 mm2, field-of-view (FoV) 

= 256×256 mm, flip angle (FA) = 7°. For the functional MRI scan, a t2*-weighted Echo Planar 

Imaging (EPI) sequence, sensible to a blood oxygen level-dependent (BOLD) contrast was 

acquired in two consecutive runs (each with 315 volumes) with a minute break in-between. The 
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EPI sequence had the following characteristics: number of slices = 38, TR = 2500 ms, TE = 30 

ms, slice thickness = 3 mm, voxel size = 3x3x3.6 mm, FoV = 256×256 mm, FA = 90º. 

 

 

 

Figure 1. The gambling task. At the beginning of each trial (Information phase), participants 
were informed about the amount of accumulated money and the value of the current bet; next 
(Decision phase), two decks were displayed facedown; finally (Outcome phase), the location of 
the ace of arts was displayed and the subjects received the feedback indicating that they either 
won or lost the bet. 

 

 

MRI processing 

 The preprocessing pipeline of the functional scans was implemented using SPM12 and 

included the following steps: (1) slice-timing correction, (2) realignment of the acquired functional 

images to the mean to correct for head motion, (3) co-registration of the T1-MPRAGE structural 

image to the mean EPI, (4) normalization of subjects’ images into MNI space, (5) spatial 
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smoothing with an 8-mm full-with al half maximum (FWHM) kernel. All the resulting images were 

subjected to visual inspection for quality control. 

 

Statistical analysis 

The analysis of the number of responses and reaction time for different risk levels was 

conducted using Mixed-Design Factorial ANOVA models, where the group was defined as 

between-subjects’ factor and risk-level as within-subjects’ factor. Since the experimental 

paradigm was a forced-choice design with paired risk levels, only three conditions were 

considered (1/7 with 6/7, 2/7 with 5/ and 3/7 with 4/7) for the number of choices, with the 

goal of avoiding collinearity. For the analysis of reaction times, each of the six risk levels was 

considered individually.  

First-level analysis was conducted by modelling three regressors for the choice phase 

(high, medium and low risk-levels) and six regressors for the outcome phase (negative and 

positive outcomes for high, medium and low risk-levels). Six nuisance regressors - corresponding 

to three directions of translation and three axes of rotation – were also included in the model. 

Regressors were convolved with the canonical hemodynamic response function (HRF). 

For the second level analysis, voxel-wise analyses were implemented using GLM Flex 

(http://mrtools.mgh.harvard.edu/index.php/Main_Page) using Mixed Design ANOVA models, 

with one within-subjects’ factor (risk level) and one between-subjects’ factor (group). The 

contrasts resulting from the first-level analysis were included for the estimation of within- and 

between-group effects. Two distinct approaches were implemented to detect statistically 

significant differences: (1) a fully exploratory model, in which no theoretical regions of interest 

(ROIs) were defined; (2) a ROI-derived approach. For the first approach, 10.000 Monte Carlo 

simulations were implemented using 3dFWHMx (estimating intrinsic smoothness based on 

residuals) and 3dClustSim (estimating probability of false positives) packages (together with the 

autocorrelation function; -acf) from the AFNI software package (Ward, 2000; updated April 

2016), which enables an accurate estimation of cluster size, controlling familywise error and 

accounting for spherical non-Gaussian spatial autocorrelation of the fMRI signal. Results from 

these simulations indicated that, considering voxel-wise intensity thresholds of p< .001 and 
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p<.005 (restricted to the group-level brain mask), cluster extent thresholds of 110 and 250 

contiguous voxels (for the first and second, intensity thresholds, respectively) would be necessary 

to achieve an overall Type I error rate of p < .05, corrected for multiple comparisons. 

For the second approach, and following the strategy implemented in previous reports, 

ROI analyses were also conducted on regions consistently implicated in the processing of 

expected value and reward, including striatal nuclei (including the caudate, putamen and the 

nucleus accumbens), insula, OFC and ACC and amygdala as reported in a meta-analysis of 

neuroimaging studies (Liu, Hairston, Schrier, & Fan, 2011). All ROIs were anatomically defined 

based on the Automated Anatomical Labeling (AAL) atlas (Tzourio-Mazoyer et al., 2002). For the 

ROI-based approach, a mask including the abovementioned ROIs was created. An arbitrary 

uncorrected p-value of p<.005 with a minimum cluster extension of 10 contiguous voxels was 

considered for the determination of statistical significance. This approach has been previously 

used to deal with the small size of a priori structures, such as the nucleus accumbens (Giuliani 

& Pfeifer, 2015; Guassi Moreira & Telzer, 2018; Van Hoorn, McCormick, Rogers, Ivory, & Telzer, 

2018). Post-hoc analyses were performed to compare the BOLD signal between risk conditions 

and for the decomposition of interaction effects.  

The mean BOLD signal for each (whole-brain and ROI level) result was extracted for 

posterior analysis. Correlation analyses were implemented to assess the impact of clinical 

features (Y-BOCS, HAM-A and HAM-D total scores) on behavioral and/or neuroimaging findings. 

We relied on the combined use of frequentist and Bayesian analyses. The latter approach has 

been used to handle with the multiple comparisons. For the Bayesian analysis, two models are 

compared for each pairwise association: the null hypothesis model (H0), which assumes a 

bivariate normal distribution with zero covariance and the alternative hypothesis model (H1) 

which assumes that variables are distributed according to a bivariate normal distribution with a 

non-zero covariance are related (Quintana & Williams, 2018). Bayes factors (BF) – the ratios 

between the marginal likelihoods of the alternative and null models – were interpreted according 

to Jeffreys’ (Jeffreys, 1998) cutoffs: anecdotal (BF10 between 1 and 3), moderate (BF10 between 

3 and 10), strong (BF10 between 10 and 30), very strong (BF10 between 30 and 100) or extreme 

(BF10>100) relative evidence. The association between clinical variables and fMRI results were 

implemented in JASP (version 0.9.0). 
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Results  

Behavioral results 

 OCD patients and healthy controls display similar proportions of choices across the six 

risk levels. A linear distribution of choices was observed across descending risk levels, i.e., 

participants made considerably more low-risk choices. In addition, there was a significant effect 

of risk level on the reaction times (F (3.9, 224.7)=3.943, p<.001), which fit a quadratic function, such 

that the choice 2/7 and 3/7 were associated with longer response times.  

 

Patterns of brain activity during the decision phase 

 There were significant effects of risk condition on patterns of brain activity, such that 

higher-risk elicited increased activation of the NAcc, anterior insula and ACC. On the other hand, 

it was noted that the activity of the posterior insula (ROI-approach) was significantly reduced in 

response to high-risk choices (Table 2; Figure 2).  

 

 

Figure 2. Main effects of condition on patterns of brain activity during the decision-phase. High-
risk choices are associated with an increased brain activity of the precuneus, nucleus 
accumbens, anterior insula and cingulum middle. In contrast, low-risk choices are associated 
with an increased activity of the posterior insula. 
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Significant effects of group were observed during the choice phase on the activity of the posterior 

cingulum, lingual gyrus and ACC, with OCD patients displaying decreased activation of these 

regions during the decision phase, independently of the risk condition (Figure 3A). Group-by-risk 

interaction effects were using the ROI-approach, where significant group-by-risk interactions were 

found for the amygdala and ACC. Post-hoc analysis indicated that OCD patients displayed a 

larger reduction of the BOLD signal in this region during high-risk choices, in comparison to low-

risk; the opposite pattern was observed for the HC group (i.e., larger deactivation of the amygdala 

for low-risk options). On the other hand, it was noted that the HC group present a larger 

deactivation of the ACC during high-risk choices (comparing to low-risk choices), while the OCD 

group was characterized with a larger ACC deactivation during low-risk (Figure 3B). 

 

 

Figure 3. (A) Effects of group during the decision phase. Group has a significant effect on the 
patterns of brain activity of the (1) posterior cingulum, (2) lingual gyrus and (3) ACC. (B) Group 
by Condition effects during the decision phase on the amygdala and ACC. 
 

Brain response during the outcome phase 

In the outcome phase, it was observed that while there were no main effects of group 

on patterns of brain activity, there were significant effects of condition, with both groups showing 
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a larger activation of the cerebellum and anterior insula in response to negative outcomes with 

higher-risk levels. Furthermore, significant (ROI approach) group by condition interaction effects 

were found in the ACC and left Putamen. The OCD group revealed considerably greater 

deactivation of these regions in response to negative outcomes of low-risk choices; on the other 

hand, the HC group had larger deactivations to negative outcomes of high-risk choices (Table 3; 

Figure 4). No significant (main or interaction) effects were observed for positive outcomes. 

 

Association between brain activity and clinical measures 

For the group of OCD patients, there was moderate evidence (BF10=9.37) for the 

association between the BOLD signal of the lingual gyrus to high-risk choices (i.e., 1/7 and 2/7 

risk-levels) in the decision phase and the severity of the disorder (i.e., total Y-BOCS score). 

 

 

Figure 4. A. Condition effects during the feedback to losses. High-risk choices are characterized 
by a significantly increased activity of the cerebellum, precuneus and frontal superior. Significant 
group-by-risk interactions were observed for the ACC and Putamen. For these regions, there was 
a reduction of the BOLD signal for high-risk choices in the HC group; on the opposite, there was 
a reduction of the BOLD signal for low-risk choices in the OCD group. 
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In a similar fashion, there was a significant association between the activity of the 

posterior cingulum to high-risk choices and depression scores (r=.419, p=.030) – however, the 

interpretation of the Bayesian analysis provided only anecdotal evidence for these associations 

(BF10=2.25). Similarly, significant (uncorrected) results, with anecdotal evidence for the 

alternative hypothesis (BF10=1.68) were obtained for the association between the activity of the 

precuneus during the decision period to mid-risk choices (i.e., 3/7 and 4/7 risk-levels) and 

anxiety scores (r=.393, p=.043). Lastly, there was a significant association, with anecdotal 

relative evidence (BF10=1.57), between the activity of the putamen to low-risk level choices during 

the outcome phase and Y-BOCS total score (r=.356, p=.042). The full description of the results 

of the correlation analyses for the significant (whole-brain and ROI levels) brain activity findings 

is presented on Table 4. 

 

 

Discussion 

In this work, we conducted a functional MRI study to examine the neural correlates of 

risky decision-making in OCD patients. We observed that OCD patients are characterized by 

altered patterns of brain activity during decision and feedback phases on a gambling task, in 

comparison to healthy individuals. The most pronounced findings were associated with clinical 

characteristics of the disorder, namely the severity of obsessive symptoms and anxiety levels.   

During the decision phase, there was a significant effect of decision risk, such that 

higher-risk choices were associated with an increased activation of the NAcc and anterior insula, 

in comparison to low-risk choices. It has been repeatedly advocated that the anterior insula is 

relevant for higher-level processing, being tightly synchronized with frontal brain regions 

implicated in executive functioning (Eckert et al., 2009). In addition, an increased activation of 

the anterior insula has been associated with the risk level in previous studies (Macoveanu, 

Miskowiak, Kessing, Vinberg, & Siebner, 2016), which may suggest an involvement of the 

anterior insula in learning the negative value of loss-prediction cues (Morgado et al., 2015; 

Palminteri et al., 2012). Neuroimaging evidence has implicated the ventral striatum on risky 

decision-making processing. Namely, its activity was previously associated with value encoding 
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(Christopoulos, Tobler, Bossaerts, Dolan, & Schultz, 2009) and hypothesized to be an important 

brain hub for the representation of loss aversion (Tom, Fox, Trepel, & Poldrack, 2007). 

On the opposite, the activation of the posterior insula was associated with lower-risk 

levels. Altogether, these results demonstrate the importance of these brain regions in the context 

of risky decision-making, but also that different divisions of the insula play opposing roles during 

risk processing. Meta-analytic evidence highlights distinct functional connectivity profiles for 

different divisions of the insula: whereas the anterior division links mainly to emotion-related 

(e.g., amygdala, ventral tegmental area and lateral OFC) and cognition-related (e.g., ACC and 

dorsolateral prefrontal cortex), the posterior insula is selectively connected to sensorimotor areas 

(Chang, Yarkoni, Khaw, & Sanfey, 2012). Our results can also be interpreted in the context of 

the role of differential involvement of insular divisions on risk processing. A recent review 

proposed that the anterior insula plays a critical role on tracking arousal, magnitude and risk 

prediction error; on the other hand, the posterior insula is mainly involved on urge processing 

and signaling homeostatic imbalance during the evaluation of risky gambles (Droutman, 

Bechara, & Read, 2015). 

Still regarding the decision phase, OCD patients displayed a significantly reduced 

activation of the posterior and anterior cingulate areas, independently of the risk-level. The ACC 

is of upmost relevance for the integration of risk and payoff and therefore, for learning the value 

of actions (Kennerley, Walton, Behrens, Buckley, & Rushworth, 2006). The activity of different 

divisions of the ACC has been linked to several behavioral impairments in OCD patients, such 

as error-processing abnormalities (Fitzgerald et al., 2005). On the other hand, the posterior 

cingulum is one important cluster of the default-mode network, which has been extensively 

described has a network of brain regions implicated in emotion processing and self-referential 

activity, including introspection (Liemburg et al., 2012). The involvement of visual areas on the 

pathophysiology of psychiatric disorders has been receiving accumulating evidence during recent 

years. Altered functional connectivity between the lingual gyrus and the insular cortex has been 

reported for the autism spectrum disorder (Odriozola et al., 2015) and addiction (Addicott, 

Sweitzer, Froeliger, Rose, & McClernon, 2015). Furthermore, in addition, recent neuroimaging 

studies reported reduced occipital activation in bipolar patients during periods of mania or 

depression, but not during euthymic states (Shaffer et al., 2017). In accordance with this notion, 

the lingual gyrus – the occipital division we found to be hyper activated in the OCD group (which 
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was also associated with the severity of the disorder) – has been implicated in the processing of 

emotionally charged content (Mitterschiffthaler et al., 2003) and in the generation of somatic 

arousal (Critchley, Elliott, Mathias, & Dolan, 2000). We have previously identified the lingual 

gyrus as a critical node of a network with diminished functional connectivity in OCD patients 

(Moreira et al., 2017). 

OCD patients display a substantially larger reduction of the BOLD signal in the amygdala 

in response to high-risk choices in comparison to healthy individuals, during the decision phase. 

This suppression seems to be in accordance with the view that OCD patients are characterized 

by an altered emotional processing, marked by a decreased emotional regulation ability (Fergus 

& Bardeen, 2014) and a negative bias towards emotional stimuli, such that these stimuli are 

viewed as more unpleasant and less controllable (Casado, Cobos, Godoy, Machado-Pinheiro, & 

Vila, 2011). In fact, a recent meta-analytic investigation revealed that OCD patients are 

characterized by altered brain response of the amygdala during emotional processing (Thorsen 

et al., 2018). Previous studies highlighted that the synchrony between the amygdala and frontal 

brain areas underlines a limbic interference during cognitive processing in OCD individuals (de 

Vries et al., 2014). According to this, it seems reasonable to suggest a limbic interaction with 

other brain areas during risky decision-making behavior. Future studies may address this 

hypothesis, by assessing the patterns of covariance between limbic regions and higher-order 

processing-related areas, such as the ACC and the OFC, during risky decision-making. 

During the feedback to losses, both groups were characterized by significantly cerebellar 

BOLD increases in response to losses. To the best of our knowledge, the involvement of the 

cerebellum in the processing of losses during decision-making tasks is still under-explored. 

Previous lesion studies have demonstrated that cerebellar damage contribute to altered decision-

making behavior (Clausi et al., 2015; de Oliveira Cardoso et al., 2014). 

Lastly, there were significant group-by-risk interactions in the ACC and Putamen. For all 

these regions, OCD patients displayed a larger reduction of the BOLD signal during the feedback 

to low-risk vs high-risk choices, whereas healthy individuals display a larger reduction for high-

risk choices. In other words, OCD patients displayed suppression of the activity of these brain 

regions when they perceived unexpected losses. This set of brain regions has been repeatedly 

involved in goal-directed decision-making, particularly in learning the sequences of stimuli that 

leads to the reward (Hollerman, Tremblay, & Schultz, 2000). In the case of OCD, a recent report 
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described that OCD patients are characterized by abnormal reward prediction errors’ signaling 

in the ACC and putamen, which may conduct to an increased indecisiveness and intolerance to 

uncertainty (Hauser et al., 2017). Thus, it seems reasonable to suggest that abnormal 

functioning of these hubs during risky decision-making OCD constitute a brain response to the 

processing of unexpected losses.  

Some considerations may be raised for this work. Due to the high heterogeneity of 

behavioral manifestations of the disorder across different subtypes, it would be interesting to 

investigate between-subtype differences. Indeed, previous findings have suggested that specific 

subtypes of the disorder may be particularly susceptible to behavioral performance during 

decision-making tasks (Lawrence et al., 2006). Nevertheless, grouping OCD patients by subtype 

would limit the statistical power of our analysis. Another important question concerns the 

characteristics of the risky decision-making task used here. Whereas this task is highly 

advantageous for discriminating between opposing levels of risky decision-making, its nature 

forces the participants to select between two risk alternatives. This limits the discrimination 

between participants for each decision-making scenario and may possibly impact between-group 

differences. Future studies may address risky decision-making characteristics in OCD patients, 

by allowing the participant to select between multiple risk choices 

In sum, these findings highlight that OCD is characterized by abnormal patterns of brain 

function during “hot” processing of decision-making. This may provide new insights regarding 

the relevance of affective processes for decision-making ability in these patients. As such, future 

studies may address the interaction between decision-making and affective processing and 

extend the characterization of decision-making to other under-explored domains, where the 

affective component of the decisions has more salience, such as the characterization of OCD 

patients in social-decision making scenarios. 
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Table 1. Socio-demographic and clinical characteristics of patients with obsessive-compulsive 

disorder and healthy comparison subjects 

  
Characteristic 

  
OCD HC 

Difference 
    (n=34) (n=33) 

Age, Years     25.76 ± 6.66 25.63 ± 5.43 ns 

Education, Years  13.48 ± 2.20 14.63 ± 3.20 ns 

Sex, n (%) Males   16 (47.1%) 15 (45.5%) ns 

Y-BOCS, Total Score  25.24 ± 7.14 -- -- 

Y-BOCS, Obsessions   13.79 ± 4.11 -- -- 

Y-BOCS, Compulsions  11.45 ± 3.59 -- -- 

HAM-A-, Total Score   6.26 ± 7.13 -- -- 

HAM-D-, Total Score   5.52 ± 4.31 -- -- 

Values are presented as mean ± SD.  
Y-BOCS, Yale-Brown Obsessive Compulsive;  
HAM-A, Hamilton Anxiety Rating Scale; HAM-D, Hamilton Depression Rating Scale. 
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Table 2. Effects of condition during the anticipation phase 
 

  p<.05 (FWE-corrected)   p<.005 

 k Peak Int x y z   k Peak Int x y z 

Effect of risk            

 161 43.34 16 10 -6       

 253 40.95 -12 8 -6       

 186 30.4 -30 22 -8       

 44 26.49 12 -64 40       

 211 25.89 6 36 34       

 23 22.37 32 20 -6       

 33 21.01 -48 -44 56       

 11 16.19 -12 -86 -10       

              86 9.03a 42 -10 4 
a Uncorrected results for ROI-driven approach; Peak Int – Peak intensity for each displayed result; k – cluster extension; Coordinates are presented in the MNI standard space 
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Table 3. Effects of group and condition by group interactions during the anticipation phase 
 

  p<.001   p<.005 

 k Peak Int x y z   k Peak Int x y z 

OCD<Control            

 427 5.33 20 -64 8  1240 5.33 20 -64 8 

       278 3.86 0 -32 42 

       159 3.6a -4 32 28 

Group by condition            

       18 7.66a -22 -6 -18 

              12 8.34a -4 26 -12 
a Uncorrected results for ROI-driven approach; Peak Int – Peak intensity for each displayed result; k – cluster extension; Coordinates are presented in the MNI standard space 
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Table 4. Effects of condition, group and condition*group during the feedback to losses 
 

  p<.05 (FWE-corrected)   p<.005 

 k Peak Int x y z   k Peak Int x y z 

Effect of risk            

 54 21.2 2 -78 -20       

 14 19.12 22 58 20       

Group by condition            

       46 11.21a 36 -12 -2 

              46 9.32a 8 36 -10 
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Table 5. Association between significant brain findings and clinical measures 
 

    Decision Period   Loss 

Risk 
Level 

Scale Nacc_C Ins_C Cing_C Prec_C Lingual_G Cing_G ACC_G Amyg_I ACC_I   Cer_C Prec_C FSup_C Putamen_I ACC_I 

High HAS 
r=0.072, 

BF10=0.254 
r=-0.166, 

BF10=0.331 
r=0.309, 

BF10=0.768 
r=0.332, 

BF10=0.928 
r=-0.043, 

BF10=0.244 
r=-0.013, 

BF10=0.239 
r=-0.017, 

BF10=0.24 
r=-0.042, 

BF10=0.244 
r=-0.055, 

BF10=0.248 
 r=-0.163, 

BF10=0.327 
r=-0.107, 

BF10=0.274 
r=-0.066, 

BF10=0.251 
r=-0.328, 

BF10=0.902 
r=0.006, 

BF10=0.239 

 HDS 
r=0.009, 

BF10=0.239 
r=-0.07, 

BF10=0.253 
r=0.419*, 

BF10=2.252 
r=0.057, 

BF10=0.248 
r=-0.077, 

BF10=0.256 
r=-0.234, 

BF10=0.462 
r=0.119, 

BF10=0.283 
r=-0.123, 

BF10=0.286 
r=0.193, 

BF10=0.371 
 r=-0.133, 

BF10=0.294 
r=-0.251, 

BF10=0.509 
r=0.126, 

BF10=0.288 
r=-0.247, 

BF10=0.499 
r=0.15, 

BF10=0.311 

 YBOCS 
r=0.082, 

BF10=0.239 
r=0.063, 

BF10=0.229 
r=0.307, 

BF10=0.924 
r=0.116, 

BF10=0.264 
r=0.477*, 

BF10=9.37 
r=-0.081, 

BF10=0.238 
r=0.096, 

BF10=0.248 
r=0.175, 

BF10=0.341 
r=0.143, 

BF10=0.293 
 r=0.193, 

BF10=0.378 
r=0.226, 

BF10=0.466 
r=0.136, 

BF10=0.284 
r=0.02, 

BF10=0.218 
r=0.039, 

BF10=0.222 

Mid HAS 
r=0.108, 

BF10=0.274 
r=0.024, 

BF10=0.241 
r=0.192, 

BF10=0.37 
r=0.393*, 

BF10=1.684 
r=-0.094, 

BF10=0.265 
r=0.202, 

BF10=0.388 
r=0.266, 

BF10=0.561 
r=-0.111, 

BF10=0.276 
r=0.054, 

BF10=0.247 
 r=-0.049, 

BF10=0.246 
r=-0.032, 

BF10=0.242 
r=0.038, 

BF10=0.243 
r=0.001, 

BF10=0.239 
r=0.281, 

BF10=0.622 

 HDS 
r=0.105, 

BF10=0.272 
r=0.207, 

BF10=0.399 
r=0.365, 

BF10=1.263 
r=0.127, 

BF10=0.289 
r=-0.053, 

BF10=0.247 
r=0.13, 

BF10=0.291 
r=0.308, 

BF10=0.761 
r=0.002, 

BF10=0.239 
r=0.071, 

BF10=0.253 
 r=-0.142, 

BF10=0.303 
r=-0.059, 

BF10=0.249 
r=0.275, 

BF10=0.599 
r=0.116, 

BF10=0.28 
r=0.262, 

BF10=0.548 

 YBOCS 
r=0.151, 

BF10=0.303 
r=0.238, 

BF10=0.506 
r=0.282, 

BF10=0.729 
r=0.091, 

BF10=0.244 
r=0.306, 

BF10=0.913 
r=0.011, 

BF10=0.217 
r=0.307, 

BF10=0.925 
r=0.277, 

BF10=0.697 
r=0.096, 

BF10=0.248 
 r=0.001, 

BF10=0.217 
r=0.018, 

BF10=0.218 
r=0.217, 

BF10=0.439 
r=0.215, 

BF10=0.431 
r=0.113, 

BF10=0.261 

Low HAS 
r=0.075, 

BF10=0.255 
r=0.067, 

BF10=0.252 
r=0.26, 

BF10=0.54 
r=0.276, 
BF10=0.6 

r=-0.142, 
BF10=0.303 

r=0.137, 
BF10=0.298 

r=-0.033, 
BF10=0.242 

r=-0.08, 
BF10=0.257 

r=-0.167, 
BF10=0.332 

 r=0.042, 
BF10=0.244 

r=0.111, 
BF10=0.276 

r=0.129, 
BF10=0.29 

r=-0.114, 
BF10=0.279 

r=0.02, 
BF10=0.24 

 HDS 
r=0.111, 

BF10=0.276 
r=0.246, 

BF10=0.493 
r=0.362, 

BF10=1.23 
r=0.109, 

BF10=0.275 
r=-0.095, 

BF10=0.266 
r=0.13, 

BF10=0.292 
r=0.134, 

BF10=0.295 
r=-0.011, 

BF10=0.239 
r=0.007, 

BF10=0.239 
 r=0.235, 

BF10=0.463 
r=0.092, 

BF10=0.264 
r=0.234, 

BF10=0.46 
r=0.018, 

BF10=0.24 
r=0.196, 

BF10=0.377 

 YBOCS 
r=0.075, 

BF10=0.235 
r=0.187, 

BF10=0.364 
r=0.164, 

BF10=0.323 
r=0.13, 

BF10=0.278 
r=0.248, 

BF10=0.549 
r=0.079, 

BF10=0.237 
r=0.103, 

BF10=0.253 
r=0.233, 

BF10=0.49 
r=0.083, 

BF10=0.239 
 r=0.333, 

BF10=1.203 
r=0.087, 

BF10=0.242 
r=0.09, 

BF10=0.244 
r=0.356*, 

BF10=1.566 
r=0.287, 

BF10=0.763 
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Abstract 

In this work, we performed an aggregation of neuroimaging studies investigating the 

neurobiological mechanisms of emotional processing in obsessive-compulsive disorder (OCD), 

using an activation-likelihood estimation approach. Task-based and task-free functional 

connectivity analysis were performed with the aim of identifying areas of significant co-activation 

with the regions derived from a recent activation likelihood estimation analysis and of 

characterizing these regions with respect to their functional associations. A set of regions of 

interest, including Broadmann area 9, substantia nigra and right putamen were found to be 

consistently hyper-active in OCD patients in tasks involving emotional processing. These areas 

were functionally connected with the co-activation of emotional processing related regions with 

the cingulate cortex, insular regions and basal ganglia nuclei. These results suggest the relevance 

of the emotional processing in OCD patients for a set of other behavioral dimensions – 

particularly related with value-based decision-making. This raises the possibility that interventions 

tackling emotional processing may be important for improving other domains of the disorder, 

such as an over-reliance on habitual behaviors – which is highly associated with an impaired 

update of the reward system.  
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Background 

