World Geomorphological Landscapes

Gonçalo Vieira José Luís Zêzere Carla Mora *Editors*

Landscapes and Landforms of Portugal

Editors Gonçalo Vieira Centre of Geographical Studies Institute of Geography and Spatial Planning University of Lisbon Lisbon, Portugal

Carla Mora Centre of Geographical Studies Institute of Geography and Spatial Planning University of Lisbon Lisbon, Portugal José Luís Zêzere Centre of Geographical Studies Institute of Geography and Spatial Planning University of Lisbon Lisbon, Portugal

ISSN 2213-2090 ISSN 2213-2104 (electronic) World Geomorphological Landscapes ISBN 978-3-319-03640-3 ISBN 978-3-319-03641-0 (eBook) https://doi.org/10.1007/978-3-319-03641-0

© Springer Nature Switzerland AG 2020

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Geoconservation in Portugal with Emphasis on the Geomorphological Heritage

José Brilha and Paulo Pereira

Abstract

Geoconservation in Portugal has been gaining importance, particularly during the last decade. The inventory of geosites with international and national scientific relevance is now complete, and the national legislation concerning nature conservation includes the management of geoheritage. Forty-three per cent of the inventoried geosites are geomorphosites, showing the importance of this type of geological heritage in the Portuguese natural heritage. The geoscientific community is slowly recognizing geoconservation as an emergent component of the geosciences. The existence of four UNESCO Global Geoparks in Portugal is also an example of the country's involvement in the international geoconservation scene.

Keywords

Geoconservation • Geoheritage • Geomorphological heritage • Inventory • Portugal

24.1 Introduction

It is getting more and more evident that the increase of human population and the consequent demand for natural resources, the growth of big cities with the arrival of people coming from the countryside, and the land occupation with the multiplication of infrastructures are pressing nature to an extent without parallel in history. The impacts on nature are still being assessed as more research is being produced all over the world, but typically, societies are more aware of the

Institute of Earth Sciences, Pole of the University of Minho, Braga, Portugal e-mail: jbrilha@dct.uminho.pt

P. Pereira e-mail: paolo@dct.uminho.pt impacts on biodiversity and consequently, in most of countries protected areas were implemented in order to preserve sensitive ecosystems. Only recently, geoscientists began to alert also about the impacts on geodiversity, but people are still not very convinced that rocks, fossils, and landforms need to be preserved!

Threats to geodiversity are poorly known by a society that ignores the role of geodiversity and how its values are highly relevant for humans (Gray 2013; Brilha et al. 2018). Obviously, we cannot protect all geodiversity as we need to consume huge amounts of geological resources to maintain our living standards. This assumption constitutes the main reason why we need to identify and select localities with exceptional geodiversity values, the preservation of which guarantees a sustainable scientific, educational, and touristic use of these natural elements.

The exceptional elements of geodiversity with scientific value can occur in situ, as geosites, or can be stored ex situ in museum collections, as geoheritage elements (Brilha 2016). When geomorphological aspects are the main justification to select a geosite, it can be also named geomorphosite, following the adoption of the International Association of Geomorphologists. The collection of geosites that occur in a particular area (a park, a municipality, a country, etc.) constitutes the geological heritage of that area. Geological heritage should be understood as a general reference to all geosites that include all types of geodiversity elements, such as landforms, fossils, minerals, rocks or soils, among others. The term "geomorphological heritage" refers to geosites with geomorphological significance (geomorphosites). Recently, Brilha (2016) has proposed that sites which have no scientific relevance but present educational, aesthetic, or cultural value should be named as geodiversity sites.

Geoconservation is an emergent branch of the geosciences aiming at the conservation of any type of geological feature that has a particular value (scientific, educational, cultural, aesthetic, etc.). Henriques et al. (2011) discussed

© Springer Nature Switzerland AG 2020

Check for updates

J. Brilha (🖂) · P. Pereira

G. Vieira et al. (eds.), *Landscapes and Landforms of Portugal*, World Geomorphological Landscapes, https://doi.org/10.1007/978-3-319-03641-0_24

the theoretical bases to consider geoconservation as a part of geoscience with three scopes: basic, applied, and technical applications of geoconservation. Geoconservation aims at the proper management of sites, including all stages, starting with an inventory and assessment of sites, followed by their protection and definition of conditions to guarantee a sustainable use, and finally, periodic monitoring of its preservation.

