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Abstract

The literature on quaternionic polynomials and, in particular, on
methods for finding and classifying their zero sets, is fast developing
and reveals a growing interest in this subject. In contrast, polynomials
defined over the algebra of coquaternions have received very little at-
tention from researchers. One of the few exceptions is the very recent
paper by Janovská and Opfer [Electronic Transactions on Numerical
Analysis, Volume 46, pp. 55-70, 2017], where, among other results,
we can find a first attempt to prove that a unilateral coquaternionic
polynomial of degree n has, at most, n(2n−1) zeros. In this paper we
present a full proof of this result, using a totally different and, from
our point of view, much simpler approach. Also, we give a complete
characterization of the zero sets of such polynomials and present a
new result giving conditions which guarantee the existence of a special
type of zeros. An algorithm to compute and classify all the zeros of a
coquaternionic polynomial is proposed and several numerical examples
are carefully constructed.

1 Introduction

In 1941, I. Niven, in his pioneering work [18], proved that any unilateral polynomial defined over the real
algebra H of quaternions always has a zero in H, describing, simultaneously, a process to compute the roots
of any such polynomial. The procedure proposed by Niven has two distinct parts: the first is a process to
determine which similarity classes of H contain roots of the polynomial and the second is a computational
procedure for finding the roots belonging to each class. The first part of Niven’s scheme is not very practical
and the problem of the determination of the roots of a quaternionic polynomial remained dormant for quite
a while. In fact, it was only in the year 2001 that Serôdio, Pereira and Vitória [22] proposed an efficient
procedure to replace the first part of Niven’s method, presenting what can be considered as the first really
usable algorithm for finding the zeros of quaternionic polynomials. After this first paper, the interest in the
development of root-finding methods for quaternionic polynomials has called the attention of many researchers;
see e.g. [3, 7, 17, 20, 23]. Most of the methods available to compute the roots of a given polynomial P
make use of the so-called companion polynomial of P to replace the first part of Niven’s procedure, i.e. to
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determine which are the classes containing the roots. They differ in the way how the roots are computed once
the classes are found. This is precisely the case of the method introduced by Serôdio and Siu [23] and of the
closely related method later proposed in [11].

In contrast to the case of quaternionic polynomials, the literature on polynomials defined over the algebra
Hcoq of coquaternions is very scarce: see, nevertheless, [6, 12, 13, 19, 21] and the very recent publication by
Janovká and Opfer [14]. In this last reference, the authors aim at extending to coquaternionic polynomials
their method for polynomials over H given in [11]. Of course, due to the nature of the coquaternionic algebra,
in particular the fact that this is not a division algebra, significant differences occur. In [14] the authors also
state an important result relating the degree of a coquaternionic polynomial to the maximum number of zeros
that the polynomial can have.1

The main purpose of this paper is to present a complete and simpler proof of the aforementioned result
on the maximum number of zeros of a coquaternionic polynomial and simultaneously to describe the zero
structure of such polynomials. A new result giving conditions which guarantee the existence of a special type
of zeros – which we call linear zeros – is also presented and a positive answer to a question posed in [14] is
given.

The rest of the paper is organized as follows: Section 2 contains a revision of the main definitions and
results on the algebra of coquaternions. Section 3 is dedicated to unilateral coquaternionic polynomials and
contains the main results of the paper; in particular, a revised version of the root-finding algorithm proposed
in [14] is given. Finally, Section 4 contains carefully chosen examples illustrating some of the conclusions
contained in Section 3.

2 Some basic results on coquaternions

Let {1, i, j,k} be an orthonormal basis of the Euclidean vector space R4 with a product given according to
the multiplication rules

i2 = −1, j2 = k2 = 1, ij = −ji = k.

This non-commutative product generates the algebra of real coquaternions, also known as split quaternions,
which we will denote by Hcoq. We will identify the space R4 with Hcoq by associating the element q =
(q0, q1, q2, q3) ∈ R4 with the element q = q0 + q1i + q2j + q3k ∈ Hcoq. Thus, throughout the paper, we will
not distinguish an element in R4 (sometimes written as a column vector, if convenient) from the corresponding
coquaternion, unless we need to stress the context.

The explicit multiplication of two coquaternions p = p0 + p1i + p2j + p3k and q = q0 + q1i + q2j + q3k is
given by

pq = p0q0 − p1q1 + p2q2 + p3q3 + (p0q1 + p1q0 − p2q3 + p3q2)i

+ (p0q2 − p1q3 + p2q0 + p3q1)j + (p0q3 + p1q2 − p2q1 + p3q0)k. (2.1)

The expression (2.1) shows that the product pq can be computed using matrices as Mpq, where

Mp =


p0 −p1 p2 p3

p1 p0 p3 −p2

p2 p3 p0 −p1

p3 −p2 p1 p0

 (2.2)

and where, when performing the matrix multiplication, we identify q with the column vector (q0, q1, q2, q3)T.
Given a coquaternion q = q0 +q1i+q2j+q3k ∈ Hcoq, its conjugate q is defined as q = q0−q1i−q2j−q3k;

the number q0 is called the real part of q and denoted by Re(q) and the vector part of q, denoted by Vec(q),
is given by Vec(q) = q1i + q2j + q3k.