Obsessive Compulsive Disorder (OCD) is one of the most debilitating psychiatric 

conditions. It has an extreme impact on several life domains, including occupational, academic 

and social functioning. The pathophysiology of the disorder has been characterized at behavioral, 

clinical and neurobiological levels. Behaviorally, OCD is associated with the occurrence of 

obsessive thoughts, which causes high levels of anxiety in these patients. Ritualistic acts are 

performed to reduce this anxiety. Even though abnormalities within cortico-striatal loops are 

advocated as central features of the pathophysiology of the disorder, these neurobiological 

mechanisms do not fully account for the some symptomatological expressions of these patients 

(Menzies et al., 2008). One such example pertains to the intense emotional responses 

associated with anxiety. Accumulating evidence has highlighted the relevance of other circuits, 

such as cortico-limbic pathways, as potential key players underlying these clinical manifestations 

(Admon et al., 2012; Picó‐Pérez et al., 2018).  

This perspective is supported by the results of recent functional magnetic resonance 

imaging (fMRI) findings, which reveal that OCD patients display an increased brain response of 

the amygdala, striatum and orbitofrontal cortex (OFC) during the anticipation of emotional 

stimuli. Altered functional connectivity (FC) of the amygdala with frontal and with the insula and 

posterior regions during emotional regulation has recently been highlighted (De Wit et al., 2015; 

Via et al., 2014). A recent meta-analytic aggregation of the literature of neuroimaging studies 

has demonstrated that OCD patients display consistent patterns of increased activation in several 

brain nodes, including amygdala, right putamen, orbitofrontal cortex (OFC), anterior cingulate 

cortex (ACC) ventromedial prefrontal cortex (VMPFC), middle temporal cortex and left inferior 

occipital cortex (Thorsen et al., 2018b). Of note, OCD patients are also characterized by an 

altered pattern of brain activation during risky-decision making, involving amygdalar activations 

to threat, as well as reduced functional connectivity (FC) of the amygdala with frontal brain 

regions. Altogether, this combined literature provides support for the importance of other brain 

networks (not captured in the cortico-striatal-thalamic-cortical (CTSC) circuit) for the 

pathophysiology of the disorder. Furthermore, the fact that these patients display an altered brain 

response of the limbic system during risky decision-making raises the hypothesis that impaired 

emotional processing/regulation ability may underline an impaired decision-making processing.  
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The current work 

In this work, we departed from a recently published meta-analytic aggregation regarding 

the neural correlates of emotional processing in OCD patients (Thorsen et al., 2018b). We re-

conducted a meta-analytic aggregation of a subset of studies to obtain maps of a more 

homogeneous set of studies. The meta-analytic results were then analyzed with respect to their 

patterns of functional connectivity, using task-based and task-free analyses. 

 

 

Methods 

Activation Likelihood Estimation 

The selection of studies was based on a recently published meta-analytic aggregation of 

neuroimaging studies investigating the neurobiological correlates of emotional processing in OCD 

patients (Thorsen et al., 2018a). With the goal of maximizing between-studies’ homogeneity, we 

restricted our analysis to those studies using visual or auditory modalities for emotional induction. 

We excluded studies related to moral decision-making, using pediatric samples or imaging 

modalities other than fMRI experiments. According to these criteria, we considered a final list of 

thirteen studies, which are described on Table 1.  

The aggregation of the final list of studies was implemented with the Activation Likelihood 

Estimation approach. Foci are represented as spatial probability distributions. This algorithm 

allows the computation of a coordinate-based meta-analysis by determining the convergence of 

foci reported from different individual studies. Considering that studies with larger sample sizes 

will be a more reliable approximation of the true estimates, these studies will be modelled with 

smaller Gaussian distributions. ALE scores were compared against an empirical null-distribution, 

corresponding to a random spatial association between groups. With the goal of controlling for 

false-positive rate, the statistical significance was defined considering a cluster-level family-wise 

error (FWE) correction at p<.05 and a cluster defining threshold of p<.001 and 1000 

permutations.  
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Table 1. List of studies comparing the neural correlates of emotional processing in OCD patients 
with healthy controls 

Study 
Imaging 
modality Task 

N 
OCD 

N 
HC 

Mean 
age 

% 
Male

s 
Mean 

Y-BOCS 
% 

Med 

An et al. (2009) fMRI 
Symptom provocation using 
pictures 29 21 36.55 50.5 27.2 79.31 

Banca et al. 
(2015) fMRI 

Symptom provocation using 
pictures 15 15 32 

53.3
3 26 93.33 

Basile et al. (2014) fMRI 
Emotional faces and guilt-inducing 
sentences 13 19 37 

76.9
2 19.3 46.15 

Berlin et al. (2015) fMRI Emotional Go/No-Go 9 10 38.33 
55.5
5 23.35 42.11 

Brennan et al. 
(2015) fMRI Emotional Stroop 30 29 32 60 27.8 80 

Britton et al. (2010) fMRI 
Gender matching of emotional vs. 
neutral faces 12 17 13.8 

58.3
3 17.8 100 

Cannistraro and 
Rauch (2004) fMRI Emotional vs. neutral faces 10 10 26.8 40 26.3 0 
Cardoner et al. 
(2011) fMRI Emotional face matching 21 21 28.5 

47.6
2 20.7 95.2 

deWit et al. (2015) fMRI 
Symptom provocation using 
pictures 43 38 38.4 49 21.6 0 

Gonçalves et al. 
(2015) fMRI 

Symptom provocation using 
pictures 15 12 31.7 73.3 23.8 100 

Han et al. (2016) fMRI 
Working memory task with 
emotional distractors 20 23 25.5 60 23.9 55 

Harrison et al. (2012) fMRI Moral dilemmas 73 73 33.1 
57.5
3 22.1 97.26 

Hennig-Fast et al. 
(2015) fMRI Shame/guilt-related sentences 20 20 31.1 50 15.9 NR 
Lawrence et al. 
(2007) fMRI Emotional vs. neutral faces 17 19 34.9 59 25.53 76.47 
Mataix-Cols et al. 
(2004) fMRI 

Symptom provocation using 
pictures 16 17 35.8 50 24.7 75 

Murayama et al. 
(2013) fMRI Symptom provocation using words 22 19 36.1 

36.3
6 29.9 0 

Park et al. (2016) fMRI Emotional working memory 16 16 31.4 75 25.3 NR 

Phillips et al. (2000) fMRI 
Symptom provocation using 
pictures 14 14 34 50 28 78.57 

Shapira et al. 
(2003) fMRI 

Symptom provocation using 
pictures 8 8 41.8 37.5 25.1 0 

Thiel et al. (2014) fMRI 
Symptom provocation using 
pictures 15 15 43.3 50 24.9 0 

van den Heuvel et al. 
(2004) PET 

Symptom provocation using 
pictures 11 10 40.5 

72.7
2 23.8 0 

van den Heuvel et al. 
(2005) fMRI Emotional Stroop 18 19 33.4 

33.3
3 23.4 0 

Via et al. (2014) fMRI Emotional face matching 67 67 33.1 
56.7
2 21.8 97.01 

Rus et al. (2017) fMRI 
Symptom provocation using 
pictures 42 37 32.5 

35.7
1 17.7 62.3 

Berlin et al. (2017) fMRI Olfactory symptom provocation 15 15 34.07 
53.3
3 17.73 93.3 

Abbreviations: HC, healthy controls; fMRI, functional magnetic resonance imaging; OCD, 
obsessive-compulsive disorder; PET, positron emission tomography; NR, not reported; Y-BOCS, 
Yale-Brown Obsessive-Compulsive Scale; % Med – percentage of patients receiving any type of 
pharmacological treatment. Included studies are highlighted in bold;  
 

Task-based connectivity: Meta-analytic connectivity modeling 
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The accumulating extension of neuroimaging state of the art has been producing large 

volumes of data regarding the localization of neurobiological processes underlying different 

psychological, cognitive and sensorial aspects (Eickhoff, Bzdok, Laird, Kurth, & Fox, 2012). 

Nevertheless, neuroimaging experiments are typically accompanied by low reliability 

(Raemaekers et al., 2007) and low statistical power – which seems to be result from the 

combination a several amount of dependent variables, low sample sizes and a need to correct 

for multiple comparisons (Cremers, Wager, & Yarkoni, 2017). 

Meta-analytic aggregation of neuroimaging research has been established as an 

important tool to identify consistent localizations across experiments (Eickhoff et al., 2009). 

These procedures allow researchers to compare results across studies in the absence of primary 

data (Laird et al., 2009; Poldrack et al., 2008). The use of meta-analytic strategies has more 

recently upgraded to accommodate to exploration of brain-wide functional connectivity patterns. 

This approach – termed meta-analytic connectivity modelling (MACM, Laird et al. (2013)) – 

examines which brain regions are co-activated above chance with a given seed region across a 

large and diverse set of neuroimaging experiments (Eickhoff et al., 2010; Robinson, Laird, Glahn, 

Lovallo, & Fox, 2010). With this strategy, MACM allows the distinction of spatial convergence 

from noise by comparing it against unbiased null-distributions of random spatial associations 

between experiments (Langner, Rottschy, Laird, Fox, & Eickhoff, 2014). MACM has been widely 

used to map the connectivity profile of specific brain regions, such as the cingulate cortex (Torta 

& Cauda, 2011), the caudate (Robinson et al., 2012), the orbitofrontal cortex (Zald et al., 2012), 

the amygdala (Robinson et al., 2010), the insula (Cauda et al., 2012), among others. In addition, 

MACM has also been used to functionally characterize the connectivity patterns formed by 

consistent structural or functional brain alterations in specific clinical and psychiatric conditions 

(e.g., Dogan et al., 2015; Cortese et al., 2016).  

MACM was implemented to establish connectivity patterns for increases for each ROI. 

The identification of co-activated areas was achieved with the BrainMap database 

(http://www.brainmap.org) (Laird, Lancaster, & Fox, 2005) – a large repository of peak 

coordinates as well as the associated meta-data reported in, approximately, 10.000 

neuroimaging experiments. The locations reported for each ROI were exported in MNI space. For 

this study, the search was limited to activations on healthy subjects regardless of the behavioral 
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domain. The whole-brain coordinates were downloaded, and the areas of convergence were 

determined by analyzing the foci resulting from each ROI search.  

 

Task-free connectivity: resting-state functional connectivity 

Acquisition parameters 

One resting-state fMRI (rs-fMRI) dataset was used to complement for the purpose of 

complementing task-based connectivity. Whole-brain resting-state FC was used to identify 

connectivity maps of the seeds resulting from the ALE aggregation. The functional images of 192 

healthy individuals were obtained from Enhanced Nathan Kline Institute – Rockland Sample with 

a Siemens TimTrio 3T scanner. A total of 404 volumes were acquired with the following 

parameters: repetition-time (TR) = 1.4s, echo-time (TE) = 30 ms, flip-angle (FA) = 65º, voxel-

size=2.0mm3, 64 slices. During the rs-fMRI acquisition, participants were instructed to focus on 

a fixation cross, to try to think about anything in particular and to remain awake.  

 

Pre-processing 

Physiological and movement artifacts were removed from the functional images using 

FIX (FMRIB’s ICA-based Xnoiseifier, version 1.061 as implemented in FSL 5.0.9; (Griffanti et al., 

2014; Satterthwaite et al., 2013)). With this approach, the unique variance associated with 

artefactual components is regressed from the data together with 24 movement parameters 

(including derivatives and 2nd order effects as previously described and evaluated; cf. 

Satterthwaite et al., 2013). Data were further preprocessed using SPM8 (Wellcome Trust Centre 

for Neuroimaging, London) and in-house Matlab scripts. The first four scans were excluded prior 

to further analyses, the remaining EPI images corrected for head movement using a two-pass 

(alignment to the initial volume followed by alignment to the mean after the first pass) affine 

registration. Each subject’s functional image was spatially normalized to the ICBM-152 reference 

space using the “unified segmentation” approach (Ashburner & Friston, 2005). The resulting 

deformation was applied to the individual EPI volumes, which were subsequently smoothed with 
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a 5-mm FWHM Gaussian kernel to improve the signal-to-noise ratio and to compensate for 

residual anatomic variations. 

 

 

Results 

ALE 

The hyperactivated brain regions during emotional processing in the group of OCD 

patients, in comparison to healthy controls, are displayed on Table 2 and Fig. 1. Across the 

thirteen studies included in the meta-analytic aggregation, there was a convergent increased 

activity in the group of OCD patients in three clusters, with peaks on BA9, putamen and 

substantia nigra.  

 

 

Figure 1. Results from the Activation Likelihood Estimation. Three significant clusters were 
obtained: a cluster located in Broadman Area 9 (in red), a cluster with the peak centered in 
substantia nigra (in blue) and a cluster with a peak in the right putamen (in green). 
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Table 2. Results from the activation-likelihood estimation (ALE) analysis 

Cluster # 
Volume 
(mm3) 

Extrema 
Value x y z Hemisphere Region 

1 800 0.019 -10 -14 -6 L Subthalamic Nucleus 

  0.018 -10 -12 -14 L Substantia nigra 

2 656 0.019 -6 58 20 L Broadmann area 9 

  0.017 -10 54 22 L Broadmann area 9 

3 592 0.018 28 10 10 R Putamen 

 

MACM 

The patterns of functional co-activation are reported on Figure 2. For the seed located 

in BA9, the MACM revealed functionally connectivity with the prefrontal cortex and posterior 

cingulum (Figure 2A, Table 2). The seed located in the substantia nigra displayed higher 

connectivity with bilateral anterior insula, bilateral putamen, bilateral thalami (Figure 2B, Table 

2). The seed located in the putamen had higher connectivity with the caudate, anterior insula, 

temporal regions and the cerebellum (Figure 2C, Table 2). 

 

 

Figure 2. Meta-analytic connectivity modelling (top) and rs-fMRI FC (bottom) results. Resulting 
maps of task-based connectivity of (A) BA9, (B) Substantia nigra, (C) Right Putamen and of task-
free connectivity of (D) BA9, (E) Substantia nigra, (F) Right Putamen. 
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Task-based functional connectivity 

The analysis of rs-fMRI demonstrated that the seed located on BA9 (Fig. 2D) had 

statistically significant FC with a large portion of the frontal pole, including the medial prefrontal 

cortex (PFC), anterior cingulate cortex (ACC) and orbitofrontal cortex (OFC). In addition, this seed 

was functionally connected to temporal regions, insula, amygdala, posterior cingulum and 

cerebellum. The seed located on subtantia nigra had patterns of connectivity with dorsal and 

ventral divisions of the striatum, primary motor cortex, insula and cerebellum (Fig. 2E). Lastly, 

the seed on the right putamen displayed a connectivity profile with the dorsolateral prefrontal 

cortex (DLPFC) anterior, middle and posterior divisions of the cingulum, dorsal and ventral 

striatum, supplementary motor area, temporal regions (Fig. 2F). 

 

 

Discussion 

In this work, we implemented an activation-likelihood estimation analysis of 

neuroimaging studies to examine the neurobiological mechanisms of emotional processing in 

OCD patients. We re-conducted a meta-analytic aggregation of the emotional processing in OCD 

patients as reported in a previous publication, by selecting a more homogeneous set of studies. 

For this purpose, we focused only in studies with adult samples, reporting the results of whole-

brain fMRI findings. We observed that there were consistent patterns of increased activation in 

three clusters with peaks on BA9, substantia nigra and right putamen. Task-based and task-free 

connectivity maps were obtained for each of these seed regions and functionally characterize the 

pattern of association of these seeds across the BrainMap database.  

A common finding pertains to the connectivity of the resulting ALE seeds with striatal 

and insular brain regions. Besides being associated with topics such as emotion, autonomic 

function or higher cognitive tasks (Chang, Yarkoni, Khaw, & Sanfey, 2012), consistent patterns 

of insular activation have been reported in decision-making paradigms, including norm 
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compliance and fairness processing (Bellucci, Feng, Camilleri, Eickhoff, & Krueger, 2018). 

Specially for the substantia nigra and the putamen seeds, their pattern of connectivity also 

comprises the salience network, namely the bilateral insula and the dACC. The core function of 

the salience network is to mark salient events for additional processing and initiate appropriate 

control signals (Menon & Uddin, 2010), a function with critical importance for processes related 

to both emotional processing and decision making. 

The findings of consistent activation partially overlap with the previous abovementioned 

publication. Nevertheless, the findings from Thorsen and colleagues (2018) include additional 

brain regions, such as bilateral amygdalae, ventral ACC and the occipital lobe. Some 

methodological considerations may help to explain these differences: first, we decided to restrict 

the pool of studies to a more homogeneous set, excluding experiments using tasks involving 

tasks such as moral decision-making, using pediatric samples and non-fMRI studies; the second 

aspect pertains to the method of aggregation of studies, which relied on Activation-Likelihood 

estimation, as opposed to the approach used in Thorsen’s publication, which relied on effect-

sized signal differential mapping (ES-SDM) (Radua et al., 2012). The chosen criteria will have an 

impact on the level of heterogeneity in a sample of experiments (Müller et al., 2018). Whereas 

it is true that the inclusion of more studies contributes to increased statistical power and to avoid 

that meta-analytic findings are driven by few experiments (Eickhoff et al., 2016), meta-analytic 

aggregations of neuroimaging studies face a tradeoff between the number of studies and the 

homogeneity between the included studies (Müller et al., 2017).  

Finally, this meta-analytic aggregation focused exclusively on whole-brain analysis of 

neuroimaging data – as it is generally recommended for CBMA studies. This strategy accounts 

for the fact that the convergence across experiments is tested against a null-hypothesis of 

random spatial associations across the whole-brain, i.e., each voxel has the same chance of 

being activated (Eickhoff et al., 2012). However, the exclusion of studies focused on a single 

region-of-interest may also raise additional bias, by excluding a considerable amount of studies 

(Müller et al., 2018). Possible solutions to handle this issue include the implementation of meta-

analytic aggregations focused on a single ROI, in which the assumption of random distribution 

is delimited to that same ROI (Müller et al., 2018). 
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Abstract 

The search for autonomic correlates of emotional processing has been a matter of interest to 

identify the physiological basis of emotion. Despite an extensive state-of-the-art exploring the 

correlates of emotion, there is no absolute consensus regarding how the body processes an 

affective state. In this work, we aimed to aggregate the literature of psychophysiological studies 

in the context of emotional induction. Two-hundred and ninety-one studies met the inclusion 

criteria and were quantitatively pooled in random-effects meta-analytic modelling. There was a 

negligible differentiation between emotional categories. Considerable amount of between-

studies’ heterogeneity was found in the meta-analytic aggregation. Self-reported ratings of 

emotional arousal were found to be associated with specific psychophysiological indices, 

particularly with the variation of the skin conductance level. Despite this clear association, there 

is still a considerable amount of unexplained variability that raises the need for more fine-grained 

analysis to be implemented in future research in this field. 
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1. Background 

Current conceptualizations of emotion have been consistently influenced by William 

James’ description of “what is an emotion?” in the 19th century (James, 1884). However, this 

has been a matter of relevance since the historical periods of ancient Greece and Rome, where 

emotion was widely perceived as a threat to reason and to philosophical thinking (Solomon, 

1993). Despite the longstanding interest on the study of emotion and the accumulating state-of-

the-art tackling this topic, a lot is still left to unravel. A matter of discussion pertains to the exact 

nature of the physiological correlates of emotional processing, as well as the exact role of bodily 

changes in emotion. Even though it is widely established that there are rich reciprocal 

connections between states in the central and peripheral nervous systems and what can be 

broadly described as emotional events, the direction of this association (i.e., the cause-effect) is 

a matter of discordance (Larsen, Berntson, Poehlmann, Ito, & Cacioppo, 2008). One hypothesis 

– the Cannon-Bard theory (Cannon, 1927) – states that the efferent connections from the brain 

to periphery causes the peripheral variations in response to the subjective processing of emotions 

(i.e., feelings). An opposite argument suggests that bodily changes follow directly the sensorial 

perception, which will not only precede, but will also generate the emotional experience (James, 

1884). The third argument – the two-factor theory of emotion (Schachter & Singer, 1962) – 

shares a similar periphery-to-brain perspective, but suggesting that there is an undifferentiated 

peripheric response to different emotional states. Instead, the emotional experience will be 

cognitively interpreted, by conscientiously linking the experienced arousal with the situational 

context.  

 

Psychophysiological correlates of emotional processing 

The relevance of studying the brain/body correlates of emotional processing originally 

arises from the James-Lange theory of emotions, which highlights the close link between 

emotions and behavior. “Without the bodily states following on the perception, the latter would 

be purely cognitive in form, pale, colorless, destitute of emotional warmth. We might then see 

the bear, and judge it best to run, receive the insult and deem it right to strike, but we could not 

actually feel afraid or angry.” (James, 1884). An extensive body of literature has examined the 

biological underpinnings underlying emotional processing, through the lens of central (central 
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nervous system level; CNS) or peripheral measurement (autonomic nervous system level; ANS). 

Altogether, these findings provide evidence for a reciprocal relationship between the bodily 

expression of emotion and how emotional information is attended. This underlines the central 

tenets in the theories of embodied cognition – the perspective that the perception and 

conceptualization of emotion involves perceptual, somato-visceral and motoric reexperiencing of 

the relevant emotion in one’s self (Niedenthal, 2007).  