Considering public policies, geoconservation is closely related to nature conservation and land-use planning. Geoheritage corresponds to the abiotic sector of the natural heritage, despite the major conservation actions still being focused on the preservation of biodiversity. For over 60 years of activity, the International Union of Conservation of Nature (IUCN) has been promoting almost exclusively biodiversity. It was only recently that IUCN showed a slow change in this perspective, recognizing the importance of geoheritage in nature conservation. In 2008, 2012, and 2016, the IUCN has approved resolutions stressing the importance of geodiversity and the need to protect geoheritage. A new handbook about protected areas and management published under the auspices of the IUCN includes, for the first time, a chapter dedicated to geoconservation (Crofts et al. 2015). This chapter is one of the first outcomes of the Geoheritage Specialist Group, created in 2013 under the IUCN World Commission on Protected Areas. This evolution in the IUCN perspective is significant and can bring changes in nature conservation policies at the international and national levels.

The existence of geosites and geodiversity sites must be considered in land-use planning and in environmental impact assessment procedures (Reynard and Brilha 2018). The need to conserve these places and the consequent set-up of management procedures may imply restrictions in the normal use of the territory. For instance, the protection of a site may justify changes in the initial plans for new infrastructure such as roads, dams, and buildings. During the environmental impact assessment of a certain project, the occurrence of sites in the area and the possible effects on them should also be considered in the final evaluation.

24.2 Legal Setting and Geosites Management in Portugal

The protection of geoheritage in Portugal is supported by national legislation related to nature conservation (Brilha 2010). The Decree 142/2008 defined, for the first time in the national legislation, the concept of geosite and geological heritage. Protected areas can be created and managed taking into account the geological heritage and penalties that can be

applied to anyone who damages geosites located inside protected areas. Although not focused on geodiversity, there is other legislation that might contribute indirectly to geoconservation: the law for the Protection of Cultural Heritage (which includes the palaeontological record as cultural heritage), the European Landscape Convention, the Natura 2000 Network, and the National Ecological Reserve.

The "Institute of Conservation of Nature and Forests" (ICNF) is the official body responsible for the management of protected areas. The national system of protected areas is composed of 44 areas belonging to different categories (national and natural parks, natural reserves, natural monuments, and protected landscapes). The Azores and Madeira archipelagos have another set of protected areas in accordance with the regional legislation of these two autonomous regions. There are geosites of national significance located inside many protected areas, and there are even some protected areas that were established based on the occurrence of a particular geosite. In mainland Portugal, all natural monuments gained statutory protection due to the need to protect geological features. These are dinosaur footprints of the Ourém, Carenque, Lagosteiros, Pedra da Mua, and Pedreira do Avelino Natural Monuments, the Jurassic sedimentary record of worldwide significance for the Cabo Mondego Natural Monument, and the quartzite ridges of the Portas de Ródão Natural Monument. The latter was designated in 2009 mainly due to its geomorphological assets. The Protected Landscape of the Fossil Cliff of Costa da Caparica was created in 1984 taking into account the protection of geomorphological features, like some other local protected areas. In the Azores, the majority of geosites is inside 123 protected areas scattered across the nine islands of the archipelago and managed by the regional natural conservation body. In Madeira, the limited number of protected areas (6) does not cover the majority of geosites of the archipelago.

Like in many other countries, geoparks are being implemented in Portugal and promote geoconservation, in spite of the informal character of this type of territorial management. In Portugal, presently there are four UNESCO Global Geoparks: the Naturtejo Geopark (since 2006) enclosing the municipalities of Castelo Branco, Idanha-a-Nova, Nisa, Penamacor, Proença-a-Nova, Oleiros, and Vila Velha de Ródão; the Arouca Geopark (since 2009) corresponding to the area of this municipality; the Azores Geopark (since 2013), which integrates the nine islands of the archipelago; and the Terras de Cavaleiros Geopark (since 2014), corresponding to the area of Macedo de Cavaleiros municipality. The geomorphological heritage of these geoparks is a major asset responsible to attract geotourists and to promote local development.