We will identify the set of coquaternions whose vector part is zero with the set R of real numbers. We
will also consider three particularly important subspaces of dimension two of Hcoq, usually called the canonical
planes or cycle planes. The first is {q ∈ Hcoq : q = a + b i, a, b ∈ R} which, of course, we identify with the

1We should remark that the results contained in [14] are obtained for polynomials defined not only over the algebra of
coquaternions but also over two other algebras: the algebra of nectarines Hnec and the algebra of conectarines Hcon. Since these
two algebras are isomorphic to the algebra of coquaternions, we decided to consider only the coquaternionic case.
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complex plane C; the second, which we denote by P and whose elements are usually called perplex numbers,
is given by P = {q ∈ Hcoq : q = a+ b j, a, b ∈ R} and corresponds to the classical Minkowski plane; the third,
denoted by D, is the subspace of the so-called dual numbers, D = {q ∈ Hcoq : q = a + b (i + j), a, b ∈ R}
and can be identified with the classical Laguerre plane. We call determinant of q and denote by det(q) the
quantity given by

det(q) = q q = q2
0 + q2

1 − q2
2 − q2

3 . (2.3)

Remark 2.1. Other authors use different notations and names for the value given by (2.3); see e.g. [1,
5, 13, 14]. We propose the use of the term determinant, since it is known that every coquaternion q =
q0 + q1i + q2j + q3k can be represented by the real matrix(

q0 + q3 q1 + q2

q2 − q1 q0 − q3

)
whose determinant is precisely the value given by (2.3).

Contrary to what happens in the case of quaternions, not all non-zero coquaternions are invertible. It can
be shown that a coquaternion q is invertible if and only if det(q) 6= 0. In that case, we have q−1 = q

det(q) . A

non-invertible element q ∈ Hcoq is also called singular . It can also be shown that a coquaternion q is singular
if and only if it is a zero divisor , i.e. there exist r, s ∈ Hcoq, r, s 6= 0 such that rq = qs = 0.

We now recall the concept of similarity in the set of coquaternions.

Definition 2.2. We say that a coquaternion q is similar to a coquaternion p, and write q ∼ p, if there exists
an invertible coquaternion h such that q = h−1ph.

This is an equivalence relation, partitioning Hcoq in the so-called similarity classes, defined, for each
q ∈ Hcoq, by [q] = {p ∈ Hcoq : p ∼ q}. It can easily be shown that [q] = {q} if and only if q ∈ R.

It is a well-known result that any Hamilton quaternion is similar to a complex number with non-negative
real part – see e.g. [2, Lemma 3] – thus allowing the choice of that special form for the representative of any
similarity class. The following result shows that the situation is different in the case of coquaternions, where
three different types of representatives need to be used (for non-real coquaternions).

In what follows, given a coquaternion q = q0 + q1i+ q2j+ q3k = q0 + Vec(q), we will use dv(q) to denote
the determinant of the vector part of q, i.e. dv(q) := det(Vec(q)).

Theorem 2.3 ([8],[15]). Let q = q0 + q1i + q2j + q3k be a non-real coquaternion. Then:

(i) If dv(q) > 0, q is similar to the complex number q0 +
√

dv(q) i, i.e. [q] = [q0 +
√

dv(q) i];

(ii) if dv(q) < 0, q is similar to the perplex number q0 +
√
−dv(q) j, i.e. [q] = [q0 +

√
−dv(q) j];

(iii) if dv(q) = 0, q is similar to the dual number q0 + i + j, i.e. [q] = [q0 + i + j].

The proof contained in [15] for the cases (i)-(ii) and in [8] for the case (iii) gives explicit expressions on how
we may choose h ∈ Hcoq such that h−1qh has the specified form. We simply recall here those expressions.

(i) Take h = q1 +
√

dv(q)− q3j + q2k, if q2
2 + q2

3 6= 0 and h = j, if q = q0 + q1i with q1 < 0.

(ii) If q2
1 + q2

3 6= 0, take h = q1 − q3j+ (q2 −
√
−dv(q))k, if q2 ≤ 0 and h = q2 +

√
−dv(q) + q3i+ q1k, if

q2 > 0; if q = q0 + q2j with q2 < 0, simply take h = i.

(iii) Take h = 1 + q1 − q3j− (1− q2)k , if q1 + q2 6= 0, and h = (1 + q1)i + (1− q1)j, otherwise.

As an immediate consequence of the previous theorem, we have the result contained in the following
corollary.

Corollary 2.4. Two non-real coquaternions p and q are similar if and only if they satisfy the following
conditions:

Re(p) = Re(q) and dv(p) = dv(q). (2.4)
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Remark 2.5. Since, for any coquaternion q, we have det(q) = (Re(q))2+dv(q), conditions (2.4) are equivalent
to

Re(p) = Re(q) and det(p) = det(q). (2.5)

We should emphasize that, since any q ∈ R is never similar to any other coquaternion, the conditions (2.4)
(or (2.5)) guarantee the similarity of p and q only if both these coquaternions are non-real. In connection to
this, Janovská and Opfer [13] introduced the notion of quasi-similarity for any two coquaternions.

Definition 2.6. We say that two coquaternions p and q are quasi-similar, and write p≈q, if and only if they
satisfy conditions (2.4).

Quasi-similarity is an equivalence relation in Hcoq; the equivalence class of q with respect to this relation
is called the quasi-similarity class of q and will be denoted2 by JqK.

It is convenient to introduce the following definition.

Definition 2.7. A coquaternion q is said to be of Type 1, Type 2 or Type 3, depending on whether dv(q) > 0,
dv(q) < 0 or dv(q) = 0, respectively.3

We have

JqK = {p ∈ Hcoq : Re(p) = Re(q) and dv(p) = dv(q)}
= {p0 + p1i + p2j + p3k : p0 = q0 and p

2
1 − p2

2 − p2
3 = dv(q)}. (2.6)

Thus, the quasi-similarity class JqK can be identified with a hyperboloid in the hyperplane {(x0, x1, x2, x3) ∈
R4 : x0 = q0}. This will be:

1. a hyperboloid of two sheets, if dv(q) > 0, i.e. if q is of Type 1; in this case JqK = [q] = [q0 +
√

dv(q) i];

2. a hyperboloid of one sheet, if dv(q) < 0, i.e. if q is of Type 2; in this case JqK = [q] = [q0 +
√
−dv(q) j];

3. a degenerate hyperboloid (i.e. a cone), if dv(q) = 0, i.e. if q is of Type 3; in this case, JqK = Jq0K and:

(i) if q ∈ R, [q] = {q0};
(ii) if q 6∈ R, [q] = [q0 + i + j] = Jq0K \ {q0}.