The results from the meta-analytic aggregation of CNS measures are not consensual 

regarding the nature of the emotional processing on the brain: one branch of research suggests 

that different emotional categories have distinct signatures on brain correlates – supporting the 

view of the classical basic theories of emotion (Lench, Flores, & Bench, 2011); contrasting 

evidence points to non-specific patterns of brain response to the processing of discrete emotional 

categories (Lindquist, Wager, Kober, Bliss-Moreau, & Barrett, 2012).  

Many studies have characterized ANS responses to emotional processing by measuring 

the two main branches of this system: the sympathetic (which primes the body for action by, for 

instance, increasing the heart-rate) and the parasympathetic divisions (which aids in restorative 

functions; e.g., simulation digestion). In general, ANS measures can be grouped according to 

different systems: electrodermal, cardiovascular, respiratory and facial (Table 1). Previous meta-

analytic aggregations of the ANS correlates of emotional processing provided little evidence for 

different emotional categories, however with no evidence for discrete emotions’ specificity 

(Cacioppo, Berntson, Larsen, Poehlmann, & Ito, 2000; Siegel et al., 2018). These results have 

been interpreted in line with the constructionist view of emotion (or the population hypothesis) 

(Barrett, 2017b) – which perceives emotional categories as conceptual categories (Barrett, 

2017a) 
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Table 1. Description of psychophysiological measures 

 

 

Group   Measure  Definition 

Electrodermal 

system 
   

 
Tonic measures 

  

  

Skin conductance level 

(SCL)  Tonic level of electrical conductivity of skin 

 
Phasic measures 

  

  
Change in SCL  Gradual changes in SCL measured at two or more points in time  

  
Frequency of NS-SCRs  Number of SCRs in absence of identifiable eliciting stimulus  

  
SCR amplitude  Phasic increase in conductance shortly following stimulus onset  

  
SCR latency Temporal interval between stimulus onset and SCR initiation  

  
SCR rise time  Temporal interval between SCR initiation and SCR peak  

  
SCR half recovery time  

Temporal interval between SCR peak and point of 50% recovery 

of SCR amplitude 

  

SCR habitation (trials to 

habituation) 

Number of stimulus presentations before two or three trials with 

no response 

  
SCR habituation (slope) Rate of change of ER-SCR amplitude 

Cardiovascular 

system 
   

 
Electrocardiogram 

  

  
Heart rate (HR) Temporal interval between successive R spikes 

  
SDNN 

Standard deviation of the normal beat to normal beat intervals 

(normal-to-normal or NN) 

  
RMSSD Root Mean Square Successive Difference) statistic 

    

  
Low Frequency (LF) 

Power in low-frequency range. Mixture of sympathetic and 

parasympathetic rhythms 

  
High Frequency (HF) 

Heart rate fluctuations occurring within the respiratory frequency 

band - Power in high-frequency range 

  

Respiratory sinus 

arrhythmia (RSA) 

Respiratory gating of autonomic control by afferent input from 

lung stretch receptors 

 
Blood Pressure 

  

  
Systolic Systolic Blood Pressure 

  
Diastolic Diastolic Blood Pressure 

    

  
Finger Temperature 

 
Respiratory system 

   

  
Respiratory rate Number of breaths 

Facial system 
   

 
EMG 

  

  
Corrugator Supercilii Group of facial muscles associated with frowning 

    Zygomaticus Major Group of facial muscles associated with smiling 
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2. Methods 

 

2.1. The current work 

The goal this work was to aggregate the results of experimental studies investigating the 

ANS (cardiovascular, electrodermal and respiratory) correlates of emotion elicitation. For this 

purpose, due to their increased complexity and dynamic nature, audiovisual stimuli (i.e., videos) 

are thought to provide a richer and ecologically valid methodology to induce affective sates 

(Baumgartner, Esslen, & Jäncke, 2006). In addition, video clips typically induce a more sustained 

affective state compared to presentation of static stimuli that elicit only short-lived affective 

responses (Bos, Jentgens, Beckers, & Kindt, 2013; Gross & Levenson, 1995). As such, we 

restricted our meta-analytic investigation to experiments using videos to elicit any affective 

response. It was also our goal to assess these correlates, using different perspectives of 

emotional processing – through the lens of a classic view – looking at the ANS correlates of main 

emotional categories (including: sadness, disgust, fear, anger and happiness), but also from a 

dimensional perspective – namely the valence–arousal model (Russell, 1980) – which postulates 

a bipolar valence dimension ranging from positive to negative, and an orthogonal arousal 

dimension ranging from low arousal to high arousal. For the latter aim, we associated the pooled 

effect-size for each emotional contrast with the variance of self-reported levels of arousal, for 

emotional content with positive and negative valence. 

 

2.2. Data sources 

The systematic review was implemented following the Preferred Reporting Items for 

Systematic Reviews and Meta-Analyses (PRISMA) guidelines (Moher, Liberati, Tetzlaff, Altman, & 

Group, 2009). The literature search was performed in multiple online databases, on August 

2017, including PubMed, PsycInfo and Google Scholar, to identify relevant studies in the context 

of autonomic nervous system correlates of emotional processing. The following keywords and 

logical aggregations were used: (autonomic OR peripher*) AND (emotion OR arousal OR valence) 

AND (films OR movies OR clips OR videos). In addition, studies citing validated sets of emotional 

films were also included (Carvalho, Leite, Galdo-Álvarez, & Gonçalves, 2012; Gilman et al., 2017; 
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Gross & Levenson, 1995; Hewig et al., 2005; Jenkins & Andrewes, 2012; Kaviani, Gray, 

Checkley, Kumari, & Wilson, 1999; Maffei et al., 2014; Philippot, 1993; Ray, 2007; Samson, 

Kreibig, Soderstrom, Wade, & Gross, 2016; Schaefer, Nils, Sanchez, & Philippot, 2010). Last, 

we also screened the reference list from relevant reviews on the field. Studies obtained from 

more than one database were identified as duplicates. References from relevant manuscripts 

were also included. The selection of individual studies was conducted in two consecutive phases: 

screening and full-text assessment. The inclusion criteria for each phase is described below.  

 

2.3. Inclusion criteria 

For the screening phase, the following criteria was established to determine study 

selection: (1) the study was published as an original research article in a peer-reviewed journal 

– i.e., reviews, commentaries, protocols, publications in book chapters or conferences were not 

considered; (2) the study was published in English language; (3) the study involved human 

subjects; (4) the study implemented the visualization of films with emotional content; (5) one or 

more measures of autonomous nervous system correlates were obtained. The studies meeting 

these criteria were comprehensively assessed during the full-text assessment phase, in which 

the following inclusion criteria were defined: (1) the study presents results for healthy individuals; 

(2) films were classified according to one specific emotional category or one specific emotional 

valence – i.e., studies implementing mixed emotional content were not included; (3) the study 

summarizes results for individual peripheral measures (i.e., not composites of two or more 

measures) and in response to one single film or one single category (e.g., average of peripheral 

response to films from the same emotional category); (4) the study presents the results of 

peripheral measures, contrasting emotional films to either an emotional film with neutral content 

or to a baseline period.  

 

2.4. Data extraction 

A structured database was constructed to aggregate the characteristics retrieved from 

individual studies, including sample characteristics (sample size, participants’ mean age, 

proportion of male/female participants), description of ANS measures, stimuli-related variables 
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(length of film clips, emotional category/valence of each stimulus). In addition, we also extracted 

valence and arousal ratings, assessed with the self-assessment manikin (SAM) (Bradley & Lang, 

1994) or, alternatively, by assessing the intensity of the target emotions, as measured through 

the Positive and Negative Affect Schedule (PANAS) (Watson, Clark, & Tellegen, 1988) or similar 

structured or non-structured questionnaire forms. Self-reported scores were normalized, 

considering the lower and upper limits of the measurement scale to allow for between-studies’ 

comparison.  

When the relevant statistics were not available from the main text, tables or 

supplementary information, but was represented in plots, we used the GetData graph digitizer 

tool (Fedorov, 2008) to extract mean and dispersion measures, based on the manual definition 

of axes scaling. Similar strategies have been previously described and revealed the validity of 

this approach to estimate real values (e.g., Kalluri, Zhang, Caritis, & Venkataramanan, 2017). 

 

2.5. Data analysis 

Separate meta-analyses were conducted for each emotional category/dimension and 

peripheral measure. For each individual study, average scores and dispersion measures were 

used to compute effect sizes. To estimate within-subjects’ standardized effect sizes, the mean 

difference between an emotional condition and neutral/baseline scores was calculated. If not 

directly reported, the standard deviation (SD) for difference was estimated, considering the 

individual SDs for each measure, i.e., based on the individual dispersion values for the emotional 

category and the baseline/neutral condition, according to: 

������ =
��������

���������
�

�
 , (1) 

where SDdiff corresponds to the standard deviation of the difference. Cohen’s d and confidence 

intervals from individual studies were aggregated using random-effects models (restricted 

maximum-likelihood), which constitutes a more conservative approach, to account for significant 

between-studies’ heterogeneity. For each emotional contrast, the effect size Cohen’s d was 

computed as: 
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 �̅�������� �̅��������/�������

������
 , (2) 

Effect sizes were interpreted as small (≥0.20), medium (≥0.50) and large (≥0.80) 

(Cohen, 1988). The variance of Cohen’s d (vard) was calculated to establish the 95% confidence 

interval (CI), according to the formula: 

���� =
�

�
+

��

��
, (3) 

Between-studies heterogeneity was estimated based on the significance of the Cochran 

Q test (Χ2 statistic) and I2 statistic. I2 was calculated as  

�� =  
��������� �� �������

�
× 100, (4) 

where Q is the Cochran’s statistic. Leave-one-out sensitivity analyses were conducted to assess 

the impact of individual studies on the overall estimated. Several strategies were implemented 

for assessing publication bias, including the Begg’s rank correlation statistic for funnel plot 

asymmetry. In addition, contour-enhanced funnel plots were used which enables the 

consideration of the statistical significance of study estimates. Cluster-robust meta-analytic 

procedures were implemented to account for the statistical dependence of multiple effect sizes 

obtained from the same study, as these are likely to produce clusters of internally correlated 

effect size estimates (Pustejovsky & Tipton, 2014). Meta-regression analyses were conducted to 

assess the impact of sample characteristics (mean age, proportion of male/female individuals), 

stimuli-related [duration of the stimuli and the nature of comparison (i.e., comparison of the 

emotional category against neutral stimuli or against a baseline period)] and self-reported 

variables (valence and arousal ratings) on the individual meta-analytic estimates. With the goal 

of assessing the adequacy of a dimensional perspective, correlation analyses were performed 

between the standardized mean differences (i.e., Cohen’s d values) and scaled measures of self-

reported arousal and valence, independently of the emotional category.  

Statistical analysis was performed in RStudio (v3.31.1, RStudio, Boston, MA, USA). The 

meta-analytic pipeline was implemented using the metafor (Viechtbauer, 2010) and 

clubSandwich (Pustejovsky & Tipton, 2014) packages. The dataset used for the meta-analytic 

investigation, and the code for the analysis is available at the Open Science Framework 

(https://osf.io/x6vwe/). 
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3. Results 

Fig. 1 represents the process of article selection, as a PRISMA flowchart. The literature 

search yielded 3445 articles. After the combination of the datasets, 636 duplicated articles were 

removed, resulting in a total of 2809 articles being included in the screening phase. During the 

screening phase, 2299 articles were excluded for not meeting the pre-defined inclusion criteria. 

Of the 591 articles assessed for eligibility, 288 articles were further excluded, mainly for not 

presenting psychophysiological data, not having emotional contrasts, or because data were not 

reported for individual psychophysiological measures.  

 

 

Figure 1. PRISMA flowchart 
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3.1. Characterization of the included studies 

Table 2. Characteristics of the included studies 

Author Year N Country Provenience Mean Age % Males 

Aguado 2016 38 Spain University 22.3 50% 

Aldao 2013 17 US University/Community 30.5 -- 

Anastassiou-Hadjicharalambous 2008 44 UK Community 8.7 50% 

Arnaudova 2017 78 Netherlands University 19.6 6% 

Austin 2007 11 US Community -- 0% 

Ayala 2010 20 US Community 28.2 15% 

Baldaro 2001 45 Italy University -- 0% 

Baldaro 1996 30 Italy University -- 47% 

Baldaro 1990 24 Italy University -- 33% 

Beevers 2011 67 US University 18.4 0% 

Bensafi 2004 72 US University 12.8 50% 

Berna 2014 63 France University 20.9 0% 

Blau 2009 86 Israel kindergarten children 4.7 37% 

Bogdanov 2013 21 Ucraine University -- 48% 

Bos 2013 35 Netherlands University 20.6 34% 

Bos 2013 35 Netherlands University 20.6 34% 

Bradley 2009 96 UK Community 35.6 41% 

Bradley 2007 50 US University 19.7 44% 

Bride 2014 408 US University/Community 24.4 37% 

Britton 2006 40 US Community 19.3 48% 

Brumbaugh 2013 169 US Community 27.0 40% 

Brzozowski 2017 49 UK University 18.9 43% 

Busscher 2010 36 Netherlands Community 43.4 47% 

Butler 2006 36 US University 20.0 0% 

Carboni 2017 30 Spain University 24.8 37% 

Carvalho 2012 32 Portugal/Spain University 23.3 50% 

Chentsova-Dutton 2010 34 US Community 30.2 0% 

Chentsova-Dutton 2010 60 US University 19.4 49% 

Chentsova-Dutton 2010 18 US Community 32.1 0% 

Chentsova-Dutton 2010 16 US Community 28.4 0% 

Chentsova-Dutton 2014 114 US University/Community 21.3 35% 

Clapp 2015 192 US University 19.9 43% 

Codispoti 2008 60 Italy University 23.1 45% 

Costa 2009 60 Italy -- 27.6 50% 

Coyne 2011 50 UK University 24.7 40% 

Crowell 2017 116 US Community 35.0 0% 

Davis 2016 101 US Community 5.8 54% 

Davydov 2011 26 Belgium University 20.0 0% 

Davydov 2011 26 Belgium University 20.0 0% 

Davydov 2013 26 Belgium University 20.0 0% 

de Groot 2014 52 Netherlands -- 22.4 50% 

de Jong 2011 60 Netherlands University 21.6 13% 

de Sousa 2012 25 Australia Community 29.0 56% 

de Wied 2012 32 Netherlands Community 13.8 100% 

Demaree 2004 52 US University 18.5 48% 

Demaree 2005 69 US University 19.3 48% 

Deng 2017 110 China University 21.2 28% 

Deng 2016 79 China Community 20.9 39% 

Eberhardt 2016 17 Germany University 21.5 0% 

Eisenberg 1992 117 US School 7.3 56% 

Elices 2012 30 Spain University/Community 26.9 0% 

Erisman 2010 15 US University 24.1 50% 

Evans 2013 87 UK Community 33.1 33% 

Fang 2001 62 US University 19.7 100% 

Fanti 2016 56 Cyprus University/Community 20.5 46% 

Fanti 2017 82 Cyprus University/Community 21.0 50% 

Fernández 2012 123 Spain University/Community 29.2 26% 

Fortunato 2013 273 Germany Kindergarten 6.3 36% 
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Fowles 2000 92 US Community 4.4 51% 

Francis 2016 58 Australia University/Community 23.8 26% 

Fredrickson 1998 72 US Community -- 50% 

Gatzke-Kopp 2014 209 US kindergarten children 6.0 63% 

Gentzler 2009 65 US Community 7.9 54% 

Gilbert 2016 83 US Community 19.7 0% 

Gilchrist 2016 60 UK University/Community 22.0 75% 

Gilchrist 2016 42 UK University/Community 22.0 26% 

Giuliani 2008 16 US University 18.8 0% 

Glissen 2008 78 Netherlands Community 3.8 49% 

Glissen 2008 92 Netherlands Community 7.4 47% 

Glissen 2007 78 Netherlands Community 3.9 49% 

Golland 2015 78 Israel University -- 0% 

Golland 2014 27 Israel University 20.0 33% 

Gomez 2005 73 Germany University 24.0 51% 

Gomez 2009 76 Germany University/Community 24.0 51% 

Gračanin 2007 65 -- University 21.5 22% 

Gross 1998 40 US University 21.0 50% 

Gross 1993 43 US University 19.3 100% 

Gross 1994 150 US University 19.1 0% 

Gruber 2011 24 US Community 35.5 50% 

Gruber 2011 31 US University 20.4 35% 

Hagenaars 2014 50 Netherlands University 21.0 0% 

Hamilton 2011 19 US Community 24.4 0% 

Harrison 2000 30 UK University 21.0 50% 

Hastings 2009 215 US Community 13.3 51% 

Hastings 2014 220 US Community 13.7 50% 

Hendriks 2007 60 Netherlands University 20.4 0% 

Herring 2011 39 US University 21.5 31% 

Herring 2011 39 US University 21.5 31% 

Hsieh 2016 34 Taiwan University 22.0 18% 

Ivonin 2015 23 Spain University 27.8 57% 

Ivonin 2015 25 Netherlands University 24.0 52% 

Jang 2015 20 Korea University 21.0 50% 

Jin 2015 25 US Community 31.0 40% 

Jones 2014 20 US Community 3.1 75% 

Jones 2014 21 US Community 5.9 52% 

Jönsson 2008 30 Sweden University 23.3 50% 

Kalvin 2016 169 US kindergarten children 5.6 66% 

Kaviani 2010 16 UK Community 28.3 50% 

Kaviani 2005 16 Iran University 27.4 50% 

Kaviani 2006 20 Iran Community -- 100% 

Kindt 2005 50 Netherlands University 20.7 30% 

Kornreich 1998 14 Belgium Community -- -- 

Krahé 2011 303 Germany University 23.8 71% 

Kreibig 2007 34 US University 21.0 44% 

Kreibig 2011 32 US University 20.9 47% 

Kreibig 2013 43 US University 20.8 0% 

Kreibig 2015 48 US University 20.7 0% 

Kuijsters 2016 15 Netherlands University 22.4 53% 

Kuijsters 2016 15 Netherlands University 22.4 53% 

Kuijsters 2015 38 Netherlands Community 78.8 50% 

Kumari 2001 10 UK Community -- 30% 

Kunzmann 2005 48 US Community 21.0 50% 

Kunzmann 2005 47 US Community 71.0 51% 

Kunzmann 2005 48 Germany Community 23.9 50% 

Kuo 2009 20 US Community 23.3 0% 

Kuo 2013 20 Canada Community 23.3 0% 

Kuypers 2017 80 Netherlands University 22.5 50% 

Kyranides 2016 82 Cyprus Community 20.0 51% 

Laan 1995 49 Netherlands University 22.3 0% 

Lackner 2014 48 Austria University 21.0 0% 

Lane 2009 12 US Community 23.3 0% 

LeBlanc 2016 26 US Community 38.7 27% 
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Lee 2009 80 Korea University 20.8 46% 

Lin 2017 50 Israel Soldiers 18.9 100% 

Llera 2014 95 US University 19.0 28% 

Lobbestael 2006 64 Netherlands University (7 were not) 23.4 50% 

López-Benítez 2017 31 Spain University 21.1 19% 

López-Benítez 2017 33 Spain University 21.1 39% 

Maras 2012 19 UK -- 37.1 83% 

Marsh 2007 23 US Community 10.5 100% 

Matsunaga 2009 12 Japan -- -- 100% 

Matsunaga 2008 11 Japan University -- 50% 

Merrifield 2014 72 Canada University 18.9 39% 

Mohino-Herranz 2015 40 Spain University -- 70% 

Montoya 2005 32 Spain -- 26.0 63% 

Morawetz 2016 23 Germany -- 23.0 35% 

Musser 2013 75 US Community 7.6 49% 

Olatunji 2015 95 US University 19.0 24% 

Pallavicini 2013 34 Italy University 21.2 -- 

Palomba 2000 46 Italy University 23.8 33% 

Pang 2013 207 US Community 9.9 -- 

Park 2013 12 Korea University 20.0 50% 

Park 2011 20 Korea University/Community 29.3 50% 

Pfabigan 2015 15 Austria Community 35.6 100% 

Pichon 2014 25 -- -- 23.2 48% 

Pu 2010 136 US University 18.8 49% 

Quas 2007 109 US Community 6.1 51% 

Radstaak 2011 110 Netherlands University 21.1 13% 

Ramos 2015 70 Spain University 31.7 -- 

Renshon 2015 138 US University 22.8 100% 

Reynaud 2012 33 France Community 27.5 12% 

Rickard 2004 21 Australia University 25.5 57% 

Rimes 2016 80 UK Community 33.0 29% 

Rimm-Kaufman 1996 32 US University 20.0 0% 

Rimm-Kaufman 1996 32 US University -- 0% 

Ripley 2017 184 US University 19.9 45% 

Ritz 2010 25 Germany Community 28.0 36% 

Ritz 2013 20 US University/Community 27.7 18% 

Ritz 2012 14 US Community 36.4 72% 

Ritz 2005 14 Germany Community 36.4 29% 

Ritz 2011 14 America Community 36.4 29% 

Ritz 2010 25 Germany University/Community 28.0 36% 

Ritz 2011 14 US Community 36.4 29% 

Roberts 2008 160 US University 20.8 40% 

Robinson 2007 55 US University 19.1 47% 

Rohrmann 2008 89 Germany University 27.9 53% 

Rohrmann 2008 89 Germany University 27.9 53% 

Rohrmann 2009 120 Germany University 25.5 100% 

Rommel 2015 24 France University 19.0 0% 

Rosselló 2015 30 Spain Community 48.1 0% 

Roth 2014 33 Israel University 24.9 40% 

Rottenberg 2003 31 US -- 33.5 0% 

Rottenberg 2002 33 US Community 32.3 30% 

Rushby 2013 25 Australia Community 31.0 56% 

Salters-Pedneault 2007 37 US University/Community 26.7 0% 

Sarlo 2008 17 Italy University 22.7 0% 

Schaich 2013 66 Netherlands University 20.1 0% 

Schallcross 2017 142 US University/Community 22.1 30% 

Schmeichel 2006 50 US University 18.9 46% 

Schneider 2012 28 Germany Community 34.7 54% 

Schneiderman 2011 112 US University/Community 23.4 51% 

Schröder 2015 16 Germany Community 30.2 81% 

Seeley 2016 76 US University/Community 26.6 41% 

Seider 2011 76 US Community 25.4 49% 

Seider 2011 73 US Community 43.7 49% 

Seider 2011 73 US Community 64.6 47% 
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Shenhav 2014 80 US University/Community 27.1 51% 

Shenhav 2014 80 US University/Community 27.1 51% 

Sheppes 2009 45 Israel University 22.9 0% 

Shi 2017 48 China University 23.5 48% 

Silvestrini 2007 43 Switerzland University 24.0 84% 

Simon 2017 20 US Community 27.9 19% 

Simon 2017 20 US University/Community 27.2 15% 

Šolcová 2017 124 Czech Republic University 22.5 41% 

Soto 2016 59 US University/Community 19.5 46% 

Stange 2017 134 US University 21.9 42% 

Stephens 2010 49 US University 19.3 45% 

Stoléru 1999 8 France University 23.0 100% 

Svaldi 2012 17 Germany University 22.8 0% 

Svaldi 2012 17 Germany University 22.7 0% 

Tramoni 2008 13 France Community 24.6 38% 

Tsai 2000 24 US Community 27.9 50% 

Tsai 2000 24 US Community 75.7 50% 

Tsai 2000 24 US Community 26.7 50% 

Tsai 2000 24 US Community 73.6 50% 

Tuck 2017 117 New Zealand Community 41.8 40% 

Tull 2007 17 US University 22.0 12% 

Tull 2010 34 US University 25.9 100% 

Uy 2013 7 US Community 29.8 43% 

Valiente 2004 157 US School 7.7 53% 

van den Broek 2009 24 Netherlands Community 43.0 17% 

Vasilev 2009 69 US Community 9.8 -- 

Vianna 2006 16 US 15.88 (0.33) 26.7 44% 

Wang 2013 98 China University 20.0 21% 

Wegerer 2013 66 Austria University 23.4 0% 

Wegerer 2013 66 Austria University 23.4 0% 

Wegerer 2014 37 Austria University 23.9 0% 

Wen 2014 27 China University 20.0 33% 

Werner 2007 16 California Community 67.0 84% 

Werner 2015 29 Austria University 23.6 0% 

Werner 2015 29 Austria University 23.6 0% 

Wittling 1998 45 -- -- -- 24% 

Wolgast 2011 94 Sweden University 27.4 49% 

Wu 2014 8 Belgium University -- 63% 

Wu 2014 8 Belgium Community -- 53% 

Yaroslavsky 2013 75 US Community 29.6 0% 

Yaroslavsky 2013 94 US Community 29.0 26% 

Yaroslavsky 2016 161 US Community 16.5 64% 

Yaroslavsky 2014 170 US Community 30.9 -- 

Zantinge 2017 45 Netherlands School 4.6 82% 

 

The characteristics of the included studies are summarized on Table 2. Most studies 

reported two ANS measures. Among the studies included in this review (considering all the 

different emotional categories/dimensions), mean HR (186 studies) was the most described 

measure, followed by mean SCL (135 studies), HF-HRV (98 studies), RR (53 studies), EMG (47 

studies), SCR (40 studies), and FT (26 studies). The most reported emotional category was 

sadness (123 studies), followed by fear (67 studies), happiness (58 studies), disgust (51 studies) 

and anger (36 studies). Most studies were conducted in Europe (48% of the studies), and North 

America (42% of the studies). Sample size varied from 4 to 408 participants. Most studies 

recruited university samples (approximately, 54%), followed by community samples 
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(approximately, 28%) and by mixed community/university samples (approximately, 11%), while 

only about 6% of the studies assessed pediatric samples. For the studies comprised by clinical 

and/or psychiatric patients, only the data for healthy individuals were considered. Most studies 

assessed subjective measures of emotional induction, including Self-Assessment Manikin (SAM) 

or similar Visual-Analog Scales (VAS), Positive and Negative Affect Schedule (PANAS) or the 

intensity of target emotions.  