24.3 The National Inventory of Geoheritage

The initiatives in Portugal towards the protection of geoheritage started at the beginning of the twentieth century, but these were mainly local actions and limited in time (Brilha 2005; 2012; Brilha and Galopim de Carvalho 2010). It was only in the end of the 1980s that more comprehensive actions were implemented, which helped to raise awareness for the need to execute an effective geoconservation.

Concerning the national inventory of geoheritage, it was only in 2012 that a systematic and truly nationwide endeavour was concluded. For five years, the University of Minho coordinated a research project with other Portuguese partner universities (Aveiro, Acores, Algarve, Coimbra, Évora, Lisboa, Madeira, Nova de Lisboa, Porto, and Trás-os-Montes e Alto Douro), in order to define a national geoconservation strategy (Brilha et al. 2008). This project has produced several outputs, namely

- i. An inventory of geosites of scientific value with national and international relevance,
- ii. An online database of the national geoheritage inventory (available at http://geossitios.progeo.pt),
- iii. Legislative proposals about geoconservation,
- iv. A selection of the most important Portuguese geosites and submission to national authorities, requesting their official designation and integration in the national network of protected areas,
- v. Scientific cooperation between Portuguese and Spanish geoconservationists for the identification of geosites with Iberian relevance,
- vi. An outreach book addressed to the general public (Brilha and Pereira 2012).

The national geosite inventory followed the method proposed by The European Association for the Conservation of the Geological Heritage (ProGEO) and applied in several European countries (Wimbledon 1996; Wimbledon et al. 1999). Twenty-seven geological frameworks were defined (Table 24.1), and 325 representative geosites were selected and assessed for their scientific value, representing a national endeavour carried out voluntarily by 70 geoscientists (Brilha et al. 2010). Geosites were selected using the following criteria: representativeness, rareness, diversity of geodiversity elements, integrity, and scientific knowledge. The final list of geosites is now included in the national database of natural heritage, under ICNF responsibility.

The risk of degradation of all geosites was quantitatively evaluated using the following criteria: natural fragility of geodiversity elements, proximity to potential threatening activities, present protection status, accessibility, and population density.

Despite being the most complete inventory made in Portugal so far, it is obvious that such an inventory is never closed. New geosites may be included in the future as scientific knowledge develops.

24.4 Geomorphological Heritage

The national inventory of geoheritage includes 140 geomorphosites, occurring in seven of the 27 frameworks (Fig. 24.1 and Table 24.2) (Pereira et al. 2013, 2015). Figure 24.2 shows selected examples of Portuguese geomorphosites in different settings.

The inventoried geomorphosites are heterogeneous in scale, varying from isolated landforms with a few square

Table 24.1 Geological frameworks defined in Portugal to integrate the inventory of geosites with scientific value	 Neoproterozoic-Cambrian Metasediments in Central Iberian Zone Palaeozoic Marbles of the Ossa-Morena Zone Ordovician of Central Iberian Zone Palaeozoic succession of the Barrancos region Exotic Terranes of NE Portugal Geotraverse of the Portuguese Variscan Fold Belt Geology and metallogenesis of Iberian Pyrite Belt Marine Carboniferous of the South Portuguese Zone Continental Carboniferous Pre-Mesozoic granitoids The Iberian W-Sn Metallogenic Province Gold mineralization in Northern Portugal Meso-Cenozoic tectonic evolution of the western 	 Late Triassic of SW Iberia Jurassic record in the Lusitanian Basin Cretaceous rocks of the Lusitanian Basin Dinosaur footprints of western Iberia Meso-Cenozoic tectono-stratigraphy of the Algarve Cenozoic basins of the western Iberian Margin Landforms and river network of the Portuguese Iberian Massif Karst systems of Portugal Active and fossil coastal cliffs Low coasts Neotectonics in mainland Portugal Vestiges of Pleistocene glaciations Volcanism of The Azores Archipelago
	Meso-Cenozoic tectonic evolution of the western Iberian Margin	 Volcanism of The Azores Archipelago Volcanism of The Madeira Archipelago