Note that no quasi-similarity class reduces to a single point and also that any quasi-similarity class contains
a non-real element.

3 Unilateral coquaternionic polynomials

In this section we study polynomials defined over the algebra of coquaternions with special interest on the
number and nature of their zeros.

3.1 Definitions and basic results

Unlike the real or complex case, there are several possible ways to define coquaternionic polynomials, since
the coefficients can be taken to be on the right, on the left or on both sides of the variable. In this paper, we
will restrict our attention to polynomials whose coefficients are located on the left of the variable, i.e. we only
consider the set of polynomials of the form

P (x) = cnx
n + cn−1x

n−1 + · · ·+ c1x+ c0, ci ∈ Hcoq. (3.1)

2It is important to remark that we use different notations from the ones introduced in [13], where the symbol
q∼ is used for the

quasi-similarity relation and the quasi-similarity class of u ∈ Hcoq is denoted by [u]q . Since we frequently use q for a coquaternion,
we found convenient to adopt different notations.

3A coquaternion q is usually classified as time-like, space-like or light-like according to det(q) > 0, det(q) < 0 or det(q) = 0,
respectively. Hence, Type 1, Type 2 and Type 3 coquaternions can also be described as coquaternions whose vector part is
time-like, space-like or light-like, respectively.
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We define the addition and multiplication of such polynomials as in the commutative case where the variable
commutes with the coefficients.

With these operations, this set becomes a ring, which we call the ring of (left) unilateral, one-sided or
simple polynomials in Hcoq and denote4 by Hcoq[x].

As usual, if cn 6= 0, we say that the degree of the polynomial P (x) is n and call cn the leading coefficient
of the polynomial. When cn = 1, we say that P (x) is monic.

Due to the non-commutativity of the product in Hcoq, the product of polynomials is also non-commutative.
However, as for the product of coquaternions, a polynomial with real coefficients commutes with any other
polynomial.

For a given coquaternion q, let Eq : Hcoq[x]→ Hcoq be the evaluation map at q, defined, for the polynomial
given by (3.1), by Eq(P (x)) = cnq

n + cn−1q
n−1 + · · · + c1q + c0. Due to the way we defined the product

of polynomials, this map is not a ring homomorphism, i.e., in general, we do not have Eq(P (x)Q(x)) =
Eq(P (x))Eq(Q(x)).

Remark 3.1. Since all the polynomials considered will be in the indeterminate x, we will usually omit the
reference to this variable and write simply P when mentioning an element P (x) ∈ Hcoq[x]; an expression
of the form P (q), with q 6= x, will be used to denote the evaluation of P at a specific value q ∈ Hcoq, i.e.
P (q) = Eq(P (x)).

We say that a polynomial R ∈ Hcoq[x] is a right divisor (left divisor) of the polynomial P if there exists a
polynomial Q such that P = QR (P = RQ). We say that a polynomial D is a divisor of the polynomial P if
D is simultaneously a left and a right divisor of P .

A coquaternion q such that P (q) = 0 is called a zero or a root of P . We will use Z(P ) to denote the zero
set of P , i.e. the set of all zeros of P .

Theorem 3.2 (Factor Theorem). ([16, Proposition (16.2)]) Let P (x) be a given non-zero polynomial in
Hcoq[x]. An element q ∈ Hcoq is a zero of P if and only if (x− q) is a right divisor of P (x) in Hcoq[x], i.e. if
and only if there exists a polynomial Q(x) ∈ Hcoq[x] such that P (x) = Q(x)(x− q).

This theorem has the following immediate corollary.

Corollary 3.3. Let P (x) = L(x)R(x) with L(x), R(x) ∈ Hcoq[x]. Then, all the zeros of R(x) are zeros of
P (x).

3.2 Characteristic polynomial of a class

Given a coquaternion q ∈ Hcoq, consider the following polynomial

(x− q)(x− q) = x2 − 2Re(q)x+ det(q).

Since this polynomial depends only on Re(q) and det(q), we immediately conclude that this is an invariant of
the quasi-similarity class of q. We will call it the characteristic polynomial of JqK and will denote it by ΨJqK

5,
i.e.

ΨJqK(x) := (x− q)(x− q) = x2 − 2Re(q)x+ det(q). (3.2)

Note that the discriminant ∆ of the characteristic polynomial (3.2) is given by

∆ = 4(Re(q))2 − 4det(q) = −4dv(q).

This means that ΨJqK will be:

(i) an irreducible polynomial (over the reals), if dv(q) > 0, i.e. if q is of Type 1;

4Right unilateral polynomials are defined in an analogous manner, by considering the coefficients on the right of the variable;
all the results for left unilateral polynomials have corresponding results for right unilateral polynomials and hence we restrict our
study to polynomials of the first type. The case of general polynomials is out of the scope of this paper. We refer the interested
readers to [6], where the case of linear equations with terms of the form axb was considered.

5This polynomial is more commonly called the characteristic polynomial of the coquaternion q. We prefer to use our definition
to emphasize the biunivocal relation between quasi-similarity classes and characteristic polynomials.
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(ii) a polynomial of the form (x− r1)(x− r2) with r1, r2 ∈ R, r1 6= r2, if dv(q) < 0, i.e. if q is of Type 2;

(iii) a polynomial of the form (x− r)2, with r ∈ R, if dv(q) = 0, i.e. if q is of Type 3.

On the other hand, any second degree monic polynomial with real coefficients is the characteristic polynomial
of a (uniquely defined) quasi-similarity class. In fact, let p2(x) = x2 +bx+c with b, c ∈ R and let ∆ = b2−4c.
Considering p2 as a polynomial in C[x], we have:

(i) if ∆ < 0, then p2 has two (distinct) complex conjugate roots, w and w; hence, p2(x) = (x−w)(x−w)
i.e. p2 = ΨJwK;

(ii) if ∆ = 0, then p2(x) has a double real root r, i.e. p2(x) = (x− r)2 and so p2 = ΨJrK;

(iii) if ∆ > 0, then p2 has two distinct real roots r1, r2, i.e. p2(x) = (x−r1)(x−r2) = x2−(r1 +r2)x+r1r2

and it is easy to see that p2 = ΨJpK, with p the perplex number p = r1+r2
2 + r1−r2

2 j.