 

3.2. Individual meta-analyses of ANS correlates 

The global estimates obtained for the different meta-analyses (which are described 

below) are summarized on Table 3. 

 

3.2.1. Electrodermal system 

Mean SCL was significantly (with a small magnitude) increased in response to sad 

content, in comparison to neutral/baseline values (d=.27, p=.004, k=31) – nevertheless, the 

significance of these effects was lost when a cluster-robust model was conducted (d=.23, 

p=.077). Disgust and fear were characterized by moderate/large, significant, increases of mean 

SCL [d=.80 (p<.001; k=16), d=.78, (p<.001; k=14)]. For happiness, there were significant, 

moderate [d=.70 (p=.027; k=10) overall effects across studies. Combining all the categories with 

negative valence together, there were moderate increases of mean SCL (d=.46, p<.001, k=87). 

The SCL correlates for the different emotional categories are summarized as forest plots on Fig. 

2. The results of the meta-regression analysis indicated that the use of baseline vs neutral stimuli 

as the control category did not produce significant effects on the overall estimates (b=-0.17, 

SE=.194, p=.378) self-reported arousal had a significant impact on the pooled estimates for 

sadness (b=3.33, SE=.98, p<.001). In addition, there were no effects of age on the pooled 

estimates (b=-0.003, SE=.007, p=.636). Lastly, there was no evidence for a statistical impact of 

the proportion of male individuals on the meta-analytic effects for sadness (b=-.168, SE=.696, 

p=.711). For the remaining pooled estimates, it was only possible to retrieve the information for 

self-reported arousal for seven or less studies, which precluded us to compute reliable meta-

regression estimates for these emotional categories.  
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Figure 2. Forest and funnel plots for SCL correlates of the different emotional categories. The 
summary statistics represented in forest plots differ from the conservative cluster-robust 
estimates, which considers the statistical dependency between effect-sizes obtained reported on 
the same manuscript. 
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Table 3. Summary of the pooled estimates 

    k Pooled ES Lower CI Upper CI I2 Cluster-Robust ES p-value 

SCL         

 Sadness 31 0.27 0.09 0.46 91.709 0.23 0.08 

 Disgust 20 0.942 0.58 1.31 97 0.76 <.001 

 Fear 16 1 0.57 1.3 95.7 0.775 <.001 

 Anger 4 0.53 0.076 0.98 92.95 0.528 0.11 

 Happiness 10 0.66 0 1.04 91.79 0.7 0.027 

 Negative 87 0.48 0.36 0.59 92.64 0.452 <.001 

SCR         

 Sadness 7 0.42 0.1 0.74 84.51 0.42 0.04 

 Disgust 4 3 -2.275 8.7 99.85 3.21 0.33 

 Fear 6 3.11 -1 7.089 99.8 3.11 0.18 

 Anger 4 0.24 -0.17 1 82.044 0.24 0.34 

 Happiness 5 0.75 0.08 1.42 94 0.751 0.09 

 Negative 25 1.36 0.25 2.48 99.59 1 0.144 

HR         

 Sadness 32 -0.042 -0.23 0.15 94.26 -0.05 0.68 

 Disgust 26 0 -0.752 0.02 98.19 -0.39 0.09 

 Fear 17 0.14 0 0.547 97.96 0.14 0.52 

 Anger 16 0.46 -0.06 1 98.568 0.46 0.1 

 Happiness 28 -0.25 -0.51 0.01 95 -0.245 0.09 

 Negative 96 -0.13 -0.68 0.42 99.74 0 0.773 

HF-HRV         

 Sadness 9 1.483 -2.12 5.09 99.93 1.48 0.44 

 Disgust 6 0 -0.427 0.27 86.22 -0.08 0.66 

 Fear 8 -0.36 -1 0.148 97.12 -0.36 0.21 

 Anger 2 -0.59 -0.96 0 29.752 -0.59 0.2 

 Happiness 6 -0.16 -0.53 0.21 87 -0.163 0.42 

 Negative 26 0.19 -0.85 1.23 99.76 0 0.116 

RR         

 Sadness 6 0.312 -0.28 0.9 96.17 0.31 0.35 

 Disgust 6 1 -0.876 2.72 99.52 0.92 0.36 

 Fear 5 0.19 0 0.385 61.36 0.19 0.11 

 Anger 3 0.22 0 0 57.89 0.22 0.18 

 Happiness 7 0.47 0.08 0.86 90 0.485 0.09 

 Negative 20 0.44 -0.08 0.97 98.74 1 0.139 

EMG-Cor         

 Positive 15 0.27 -0.06 0.6 92.05 0.189 0.51 

 Negative 12 0.88 0.5 1.263 91.46 1 0.01 

EMG-Zyg         

 Positive 7 2.035 0.74 3 98.35 2.31 0.02 

 Negative 9 0 -0.6 0.15 91.15 -0.24 0.378 

FT         

 Positive 5 -0.42 -1.29 0.439 90.27 -0.57 0.33 

  Negative 13 -0.12 -0.28 0 77.44 -0.12 0.335 

 

 

The number of SCRs was significantly increased for sadness (d=.42, p=.040, k=7) and 

happiness (dHa=1.00, pHa=.044) with a moderate magnitude. The remaining emotional categories 

were associated with a trend (although, non-significant) for increases in the number of SCRs 

(dDi=3.21, pDi=.330; dFe=3.11, pFe=.180; dAn=.24, pAn: .340).  
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Figure 3. Forest and funnel plots for SCR correlates of the different emotional categories. The 
summary statistics represented in forest plots differ from the conservative cluster-robust 
estimates, which considers the statistical dependency between effect-sizes obtained reported on 
the same manuscript 
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Nevertheless, it is important to highlight that these results should be interpreted with 

caution, since the number of studies reporting results for this metric ranged from four (Anger 

and Happiness) to seven (Sadness) studies. The combined effect of categories with negative 

valence did not produce significant overall effects (d=1.14, p=.157). The reduced number of 

studies also precluded the use of meta-regression analyses for this ANS measure (Fig. 3).  

 

3.2.2. Cardiovascular system 

Regarding the mean HR, no significant effects were noted for sadness (d=-.05, k=32). 

Disgust was associated with a small decrease, although non-significant, of the mean HR (d=-

0.39, k=26). Anger was characterized by marginally significant increases of the mean HR 

(d=0.46, p=.100, k=16). Comparing with neutral/baseline stimuli, happiness was associated 

with small reductions of the mean HR (d=-.25, p=.090, k=28) (Fig. 4). None of the tested 

moderators significantly affected the pooled estimates for this metric. The combined effects of 

categories with negative emotional valence yielded significant, although with small magnitude, 

overall estimates (d=-.19, p=.038). 

For high-frequency HRV, there were no significant overall effects for sadness (d=1.48, 

p=.440; k=9), disgust (d=-.08, p=.660; k=6), fear (d=-.36, p=.207; k=8), anger (d=-59, p=.200; 

k=2) or happiness (d=-.16, p=.420; k=6)  (Figure 4). The combined set of negative emotional 

categories did not produce significant overall effects (d=-.22, p=.120). The low number of studies 

reporting other HRV measures, either in the time (e.g., square-root of the mean squared 

differences, or RMSDD) or frequency domains (e.g., low-frequency HRV) did not enable a meta-

analytic pooling of individual studies (Fig. 5). 
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Figure 4. Forest and funnel plots for HR correlates of the different emotional categories. The 
summary statistics represented in forest plots differ from the conservative cluster-robust 
estimates, which considers the statistical dependency between effect-sizes obtained reported on 
the same manuscript. 
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Figure 5. Forest and funnel plots for HF-HRV correlates of the different emotional categories. 
The summary statistics represented in forest plots differ from the conservative cluster-robust 
estimates, which considers the statistical dependency between effect-sizes obtained reported on 
the same manuscript 
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Since there was a limited set of studies approaching the variation of finger temperature 

as a function of distinct emotional categories, studies were aggregated according to their 

emotional valence. For the set of studies with negative emotional content, there was a trend for 

a reduction on finger temperature (d=-.12, p=.335; k=13). For the set of studies with positive 

valence, considering the very low number of studies (k=5) there was an overall reduction of the 

signal of this metric, although not statistically significant (d=-.57, p=.330) (Fig. 6).  

 

 

 

 

Figure 6. Forest and funnel plots for FT correlates of positive and negative valence. The 
summary statistics represented in forest plots differ from the conservative cluster-robust 
estimates, which considers the statistical dependency between effect-sizes obtained reported on 
the same manuscript 
  



 

171 
 

Figure 7. Forest and funnel plots for RR correlates of the different emotional categories. The 
summary statistics represented in forest plots differ from the conservative cluster-robust 
estimates, which considers the statistical dependency between effect-sizes obtained reported on 
the same manuscript 
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No meta-regression aggregation was implemented for the set of cardiovascular 

measures, due to the reduce number of studies reporting self-reported arousal along with enough 

statistical information for the computation of effect-sizes. The same was also observed for the 

correlates of respiratory and facial systems. 

 

3.2.3. Respiratory system 

There were small-to-moderate increases in RR for happiness (d=.49, p=.090), fear 

(d=.19, p=.110), anger (d=.22, p=.18), sadness (d=.31, p=.35) and disgust (d=.92, p=.36) (Fig. 

7). Nevertheless, none of these emotional categories was found to produce significant overall 

estimates. Similarly, the combined effects of the categories with emotional valence did not 

achieve statistical significance (d=.65, p=.139). 

 

3.2.4. Facial system 

Two EMG facial measures were considered for this meta-analytic aggregation: The 

Corrugator Supercilii and the Zygomaticus Major. For both measures, there was a reduced 

number of studies reporting essential measures for the computation of effect sizes, considering 

individual emotional categories. As such, we grouped the different contents according to the 

emotional valence of the stimuli, i.e., sets of positive and negative emotions. For the set of 

positive emotions, non-significant changes from neutral stimulation were found for the Corrugator 

Supercilii (d=.19, p=.510; k=15); on the other hand, the set of negative emotions was associated 

with a significant, large, increase of the activity of the Corrugator Supercilii (d=1.00, p=.010; 

k=12). Considering the Zygomaticus Major, small, non-significant differences were obtained for 

the set of negative stimuli, in comparison with baseline scores (d=-.24, p=.378; k=9); the set of 

positive stimuli was characterized by significant, large increases of the Zygomaticus Major activity 

(d=2.31, p=.020; k=7) (Fig. 8).  
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Figure 8. Forest and funnel plots for EMG correlates of positive and negative valence. The 
summary statistics represented in forest plots differ from the conservative cluster-robust 
estimates, which considers the statistical dependency between effect-sizes obtained reported on 
the same manuscript. 
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3.3. Association between ANS effect-sizes and self-reported measures of arousal 

Across all the individual emotional categories, the effect size estimates of SCL were 

significantly associated with the self-reported measures of arousal (r=.59, p<.001). This trend 

was also observed for the studies examining SCR and HR, although with considerably lower 

magnitudes (r=0.28 and r=0.26, respectively). For studies examining RR, there was an inverse 

relationship between effect-size estimates and self-reported arousal (r=-.34). For the remaining 

meta-analyzed ANS measures, we did not compute correlation coefficients, considering the 

reduced number of studies reporting self-reported measures together with these 

psychophysiological indices. The patterns association between ANS measures and self-reported 

arousal is visually represented on Fig. 9.  

 

 

Figure 9. Scatter plots representing the association between self-reported arousal and ANS 
correlates for all the emotional categories, including (A) SCL, (B) SCR, (C) HR and (D) RR.  
 

 

4. Discussion 
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In this study, we conducted a systematic review and a meta-analytic pipeline to 

investigate a set of ANS correlates to emotional induction. We specifically focused on audio-visual 

emotional induction (i.e., video) strategies, with the goal of (1) yielding a more naturalistic 

approach of real-life emotional processing and (2) focusing on a single modality of emotional 

induction, to reduce inter-modalities variability. We found little evidence for the discrimination of 

individual categories, in comparison to stimuli of neutral valence, or baseline conditions. 

Nevertheless, specific ANS measures were associated with subjectively-rated arousal levels.  

Dimensional approaches, which conceptualizes the affective experience as a continuum of 

ambiguous states of emotional processing (Posner, Russell, & Peterson, 2005), have gained 

cumulative acceptance among the scientific community. The most popular view within this 

doctrine is the circumplex model of affect (Russell, 1980), which states that any affective state 

results from the combination of two basic neurophysiological systems: hedonic valence (a 

continuum that varies from pleasure to displeasure) and arousal (a continuum that varies from 

calm to excited) (Russell, 2003). This meta-analytic aggregation confirms previous hypotheses 

suggesting that physiological responses vary incrementally with subjective ratings of valence and 

arousal (Posner et al., 2005). Specifically, (1) the level of subjective arousal has been 

demonstrated to be associated with increases of heart-rate and skin conductance (Lang, 

Greenwald, Bradley, & Hamm, 1993), (2) augmentation of the blood-oxygen-level-dependent 

(BOLD) contrast of the occipital cortex was linked to increased subjective arousal during the 

visualization of emotional static pictures (Bradley et al., 2003), (3) high arousal was associated 

with larger late positive event-related potentials (ERPs) (Rozenkrants, Olofsson, & Polich, 2008) 

and N170 (Almeida et al., 2016), while valence was associated with the amplitude of early to 

middle-range components (Olofsson, Nordin, Sequeira, & Polich, 2008). However, the 

magnitude of association between self-reported arousal and ANS variation varied from small to 

large, which raises cautious when interpreting these findings.  

An important aspect that needs to be highlighted pertains to the high levels of between-

studies’ heterogeneity, which could not be accounted by any of the pre-defined variables of 

interest. This raises the possibility that some methodological aspects, including characteristics 

of the acquisition and processing of the psychophysiological signals may yield between-studies’ 

differences. Having this in mind, the inclusion of structured forms for the reporting of 

psychophysiological signals may be an important step towards a clearer between-studies’ 
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comparability and reproducibility. In our meta-analytic investigation, a considerable portion of 

the included studies did not report individual measures of central tendency and dispersion; in 

contrast, these measures were frequently either represented in plots or omitted, in detriment of 

omnibus F-statistics. When reporting between-groups’ or between-conditions’ comparisons, 

researchers tend to place an excessive focus on statistical significance, despite the limitations of 

this approach on the representation of the magnitude of differences (Quintana, 2017). 

Furthermore, as with most of psychology research, psychophysiology relies on p-values as the 

main source of statistical evidence (Baldwin, 2017). These practices are likely to provide 

overestimates of the effects’ magnitude, particularly in low-powered studies (Groppe, 2017).  

Following the current movements to face the reproducibility crisis, which has already been 

highlighted as a priority for the field of psychophysiological research (Kappenman & Keil, 2017), 

psychophysiology experiments would benefit from research practices that promote a 

comprehensive methodological description, as well as data-sharing practices that allow others to 

integrate the findings from multiple studies, such as meta-analytic investigations. It is our 

perspective that the research on this field will benefit from (1) the promotion of open-science 

research, namely the publication of datasets and code for processing and statistical analysis in 

public repositories, such as the Open Science Framework (OSF; https://osf.io/); (2) the incentive 

for the publication of pre-registered reports, in which the methodological protocol (including 

sample size determination, signal processing pipeline, analytical plan, etc.) is submitted to peer-

review before the beginning of data collection; (3) the creation of online repositories/databases 

for the aggregation of peripheral psychophysiology investigations (following the examples of 

neuroimaging field, in which web-based platform allow the aggregation of multiple studies – e.g., 

Neurosynth); (4) the development of structured checklists to enable proper and comparable 

reporting of psychophysiology experiments, such as the Guidelines for Reporting Articles on 

Psychiatry and Heart rate variability (GRAPH) (Quintana, Alvares, & Heathers, 2016). 

Even though our work shares similarities with the work from Siegel and colleagues 

(2018), there are some notable differences that deserve to be outlined. First, we focused on the 

analysis of a specific modality of emotional induction – which allowed us to approximate to a 

more ecological fashion for emotional induction. Second, the fact that our literature search was 

concluded on 2017 allowed us to include a considerable wider extension of studies using the 
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same emotion induction modality. Therefore, we could perform a set of meta-regression analyses 

and to include additional ANS measures, including electromyography.  

 

Strengths and Limitations 

Despite the comprehensive approach here implemented, there are some drawbacks 

associated with this work. One issue pertains to the inclusion of emotional induction strategies 

exclusively based on films. However, with this work, we favored a deeper exploration of multiple 

ANS correlates of different emotional categories. Being characterized by a dynamic audiovisual 

nature, this modality may provide an increased ecological value on the induction of affective 

states. However, recent reports have questioned the notion that positive and negative feelings 

are mutually exclusive (Kreibig, Samson, & Gross, 2013) and that the implementation of 

paradigms that accommodate the co-occurrence of mixed emotional states are a most adequate 

representation of the multifactorial nature of emotion (Kreibig & Gross, 2017). It is relevant to 

emphasize that the maximum shared variance between arousal and ANS variation (namely, SCL) 

was, approximately, 35%. This means that 65% of the variation of SCL is not accounted by self-

reported arousal. This may be due to the static evaluation of an audiovisual content, which may 

not accurately capture the dynamic variations of the arousal throughout its duration. The 

humans’ ability for self-reporting their own experience is limited and often “determined” by 

heuristics, or shortcuts. Previous research has long demonstrated that human individuals are 

particularly unreliable when retrieving information from the memory of past events. People 

typically make their judgements based on prototypical moments, or snapshots (the most intense 

affective experiences) and have a difficulty in correcting for the atypicality of these moments 

across the overall experience – a “failure” that is known the representativeness heuristic 

(Kahneman & Tversky, 1972). According to this perspective, the duration of an event is typically 

neglected by the individual’s retrieval, in detriment of a combined over-focus on the most intense 

timepoints (peaks) and the end of the experience, also known as the peak-the-end heuristic 

(Kahneman, Fredrickson, Schreiber, & Redelmeier, 1993). These constitute plausible, but 

theoretical explanations for the findings here reported. Complementary analyses focusing on the 

magnitude of the peak of skin conductance responses could better test this notion.  
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Altogether, we consider that future studies are required to further explore the advantages 

of these dynamic stimuli, by continuously assessing self-reported measures of valence/arousal 

or equivalent. With this strategy, researchers might be able to obtain fine-grained 

characterizations of different intervals of emotional films, which may contribute to a better 

understanding of the psychophysiological correlates of emotional induction. In addition to this, 

future investigations may also benefit from the combined acquisition of complementary ANS 

signals. This multivariate strategy may be of relevance to predict, or classify, distinct emotional 

states, based on the psychophysiological signatures being continuously collected.  

One strength of this work concerns the fact that it tested different approaches of 

emotional induction. Retrieving both the categorical classification of the different stimuli and, 

when available, the self-reported arousal and valence ratings, allowed us to pool the effects from 

categorical and dimensional perspectives. 

In sum, this investigation provides evidence to the perspective that individual categories 

of emotion are not fingerprinted in individual ANS correlates. Instead, while some ANS measures 

were sensitive to the valence of the stimuli (e.g., EMG), measures from the electrodermal and 

cardiovascular system were generally sensitive to the intensity (i.e., arousal) of the content being 

perceived. Nevertheless, the increased between-studies’ heterogeneity (which had also been 

described in previous aggregations of psychophysiological measures) raises cautious on the 

interpretation of the pooled estimates.   
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Abstract 

During the last decades, an extensive body of scientific research has focused on assessing the 

neurobiological mechanisms underlying emotional processing. Neuroimaging studies – namely 

functional MRI studies – have primarily favored locationist approaches, i.e., investigating which 

brain regions increase or decrease their activity during the exposure to a specific emotional 

condition. Because of this focus, the understanding of how whole-brain network models underlay 

these processes is lacking. In this study, we used a publicly available dataset to employ static 

and dynamic whole-brain connectome analysis during positive and negative induction conditions. 

We observed that both positive and negative induction are associated with statistically significant 

increases in static functional connectivity (FC). In addition, comparing to the positive emotional 

induction, negative induction is characterized by increased whole-brain FC. Regarding the 

dynamic FC (dFC), it was observed that there were significant within-conditions’ differences in 

the probability of occurrence of distinct dFC states, including a state involving sensorimotor 

nodes, a state comprised of nodes from the orbitofrontal cortex and a third state including nodes 

from parietal, temporal and frontal brain regions. With this innovative approach, these findings 

provide novel advances regarding the complexity of emotional processing at the whole brain 

level. 
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Background 

How does a human being process an emotional experience? This has been a historical 

hot topic in the neuroscience and psychology scientific literature. Classic theories of emotion 

propose that different emotional categories are associated with unique neurobiological 

responses. Despite the huge popularity of such view, this perspective has been criticized with 

the argument individual emotional categories are not uniquely processed at the central or 

peripheral nervous system levels. Meta-analytic aggregations of central (Lindquist, Satpute, 

Wager, Weber, & Barrett, 2015) and peripheral (Moreira et al., 2018) (Siegel et al., 2018) 

measures of the nervous system have failed to provide convincing evidence for the classic view 

of emotions. In contrast with this perspective, an alternative view - the circumplex model of affect 

(Russell, 1980) – was derived from dimension reduction and uni- and multi-dimensional scaling 

techniques and provided a spatial representation of the affective experience. According to this, 

dimensional views of emotions postulate that every emotional experience is better perceived as 

the combination of two bipolar, independent dimensions: the emotional arousal and the hedonic 

valence (Barrett & Russell, 1999). Previous reports demonstrate that self-reported arousal 

contributes to neurobiological responses, both with central and peripheral measures.  

Most studies investigating the neurobiological correlates of emotional processing in the 

central nervous system have focused on locationist approaches, i.e., by investigating which brain 

areas are preferentially activated in the presence of a given experimental condition. More 

contemporary perspectives have favored the study of the human brain as a network of 

functionally connected brain regions (Bullmore & Sporns, 2012). Such approaches can be 

applied either to task-independent brain activity, to study what is known as the resting-state 

functional connectivity (rs-FC), as well as during task-performance, where the most popular 

analytical strategies to assess functional connectivity typically rely on psychophysiological 

interactions (PPI) or dynamic causal modelling (DCM). These analytic strategies may provide rich 

information regarding the patterns of functional connectivity (FC) of a priori defined regions of 

interest (ROIs). However, such analyses are (at least) partially motivated by model-driven 

strategies, in which the researcher is interested in assessing associative or causal patterns (the 

latter is defined as effective connectivity, EC) between specific ROIs or between one or more ROI 

and the rest of the brain. Even though less frequently implemented in the context of task-

dependent FC, the use of whole-brain approaches for the examination of FC may yield novel 
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insights regarding the network of the human brain during specific experimental conditions. In 

the context of traditional static functional connectivity (FC) analysis, the correlation between the 

blood-oxygen level-dependent (BOLD) response of segregated brain areas is computed over 

entire recording sessions (Sporns, Tononi, & Edelman, 2000). In this context, the use of specific 

analytical procedures, such as the network-based statistic (NBS), allow the identification of 

components of edges that differentiate groups of individuals or experimental conditions. In 

addition, to the best of our knowledge, no study has yet reported the characterization of FC 

during emotional induction, considering its temporal dynamics. 

In this work, we aimed to assess how emotional induction is processed at the level of 

the central nervous system. Instead of focusing on a locationist view of the human brain, we 

intended to characterize how the emotional experience affects the complex interactions between 

separate brain regions at the whole-brain level, both at the static and dynamic FC levels. 

 

 

Methods 

Participants 

The data used in this study were obtained from a publicly dataset available from the 

OpenNeuro dataset (K Gorgolewski, Esteban, Schaefer, Wandell, & Poldrack, 2017). This dataset 

contains data from 20 healthy individuals, acquired while they were performing an emotion-

induction task. The task was comprised of musical and non-musical auditory stimuli with positive 

and negative hedonic valence. The full characteristics of the experimental apparatus are 

described on the manuscript reporting this dataset (Lepping et al., 2016). 

 

Data acquisition 

The imaging session was performed in a Siemens Skyra 3T. For the structural 

acquisition, a high-resolution T1-weighted 3D MPRAGE sequence was performed with the 

following characteristics: repetition time (TR) =2.300 ms; echo time (TE) = 2.01 msec, flip angle 
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(FA) = 9°, field-of-view (FOV) = 256 mm, matrix = 256x192, slice thickness = 1 mm. For each 

run of the functional acquisitions, 105 echo-planar images (EPI) were acquired using the 

following parameters: TR = 3.000 ms, TE = 0.025, FA = 90º, FOV = 220 mm, slice thickness = 

3 mm.  

 

 

Figure 1. Overview of the experimental paradigm. Each run started with a baseline period (Pure 
tones) of 33s, followed by a block of emotional induction (either positive or negative; 
duration=33s). Until the end of the run, this scheme was repeated three times, with alternating 
emotional conditions. 

 

Data processing 

The MRI data preprocessing was executed using the OpenNeuro platform with the 

FMRIPREP workflow (Esteban et al., 2019), a Nipype (Krzysztof Gorgolewski et al., 2011) based 

tool. The pipeline was applied to one structural (T1-weighted, T1w) and five functional images 

for each subject. Skull-stripping was applied to structural images, using antsBrainExtraction.sh 

v2.1.0. Brain-extracted images were then normalized to the (brain-extracted) ICBM 152 

Nonlinear Asymmetrical template (Fonov, Evans, McKinstry, Almli, & Collins, 2009), using a 

nonlinear registration with the antsRegistration tool of ANTs v2.1.0 (Avants, Epstein, Grossman, 

& Gee, 2008). Segmentation of cerebrospinal fluid (CSF), white-matter (WM) and gray-matter 

(GM) was performed with fast (FSL v5.0.9).  

Functional data was preprocessed with the following steps: slice-timing correction with 

the AFNI program, motion correction using FSL mcflirt, co-registration to the corresponding T1w 
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using boundary-based registration with 9 degrees of freedom, using bbregister of Freesurfer 

(Fischl, 2012). Transformations for motion corrections and co-registration of the BOLD images 

to T1w and from T1w to the MNI template were concatenated and implemented in a single step 

with antsApplyTransforms (ANTs v2.1.0), using Lanczos interpolation.  

CompCor (Behzadi, Restom, Liau, & Liu, 2007) was used to obtain physiological 

nuisance regressors, in which a principal components analysis was implemented in temporal 

(tCompCor) and anatomical (aCompCor) variants. A mask to exclude signal with cortical origin 

was obtained by eroding the brain mask, ensuring it only contained subcortical structures. Six 

tCompCor components were then calculated including only the top 5% variable voxels within that 

subcortical mask. For aCompCor, six components were calculated within the intersection of the 

subcortical mask and the union of CSF and WM masks calculated in T1w space, after their 

projection to the native space of each functional run. Frame-wise displacement (Power et al., 

2014) was calculated for each functional run using the implementation of Nipype. 

 

Data analysis 

The timeseries for the preprocessed scans were extracted with fslmeants for different 

parcellation schemes, including the updated version of the Automated Anatomical Labelling 

(AAL) (Rolls, Joliot, & Tzourio-Mazoyer, 2015).Connectivity matrices were built for each 

parcellation scheme. Static functional connectivity (FC) was performed with network-based 

statistic (NBS) (Zalesky, Fornito, & Bullmore, 2010). This approach enables a proper control of 

the family-wise error rate when mass univariate testing is performed at every edge comprising a 

network (Figure 2). A permutation-based paired samples t-test was implemented to compare the 

connectivity matrices between segments with positive and negative emotional content. Statistical 

significance was defined according to an edge threshold of p<.001 (corresponding to a T-value 

of 3.92, with 18 degrees of freedom. The graphic visualization of significant networks was 

performed with BrainNet viewer (Xia, Wang, & He, 2013). 

In addition, we focused on the characterization of the dynamical FC (dFC), by identifying 

recurrent FC states and comparing the probability of occurrence of each individual FC state in 

different experimental conditions. The approach for the characterization of dFC is fully described 
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in (Cabral et al., 2017). Briefly, phase coherence connectivity (BFC) (Deco et al., 2017; Deco & 

Kringelbach, 2016; Glerean, Salmi, Lahnakoski, Jääskeläinen, & Sams, 2012; Ponce-Alvarez et 

al., 2015) was used to obtain an instantaneous NxNxT (where N is the number of regions; and 

T the number of timepoints) FC matrix for each timepoint (i.e., the dFC at time t; dFC(t)). BFC 

was calculated with the Hilbert transform. For the between-conditions’ comparison over time, we 

considered the leading eigenvector of each dFC, which captures the most dominant connectivity 

pattern of dFC(t). In contrast with other approaches for the examination of dFC – which compare 

the upper triangular elements of NxN dFC(t) matrices obtained at each timepoint – the leading 

eigenvector reduces a N(N-1)/2 to N, while accounting for most of its variance. 

To detect individual FC patterns, a clustering analysis was applied on all the leading 

eigenvectors V1(t) across time points and subjects (i.e., 525 × 19 = 9975 leading eigenvectors). 

Clustering was implemented with k-means, with a range of considered solutions between 2 and 

20. Clustering was implemented with a squared Euclidean distance and 200 replicates. As a 

result, k cluster centroids were obtained, each being a Nx1 vector representing a recurrent FC 

pattern). The optimal clustering solution was evaluated by assessing the clustering solution that 

yielded the most significant between-conditions’ differences.  

 

 

Figure 2. Summary of the analytical pipeline of task-related fMRI. After preprocessing of the 
functional images, the timeseries for each region (defined according to standard atlases) were 
extracted. For the purpose of static FC analysis, a symmetric adjacency matrix R was created, 
where each cell rij represents the correlation r between the time-series i and j. Pearson 
coefficients were converted to normally distributed Z-values using the Fisher’s r to z 
transformation. Matrices were then aggregated for within-conditions’ analysis. With regards to 
dynamic FC analysis, the phase coherence connectivity was calculated to obtain instantaneous 
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matrices. The leading eigenvectors (i.e., the dominant pattern of FC in each instantaneous 
matrix) were clustered to identify recurrent FC states.  

A permutation-based paired t-test was used to identify significant differences between 

the probability of occurrence (i.e., the ratio between the number of epochs assigned to a given 

cluster centroid Vc and the total number of timepoints) of each FC state across different 

experimental conditions (i.e., positive, negative and neutral). This test was implemented with 

10.000 permutations of labels of experimental conditions to independently estimate the null 

distribution for each condition. 

 

Results 

Considering an alpha criterion of .0005, the contrast emotional induction < baseline was 

significantly associated with an FC network (p=.002; with 60 nodes and 111 edges), involving 

bilateral amygdalae, hippocampi, parahippocampi, insula, putamen. In this network, bilateral 

temporal pole were important nodes, with several connections, particularly with cerebellar 

regions. Regarding the contrast positive induction < baseline conditions was associated with a 

network with 109 edges (involving 67 nodes, with p=.004), mainly comprised of limbic, striatal, 

insular, sensorimotor, parietal, occipital and cerebellar brain regions. In addition, the contrast 

negative induction < baseline was associated with statistically significant increases in a network 

(with 10 edges and 9 nodes, with p=.038), encompassing the bilateral temporal pole, 

hippocampus, parahippocampus, supramarginal and fusiform gyri and cerebellum. In addition, 

there were decreases in the insula, olfactory and middle cingulum of the left hemisphere; and 

lingual gyrus, fusiform and supplementary motor area of the right hemisphere. The contrast 

negative>positive was associated with significant FC increases of a network with 38 edges (27 

nodes, with p=.007) and comprised of edges of the occipital lobe (including cuneus, calcarine 

and lingual gyrus), cerebellum, angular gyrus, right putamen and inferior frontal nodes (Figure 

3). 
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Figure 3. Networks with significantly increased FC across emotional conditions. Different 

thresholds are presented in separate columns (p<.0005, p<.00025 and p<.0001, from left to 

right). 

 

With regards to dFC, the most prevalent FC pattern (state 1; VC1), which occurs more 

than 40% of the time, corresponds to a state of global BOLD coherence (all VC1 elements have 

the same sign, so the outer product, VC1VC1T, is non-negative). In other words, during the epochs 

t when the dFC is mainly shaped by this pattern, the BOLD signals of all brain areas exhibit a 

strong coherence. The remaining states were characterized by elements with different signs, 

suggesting that FC can be partitioned into two communities (illustrated in red and blue), with 

positive FC values within the community elements and negative FC values between communities 

(Cabral et al., 2017). 

Negative emotional induction was associated with significantly decreased probability of 

occurrence of state 3 (p=.038, corrected for multiple comparisons) in comparison to neutral 

stimuli. In addition, significant differences were obtained in state 5, a network formed by edges 

from the sensorimotor cortex, temporal regions and striatal nodes. This FC state displayed a 

significantly increased probability of occurrence in the negative emotion condition in comparison 

to both positive (p=.017) and neutral conditions (p=.046). In addition, there were significant 

differences in the probability of occurrence of state 2 in the positive emotion condition in 

comparison to the neutral condition (p=.015). No significant differences were obtained for the 

remaining FC states. 
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Figure 4. Dynamic FC states. A. Recurrent FC states obtained with k-means clustering. B. 
Distribution of each region to that state. C. Between-conditions’ comparison. D. Matrices for the 
different FC states. FC states 2, 3 and 5 had significant differences between conditions. *p<.05 
(uncorrected values); **p<.05 (corrected for multiple comparisons with Bonferroni correction). 

 

 

Discussion 

In this work, we implemented a magnetic resonance imaging investigation to 

characterize the human connectome underlying emotional processing. Using an available 

dataset from OpenNeuro, we analyzed the synchronization between different brain regions during 

the induction of negative and positive affective experiences. To the best of our knowledge, this 

work represents the first description of the impact of emotional induction on the repertoire of 

functional networks. Using this approach, we observed that a network comprised of 

sensorimotor, temporal and striatal nodes revealed an increased probability of occurrence during 

negative emotional induction, in comparison to the remaining experimental conditions. On the 

opposite, there was significantly decreased probability of occurrence of a lateralized network 

comprised of parietal, temporal and frontal nodes. A network comprised of OFC nodes was found 

to have a significantly reduced probability of occurrence. With regards to static FC, we observed 

that both positive and negative emotional induction were associated with significantly reduced 
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whole-brain FC. In addition, we observed that negative emotional induction is associated with 

significant decreases of the functional connectivity of spatially distributed networks, involving sub-

cortical and posterior cortical nodes.   

With respect to the network with reduced probability of occurrence during negative 

emotional induction, it is relevant to highlight that even though there is most to be unrevealed 

regarding the laterality of FC associated with emotional processing, lateralization of emotional 

representation has been previously reported (Berridge & Kringelbach, 2015). It has been 

suggested that pleasantness is particularly associated with the modulation of regions of the left 

hemisphere (Davidson, 2004). 

The OFC has been consistently described to have a crucial role in emotional processing  

with a great impact on the representation of reward. (Kringelbach & Rolls, 2004). In particular, 

the mid-anterior division of the OFC seems to be preferentially associated with subjective 

pleasure, in comparison with most other limbic regions (Berridge & Kringelbach, 2015; 

Davidson, 2004). 

A common result in our analyses pertains to the involvement of the cerebellum in the 

between-conditions’ comparisons. The involvement of the cerebellum in emotional processing 

has been accumulating increasing support in the scientific literature. For instance, the 

cerebellum has been systematically involved in psychiatric disorders characterized by impaired 

emotional processing, such as major depression (Peng et al., 2011), anxiety disorders (Nakao 

et al., 2011) or schizophrenia (Chen et al., 2013). Lesion studies have also demonstrated that 

cerebellar damages result in abnormal emotional processing (Turner et al., 2007). In addition, 

the involvement of the cerebellum in emotional processing has been well described in functional 

tasks, including visual-induced emotion.  

An increased auditory-sensorimotor coupling has been demonstrated in musicians 

(Tanaka & Kirino, 2018). Furthermore, damages to the operculum are thought to impair the 

emotional responses to music content (Griffiths, Warren, Dean, & Howard, 2004). 

Altogether, these results suggest that stimuli with negative hedonic valence may have a 

more pronounced effect on whole-brain rs-FC than positive induction. Previous reports have 

demonstrated that negative stimuli may have stronger neurobiological responses than positive 
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stimuli (Mak, Hu, Zhang, Xiao, & Lee, 2009). It has also been proposed that stimuli with a 

negative emotional valence exert a strong influence at several behavioral domains. One such 

example concerns the impact of emotion on action selection during decision-making paradigms, 

which has for long been highlighted in the state-of-the-art (Damasio, 1994). According to such 

perspectives, emotional states with opposing hedonic valence may be determinant for individual 

choices – e.g., an individual feeling anxious about the potential outcome of a risky choice may 

prefer the safer option; someone feeling great may be prone to donate to charity (Lerner, Li, 

Valdesolo, & Kassam, 2015).  

An important question pertains to the complementary evidence provided by static and 

dynamic approaches of FC. While we verified reduced whole-brain FC during conditions of 

emotional induction, we noted a different picture when analyzing the temporal FC dynamics. For 

instance, we observed that a network comprised of sensorimotor nodes had an increased 

probability of occurrence during negative emotional induction.  

Some limitations might be associated with this work. The NBS approach is typically 

implemented for assessing resting-state FC. However, we applied this strategy to compare FC 

networks between distinct experimental conditions. This option may be questioned by the fact 

that, in contrast with the typical setting of resting-state acquisitions, where people are expected 

to stay in a more constant state, where the external stimulation is generally absent, a 

connectomics approach derived from task-related acquisitions will likely be associated with a 

totally contrasting scenario. When people are engaged in a given experimental task, the external 

stimulation will vary in a variety of components, including the physical properties of the stimuli. 

In the case where participants are presented with music tracts, even if the whole tract is 

perceived as generally positive or negative, it does not mean that the level of positivity or 

negativity is constant across its entire extension. As such, this is something that needs to be 

considered when interpreting these findings. On the other hand, this is still more advantageous 

than presenting the task stimuli in an event-related fashion, where due to the unpredictable and 

non-consecutive presentation of each stimulus, the influence of this same stimulus will not be 

sustained. Another consideration pertains to the possibility that the results here obtained may 

be influenced by a variability in individual characteristics, such as personality traits or emotional 

regulation profiles.  
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Despite these questions, this investigation represents a unique characterization of the 

human whole-brain connectome during emotional induction. While most studies address FC 

based on static perspectives, this strategy does not capture the switching behavior between FC 

states (Hansen, Battaglia, Spiegler, Deco, & Jirsa, 2015). Thus, this work may constitute an 

important contribution for understanding the synchronization between different brain regions 

during the emotional experience. 
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Abstract 

Impulsivity is characterized by a set of behavioral patterns, such as maladaptive decision-making, 

lack of inhibitory control, inadequate planning, and can predispose individuals to dysfunctional 

psychological conditions. At the neurobiological level, impulsivity is commonly associated with 

structural and functional alterations of striatal-thalamic-cortical brain regions. However, the 

impact of different dimensions of impulsive traits on the whole-brain functional connectome is 

still poorly understood. In this work, we assessed the impact of different dimensions of 

impulsivity, as measured by the five dimensions of the UPPS-P scale (negative urgency, lack of 

premeditation, lack of perseverance, sensation seeking and positive urgency), on resting-state 

functional connectivity. We observed that lack of premeditation was significantly associated with 

a network involving the putamen, amygdala and cerebellum. Other dimension of impulsivity, 

negative urgency, was associated with the FC of a network comprising anterior, middle and 

posterior divisions of the cingulum, bilateral insula, cerebellum. These results provide novel 

evidence for the correlates of distinct impulsivity dimensions on the whole-brain FC – namely the 

association between impulsivity and reward and emotional-related brain networks. 
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Background 

Impulsivity is a multifactorial trait with a normal variation across individuals. Increasing 

levels of impulsivity are commonly associated with maladaptive decision-making (Korponay et 

al., 2017), and with behavioral deficits, including lack of inhibitory control, inadequate planning 

and impaired performance during delay-discounting tasks (De Wit, 2009). When manifested in 

high levels, it may predispose individuals to a set of dysfunctional conditions, such as attention-

deficit/hyperactivity disorder (ADHD) (Winstanley, Eagle, & Robbins, 2006), drug addiction 

(Dalley, Everitt, & Robbins, 2011), internet addiction (Weinstein & Lejoyeux, 2010), pathological 

gambling (Blaszczynski, Steel, & McConaghy, 1997), compulsive buying (Dell'Osso, Allen, 

Altamura, Buoli, & Hollander, 2008), among others.  

From a conceptual perspective, even though several contributions have been proposed 

to integrate impulsivity in a comprehensive theory of personality, none has received a conceptual 

acceptance among the scientific literature, which may arise from disagreements on personality 

dimensions across distinct models (Whiteside & Lynam, 2001). In an attempt to overcome this 

limitation, the original version of the UPPS was developed in line with the Five-Factor Model of 

personality, which is comprised of five higher-order dimensions: neuroticism, extraversion, 

openness to experience, agreeableness and conscientiousness (Costa Jr & McCrae, 1990). The 

resulting instrument was comprised of four subscales: negative urgency: tendency to act rashly 

under extreme negative emoticons; lack of premeditation: tendency to act without thinking; lack 

of perseverance inability to remain focused on a task; sensation seeking: tendency to seek out 

novel and thrilling experiences (Whiteside & Lynam, 2001). Later, it was recognized that 

impulsive action under positive emotions exists resulting in the development of a positive urgency 

scale which was added to the UPPS scale resulting in a final list of 59 items (Cyders et al., 2007).  

With regards to the neurobiological level, previous studies with human and animal 

models have demonstrated that impulsivity is associated with the availability of dopamine 

receptors and midbrain auto-receptor binding and dopamine release in the striatum (Buckholtz 

et al., 2010). In addition, neuroimaging studies have demonstrated that high impulsivity was 

associated with gray matter reductions in the orbitofrontal cortex (OFC) (Matsuo et al., 2009) 

and with increased functional connectivity (FC) within nodes of the striatal-thalamic-cortical 

circuit (Korponay et al., 2017). Notably, whereas the abovementioned study focused on FC 
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correlates of individual dimensions of impulsivity, it was focused on a seed-based approach with 

an emphasis on basal ganglia nuclei. 

In this work, we aim to complement these previously reported neurobiological correlates 

of impulsivity. We aimed to characterize how different dimensions of impulsivity (as measured 

with the UPPS-P) are associated with brain functional organization. For this purpose, we adapted 

the UPPS-P to European Portuguese, by assessing the validity evidence of the instrument with a 

combined implementation of factor analytic procedures. Finally, using a functional magnetic 

resonance imaging (fMRI) investigation, we assessed the relationship between the variation of 

each dimension of impulsivity with whole-brain resting-state functional connectivity. With this, we 

intended to identify networks of brain regions that are associated with the variation of impulsivity 

traits. 

 

 

Study I: Psychometric properties of the UPPS-P scale 

 

Methods 

 The detailed description regarding the pipeline for the adaptation of the UPPS-P for 

European Portuguese is summarized on the Supplementary Information. A sample of 379 

individuals (28.2% males), with an average of 26.52 years (SD=5.93) participated in this study. 

Only native Portuguese speakers were included in this study.  

 

Measures 

The UPPS-P is a self-report instrument comprised of 59 items. For each item, subjects 

are asked to respond on a scale from 1 (Agree strongly) to 4 (Disagree strongly). Previous reports 

have provided adequate validity evidence for the instrument. In addition, it has been 

demonstrated that the factor structure of the UPPS-P is invariant across sex (Cyders, 2013).  
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The Barratt Impulsiveness Scale-11 (BIS-11, Patton, Stanford, & Barratt, 1995) is a 30-

item self-report instrument of impulsivity, which measures three dimensions: motor impulsivity, 

attention impulsivity, and non-planning impulsivity.  

The NEO-FFI-R is a self-reported measure of personality. It assesses five dimensions: 

neuroticism, extroversion, agreeableness, consciousness and openness to experience. In this 

work, we used a short version of the instrument, with 20 items, which previously demonstrated 

adequate psychometric properties for the Portuguese population  

The Emotion Regulation Questionnaire (ERQ) assesses the tendency to regulate 

emotions in two dimensions: cognitive reappraisal and expression suppression (Gross & John, 

2003). The instrument is comprised of ten items, presented in a 7-point Likert scale.  

 

Statistical analysis 

Evidence based on internal structure of the UPPS-P scale on the Portuguese population 

was assessed throughout the implementation of complementary strategies, including 

Confirmatory factor analysis (CFA) and Exploratory Graph Analysis (EGA). The rationale behind 

this strategy relies on different assumptions: (1) CFA enables a direct comparison between 

alternative models of relationships among constructs, which is a critical component of theory 

testing (Strauss & Smith, 2009); (2) nevertheless, the CFA approach typically fails to provide 

clear support for instruments that apparently had been well established with exploratory factor 

analysis (EFA) (Marsh et al., 2009). 

For the implementation of the network graph analysis, correlations were computed for 

the 59 items of the UPPS-P. The correlation coefficients were then used for the estimation of a 

regularized partial correlation network (Epskamp & Fried, 2018). The resulting edge weight 

parameters were regularized with least absolute shrinkage and selection operator (graphical 

lasso) to avoid the estimation of spurious (non-meaningful) edges. In the graphical representation 

of the network, each circle corresponds to a node (an item of the UPPS-P), and each edge is the 

regularized correlation between two nodes. An edge represents an association between two 

nodes, after controlling for all other nodes in the network. In statistical terms, a significant edge 

between two nodes means that the two items of the UPPS-P are strongly connected, such that 
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when participants score high on one of these items, they are also likely to score high on the 

other. For confirmatory purposes, different CFA models were implemented: the first (Model 1) 

specified the five dimensions as correlated latent variables; Model 2 specified second-order latent 

variables Emotion Based Rash Action (reflected on the first-order latent variables Negative 

Urgency and Positive Urgency), Sensation Seeking (reflected on a unique first-order latent 

variable) and Deficits in Conscientiousness (reflected on the first-order latent variables Lack of 

Premeditation and Lack of Perseverance); Model 3 specified a unique second-order latent 

variable Impulsivity, which was reflected on each dimension of the UPPS-P. 

Reliability of the dimensions comprising the UPPS-P (both long and short versions) was 

estimated with Cronbach’s alpha and MacDonald’s omega. The association between UPPS-P 

and external criteria was performed by means of zero-order correlation analyses.  