The next theorem states an important property of the zero set of characteristic polynomials; see e.g. [8,
Theorem 4] for this and other properties of Z(ΨJqK).

Theorem 3.4. Let ΨJqK be the characteristic polynomial of a given quasi-similarity class JqK. Then JqK ⊆
Z(ΨJqK).

3.3 Zeros of polynomials and the companion polynomial

Given a polynomial P ∈ Hcoq[x], the polynomial obtained from P by replacing each coefficient by its conjugate
is called the conjugate of P and denoted by P . The properties given in the following proposition are easily
verified.

Proposition 3.5. Let P,Q ∈ Hcoq[x]. Then:

(i) PQ = Q P ;

(ii) PP = PP is a polynomial with real coefficients.

Definition 3.6. The polynomial
CP = PP = PP (3.3)

is called the companion polynomial of P .

Remark 3.7. This polynomial already appears in the famous work [18] of Niven, published in 1941 – unfortu-
nately with no name – and has been used by many authors under different designations. The name companion
polynomial adopted here was introduced in [11].

In what follows, we restrict our attention to the study of monic polynomials, i.e. we will consider only
polynomials of the form

P (x) = xn + cn−1x
n−1 + . . .+ c1x+ c0, ci ∈ Hcoq. (3.4)

Note that, in what concerns the zeros, the study of polynomials of this type is equivalent to the study of
polynomials of the form (3.1) with a non-singular leading coefficient6 cn.

Niven [18] proved that every non-constant unilateral polynomial with quaternionic coefficients always has
a quaternionic zero, thus establishing that the “Fundamental Theorem of Algebra” holds for unilateral quater-
nionic polynomials.7 The situation in what concerns polynomials defined over the algebra of coquaternions is,
however, different. In fact, as observed by Özdemir [19, Theorem 9-i.], any equation of the form xn − q = 0,
with n even and q a coquaternion with negative determinant, does not have a solution; other examples of
coquaternionic polynomials with no roots can be found in [13].

The following theorem plays an important role in the root-finding procedure that we are going to propose.

6The fact that P is monic (or with non-singular leading coefficient) guarantees that the companion polynomial has degree 2n
and avoids pathological situations as having a non-zero polynomial whose companion polynomial is the zero polynomial; see [13]
for such an example.

7This result was later extended to more general quaternionic polynomials in [4].
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Theorem 3.8. Let P ∈ Hcoq[x]. If z ∈ Hcoq is a zero of P , then ΨJzK is a divisor of the companion polynomial
of P .

Proof. Let z be a zero of P ; by Theorem 3.2, we know that (x − z) is a right divisor of P , i.e. P (x) =
Q(x)(x− z) for a given polynomial Q ∈ Hcoq[x]. Thus

CP (x) = P (x)P (x) = Q(x)(x− z)(Q(x)(x− z))
= Q(x)(x− z)(x− z)Q(x) = Q(x)ΨJzK(x)Q(x)

= Q(x)Q(x)ΨJzK(x) = CQ(x)ΨJzK(x) = ΨJzK(x)CQ(x),

where we used the fact that a polynomial with real coefficients commutes with any other polynomial. Hence,
ΨJzK is a divisor of CP , as we wished to prove.

The result of the previous theorem can also be stated as follows: if a certain quasi-similarity class JzK
of Hcoq contains a zero of P , then its characteristic polynomial ΨJzK divides the companion polynomial CP .
This means, in particular, that there is no point in searching for zeros of P in classes whose characteristic
polynomial is not a factor of CP . We are thus led to introduce the following definition.

Definition 3.9. Given a polynomial P , a quasi-similarity class JzK of Hcoq is called admissible (with respect
to the zeros of P ) if and only if the corresponding characteristic polynomial ΨJzK is a divisor of the companion
polynomial of P .

If P is a monic polynomial of degree n, its companion polynomial CP is a polynomial with real coefficients of
degree 2n and, as such, has 2n roots in C. Let these roots be w1, w1, . . . , wm, wm ∈ C\R and r1, . . . , rs ∈ R,
where s = 2n− 2m, 0 ≤ m ≤ n. Then,

CP (x) = (x− w1)(x− w1)︸ ︷︷ ︸
ΨJw1K

. . . (x− wm)(x− wm)︸ ︷︷ ︸
ΨJwmK

(x− r1) . . . (x− rs)

and it is clear that the characteristic polynomials (i.e. the real monic polynomials of degree two) which divide
CP are the m irreducible polynomials

ΨJwiK, i = 1, . . . ,m, (3.5)

and the
(
s
2

)
polynomials (x− rj)(x− rk); j = 1, . . . , s− 1, k = j + 1, . . . , s, i.e. the polynomials

ΨJpjkK with pjk =
rj+rk

2 +
rj−rk

2 j; j = 1, . . . , s− 1, k = j + 1, . . . , s. (3.6)

Note that, if rj is a multiple root, a polynomial of the form (x − rj)
2 = ΨJrjK appears. The maximum

number of such polynomials occurs when m = 0 and the 2n real roots of CP are all distinct, and is equal to(
2n
2

)
= n(2n− 1). Having in mind the correspondence between characteristic polynomials and quasi-similarity

classes, we can then state the following result.

Theorem 3.10. If P is a polynomial of degree n in Hcoq[x], then the zeros of P belong to, at most, n(2n−1)
quasi-similarity classes.

Remark 3.11.

1. This can be seen as the analogue, in the coquaternionic setting, of a result first established by Gordon
and Motzkin [10] for quaternionic polynomials.