Statistical analysis was implemented in R (version 3.4.0). CFA was implemented with 

the lavaan package (Rosseel, 2012); EGA was implemented with the qgraph (Epskamp, Cramer, 

Waldorp, Schmittmann, & Borsboom, 2012), glasso (Friedman, Hastie, & Tibshirani, 2014) and 

igraph (Nepusz & Csárdi, 2006). The code and datasets supporting these analyses is available 

at the Open Science Framework (https://osf.io/bqn79/). 

 

Results 

 

The descriptive statistics for each item are presented on Table S1. The 5-factor solution 

was supported by three methods: Optimal Coordinates, Parallel Analysis and Velicer MAP. This 

solution accounted for 58.0% of the total variance of the full instrument. Figure 1 displays the 

correlograms for the overall scale and for each of the five dimensions.  
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Figure 1. Correlograms between individual variables for the long-version of the scale and for 
each individual dimension.  
 

The visual representation of the EGA demonstrated that the items belonging to the same 

theoretical dimension were closer in a two-dimensional space (Figure 2). Regarding the analysis 

of centrality measures, it was noted that item 58 was the variable with greater levels of closeness 

and betweenness, whereas item 49 had the greatest strength (Figure S1).  

The results from the CFA for Model 1, obtained with three stage robust diagonally least 

squares estimation, revealed that this factorial solution yielded appropriate fit indices 

[χ2
(1642)=2677.0, p<.001, CFI=.926, TLI=.923, RMSEA=.046 (CI90%=.043-.049)] (see 

Supplementary Information for additional details). The different dimensions of the UPPS-P scale 

demonstrated good internal reliability properties, as demonstrated by Cronbach’s alpha and 

MacDonald’s omega coefficients (Table 1). The fit indices for Model 2 (model with three second-

order latent variables) were close to Model 1 [χ2
(1645)=2727.9, p<.001, CFI=.925, TLI=.922, 

RMSEA=.046 (CI90%=.043-.050)]. The unique variable second-order model (Model 3) yielded 

worse fit indices [χ2
(1647)=2896.7, p<.001, CFI=.914, TLI=.910, RMSEA=.050 (CI90%=.047-.053)].  
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Table 1. Reliability of the five dimensions of the UPPS-P 

  NU PU SS PM PS 

omega_h 0.7130511 0.8797345 0.7133274 0.8226982 0.8133214 

Alpha 0.8595192 0.9359935 0.8645789 0.8911962 0.8537704 

omega.tot 0.8829171 0.9455707 0.8901655 0.9196543 0.8857279 

G6 0.8658683 0.9403602 0.873496 0.8994703 0.8559402 

NU – negative urgency; PU – positive urgency; SS – sensation seeking; PM – lack of 
premeditation; PS – lack of perserverance; omega_h – hierarchical omega (estimate of the 
general factor saturation); alpha – Cronbach’s alpha; omega.tot – amount of variance accounted 
for by the general factor; G6 – Guttman's Lambda 6 (amount of variance in each item that can 
be accounted for the linear regression of all of the other items). 
 

 

Figure 2. Partial correlation network with LASSO regularization for the long-version of the UPPS-
P. 

 

Figure 3. Graphical representation of the confirmatory factor analysis for the long-version of the 
UPPS-P. Values represent standardized coefficients. 
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The magnitude of associations between the UPPS-P dimensions was in accordance with 

previous reports, with a range from r=.084 (between sensation seeking and lack of perseverance) 

and r=.675 (between negative urgency and positive urgency).  

 

Table 3. Association between dimensions of the UPPS-P and external measures: Barratt 
Impulsivity Scale (BIS-11), NEO Five-Factor Inventory (NEO-FFI) and Emotion Regulation 
Questionnaire (ERQ) 

 Variable M SD UPPS_NU UPPS_PU UPPS_SS UPPS_PM UPPS_PS 

        

BIS_AT 16.66 2.85 .17** .18** .13* .25** .39** 

      [.06, .28] [.07, .28] [.02, .24] [.14, .35] [.29, .48] 

                

BIS_MO 20.26 3.88 .21** .30** .09 .37** .21** 

      [.10, .31] [.20, .40] [-.02, .20] [.27, .46] [.10, .31] 

                

BIS_NP 22.24 3.98 .19** .16** .08 .35** .22** 

      [.08, .29] [.05, .27] [-.03, .19] [.25, .44] [.12, .32] 

                

NEO_N 8.54 3.00 .12* .09 -.02 -.12* -.07 

      [.01, .22] [-.02, .20] [-.13, .09] [-.23, -.01] [-.18, .04] 

                

NEO_E 9.21 2.58 .13* .21** .20** .12* .01 

      [.02, .24] [.10, .31] [.09, .30] [.01, .23] [-.10, .12] 

                

NEO_O 8.42 2.91 .01 .02 .00 -.03 -.02 

      [-.10, .12] [-.09, .13] [-.11, .11] [-.14, .08] [-.13, .09] 

                

NEO_A 9.76 3.38 -.13* -.05 -.07 -.21** -.30** 

      [-.24, -.02] [-.16, .06] [-.18, .04] [-.32, -.11] [-.39, -.19] 

                

NEO_C 11.78 2.16 -.03 .06 .03 -.04 -.22** 

      [-.14, .08] [-.05, .17] [-.08, .14] [-.15, .07] [-.32, -.11] 

                

ERQ_CR 27.62 6.86 -.04 .01 -.05 -.08 -.11* 

      [-.15, .07] [-.10, .12] [-.16, .06] [-.19, .03] [-.22, -.00] 

                

ERQ_ES 15.83 5.09 .03 .09 .11* -.07 .12* 

      [-.08, .14] [-.02, .20] [.00, .22] [-.18, .04] [.01, .23] 

                

M and SD are used to represent mean and standard deviation, respectively. Values in square 
brackets indicate the 95% confidence interval for each correlation. The confidence interval is a 
plausible range of population correlations that could have caused the sample correlation 
(Cumming, 2014). * indicates p < .05. ** indicates p < .01. 
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Table 3 summarizes the association between UPPS-P dimensions and other external 

variables. There were low to medium associations between UPPS-P and BIS-11 dimensions, 

where the correlation coefficients ranged from .083 (sensation seeking with non-planning 

impulsivity) to .386 (lack of perseverance with attentional impulsivity). Regarding the associations 

with personality traits, it was observed that the correlation coefficients ranged from r=-.297 

(between positive urgency and lack of perseverance) and r=.209 (between positive urgency and 

extroversion). Finally, the association between the UPPS-P and ERQ had small magnitude for all 

the pairwise correlations: from r=-.113 (lack of perseverance with cognitive reappraisal) to r=.124 

(lack of perseverance with emotional suppression). 

 

 

Study II: The association between impulsivity and resting-state functional 

connectivity  

 

Methods 

Participants 

Fifty-five participants were recruited to perform a multimodal magnetic resonance 

imaging (MRI) session, comprised of structural and resting-state functional acquisitions.  

 

MRI data acquisition 

The imaging sessions were performed on a clinically approved Magnetom Verio 3 T 

(Siemens, Erlangen, Germany) MRI scanner at the Hospital of Braga, using a Siemens 32-

channel receive only head coil. A 3D T1-weighted magnetization prepared rapid gradient echo 

(MPRAGE) structural scan was acquired with the following parameters: repetition time (TR) = 

2.42 s, echo time (TE) = 4.13 ms, flip angle (FA) = 9º, 176 sagittal slices, in plane resolution = 

1.0 x 1.0 mm2 and slice thickness = 1.0 mm. A multiband echo planar imaging acquisition 

sensitive to blood-oxygen-level dependent (BOLD) signal was acquired during resting-state, using 
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the following parameters: TR = 1.19 s, TE = 34 ms, FA = 62º, isometric voxel resolution of 2 

mm3, 72 slices, multi band acceleration factor of 6 and 370 volumes (Feinberg et al., 2010; 

Moeller et al., 2010; Xu et al., 2013). During the resting-state acquisition, participants were 

instructed to remain still, awake, with their eyes closed, as motionless as possible and to try to 

think of nothing in particular. A certified neuroradiologist visually inspected all images to confirm 

that they were not affected by critical motion and that participants had no brain lesions or 

pathology. One participant was excluded due to unsuitable data quality. 

Resting-state fMRI data preprocessing was implemented with FMRIB Software Library 

(FSL v5.07; http://fsl.fmrib.ox.ac.uk/fsl/) tools, comprising the following steps: slice timing 

correction, inputting a costume file describing the timings of each slice; head motion correction 

using the mean functional image as the reference, followed by motion scrubbing to reduce 

potential contamination of motion outliers on functional connectivity (Power, Barnes, Snyder, 

Schlaggar, & Petersen, 2012). Another subject was here excluded due to excessive motion 

(exceeding the voxel size) (Soares et al., 2016). To further remove typical confounding signals 

linear regression of motion parameters, mean WM and cerebrospinal fluid (CSF) signal and 

motion outliers was performed. Functional images were spatially normalized to the Montreal 

Neurological Institute (MNI) standard space through a procedure that included the following 

steps: (i) skull stripping of the mean image of the functional acquisition and of the structural 

acquisition; (ii) rigid-body registration of the skull-stripped mean functional image to the skull 

stripped structural scan; (iii) affine registration of the structural scan to the MNI T1 template; (iv) 

nonlinear registration of the structural scan to the MNI T1 template using the affine 

transformation previously estimated as the initial alignment; (v) nonlinear transformation of the 

functional acquisition to MNI standard space trough the sequential concatenation and application 

of the rigid-body transformation. The residual images were then spatially smoothed with a 

Gaussian kernel of 3 mm full-width at half maximum and band-pass temporal filtered (0.01-

0.08Hz). 

 

Resting-state FC analysis 

Whole-brain functional connectomes were built by extracting the mean time-series of the 

116 regions of the Automatic Anatomical Labeling (AAL) atlas. A symmetric adjacency matrix R 
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was then produced, where each cell rij corresponded to the correlation coefficient (r) between the 

time-series of each region. This matrix was transformed with Fisher’s r-to-Z transformation to 

convert Pearson r coefficients to normally distributed Z-values. The group matrix was used as the 

input for the network-based statistic (NBS) procedure (Zalesky, Fornito, & Bullmore, 2010), which 

implements statistical testing in two consecutive phases: initially the hypothesis is tested in each 

network edge and a user-defined significance threshold applied to filter surviving connections; 

second, sub-networks composed of connections whose significance surpasses the threshold are 

identified and determining its significance according to the network size. The significance of the 

obtained sub-networks was estimated by comparing their sizes with the distribution of the size 

of sub-networks obtained through 5000 random permutations of the original hypothesis, using 

three complementary significance thresholds (α=.0001, α=.0005 and α=.001). BrainNet Viewer 

(http://www.nitrc.org/projects/bnv) (Xia, Wang, & He, 2013) was used to display significant 

networks. Graph-theory analysis was used to assess the impact of impulsivity dimensions on 

three typical local network metrics, allowing to gain a better understanding of the dynamic 

organization of individual nodes.  

The Brain Connectivity Toolbox (Rubinov & Sporns, 2010) was used for the estimation 

of node-level graph metrics, including (1) local clustering coefficient, a measure of segregation 

determined by number of edges between the nearest neighbors of a node in proportion to the 

maximum number of possible edges (2) local efficiency, another segregation measure 

representing the average inverse shortest path length on the neighborhood of the node and (3) 

nodal degree, a centrality measure, which reflects the tendency of a node to interact with others, 

and is calculated as the number of all of its connections (Bullmore & Sporns, 2009; Rubinov & 

Sporns, 2010). These metrics were calculated along a range of densities from 0.1 to 0.45 in 

steps of 0.025. The statistical testing consisted of fitting a General Linear Model for each metric 

at each density step. To detect the most significant results we searched for metrics/nodes 

combinations surviving different significance thresholds at different network densities. We 

focused on results consistently surviving correction for the number of areas tested (α =.05/116) 

and for the number of areas and number of variable of interests (α=.05/(116*5)) across several 

thresholds. 
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 The model used for both NBS testing and for testing the network metrics included the 

five sub-dimensions of the impulsivity scale (NU, PU, SS, PM and PS), while controlling for gender 

and age. 

 

 

Results 

Using the most conservative significance threshold (t(45)=4.26, corresponding to a 

significance level of p=.0001) we did not detect any significant finding. With an edge threshold 

with a significance of p=.0005 (t(45)=3.75), there was a significant, positive association, between 

the lack of premeditation dimension and a network with a pseudo-bilateralized configuration, 

comprised of nodes on the putamen (left and right), amygdala (left and right) and the cerebellum 

(Figure 5). No other significant association was obtained for the remaining impulsivity 

dimensions, using this statistical threshold. Using a more liberal threshold of statistical 

significance (t(45)=3.52, corresponding to a two-tailed significance of p=.001), we observed that 

negative urgency displayed a negative association with a network comprised of nodes such as 

the bilateral temporal superior, bilateral Heschl, supplementary motor area, middle cingulum 

and cerebellum of the left hemisphere, insula and supramarginal, from the right hemisphere 

(Figure 6). 

 

Figure 5. Results of network-based statistics. Lack of Premeditation has a statistically significant 
association with a network comprised of bilateral putamen, bilateral amygdala and cerebellum. 
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Figure 6. Results of network-based statistics. Negative Urgency has a statistically significant 
negative association with a network comprised of cingular regions, bilateral insula, cerebellum 
and Heschl gyri. 

 

 

 On the network metrics strong significant associations were found between NU and the 

nodal degrees of nodes 82-Temporal Superior Right (with significance in eight densities surviving 

the highest threshold – from densities of 0.1 to 0.15 and from 0.35 to 0.45 - and four others 

surviving the second threshold – densities of 0.175, 0.2, 0.3 and at 0.325) and 81-Temporal 

Superior Left (with significance in 4 densities surviving the secondary threshold – from densities 

of 0.2 to 0.25 and at 0.35 -, while several fell just short). These significances are plotted in Figure 

7 where points surviving the highest threshold are plotted in red, surviving the secondary 

threshold in blue and all others in black. In both situations the associations were negative, 

meaning that an increase in NU led to a decrease in the nodal degree. No other extended 

associations were found, although associations for a single density level surviving the secondary 

threshold were found for: the cluster degree of node 37 – Left Hippocampus with a positive 

association with PU, p=2.5x10-4, for a density of 0.125; and the cluster degree of node 65 – Left 

Angular with a positive association with PM, a p=1.5x10-4, for a density of 0.225. 
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Figure 7. Scatter plot of the significance of the association between the nodal degree and NU 
for all 116 nodes through the 15 density thresholds. Horizontal lines mark the significances of 
α=0.05 in black, α=0.05/116 in blue and α=0.05/(116*5) in red. Points surviving the two higher 
thresholds are color coded in the appropriate color. Y-axis represented in logarithmic base 10 
scale.  
 

 

Discussion 

In this work, we adapted and tested the psychometric properties of the UPPS-P in a 

convenience Portuguese sample. Using a complementary approach of exploratory and 

confirmatory factor analytic strategies, we provided support for the demonstration of validity 

evidence for the instrument. In addition, we extended the psychometric characterization of the 

scale to the neurobiological level, where we searched for neuroimaging correlates of different 

dimensions of the scale. With this approach, we could demonstrate that specific dimensions of 

impulsive behavior are characterized by neurobiological correlates. Two dimensions of the UPPS-

P, negative urgency and lack of premeditation, were significantly associated with resting-state 

functional connectivity at the whole-brain level, when controlling for the variation of the remaining 

impulsivity dimensions. Specifically, we found that negative urgency was associated with the 

functional connectivity of a network comprised of insula, cerebellum, sensorial and temporal 

nodes. On the other hand, lack of premeditation was strongly associated with a network 

comprised of basal ganglia nuclei, amygdala and cerebellum. Finally, negative urgency was 

found to be significantly associated with reduced node degree of bilateral superior temporal 
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regions, whereas positive urgency had significant, positive associations with node degree of the 

left hippocampus and left angular gyrus. 

The dependence of impulsivity on the function of cortico-striatal loops has been 

progressively established among the neuroscience literature (Dalley et al., 2011). These results 

corroborate a previously reported association between impulsivity traits and basal ganglia FC, 

obtained with a seed-based analysis (Korponay et al., 2017). In addition, FC between basal 

ganglia nuclei and OFC nodes was previously associated with impulsivity-related personality 

characteristics (Angelides, Gupta, & Vickery, 2017). As previously hypothesized, this altered 

connectivity of basal ganglia nuclei may be linked with an increased difficulty of highly impulsive 

individuals to inhibit the urge to act (Korponay et al., 2017). Nonetheless, we also observed that 

this network is also comprised limbic nodes – which highlights a likely involvement of affect-

related processing underlying the manifestation of this dimension of impulsivity. Previous 

evidence has demonstrated an association between impulsivity trait and resting-state FC between 

the amygdala and the anterior cingulate cortex (Kerr et al., 2014). These findings seem to 

support the relevance of the amygdala on the processing of emotionally-relevant stimuli in the 

context of reward processing (Peck, Lau, & Salzman, 2013). 

We also noted that one of the dimensions related with urgency – negative urgency – has 

a strong negative impact on the FC of a widespread network. To the best of our knowledge, the 

description of the neurobiological correlates of affect-related dimensions of impulsivity has not 

been previously reported in the literature. This highlights the fact that affective drivers of 

impulsive behavior may have a relevant neurobiological meaning, being associated with a 

complex network of FC characterized by the involvement of several lobes, from both 

hemispheres, including the insula, anterior and middle cingulum, supplementary motor area, 

postcentral and of distinct cerebellar nodes. These results also highlight the involvement of the 

cerebellum on non-motor related functions, corroborating previously reported descriptions of the 

role of the cerebellum in cognition, emotion and decision-making processing (Schmahmann, 

2010).  

The interpretation of these findings should consider some limitations. First, the UPPS-P 

was administered to a convenience sample, which was mainly constituted by young adults with 

high education levels. While this strategy has been used in previous validations of the instrument, 
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it would be interesting to assess how distinct impulsivity dimensions are associated with 

neurobiological patterns in other populations.  

This study focused on patterns of brain FC in the absent of an active task. Even though 

one may argue that resting-state FC may constitute a more valid means of assessing the default 

functional organization of the brain as a network (as it is independent of an external stimulation), 

we cannot exclude the possibility that specific patterns of FC may emerge during task-

performance, particularly with impulsivity-related stimuli. Furthermore, the current approach 

does not allow the establishment of causality, i.e., whether the disturbance of a specific node 

implicates the response of another node. As such, future studies may implement complementary 

evidence to this work, by assessing the patterns of interaction between distinct brain nodes 

during impulsivity tasks with methodologies such as psychophysiological interactions or dynamic 

causal modelling. In addition, future studies may address the neurobiological correlates of 

impulsivity dimensions across a wider age range.  

In sum, this work provides additional validity evidence of UPPS-P. To the best of our 

knowledge, this work constitutes a unique report of a combined description of the whole-brain 

connectome and graph-theory metrics at the local level, which allowed us to demonstrate that 

distinct facets of impulsivity are characterized by different patterns of resting-state functional 

connectivity. Altogether, these findings provide a neurobiological support for the multifaceted 

nature of this trait. 
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Supplementary Information 

 

Adaptation of the UPPS-P for European Portuguese 

Two independent researchers (PSM and LNS) conducted individual translations of the 

instrument. Next, two other researchers compared the two independent translations, focusing 

on semantic (PC) and conceptual similarities (PRA) between the translated and the original 

versions. After the evaluation of each individual item, a version of the instrument was submitted 

to back-translation by an independent bilingual researcher (MS) without prior contact with the 

original version of the manuscript. The resulting back-translated version was then compared with 

the original version of the UPPS-P. This last phase was performed by a native English speaker 

(EG), which highlighted whether adjustments were needed with the goal of maintaining the 

meaning of each individual item. For the back-translated items with large semantic or conceptual 

differences from the original version, new translations were proposed with the goal of maximizing 

the similarities between versions. After consensual agreement, the final back-translated version 

was sent to the authors of the original version for validation.  

In this work, we examined the psychometric characteristics of the full version of the 

manuscript (comprised of 59 items), together with a reduced version with 20 items, which has 

been widely used in different countries. For both versions, we assessed the descriptive statistics 

for individual items and their factor structure, using a combined implementation of exploratory 

and confirmatory factor analysis. For the former, we implemented an exploratory graph analysis; 

for the second, a diagonal weighted least squares estimation was performed, to account for the 

ordinal nature of the items. 

 

Descriptive Statistics 

The descriptive statistics for the long and short versions of the UPPS-P are presented on 

Table S1 and Table S2, respectively.  
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Table S1. Descriptive statistics for each individual item of the UPPS-P 
Item Mean SD SE Median Trimmed Mean Min Max Sk K 

UPPS_Q1 1.72 0.65 0.04 2 1.66 1 4 0.71 1.01 

UPPS_Q2 2.09 0.78 0.04 2 2.06 1 4 0.38 -0.22 

UPPS_Q3 2.76 0.75 0.04 3 2.76 1 4 -0.14 -0.37 

UPPS_Q4 1.44 0.64 0.04 1 1.35 1 4 1.43 2.08 

UPPS_Q5 1.62 0.77 0.04 1 1.48 1 4 1.2 1.07 

UPPS_Q6 1.53 0.65 0.04 1 1.45 1 4 1.1 1.3 

UPPS_Q7 2.17 0.98 0.06 2 2.09 1 4 0.29 -1.02 

UPPS_Q8 2.31 0.99 0.06 2 2.27 1 4 0.1 -1.1 

UPPS_Q9 1.71 0.75 0.04 2 1.61 1 4 0.85 0.27 

UPPS_Q10 1.54 0.69 0.04 1 1.43 1 4 1.18 1.17 

UPPS_Q11 2.19 0.85 0.05 2 2.16 1 4 0.21 -0.66 

UPPS_Q12 2.18 0.79 0.05 2 2.16 1 4 0.28 -0.34 

UPPS_Q13 2.52 0.97 0.06 3 2.52 1 4 0 -0.98 

UPPS_Q14 1.8 0.79 0.05 2 1.72 1 4 0.72 -0.06 

UPPS_Q15 1.44 0.65 0.04 1 1.35 1 4 1.51 2.5 

UPPS_Q16 1.66 0.66 0.04 2 1.58 1 4 0.77 0.65 

UPPS_Q17 1.81 0.86 0.05 2 1.71 1 4 0.77 -0.29 

UPPS_Q18 2.61 1.15 0.07 3 2.64 1 4 -0.18 -1.41 

UPPS_Q19 1.97 0.69 0.04 2 1.94 1 4 0.39 0.15 

UPPS_Q20 1.48 0.69 0.04 1 1.35 1 4 1.4 1.61 

UPPS_Q21 2.06 0.78 0.04 2 2.02 1 4 0.4 -0.24 

UPPS_Q22 2.02 0.89 0.05 2 1.95 1 4 0.51 -0.57 

UPPS_Q23 2.05 0.86 0.05 2 2.02 1 4 0.25 -0.92 

UPPS_Q24 2.2 0.78 0.04 2 2.18 1 4 0.36 -0.18 

UPPS_Q25 1.56 0.74 0.04 1 1.43 1 4 1.19 0.83 

UPPS_Q26 2.74 1.18 0.07 3 2.79 1 4 -0.35 -1.38 

UPPS_Q27 1.71 0.7 0.04 2 1.61 1 4 0.87 0.98 

UPPS_Q28 1.58 0.62 0.04 2 1.52 1 4 0.83 0.83 

UPPS_Q29 2.1 0.82 0.05 2 2.08 1 4 0.23 -0.69 

UPPS_Q30 1.35 0.64 0.04 1 1.23 1 4 1.96 3.92 

UPPS_Q31 2.66 0.86 0.05 3 2.7 1 4 -0.25 -0.56 

UPPS_Q32 1.74 0.76 0.04 2 1.63 1 4 0.96 0.8 

UPPS_Q33 1.66 0.65 0.04 2 1.6 1 4 0.83 1.2 

UPPS_Q34 2.08 0.87 0.05 2 2.02 1 4 0.41 -0.59 

UPPS_Q35 1.35 0.63 0.04 1 1.23 1 4 1.8 2.93 

UPPS_Q36 2.28 1.17 0.07 2 2.22 1 4 0.26 -1.43 

UPPS_Q37 1.7 0.69 0.04 2 1.61 1 4 0.83 0.77 

UPPS_Q38 1.64 0.64 0.04 2 1.57 1 4 0.72 0.53 

UPPS_Q39 2.49 0.82 0.05 2 2.48 1 4 0.02 -0.55 

UPPS_Q40 1.41 0.65 0.04 1 1.29 1 4 1.61 2.38 

UPPS_Q41 2.2 0.94 0.05 2 2.16 1 4 0.1 -1.12 

UPPS_Q42 1.65 0.74 0.04 2 1.53 1 4 1.14 1.35 

UPPS_Q43 1.56 0.61 0.03 2 1.51 1 4 0.85 1 

UPPS_Q44 1.98 0.89 0.05 2 1.91 1 4 0.46 -0.74 

UPPS_Q45 1.64 0.76 0.04 1 1.53 1 4 1 0.41 

UPPS_Q46 2.13 1.12 0.06 2 2.04 1 4 0.42 -1.27 

UPPS_Q47 2.02 0.84 0.05 2 1.96 1 4 0.51 -0.34 

UPPS_Q48 1.64 0.65 0.04 2 1.57 1 4 0.8 0.76 

UPPS_Q49 1.56 0.72 0.04 1 1.43 1 4 1.19 1.02 

UPPS_Q50 2.39 0.89 0.05 2 2.37 1 4 0.04 -0.78 

UPPS_Q51 3.04 1.07 0.06 3 3.17 1 4 -0.78 -0.71 

UPPS_Q52 1.65 0.75 0.04 2 1.54 1 4 0.95 0.36 

UPPS_Q53 2.4 0.7 0.04 2 2.41 1 4 0.15 -0.19 

UPPS_Q54 1.67 0.81 0.05 1 1.55 1 4 0.97 0.06 

UPPS_Q55 1.74 0.66 0.04 2 1.67 1 4 0.54 0.12 

UPPS_Q56 2.56 1.17 0.07 3 2.58 1 4 -0.09 -1.47 

UPPS_Q57 2.13 0.91 0.05 2 2.07 1 4 0.36 -0.76 

UPPS_Q58 2.24 0.85 0.05 2 2.23 1 4 0.06 -0.81 

UPPS_Q59 2.11 0.91 0.05 2 2.05 1 4 0.3 -0.88 

SD – Standard Deviation; SE – Standard Error; Sk – Skewness; K – Kurtosis; Min – Minimum; 
Max - Maximum. 
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Table S2. Descriptive statistics for each individual item of the UPPS-P 

Item Mean SD SE Median Trimmed Mean Min Max Sk K 

UPPS_Q01 1.81 0.86 2 1.71 1 4 0.77 -0.29 0.05 

UPPS_Q02 2.02 0.89 2 1.95 1 4 0.51 -0.57 0.05 

UPPS_Q03 2.1 0.82 2 2.08 1 4 0.23 -0.69 0.05 

UPPS_Q04 2.08 0.87 2 2.02 1 4 0.41 -0.59 0.05 

UPPS_Q05 1.44 0.64 1 1.35 1 4 1.43 2.08 0.04 

UPPS_Q06 1.8 0.79 2 1.72 1 4 0.72 -0.06 0.05 

UPPS_Q07 1.97 0.69 2 1.94 1 4 0.39 0.15 0.04 

UPPS_Q08 1.71 0.7 2 1.61 1 4 0.87 0.98 0.04 

UPPS_Q09 1.53 0.65 1 1.45 1 4 1.1 1.3 0.04 

UPPS_Q10 1.66 0.66 2 1.58 1 4 0.77 0.65 0.04 

UPPS_Q11 1.58 0.62 2 1.52 1 4 0.83 0.83 0.04 

UPPS_Q12 1.64 0.65 2 1.57 1 4 0.8 0.76 0.04 

UPPS_Q13 2.05 0.86 2 2.02 1 4 0.25 -0.92 0.05 

UPPS_Q14 2.66 0.86 3 2.7 1 4 -0.25 -0.56 0.05 

UPPS_Q15 2.28 1.17 2 2.22 1 4 0.26 -1.43 0.07 

UPPS_Q16 2.13 1.12 2 2.04 1 4 0.42 -1.27 0.06 

UPPS_Q17 1.54 0.69 1 1.43 1 4 1.18 1.17 0.04 

UPPS_Q18 1.48 0.69 1 1.35 1 4 1.4 1.61 0.04 

UPPS_Q19 1.35 0.63 1 1.23 1 4 1.8 2.93 0.04 

UPPS_Q20 1.65 0.75 2 1.54 1 4 0.95 0.36 0.04 

SD – Standard Deviation; SE – Standard Error; Sk – Skewness; K – Kurtosis; Min – Minimum; 
Max - Maximum. 

 

Psychometric characteristics of the short and long versions of the UPPS-P 

The factor loadings ranged from .451 (item 7) to .824 (item 58) for the negative urgency 

dimension; from .481 (item 57) to .917 (item 15) for the positive urgency dimension; from .412 

(item 8) to .872 (item 41) for sensation seeking; from .280 (item 21) to .889 (item 48) for lack 

of premeditation; from .480 (item 19) to .920 (item 37) for lack of perseverance (Figure 3). A 

sensitivity analysis was conducted to assess the impact of the lowest loading (i.e., item 21) on 

the overall fit indices. We noted slight improvements on model fit indices [χ2
(1585)=2548.1, p<.001, 

CFI=.931, TLI=.928, RMSEA=.045 (CI90%=.042-.048)]. Nevertheless, to maintain the 

comparability of this translation with other versions of the manuscript, we decided to keep the 

original structure without the deletion of this item.  

In contrast with the long version of the manuscript, the results from the parallel analysis 

provide support for a 4-factor structure of the short version of the UPPS-P. In fact, this factorial 

structure was supported by four additional methods for determining the number of factors to 

retain, including Optimal Coordinates, Velicer MAP, BIC and VSS Complexity 2. On the other 

hand, the 5-factor structure was supported by only one method. 
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The results from the CFA, obtained with three stage robust diagonally least squares 

estimation, revealed that this factorial solution yielded appropriate fit indices [χ2
(1642)=2677.0, 

p<.001, CFI=.926, TLI=.923, RMSEA=.046 (CI90%=.043-.049)]. The factor loadings ranged from 

.451 (item 7) to .824 (item 58) for the negative urgency dimension; from .481 (item 57) to .917 

(item 15) for the positive urgency dimension; from .412 (item 8) to .872 (item 41) for sensation 

seeking; from .280 (item 21) to .889 (item 48) for lack of premeditation; from .480 (item 19) to 

.920 (item 37) for lack of perseverance.  

 

 

 

Figure S1. Results of the centrality analysis represent three centrality measures: node strength, 
closeness and betweenness.  
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Figure S2. Correlograms between individual variables for the short-version of the scale and for 
each individual dimension.  
 

 

Figure S3. Partial correlation network with LASSO regularization for the short-version of the 
UPPS-P. 
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Figure S4. Results of the centrality analysis represent three centrality measures (node strength, 
closeness and betweenness) for the short-version of the UPPS-P.  
 
 

 

Figure S5. Graphical representation of the confirmatory factor analysis for the short-version of 
the UPPS-P. Values represent standardized coefficients. 
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Abstract 

There is a large variety of context-related aspects that shape our decisions. One such aspect is 

related with the emotional state. Previous studies have suggested that emotional arousal has a 

role on the modulation of risk-taking behavior in gambling tasks. In this study, we aimed to test 

this hypothesis. For this purpose, we developed an experimental apparatus, in which we 

presented highly arousing stimuli with opposing hedonic valences (either positive or negative 

stimuli) as a strategy for inducting an emotional state. Under such experimental contingencies, 

individuals performed a risky decision-making task – the Balloon Analogue Risk Task (BART) – 

in which they accumulate gains each time they decide to inflate a balloon; however, participants 

lose the accumulated money if the balloon explodes. Of note, the threshold for explosion is 

randomly defined and thus it is unknown for the participant – as such, each time an individual 

inflates the balloon, participants engage in a gambling behavior. In contrast with theoretical 

conceptualizations pertaining to the role of arousal on risky decision-making, only stimuli with 

positive hedonic valence influenced risk-taking – individuals in this experimental condition 

displayed a reduced tendency to gamble. On the other hand, subjects exposed to the negative 

emotional induction did not show an altered risky decision-making profile. These results highlight 

the need for further studies examining the nature of the association between induced emotional 

experience and risk-taking. 
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Background 

Traditional accounts in the field of decision theory have focused on the role of cognition 

and situational processes on human decision-making (Lerner, Li, Valdesolo, & Kassam, 2015). 

On the other hand, the role of emotion on these processes was for a long time neglected in the 

field of economics. The findings from neuroscience studies have highlighted the relevance of 

emotions as important modulators of decision-making (Camerer, Loewenstein, & Prelec, 2005; 

Loewenstein, Weber, Hsee, & Welch, 2001). Lesion studies, for instance, demonstrated that 

damages in the ventromedial prefrontal cortex (vmPFC) are related with an inability to feel 

emotions and to make optimal decisions (Bechara, Damasio, Damasio, & Lee, 1999) (Damasio, 

1994)). Currently, emotion is considered in economic models of individual choice ((Bernheim & 

Rangel, 2004) (Caplin & Leahy, 2001)). However, the mechanisms by which emotion impacts 

on decision-making are not well understood. One hypothesis that has gained general acceptance 

among the scientific literature relies on the role of arousal on the patterns of risk-seeking and 

risk-aversion (Lo & Repin, 2002). Within this perspective, positive arousal associated with 

anticipation of gain is expected to promote risk taking; on the other hand, negative arousal 

associated with anticipation of loss is expected to promote risk aversion (Kuhnen & Knutson, 

2005) (Paulus, Rogalsky, Simmons, Feinstein, & Stein, 2003). 

The induction of emotional states is a typical experimental approach to investigate how 

emotion influences a panoply of neurobehavioral processes (Westermann, Spies, Stahl, & Hesse, 

1996). Distinct modalities have been used to induce emotional states, including the presentation 

of static pictures (Lang & Bradley, 2007), recall of past events (Chanel, Kierkels, Soleymani, & 

Pun, 2009), films (Gross & Levenson, 1995), music (Baumgartner, Esslen, & Jäncke, 2006) or 

olfactory stimuli (Royet et al., 2000). This approach is typically successful on the modulation of 

several neurobiological responses, including central responses observed in functional magnetic 

resonance imaging (fMRI) and electroencephalography (EEG) studies, as well as peripheral 

responses from the autonomic nervous system, involving the facial, cardiac, respiratory and the 

electrodermal systems. In this study, we aimed to investigate the impact of the induction of 

contrasting affective states on decision-making behavior.  

 

The current work 
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In this work, we examined the role of the induction of an emotional state on patterns of 

risky decision-making. Following the findings from previous studies, we hypothesized that the 

induction of positive and, particularly, negative emotional induction would be associated with an 

altered risk-taking behavior. For this purpose, we implemented an experimental paradigm with 

the aim of understanding whether a prolonged audiovisual form of emotional induction would 

lead to pronounced behavioral differences in decision-making profiles.  

 

 

Methods 

Participants 

A sample of 92 healthy individuals (62.9% females; mean age=29.9 (SD=8.67)) 

recruited at the University of Minho (Braga, Portugal) participated in this study. All participants 

were Portuguese-speaking citizens. None of the participants reported any history of neurologic 

or psychiatric conditions. The experimental procedures were approved by the local Institutional 

Review Board. Before the experiment, written informed consent was obtained from each point 

and the goals of the experiment were carefully explained. In addition, participants were informed 

about the voluntary nature of their participation. They were instructed that they would be able to 

withdraw from the experiment at any point and at no cost. During the presentation of the 

experimental apparatus, participants were told that their data would remain confidential.  

The experiment was performed in a sound-attenuated room, where the participants were 

comfortably seated. The experimental stimuli were presented in on a 15.6” full-HD laptop at a 

viewing distance of 55 cm under low light. PsychoPy v3.0 was used for displaying the 

experimental stimuli. The code for the experimental apparatus is available at the Open Science 

Framework (OSF; https://osf.io/4cjmy/).  

 

Emotion induction strategy  
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Participants were pseudo-randomly assigned to one of three groups: positive stimulation 

(PS), control stimulation (CS) and negative stimulation (NS). Each group was involved in a 

sequential experimental apparatus, comprised of a 60s baseline acquisition, video visualization 

and auditory stimulation concurrently with a risky decision-making task. The experimental 

apparatus is represented on Figure 1. The strategy of combining videos and music is aimed to 

produce a more sustained emotional induction. The video stimuli were selected from the 

FilmStim database (Schaefer, Nils, Sanchez, & Philippot, 2010). For the PS condition, a fragment 

from the film “Life is Beautiful” was selected. This clip describes a father and a boy talking to a 

mother through a loud speaker in a prisoner’s camp. For the NS condition, a fragment from the 

film “Schindler’s List” displaying dead bodies being piled by other prisoners was selected. These 

films have been previously demonstrated to elicit opposing self-reported ratings of hedonic 

valence and similarly high levels of emotional arousal (Schaefer et al., 2010). For the CS 

condition, a video of a woman going up on an escalator and entering a local market was selected. 

This fragment has been previously used as a neutral stimulus, eliciting low levels of self-reported 

emotional arousal (Schaefer et al., 2010). With respect to the auditory stimulation, participants 

listened to “Adagio for Strings” by Samuel Barber and “Divertimento in D Major, K. 136” by 

Mozart. Both songs have been previously demonstrated to be successful material for the 

induction of negative (Renner, Schwarz, Peters, & Huibers, 2014); (Werthmann et al., 2014) and 

positive mood (Eich & Metcalfe, 1989), respectively. Even though some studies have used 

musical fragments as neutral contents, this strategy is not consensual across the scientific 

community. It is frequently argued that it is difficult, if not impossible, to use a musical content 

without an emotional meaning. As such, we decided not to use musical fragment for the CS 

condition. While one can argue that the sensorial auditory perception per se might affect 

participants’ performance during this experiment, we consider this strategy to be the most 

appropriate, so that we can ensure that there are no consistent effects of an emotional meaning 

associated with the fragment.  
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Figure 1. Experimental apparatus. The experience started with a baseline period (60 s), 
followed by the visualization of an emotional video. Afterwards, participants were presented with 
the risky decision-making task (the Balloon Analogue Risk Task). 

 

Experimental apparatus 

The Balloon Analogue Risk Task (BART) was used for the assessment of risky decision-

making. In this task, each trial is comprised of a balloon that can be inflated up to a pseudo-

randomly and unpredictably defined threshold. Each inflation is rewarded with points (0.05€)- 

however, if the balloon explodes, all the points collected during the trial will be lost; on the other 

hand, if the participant decides to stop inflating the balloon, the accumulated points during the 

trial will be added to the participants’ account. A total of 10 balloons were presented. Each 

balloon has a randomly varying contingencies, which determined the probability of explosion. A 

large body of evidence has established reliability of this paradigm across samples and testing 

conditions (White, Lejuez, & de Wit, 2008). 

Following previous recommendations, risk was assessed by examining the adjusted 

number of pumps (Adj Pumps), i.e., the average number of pumps of the balloons that did not 

explode. This strategy has been implemented to limit between-subjects’ variability in the absolute 

averages (Lejuez et al., 2002).  

Considering the previously reported relationship between risk-taking within the context 

of the BART paradigm of impulsivity components, namely sensation seeking.(Lauriola, Panno, 

Levin, & Lejuez, 2014), the Portuguese versions of the UPPS-P was administered to our sample. 

The UPPS-P (Whiteside & Lynam, 2001) is a 59-item scale, which assesses five dimensions of 

impulsivity: negative urgency, positive urgency, sensation seeking, lack of premeditation and lack 

of perseverance. Each item is scored on a Likert scale, ranging from 1 (strongly agree) to 4 

(strongly disagree). 
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A multiple linear regression analysis was implemented to assess the impact of emotional 

induction on risk-taking behavior (Adj Pumps), while accounting for confounding variables, 

namely sex and age. Statistical analysis was implemented with both frequentist and Bayesian 

modelling. Statistical analysis was implemented with R Studio (R Core Team, 2013) and JASP. 

The dataset and code for analysis is available at the OSF (https://osf.io/4cjmy/). 

 

 

Results 

The descriptive statistics for the BART paradigm are summarized on Table 1. 

Independently of the experimental condition, there was an average of 6.77 adjusted pumps per 

balloon (SD=2.24, range: 2.9-13.4) and an average of 4.01 explosions per subject (SD=1.30, 

range: 2-8).  

 

Table 1. Descriptive statistics for the BART paradigm across experimental conditions 

    Mean Std Deviation Std Error Minimum Maximum Skewness Kurtosis 

Adjusted Pumps         

 Neutral 7.14 2.51 0.44 3.5 13.4 0.32 -0.69 

 Negative 7.23 1.82 0.41 3.86 10.4 -0.29 -1.07 

 Positive 6.22 2.17 0.34 2.89 12.5 0.57 -0.22 

 All 6.75 2.25 0.23 2.89 13.4 0.35 -0.45 

Explosions         

 Neutral 3.94 1.24 0.22 2 6 0.02 -0.97 

 Negative 4.05 0.94 0.21 2 6 0.26 0.26 

 Positive 4 1.5 0.23 2 8 1.17 0.73 

  All 3.99 1.3 0.13 2 8 0.82 0.75 

 

Among the dimensions of the UPPS-P, sensation seeking was the only variable 

significantly associated with risk-taking, even though the correlation coefficient had a small 

magnitude (r=.249). Given the prior knowledge of a positive association between impulsivity 

(particularly sensation seeking) with risk-taking in the BART paradigm, a one-sided hypothesis 

(i.e., positive correlation) was tested (Table 2, Figure 2). The Bayesian analysis (with a stretched 

prior width of 1) indicated that H1 is 3.31 times more likely than H0, which according to Jeffreys’ 

classification scheme, represents a moderate evidence for H1 (Jeffreys, 1998). 
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Figure 2. Plots for the correlation matrix reflecting the association between UPPS-P dimensions 
and the adjusted number of pumps, irrespectively of the experimental condition (upper triangle). 
The histograms for each individual variable are represented on the diagonal. Posterior 
distributions under the alternative hypothesis (H1) are displayed on the lower triangle. 
 

Table 2. Correlation between UPPS-P dimensions and the adjusted number of pumps 
    UPPS_NU UPPS_PU UPPS_SS UPPS_PM UPPS_PS 

BART Pearson's r -0.02 0.072 0.249* 0.042 -0.003 
 

p-value 0.855 0.523 0.024 0.709 0.98 
 

UCI 95% CI 0.197 0.284 0.442 0.256 0.214 
 

LCI 95% CI -0.236 -0.148 0.034 -0.177 -0.22 

 BF10 0.120 0.248 3.306 0.190 0.135 

*p<.05; UCI – upper bound for the confidence interval for the correlation coefficient; LCI – lower 
bound for the confidence interval for the correlation coefficient; BF10 – Bayes factor with support 
for the alternative hypothesis (H1) against the null (H0); a BF10 indicates that there is an equal 
support for H1 as H0. Bayesian analysis was conducted considering a stretched beta prior width 
of 1. 
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 The results from the multiple linear regression model indicated a statistically significant 

effect (F(4,76)=2.87, p=.029, R2=.13, R2
adj=.09) for effect of condition, adjusted for sex and age, on 

risk-taking, i.e., the adjusted number of pumps during the BART paradigm. According to this 

model, the dummy variable corresponding to the positive emotional induction had a significant 

negative impact on risk-taking profile (B=-1.58, SE=.60, p=.01). On the other hand, negative 

induction did not significantly predict risk-taking (B=-.50, SE=.69, p=.47). The regression model 

is graphically represented on Figure 3. In contrast, no statistically significant effects were 

obtained for the model predicting the total number of explosions (F(4,76)=1.31, p=.275, R2=.06, 

R2
adj=.02).  

 

 

Figure 3. Individual coefficients for the multiple linear regression model. Sex (1 – Female), 
Positive Induction (1 – Positive) and Negative Induction (1 – Negative) were defined as 
dichotomic variables. The dashed line represents the threshold for null-effect. Curves represent 
the rescaled normal distributions for each predictor.  

 

To assess whether this finding would remain in the presence of variables related with 

impulsive behavior, sensation seeking (the only dimension of the UPPS-P with a significant 

association with risk-taking) was added to the model. It was observed that this re-specified model 

was statistically significant (F(5,71)=2.74, p=.026, R2=.17, R2
adj=.11). In this model, we observed 

that positive induction was the only significant predictor (B=-1.42, SE=.62, p=.026) (Table 3).  
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Table 3. Linear regression model: Prediction of risk-taking behavior by sociodemographic 
characteristics, experimental condition and sensation seeking 

 B SE β t p 2.50% 97.50% 

(Intercept) 5.907 1.947  3.034 0.003 2.02 9.795 

Sex -0.782 0.538 -0.169 -1.454 0.151 -1.855 0.292 

Age 0.036 0.032 0.135 1.136 0.26 -0.027 0.1 

Negative Induction -0.405 0.743 -0.075 -0.544 0.588 -1.889 1.079 

Positive Induction -1.417 0.622 -0.314 -2.279 0.026 -2.658 -0.176 

Sensation Seeking 0.057 0.031 0.22 1.857 0.068 -0.004 0.119 

B – unstandardized estimate, SE – standard error, β – standardized estimate 

 

As a complementary evidence, the Bayesian linear regression analysis demonstrated 

that the model comprised by sex, sensation seeking and the dummy variable corresponding to 

the positive induction yielded the best model (BF10=3.47). Of note, the dummy variable 

corresponding to the positive induction was among nine out of the ten best models (Table 4). In 

fact, when considering all the other covariates in the model, the model containing this variable 

is preferred to the model not including it by a factor 2.88 (Figure 4).  

 

Table 4. Model comparison between the best 10 models. 
Models P(M) P(M|data) BF M  BF 10  R² 

Sex + UPPS_SS + dummy_pos 0.031 0.101 3.465 1 0.153 

Sex + dummy_pos 0.031 0.099 3.404 0.984 0.121 

UPPS_SS + dummy_pos 0.031 0.08 2.702 0.797 0.115 

Sex + Age + UPPS_SS + dummy_pos 0.031 0.063 2.088 0.628 0.168 

Age + UPPS_SS + dummy_pos 0.031 0.062 2.039 0.614 0.139 

dummy_pos 0.031 0.055 1.811 0.549 0.068 

Sex + UPPS_SS + dummy_neg + dummy_pos 0.031 0.042 1.35 0.415 0.155 

Sex + Age + dummy_pos 0.031 0.041 1.333 0.41 0.126 

Sex + dummy_neg + dummy_pos 0.031 0.036 1.172 0.362 0.123 

Sex + UPPS_SS 0.031 0.033 1.071 0.332 0.089 

P(M) – Probability of predictor; P(M|data) – Probability of the predictor, given the data; BF – 
Bayes Factor 
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Figure 4. Impact of the deletion of individual predictors on the model. 

 

 

 
Figure 5. Posterior distribution for each predictor included in the linear regression model, i.e., 
the knowledge about the effect size obtained after updating the prior distribution using the 
observed data, assuming that H1 holds. The posterior distribution for the dummy variable 
corresponding to the positive induction has a median of .258 with a 95% credible interval ranging 
from -1.91 to 0.00. 

 

The comparison of the risk-taking (i.e., the adjusted number of pumps) is graphically 

represented on Figure 6. 
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Figure 6. Violin plots representing risk-taking (adjusted number of pumps) by experimental 
condition. 

 

 

Discussion 

 In this work, we assessed the impact of emotional induction on behavioral patterns of 

risky decision-making. Using previously validated audiovisual stimuli (video and music), we 

assessed whether positive or negative emotion induction (against neutral stimulation) contributes 

to altered patterns of decision-making under risk. We observed that emotional condition is 

associated with risky decision-making profile, even though with a small explained variance. Post-

hoc analysis revealed that positive stimuli are characterized by a statistically significant reduced 

risk-taking during the Balloon Analogue Risk Task (BART) paradigm. 