2. The result of the previous theorem was first stated, by using totally different arguments, in [14, Corollary
5.3]. We remark that the proof contained in [14] is not only much more elaborate than the proof presented
here but also incomplete. In fact, Corollary 5.3. follows from the use of two theorems – Theorem 5.1
and Theorem 5.2. – which deal, respectively, with the case of zeros belonging to a similarity class of the
form [u+ vi], v > 0, or to a similarity class [u+ vj], v > 0. So, the case of zeros in a class of the type
[u+ i+ j] (i.e. zeros whose vector part has zero determinant, but which are not real), is not considered.
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3.4 Computing the zeros from the admissible classes

We now explain how to compute the zeros belonging to each of the admissible classes. The process is
an adaptation to the coquaternionic setting of the already mentioned process for quaternionic polynomials
proposed by Niven in [18]. Of course, some differences occur due to the fact that Hcoq, contrary to the
algebra of quaternions, is not a division algebra. The same idea (although using a different computational
procedure) was used in [13] and [14].

For any monic polynomial of the first degree, P (x) = x − q, the only root of P (x) is q, and so we will
now consider only polynomials of degree n ≥ 2.

In what follows, JqK = Jq0 + Vec(q)K is an admissible class of P , i.e., ΨJqK(x) divides CP . This implies, in
particular, that all the elements in JqK are zeros of CP ; see Theorems 3.2 and 3.4.

We first note that, since the product of two polynomials in Hcoq[x] is defined in the usual manner, we can
always use the “Euclidean Division Algorithm” to perform the division of two polynomials, provided that the
leading coefficient of the divisor is non-singular. In particular, we can use it to divide P (x) by the characteristic
polynomial of the quasi-similarity class JqK, i.e. by the quadratic monic polynomial x2 − 2Re(q)x+ det(q). If
we perform this division we will obtain

P (x) = Q(x)ΨJqK(x) +A+Bx (3.7)

for some polynomial Q(x) and values A and B which depend only on the coefficients ci of the given polynomial
P and on the values Re(q) and det(q). As in the case of complex or quaternionic polynomials, expanded
synthetic division can be used here to obtain the expressions of A and B (see [24] and [9] for computational
details on the use of this shortcut method for dividing any polynomial by the special quadratic polynomial
ΨJqK, in the complex and quaternionic context, respectively). Specifically, we have

A = c0 − det(q)α0 and B = c1 + 2Re(q)α0 − det(q)α1, (3.8a)

where αj satisfy the following recurrence relations:

αn−1 = 0, αn−2 = 1,

αk = ck+2 + 2Re(q)αk+1 − det(q)αk+2; k = n− 3, n− 2, . . . , 0.
(3.8b)

For all z ∈ JqK, we have ΨJqK(z) = 0 (see Theorem 3.4), and so we obtain8

P (z) = A+Bz. (3.9)

Hence, we conclude that a coquaternion z ∈ JqK is a zero of the polynomial P if and only it satisfies

A+Bz = 0. (3.10)

We now discuss several cases, depending on the values A and B.

Case 1 B non-singular
In this case, there is only one zero z0 of P in the class JqK, given by the formula

z0 = −B−1A = − BA

det(B)
, (3.11)

as we will now show. Clearly, z0 given by (3.11) is the unique solution of (3.10) and so it remains to prove
that it belongs to JqK. From (3.7), we have that

CP (x) = CQ(x)ΨJqK(x)ΨJqK(x) + (A+Bx)Q(x)ΨJqK(x)

+Q(x)(A+Bx)ΨJqK(x) + det(A) + 2Re(AB)x+ det(B)x2.

8This result is obtained in a different way in [21] and also in [13], where a different computational procedure for obtaining A
and B is proposed; counting the number of arithmetic operations involved, one can conclude (cf. [9] for complexity and stability
analysis) that, for n > 3, the process given by (3.8) involves less computational effort than the method proposed in [13] and [21].
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Let z be an element in JqK with a non-zero vector part (as mentioned before, such an element always exists).
Recalling that CP (z) = 0 and ΨJqK(z) = 0, we have

det(B)z2 + 2Re(AB)z + det(A) = 0

and

z2 = 2Re(z)z − det(z).

Hence, we obtain

det(B)(2Re(z)z − det(z)) + 2Re(AB)z + det(A) = 0

or

det(B)
(
2Re(z)(Re(z) + Vec(z))− det(z)

)
+ 2Re(AB)

(
Re(z) + Vec(z)

)
+ det(A) = 0

which implies  2Re(z)
(
det(B)Re(z) + Re(AB)

)
− det(B)det(z) + det(A) = 0,

2
(
det(B)Re(z) + Re(AB)

)
Vec(z) = 0.

Since Vec(z) 6= 0, we immediately conclude that

det(B)Re(z) + Re(AB) = 0 and det(A)− det(B)det(z) = 0

or

Re(z) = −Re(AB)

det(B)
and det(z) =

det(A)

det(B)
.

Taking into account well-known properties of Re(q) and det(q), we obtain from the expression (3.11) of z0

Re(z0) = −Re(AB)

det(B)
= Re(z)

and

det(z0) =

(
1

det(B)

)2

det(B)det(A) =
det(A)

det(B)
= det(z)

which shows that z0 ∈ JzK = JqK.

Case 2 B = 0

Case 2.1 A 6= 0
In this case, equation (3.10) cannot be satisfied, so there are no zeros of P in JqK.

Case 2.2 A = 0
From (3.10) we have that P (z) = 0 for all z ∈ JqK, i.e. the whole hyperboloid JqK is made up of zeros of P .

Case 3 B singular, B 6= 0
The roots of P belonging to JqK can be obtained by studying the solvability of the system

MBz = −A (3.12)

where z = (z0, z1, z2, z3)T and MB is the matrix defined by (2.2) (and A is seen as a column vector) and
selecting the solutions for which Re(z) = q0 and dv(z) = dv(q).