 Previous studies have demonstrated that the emotional experience has a relevant role 

on risky decision-making processing. In fact, humans are able to anticipate the emotional impact 

of potential future decisions (Bechara et al., 1999). Nevertheless, whereas this relationship has 

been described, the clear role of emotion on decision-making does not seem to be 

straightforward. Previous research has demonstrated that the presentation of pleasant arousing 

cues is associated with an increased preference toward risky economic options in detriment of 

safer choices (Galentino, Bonini, & Savadori, 2017). In addition, anticipatory positive arousal has 

been associated with increased risk-taking in a monetary task; on the other hand, when gambling 
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trails are framed as potential losses, risk-taking appears to be reduced in an experimental 

condition with positive hedonic valence (Cassotti et al., 2012). Mechanistically, it has been 

proposed that the activity of the nucleus accumbens (NAcc) responds separately both to 

anticipatory salience and valence in the context of risky-decision making (Cooper & Knutson, 

2008). At the peripheral level, indices of arousal, namely skin conductance have been 

demonstrated to increase with anticipated gains and losses (Knutson & Greer, 2008). 

 One aspect that deserves to be noted pertains to the fact that the selection of emotional 

stimuli was performed based on existent databases of emotionally-loaded stimuli. Whereas we 

selected these contents, based on matching levels of emotional arousal, with opposing levels of 

hedonic valence, the self-reported valence and arousal was not obtained in our sample. While 

our strategy values large-scale validation of these stimuli as adequate tools for emotional 

induction, which maximizes the comparability between studies in different contexts, it may be 

also be susceptible to sample-to-sample variation. As such, one stimulus being selected for 

eliciting high levels of arousal may (due to sociocultural characteristics, for instance) may elicit 

only moderate levels of arousal on the target sample – which may modulate the impact of these 

stimuli on behavioral patterns of risk-taking behavior. Another issue pertains to the fact that we 

favored a control for the contextual characteristics of the video stimuli, so that the main 

differences between the stimuli were mainly driven by the emotional experience and not by other 

systematic effects. In addition, the selection of these contents was also motivated by the fact 

that both represent cinematographic productions with approximate notoriety (La vitta et bella 

and Schindler’s List). This also reduces the likelihood of systematic effects of familiarity on the 

provocation of the target emotional experience. 

 Whereas this study provides relevant insight regarding the impact of emotional induction 

on behavioral patterns of risky decision-making, we consider that it is worthwhile to assess these 

aspects at a more mechanistic level. More specifically, future studies may address how the 

induction of negative or positive emotional states impacts on neurobiological responses during 

decision-making performance. For this purpose, studies using modalities such as functional 

magnetic resonance imaging (fMRI) may provide additional value for a better understanding of 

how the induction of emotional states affect risky decisions.  
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Chapter 5. General Discussion 
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In this work, we developed a comprehensive assessment of the dynamics of decision-

making, by characterizing their neurobiological mechanisms, their pathological manifestations 

and how the induction of an emotional state interferes with such processes. This investigation 

was conducted throughout the use of primary, empiric research, as well as by focusing on 

secondary research, in which we relied on the use of meta-analytic approaches for making the 

bridge between emotion and decision-making behavioral profiles. 

On Chapter 1, we summarized the neuroimaging literature focusing on distinct 

modulators of goal-directed decision-making, namely risk and uncertainty, delay discounting and 

social modulators. In this aggregation, we highlighted that individuals do not typically rely on 

economic or rational approaches when making decisions. Based on empirical contributions from 

decades of scientific research, we reported that individuals present consistent deviations from 

rational models of choice. Nevertheless, the same individual is likely to engage in inconsistent 

patterns of choice when assessed in separate moments with similar choice scenarios. These 

frequent deviations from purely maximization expected utility perspectives are present across 

different types of decisions. At the neurobiological level, even though disparate modulators of 

goal-directed decision-making are characterized by unique patterns of consistent brain activation, 

there are common neurobiological substrates underlying different modulators of the valuation 

systems of decision-making processing. These findings seem to suggest that humans are 

characterized by partially overlapping neurobiological responses when having to decide, 

independently of the decision-making scenario. Relevant nodes for these processing include, 

among others, different divisions of the insula, striatal regions and prefrontal cortex.  

On Chapter 2, we focused on the characterization of OCD, a psychiatric disorder 

characterized by chronic levels of stress (Appendix D), which has been described as a disorder 

of decision-making (Cavedini, Gorini, & Bellodi, 2006; Sachdev & Malhi, 2005). The findings 

obtained throughout the chapter indicate that OCD is characterized by a set of brain alterations, 

both with respect to intrinsic features (i.e., brain structure and rs-FC) and to functional patterns 

of brain activation during the anticipation and feedback phases of risky decision-making. On 

Chapter 2.1, we observed that OCD patients are characterized by a set of structural and 

functional brain alterations. Using a voxel-based morphometry approach, we reported that these 

patients are characterized by significantly reduced volumes of the middle temporal gyrus. With 

regards to rs-FC, in comparison with healthy individuals, patients displayed statistically significant 
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reduced FC in two sub-networks: the first involving bilateral nodes from the orbitofrontal cortex 

(OFC) and the temporal poles; the second comprised of edges connecting sensorial and occipital 

nodes. On the other hand, OCD was characterized by significant increases of rs-FC in a network 

comprised of edges connecting thalamic nodes to parietal and occipital brain regions. A 

complementary approach based on independent-component analysis revealed that patients are 

characterized by altered FC within and between distinct resting-state networks: patients had 

significantly reduced FC within visual (primary and secondary) networks and within a 

sensorimotor network; furthermore, patients displayed reduced connectivity between primary 

and sensorimotor networks and increased connectivity between a component of the default-

mode network and the cerebellar network (Chapter 2.2). A further consideration pertains to a 

novel characterization of the FC dynamics within these patients. To the best of our knowledge, 

our preliminary findings (Appendix C) provide unique evidence for the study of spontaneous 

occurrence of states of dFC. Using a leading-eigenvector analysis (Cabral et al., 2017), we 

observed that OCD patients are characterized by a significantly decreased probability of 

occurrence of an FC state, representing a Limbic-Striatal-Cerebellar network and a Fronto-

Parietal-Cerebellar network. On the other hand, a baseline state of global FC coherence was 

found to have an increased probability in the group of OCD patients. 

On Chapters 2.3 and 2.4, we noted that even though OCD patients display a risky 

decision-making profile comparable with healthy controls, their behaviors seem to be governed 

by distinct neurobiological mechanisms. This notion is supported by the fact that the structure 

of key regions for the processing of reward – namely striatal regions – are associated with the 

risk profile of healthy individuals, but not for OCD patients (Chapter 2.3). In addition, when 

anticipating risky decisions, OCD patients display significantly reduced activation of anterior and 

posterior cingulate regions, as well as an altered modulation of the amygdala in response to high-

risk choices (Chapter 2.4). Together, these results seem to suggest that there is an altered 

processing of expected and obtained reward – which may be affected by a disturbed sensory-

limbic integration. An impaired emotional processing has been widely described as one of the 

core features of OCD (Thorsen et al., 2018), being these individuals characterized by attentional 

biases to threat stimuli (Thomas, Gonsalvez, & Johnstone, 2013). Departing from the results of 

a recent meta-analysis, we demonstrated that the consistent patterns of increased brain 

activation in OCD patients are functionally connected with key regions that are of upmost 

relevance for decision-making processing, such as the insular cortex, striatum and prefrontal 
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brain regions (Chapter 2.5). If we adopt an integrative perspective on the findings reported in 

Chapter 2, we can observe a considerable overlap between the altered brain patterns in OCD 

and the “pleasure systems in the brain” (Berridge & Kringelbach, 2015). 

On the other hand, the involvement of occipital regions on the pathophysiology of the 

disorder is considerably underexplored on the scientific literature. Recent publications have 

emphasized the role of visual systems for the pathophysiology of different psychiatric conditions, 

such as neurodevelopmental conditions (Laycock, Crewther, & Crewther, 2007), schizophrenia 

(Butler & Javitt, 2005), bipolar disorder (Shaffer et al., 2018). Even though there has been 

previously hypothesized that abnormal functioning of occipital areas may contribute for some 

features of the disorder (Gonçalves, Marques, Lori, Sampaio, & Branco, 2010), future research 

is needed to further elucidate on the complex interaction between the visual system and limbic 

areas during task performance.  

It is well established that OCD is not a homogeneous psychiatric disorder – rather, it is 

characterized by a complex variation of the clinical profile, co-morbidity, and therapeutic 

responses (Leckman, Rauch, & Mataix-Cols, 2007), with dissociable neurobiological 

characteristics (Robbins, Gillan, Smith, de Wit, & Ersche, 2012). As an example, we 

demonstrated that obsession and compulsions have distinct correlates at the brain network level 

(Appendix B). Therefore, a further clarification of distinct manifestations of the disorder, by 

contrasting different subtypes of the disorder (e.g., patients characterized by contamination 

obsessions versus patients with checking obsessions) is still needed to better understand the 

neurobiological idiosyncrasies of distinct clinical profiles. This examination may have a direct 

impact on a better delineation of treatment interventions for each individual patient. Other issue 

that deserves further exploration pertains to the influence of medication on decision-making in 

these individuals. Most patients included in our analyses were receiving pharmacological 

treatment, namely selective serotonin reuptake inhibitor (SSRI) interventions. It remains an open 

question whether the inclusion of drug-naïve patients would lead to more pronounced differences 

in decision-making processing in comparison to healthy individuals. Previous studies have 

highlighted the SSRI treatment contributes to significant structural and functional brain 

alterations, such as reductions of the thalamic volume (Gilbert et al., 2000), reductions of the 

functional activity in fronto-subcortical regions (Nakao et al., 2005) and restorations of whole-
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brain functional connectivity, as demonstrated by elevations of small-word efficiency, modular 

organization and degree (Shin et al., 2014). 

The emotional experience is characterized by a set of central and peripheral responses. 

The state-of-the-art has repeatedly demonstrated that there is a great dependency between the 

emotional experience and decision-making processing. Specifically, it has been demonstrated 

that brain regions that are recruited for emotional experience, are also involved in decision-

making processing, such as the vmPFC (Hiser & Koenigs, 2018). This has been also supported 

by the fact that the neurobiological mechanisms underlying the emotional processing in OCD are 

part of a network of functionally connected nodes involved in decision-making processing (as we 

report on Chapter 2.5). A popular theoretical model - the somatic marker hypothesis – posits 

that the process of decision-making frequently involves some degree of uncertainty and that the 

decisions under these scenarios are supported by emotions in the form of bodily states (Naqvi, 

Shiv, & Bechara, 2006) – even though this view was previously criticized (Dunn, Dalgleish, & 

Lawrence, 2006; Maia & McClelland, 2004).  

Whereas we did not find evidence for emotional specificity on peripheral responses, we 

did find that the perceived intensity (i.e., self-reported arousal) of the emotional induction is 

associated with the magnitude of peripheral responses, namely from the electrodermal and 

cardiovascular systems (Chapter 3.1). The lack of emotional specificity was also previously 

demonstrated in a recent meta-analytic aggregation of neuroimaging studies (Lindquist, Wager, 

Kober, Bliss-Moreau, & Barrett, 2012). However, using a connectomics approach, we observed 

that the experience of contrasting affective states with similar levels of perceived arousal is 

associated with static and dynamic FC alterations (Chapter 3.2).  

Emotion is proposed to be a critical component of individual traits, such as impulsivity 

(Whiteside & Lynam, 2001), which directly impacts on our decision-making behavior (Chapter 

4.1). This conceptualization favors a multidimensional (orthogonal) perspective of impulsivity, 

which besides emotion-based rash action, also includes the characterization of sensation seeking 

and deficits in conscientiousness in the assessment of impulsivity (Whiteside & Lynam, 2001). 

These different components have been described to have dissociable associations with external 

constructs, such as risk-taking (Canale, Rubaltelli, Vieno, Pittarello, & Billieux, 2017) or reward 

sensitivity (Kale, Stautz, & Cooper, 2018). In our work, we observed that two of these dimensions, 
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lack of perseveration and negative urgency, are significantly associated with resting-state whole-

brain FC (Chapter 4.1).  

A relevant aspect concerns the role of impulsivity in OCD patients. Although impulsivity 

and compulsivity are traditionally considered opposite poles of a continuous spectrum 

(Hollander, 2007), the association between these constructs does not appear to be 

straightforward (Grant & Kim, 2014). These two dimensions frequently originate similar 

behavioral deficits associated with failures of “top-down” cognitive control (Dalley, Everitt, & 

Robbins, 2011). However, the mechanism of action of these two dimensions is thought to be 

influenced by different mediators: whereas impulsivity is related with the tendency to act by 

impulse, compulsivity is related with the problem of terminating actions (Dalley et al., 2011) 

(Grant & Kim, 2014). In the case of OCD, the relationship between these constructs is 

characterized by a complex framing. It was recently demonstrated that OCD patients can be 

grouped into different clusters on measures of impulsivity and compulsivity: patients with low 

levels of impulsivity and compulsivity; two clusters of patients with similar clinical severity, but 

with opposing drivers (i.e., high compulsivity and low impulsivity, and vice versa); the last cluster 

was characterized by high levels on both constructs – which was also the group with highest 

clinical severity (Prochazkova et al., 2018). This supports the view that the relationship between 

these may be somehow overlapping constructs under specific conditions (Robbins et al., 2012). 

Future studies may yield further clarifications regarding the association between impulsivity and 

OCD.  

Even though the emotional experience does not seem to be specific for individual 

emotional categories – i.e., there is little evidence for a neurobiological signature for each 

category – the induction of an affective state does seem to be associated with individuals’ 

preparation for action. We observed that contrasting hedonic valences seem to differentially 

impact decision-making behaviors across different behavioral modalities, such as a diminished 

risk-taking behavior following the induction of positive arousal (Chapter 4.2). However, it is worth 

mentioning that these results should be interpreted with caution, given the variation of the level 

of evidence of the estimated in robustness analyses.  
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Figure 1. Summary of the topics approached in this thesis. This work focused on four main 
topics. Our main goal was to characterize the neurobiological mechanisms underlying decision-
making. For this purpose, we provided a comprehensive characterization of the neurobiology of 
obsessive-compulsive disorder (OCD) – which has been repeatedly advocated to represent a 
disorder of decision-making processing – with respect to the intrinsic patterns of brain structure 
and function and with regards to the neurobiological responses associated with risky decision-
making. Given the relevance of emotional processing for decision-making capacity and given the 
fact that these patients are characterized by impaired emotional responses, we approached the 
overlap between the meta-analytic maps of emotional processing in OCD and how they are linked 
to the neurobiological mechanisms involved in decision-making processing. We next explored 
how the emotional processing impacts central and peripheral nervous systems’ correlates and 
characterized the role of emotional dimensions on impulsive behavior and, namely how it affects 
decision-making under risk.  
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Future perspectives 

 

There are several relevant questions that were not tackled in the context of this work and 

that provide opportunities for further investigation on this topic. One first aspect is related with 

the use of the multimodal data to better understand the complex interaction between structure, 

intrinsic function and task-related patterns associated with decision-making processing. As we 

previously highlighted, the risky profile of OCD patients seems to be independent of the structure 

of brain regions of the valuation system. Nevertheless, it is also important to identify whether 

there are some complex association between brain structure and function that compensates this 

abolished association.  

A more domain-related issue is associated the narrow approach of decision-making that 

was tackled in this investigation. Even though we started by characterizing different domains of 

decision-making, involving different value modulators (delay discounting, risk and social 

modulators), our empirical neuroimaging investigation was mainly focused on the study of risk 

processing. In the future, we intend to extend our line of research to capture other domains of 

decision-making, particularly social decision-making.  

Another issue pertains to a more fine-grained characterization of how the affective 

experience affects the neurobiological processing underlying decision-making processing. It is 

not a new idea that emotions play an important role in how we make decisions. As such, even 

though we could observe that the induction of affective states is associated with a set of central 

and peripheral biological alterations and that affective dimensions of impulsive behavior are 

associated with the brain connectome, we consider that the characterization of this interference 

during task performance remains an important open issue.  

For that purpose, future investigations may tackle how the induction of dissociable 

affective states with varying intensity impacts not only the behavioral patterns of decision-making, 

but also how it affects the neurobiological responses leading to these decisions. It is of upmost 

relevance to characterize not only how individual brain regions are differentially recruited under 

emotional states, but also to account for the patterns of synchronization between different brain 

areas while individuals decide. For that purpose, the use of analytic approaches such as 



 

266 
 

psychophysiological interactions or dynamic causal modelling may provide us with a better 

understanding of functional and effective connectivity correlates of decision-making in healthy 

and in pathological conditions. 

Furthermore, the recent emergence of dynamic approaches to characterize how the 

brain shifts from distinct connectivity states also raises promising new perspectives. While this 

recent trend has been mainly tackling the FC dynamics during resting-state, understanding how 

task-related demands contribute to the occurrence and shifting between spontaneous FC states 

constitutes an exciting avenue for future research. In the context of our work, such approach 

may help to better characterize how these dFC fluctuations contribute to more or less optimal 

decisions both in healthy and in OCD patients. By better understanding what leads to these 

dynamics fluctuations and by being able to model the brain as a system – so that it can be 

characterized by “more optimal” dFC patterns – the neuroscience field can have a special role 

on the development of interventions that may provide more effective interventions in the 

neuropsychiatric context. This optimistic view is supported by recent advances in the field of 

computational connectomics, which is aimed to model resting-state and task-related brain 

dynamics in health and disease (Deco & Kringelbach, 2014). Such approach is expected to be 

a key player on the development of drugs with more focused targets, the identification of 

mechanisms for brain stimulation or for neurofeedback may lead to a change in the paradigm 

in the treatment of psychiatric disorders. 

In sum, although this work has contributed to an extension of the knowledge of the 

neurobiology of decision-making in healthy and pathological conditions, there is a long journey 

to follow.  
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Introduction 

Obsessive-compulsive disorder (OCD), like other psychiatric disorders, has been related to 

alterations in the functional connectivity (FC) between brain areas detected with fMRI, supporting 

the 'patho-connectomics hypothesis', i.e. that the behavioral symptoms characterizing 

psychiatric disorders may be the expression of an ineffective functional integration at the system 

level (Stam 2014, Fornito, Zalesky et al. 2015). Nevertheless, previous results were obtained 

through a static approach, which reduces the whole resting-state timeseries to an average FC 

matrix (Moreira, Marques et al. 2017). The goal of the present work is to study how these 

alterations are expressed at the dynamical level by characterizing recurrent FC patterns at the 

single-TR resolution to gain further insight into the pathophysiology of OCD, a chronic psychiatric 

disorder affecting 2-3% of the worldwide population. 

 

Methods 

Eighty individuals (40 OCD patients and 40 matched healthy controls) underwent an fMRI 

scanning session during resting-state. Previous history of neuropsychiatric disorder and use of 

any medication (excluding oral contraceptives) were defined as exclusion criteria for controls. 

The average BOLD timeseries from the preprocessed resting-state scans were extracted for 116 

brain regions using the AAL parcellation scheme. We then used the Leading Eigenvector 

Dynamics Analysis (LEiDA) approach to assess recurrent FC patterns (Cabral, Vidaurre et al. 

2017). Briefly, an instantaneous matrix of BOLD phase coherence was computed for each TR 

across all subjects, and the corresponding leading eigenvectors were clustered (using k-means 

with cosine distance) to identify recurrent FC states (represented by each cluster centroid). The 

probability of occurrence of each recurrent FC state was statistically compared between groups 

using non-parametric permutation tests. 

 

Results 

The FC states returned by LEiDA revealed different functional sub-systems (see Figure 1), some 

of which appearing significantly disrupted in OCD, namely a Limbic-Striatal-Cerebellar network 

(p=.0026) and a Fronto-Parietal-Cerebellar network (p=.0200). These FC states are marked by 

a temporal alignment of BOLD phases between specific brain areas (colored in red in Figure 1), 

while misaligning from the rest of the brain (colored in blue in Figure 1). Concomitantly, a 

baseline state of global BOLD coherence was found to occur more frequently in OCD patients in 
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comparison with healthy controls (p=.0341). Results were robust for a range of partition models 

ranging from k=7 to k=11, with higher k revealing more fine-grained and less frequent 

subsystems. 

 

Conclusions 

To the best of our knowledge, this is the first study assessing the dynamics of resting-state FC in 

OCD patients. The use of the LEiDA approach for the characterization of FC patterns in OCD 

yielded novel findings regarding the dynamic fluctuation between FC states in these individuals, 

detecting alterations in specific functional subsystems, which may be potentially established as 

an important biomarker of the disorder and help link the behavioral symptoms of the disease to 

the underlying network dynamics. An important limitation of this study relies on the fact that 

most patients were receiving pharmacological treatment. Previous studies have highlighted that 

the administration of selective serotonin reuptake inhibitor (SSRI) medication contributes to a 

partial restoring of abnormal FC in these patients (Shin, Jung et al. 2014). As such, future studies 

may provide further elucidation on this issue, by characterizing the FC dynamics in drug-naïve 

patients. In addition, given that previous studies have reported that the variety of the regions 

implicated in the disorder appears to underlie the different OCD phenotypes (Mataix-Cols, do 

Rosario-Campos et al. 2005), it is still yet to explore how different symptom-related 

manifestations of the disorder are characterized with respect to FC dynamics.  
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Abstract 

Altered stress response and consequent elevated levels of circulating glucocorticoids have been 

found in neuropsychiatric disorders such as depression or anxiety disorders and proposed to 

also play a role in the pathophysiology of obsessive-compulsive disorder (OCD). Despite the 

observation that stressful events may precede the disease onset or even exacerbate its 

symptoms, studies in this field do not always report consistent results regarding the cortisol 

profile of OCD patients. As such, a systematic review and meta-analysis was developed to clarify 

this issue. This systematic review and meta-analysis were elaborated according to the PRISMA 

method. The analytical procedures were implemented using Metafor package in R software. 19 

studies were included in the systematic review and 18 were included in the meta-analysis. In 

qualitative synthesis, 12 studies indicate that cortisol levels are higher in OCD patients than 

controls, whereas 7 do not reveal significant differences. In quantitative analysis, OCD patients 

had significantly higher cortisol levels compared to controls (d=1.079, SE=.303, p<.001). For 

studies using the average of multiple assessments, the standardized coefficient was significantly 

higher when compared to studies focusing on single measurements. Only the studies performing 

blood collection in the morning yielded a significant overall effect (d=.706, p =.001). Both the 

systematic review and meta-analysis strongly suggest that cortisol levels are significantly higher 

in OCD patients than healthy individuals. 

 

Keywords: Obsessive-Compulsive Disorder; Cortisol; glucocorticoids; Stress; Hypothalamic-

pituitary-adrenal axis
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Abstract 

We organized 10Kin1day, a pop-up scientific event with the goal to bring together neuroimaging 

groups from around the world to jointly analyze 10,000+ existing MRI connectivity datasets 

during a 3-day workshop. In this report, we describe the motivation and principles of 10Kin1day, 

together with a public release of 8,000+ MRI connectome maps of the human brain. 

 

Figure 1. (A) For each dataset, DWI tractography was combined with T1-based parcellation of 
cerebral brain regions to reconstruct a brain network. (B) Group-averaged (group threshold 33%) 
FA matrix of the 10K dataset. (C) High overlap (r=0.93) between group-averaged FA values as 
derived from high-resolution HCP data and the 10K dataset. (D) Relationship between age and 
average inverse mean diffusivity (MD) across the 10K dataset. Colors indicate the different 
included datasets. Insert shows a pie diagram of the size of included datasets, color coded to 
set participation. One dataset (set_634413) was excluded from this plot, showing (across the 
age span) deviating FA (lower) and MD (higher) values than the other datasets (see methods). 
Due to the high total n, excluding this dataset did not change the relationship with age. (E) 
Relationship between age and average cortical thickness (CT). (F) Age distribution of the 
presented data as in panel E and F. au=arbritrary units. DWI=diffusion weighted imaging. 
CT=cortical thickness. 
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