Case 3.1 MBz = −A has no solution
In this case, we conclude that there are no zeros of P in JqK.

Case 3.2 MBz = −A is solvable
Let δ = (δ0, δ1, δ2, δ3)T be a solution of the system (3.12), i.e. let MBδ = −A. As is well known, the

general solution of the system is the sum of a particular solution with the general solution of the associated
homogeneous system, i.e. it is given by z = u + δ,with u = (u0, u1, u2, u3)T such that MBu = 0. It can
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easily be shown that, when B = b0 + b1i + b2j + b3k is singular (but B 6= 0), the matrix MB has rank two
and the general solution u of the homogeneous system MBu = 0 is given by

u0 = α,
u1 = β,
u2 = k1α+ k2β,
u3 = k2α− k1β; α, β ∈ R,

(3.13a)

with

k1 = −b0b2 + b1b3
b20 + b21

and k2 =
b1b2 − b0b3
b20 + b21

. (3.13b)

So, the solutions of (3.10) are z = z0 + z1i + z2j + z3k with
z0 = α+ δ0,
z1 = β + δ1,
z2 = k1α+ k2β + δ2,
z3 = k2α− k1β + δ3; α, β ∈ R.

(3.14)

There is no loss in generality in considering a particular solution γ of the system MBz = −A with the form
γ = (γ0, γ1, 0, 0)T. This follows immediately by taking α = −k1δ2−k2δ3 and β = −k2δ2 +k1δ3 in (3.14) and
observing that the values k1 and k2 given by (3.13) satisfy k2

1 + k2
2 = 1. So, we can state that the solutions

of (3.10) are given by 
z0 = α+ γ0,
z1 = β + γ1,
z2 = k1α+ k2β,
z3 = k2α− k1β; α, β ∈ R.

(3.15)

We now need to select solutions such that Re(z) = q0 and dv(z) = dv(q). The first condition can always
be satisfied provided we take α = q0−γ0. On the other hand, the expression for the determinant of the vector
part of z is given by

dv(z) = (β + γ1)2 − (k1α+ k2β)2 − (k2α− k1β)2 = −α2 + γ2
1 + 2γ1β

which, with the choice α = (q0 − γ0), becomes

dv(z) = −(q0 − γ0)2 + γ2
1 + 2γ1β. (3.16)

Case 3.2 (a) There exists γ ∈ R such that A+Bγ = 0
In the special case where γ1 = 0, i.e. when γ = γ0 ∈ R, the expression for dv(z) simplifies to −(q0− γ0)2

and so the condition dv(z) = dv(q) simply reads as

− (q0 − γ0)2 = dv(q). (3.17)

Thus, there will be zeros in the class JqK if and only if this condition is satisfied; in such a case, the zeros will
form the set

L =
{
q0 + βi +

(
k2β + k1(q0 − γ0)

)
j +
(
− k1β + k2(q0 − γ0)

)
k : β ∈ R

}
, (3.18)

with k1, k2 given by (3.13). This set of points (considered as points in R4) can be seen as a line in the
hyperplane x0 = q0: the line through the point

(
0, k1(q0 − γ0), k2(q0 − γ0)

)
with the direction of the vector

(1, k2,−k1). Note also that this is an infinite set, but a strict subset of JqK.

Case 3.2 (b) There is no γ ∈ R such that A+Bγ = 0
When γ1 6= 0, the expression (3.16) for the determinant of the vector part of z shows that there is a unique

value of β for which dv(z) = dv(q):

β =
dv(q) + (q0 − γ0)2 − γ2

1

2γ1
. (3.19)
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Hence, in this case, we have the following unique zero in the class JqK:

z0 = q0 + (β + γ1)i +
(
k2β + k1(q0 − γ0)

)
j +
(
− k1β + k2(q0 − γ0)

)
k,

with β given by (3.19).

The previous discussion – see also [8] and [14] – shows that coquaternionic polynomials may have three
different types of zeros, motivating us to introduce the following definition.

Definition 3.12. Let z be a zero of a given coquaternionic polynomial P .

1. z is said to be an isolated zero of P if JzK contains no other zeros of P ;

2. z is said to be a hyperboloidal zero of P if JzK ⊆ Z(P );

3. z is said to be a linear zero of P if z is neither an isolated zero nor a hyperboloidal zero of P .

Remark 3.13. As far as we are aware, the first authors to note the appearance of zeros which are neither
isolated nor hyperboloidal were Janovská and Opfer, in [14], giving an example of a special family of quadratic
polynomials with such zeros, which they called unexpected zeros. However, we have to point out that there
are linear zeros which are not unexpected zeros in the sense of [14], as the examples in Section 4 show.

In what follows, we will treat all the zeros belonging to the same quasi-similarity class as forming a single
zero, i.e., we will call to a whole hyperboloid of zeros or a line of zeros simply a hyperboloidal zero or a linear
zero, respectively.

We may now summarize the results of our previous discussion in the following theorem.

Theorem 3.14. Let JqK be an admissible class of a given polynomial P ∈ Hcoq[x] and let A + Bx be the
remainder of the right division of P (x) by the characteristic polynomial of JqK. Also, denote by ZJqK the set
of the zeros of P belonging to JqK. The set ZJqK can be completely characterized in terms of A and B, as
follows:
1. If B is non-singular, then P has an isolated zero in JqK and

ZJqK =
{
− BA

det(B)

}
.

2. If B = 0 and

(a) A 6= 0, then ZJqK = ∅;

(b) A = 0, then ZJqK = JqK, i.e. JqK is a hyperboloidal zero of P .

3. If B 6= 0 is singular and the equation A+Bx = 0 has

(a) no solution, then ZJqK = ∅;

(b) a real solution γ0, then:

(i) if (q0 − γ0)2 = −dv(q), then

ZJqK =
{
q0 + βi + (k2β + k1(q0 − γ0)) j + (−k1β + k2(q0 − γ0))k : β ∈ R

}
,

with k1 = − b0b2+b1b3
b20+b21

and k2 = b1b2−b0b3
b20+b21

, i.e. ZJqK is a linear zero of P ;

(ii) if (q0 − γ0)2 6= −dv(q), then ZJqK = ∅;

(c) a nonreal solution γ = γ0 + γ1i, then P has an isolated zero in JqK and

ZJqK =
{
q0 + (β + γ1)i + (k2β + k1(q0 − γ0)) j + (−k1β + k2(q0 − γ0))k

}
,

with β =
dv(q)+(q0−γ0)2−γ2

1

2γ1
.
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Remark 3.15. We remark that the discussion contained in [14] for the case B singular, B 6= 0 is incomplete.
In fact, there are two problems associated with the results in that paper. The first has to do with the fact that
the authors do not consider case 3 (c) in the previous theorem, assuming implicitly that, when B is singular
and B 6= 0, roots may only appear if there exists γ ∈ R such that A + Bγ = 0 (see the assumption in
[14, Theorem 3.2] which is invoked in both Theorems 4.2 and 4.3 of [14] as a process for computing the
roots). Second, even when the hypotheses of Theorem 3.2 in [14] are verified (i.e. we are in case 3 (b) of
Theorem 3.14), the formula

z0 = αB + γ, α ∈ R,
which is proposed in [14] for obtaining the solutions of equation A + Bz = 0 may not give all the solutions
of this equation; as we noted, the general solution of A+Bz is given by z = u+ γ, with u any coquaternion
satisfying Bu = 0, u not necessarily of the special form αB.

For the above reasons, the use of the algorithm proposed by the authors of [14] to compute the roots of a
given polynomial – Algorithm 6.1 – may fail to produce all the roots. Examples 4.1–4.2 given later illustrate
our remarks. A revised version of the Algorithm 6.1 of [14] to compute all the roots of a given polynomial will
be presented in the end of this section.

We now give a theorem with a special case where we know that a polynomial has linear zeros.

Theorem 3.16. Let P (x) be a polynomial of degree n whose companion polynomial has m real simple zeros
r1, . . . , rm, m ≤ 2n, and let Pr(x) = P (x)(x − r) with r ∈ R, r 6= ri; i = 1, . . . ,m. Then, Pr(x) has (at
least) m linear zeros.

Proof. The roots of the companion polynomial of Pr are the previous roots of the companion polynomial of
P together with the double root r. So r, r, r1, . . . , rm are roots of CPr

. This means that the classes JpkK,
with pk = r+rk

2 + r−rk
2 j; k = 1, . . . ,m, are admissible classes for Pr. We now show that each of these classes

contains a linear zero. The characteristic polynomial of the class JpkK is ΨJpkK(x) = (x− r)(x− rk). Dividing
Pr(x) by ΨJpkK will give us

Pr(x) = Q(x)(x− rk)(x− r) +Bx+A.

But, since Pr(r) = 0, we obtain Br + A = 0. We cannot have B nonsingular, since this would imply
z0 = r ∈ JpkK, which is false, since Re(pk) 6= r. Also, we cannot have A = B = 0: this would mean that
Pr(x) = Q(x)(x− r)(x− rk) would have the real root rk, implying that CPr

would have rk as a double root,
which is contrary to the hypotheses of the theorem. Hence, we are in the case 3 (b) of Theorem 3.14, with
γ0 = r; since

(Re(pk)− r)2 =
(
r+rk

2 − r
)2

=
(
r−rk

2

)2
= −dv(pk),

we may conclude that JpkK contains a line of zeros.

The following observations clarify some characteristics of the zero sets of coquaternionic polynomials.

O1. We first note that classes of the type Jq0+
√

dv(q) iK, dv(q) > 0, will never contain a linear zero. In fact,
as shown in Theorem 3.14, linear zeros are only obtained in case 3 (b)-(i), requiring (q0−γ0)2 = −dv(q)
to be satisfied; this condition is, of course, impossible to verify if dv(q) > 0. (The same conclusion
could be reached invoking geometric arguments, by observing that a hyperboloid of two-sheets does not
contain any straight line.) So, we conclude that linear zeros will always be either Type 2 or Type 3
coquaternions.

O2. We have seen that a polynomial P of degree n can attain the maximum number n(2n−1) of zeros only
if the roots of its companion polynomial are all real and simple. However, we must point out that this
is not a sufficient condition for the existence of n(2n− 1) zeros, as illustrated in Example 4.4.

O3. A coquaternion z is a hyperboloidal zero of a given polynomial P if and only if ΨJzK divides P . This
implies that (ΨJzK)

2 has to divide the companion polynomial, meaning that the roots in C of ΨJzK will
appear as roots of CP with a multiplicity greater or equal to two if z is of Type 1 or Type 2 or greater
or equal to 4 if z is of Type 3. However, not all multiple roots of CP correspond to hyperboloidal zeros
of P ; see Example 4.5.

We end this section by giving an algorithm to compute the roots of a coquaternionic polynomial which is
based on the discussion given previously.
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Algorithm 3.1 Compute the roots of a coquaternionic polynomial P

Input: Coefficients of P

Output: Lists `I ,`H and `L with the isolated, hyperboloidal and linear roots of P

1: Initialize lists `I , `H and `L as empty lists
2: Compute CP - formula (3.3) . CP companion pol. of P
3: Determine roots in C of CP . Use a numerical method, if necessary
4: Identify admissible classes of P - formulas (3.5) and (3.6)
5: for each admissible class do
6: Compute A and B - formulas (3.8)
7: if B = 0 then
8: if A = 0 then
9: Add representative of class to list `H

10: else
11: Compute det(B) - formula (2.3)
12: if det(B) 6= 0 then
13: Compute z0 by formula (3.11) and add it to list `I
14: else
15: if system Bx = −A has a solution γ then
16: if γ ∈ R then
17: if condition (3.17) holds then
18: Determine k1, k2 by formulas (3.13)
19: Add {q0, γ, k1, k2} to `L . q0 real part of a representative of the class

20: else
21: Determine solution z0 by formula (3.20)
22: Add z0 to list `I

4 Examples

In this section, we present several examples of application of Algorithm 3.1 which illustrate some of the results
and remarks given in Section 3.

Example 4.1. Let P1(x) = x2 + (1 + i + j + k)x+ 2− i− j + k. The roots of the companion polynomial of
P1 are i,−i,−1−

√
2i,−1 +

√
2i and so we have the following two admissible classes: JiK, J−1 +

√
2iK.

Consider the determination of the roots lying in class JiK. Dividing the polynomial P1 by ΨJiK leads to

A = 1− i− j + k and B = 1 + i + j + k.

So, we have that B is singular, but there is no γ ∈ R such that A+Bγ = 0. However, it can be easily verified
that the system MBz = −A is consistent and so we are in case 3 (c) of Theorem 3.14, obtaining that z0 = i
is the only root of P1 in JiK. This shows that the root z = i will not be computed if we use Algorithm 6.1 in
[14].

Example 4.2. We now consider the polynomial P2(x) = x2−(3+j)x+2+j, whose corresponding companion
polynomial has the triple root 1 and the simple root 3. Hence, P2 has two admissible classes: J1K and J2 + jK.
If we divide P2 by the characteristic polynomial of the class J1K we obtain

A = 1 + j and B = −1− j.

Hence, there exists γ = 1 ∈ R such that A+Bγ = 0; also, it is easily seen that the condition (3.17) is verified
and so we are in the presence of a linear zero. More precisely, we conclude that all the elements in the set
{1 + βi + βk : β ∈ R} are zeros of P2.

In a total analogous manner we find that P2 has a linear zero in the class J2+jK, given by
{

2+βi+j−βk :

β ∈ R
}

. The application of [14, Algorithm 6.1] would only find two isolated zeros, namely z0 = 1 and
z0 = 2 + j.
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Example 4.3. We consider now the polynomial P3(x) = P (x)(x− 1), where P (x) = a3x
3 +a2x

2 +a1x+a0

with a3 = 2 + 2i− j, a2 = −1− 5j−k, a1 = −4− 5i+ j+k and a0 = 2− 2i+ 2j+ 3k which was studied in
[14, Example 7.2]. The companion polynomial of P has six simple real roots, as noted in that paper; hence,
by applying Theorem 3.16, we know that P3 has six linear roots which, however, are not found in [14]. As an
example of a line of zeros of P3, we have

L =
{
βi + (− 3

5β −
4
5 )j + (− 4

5β + 3
5 )k : β ∈ R

}
$ JjK,

as can be easily verified.

Example 4.4. Let P4(x) = x2 + (−5 − j)x + 11
2 + 5

2 j. This second degree polynomial has a companion
polynomial with four simple real roots 1, 2, 3, 4 and hence has six admissible classes, which is the maximum
number allowed for a second degree polynomial. However, as we will now show, not all the admissible classes
contain roots of P4. If we consider, for example, the class J2 + jK, we obtain

A = 5
2 + 5

2 j and B = −1− j.

Hence, B is singular, B 6= 0 and there exists γ = 5
2 ∈ R such that A + Bγ = 0; in this case, we have

( 5
2 − 2)2 = 1

4 6= 1 = −dv(2 + j), and so we are in case 3 (b)-(ii) of Theorem 3.14, leading us to conclude that
there are no roots in this class. In the same manner, we show that the class J3 + jK does not contain any root
of P4. This illustrates our observation O2 made in Section 3.

Example 4.5. We now consider three very simple polynomials that illustrate very clearly the observation O3
made in Section 3:

P5(x) = x2 − 2x+ 1,

Q5(x) = x2 − (2 + i + j)x+ 1 + i + j,

R5(x) = x2 + (−2− 6i− 5j− 3k)x+ 3i + 2j + 2k.

All these polynomials have (x−1)4 as companion polynomial (i.e., the companion polynomial has the real root
1 with multiplicity four). However, in what concerns the zeros in the (unique) class J1K, they behave differently:
the polynomial P5 has J1K as a hyperboloidal zero, the polynomial Q5 has the linear zero {1+βi+βj : β ∈ R}
and the polynomial R5 has the isolated zero z0 = 1 + 5i + 4j + 3k.

Note also that, in the case of R5, the real multiple root 1 of the companion polynomial is not a real root
of R5, contradicting the last assertion in Theorem 4.3 of [14].

Our last example addresses the problem posed by Janovská and Opfer in [14]: “Given n > 4, can we find
a coquaternionic polynomial of degree n with the maximal number

(
2n
2

)
of zeros?”.

Example 4.6. Let P6(x) = x5 + c4x
4 + c3x

3 + c2x
2 + c1x+ c0 with

c4 = 1
2 + i + 7j + 13

2 k, c3 = 24 + 13
2 i + 11

2 j− 6k, c2 = − 47
2 − 32i− 18j + 33

2 k,

c1 = −51 + 81
2 i− 57

2 j− 52k, c0 = −9− 12i− 18j + 9k.

The companion polynomial of this fifth degree polynomial has 10 real simple roots, −6,−3,−1, 1, 2, 5, 1 ±√
2, 1

2 (−1 ±
√

5), and it can be verified that each of the 45 admissible classes contains an isolated root of

P6. For example, in the class J1 +
√

2jK we have the root z0 = 1 + 3
8 i −

11
8 j − 1

2k and in the class JjK the
isolated root z1 = 17

84 i−
27
28 j−

1
3k. Examples of polynomials of degrees 6, 7, 8 and 9 achieving the maximum

possible number of roots, 66, 91, 120 and 153, respectively, were also constructed; all these polynomials were
obtained as products of appropriately chosen linear factors and we believe that this type of process can be
used to compute examples of polynomials of any prescribed degree with the maximum number of roots.
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