Geoscientists have identified representative geosites for each framework in a total of 325 geosites

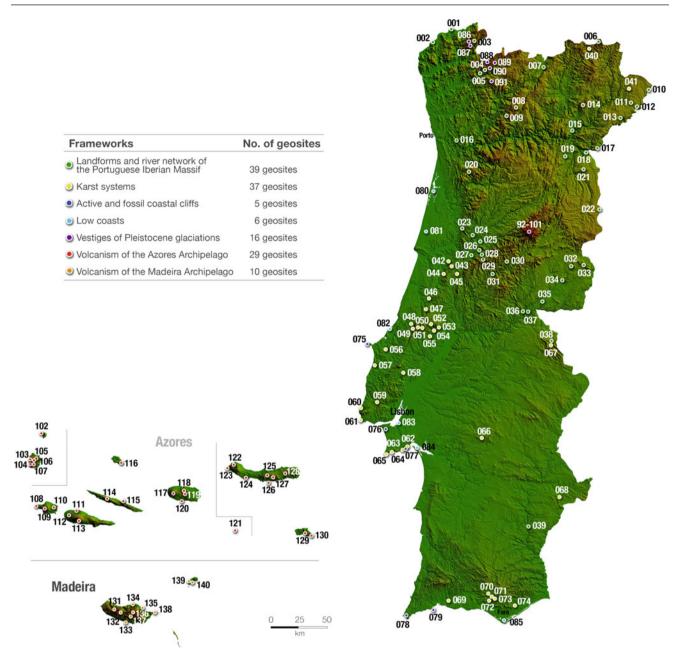


Fig. 24.1 Distribution of the 140 geomorphosites in Portugal, grouped by seven of the 27 geological frameworks. The numbers are the same for Table 24.2

metres in area to large-scale landforms occupying several hundred square kilometres. Large-scale geosites constitute serious management challenges. The definition of the perimeter, a fundamental step for the management of any geosite, needs to be established with parsimony and objective criteria in order to avoid huge areas and consequent difficulties to guarantee proper management.

In spite of many geomorphosites being included in protected areas, their conservation and management are not automatically assured. A geoconservation action plan must be designed and implemented for all geosites with high scientific value, a task under the responsibility of park managers, according to the Portuguese legislation.

Usually, geomorphological heritage shows high potential to be used as tourist attractions due to aesthetic reasons. Many geosites listed in Table 24.2 are already traditional touristic destinations in Portugal, but the general public is not aware that it is visiting a geomorphosite. Hence, geosite **Table 24.2** List of the 140 geomorphosites grouped in seven**Ta**geological frameworks. The numbers are the same for Fig. 24.1 $\frac{1}{0}$

Landforms and river network of the Portuguese Iber	rian Massif
001. Cortes terrace	
002. Campo terraces	
003. Penameda bornhardt	
004. Rocalva bornhardt	
005. Gerês tectonic valley	
006. Cheira da Noiva granite landforms	
007. Vilar de Nantes deposits	
008. Minhéu viewpoint	
009. Fisgas do Ermelo waterfall	
10. S.João das Arribas viewpoint	
111. Atenor deposits	
12. Fraga do Puio viewpoint	
)13. Faia da Água Alta waterfall	
14. Bornes pop-up mountain	
15. Vilariça tectonic basin	
016. Senhora do Salto crest	
017. Poiares sincline	
018. Barca d'Alva terraces	
19. Longroiva tectonic basin	
20. Frecha da Mizarela waterfall	
021. Marofa crest	
022. Nave de Haver deposits	
23. S. Pedro Dias crest	
024. Alva meanders	
025. Picadouro deposits	
26. Sra. da Candosa valley	
)27. Lousã tectonic basin	
28. Sacões hill	
29. Penedos de Góis crest	
030. Sta. Luzia crest	
31. Zêzere meanders	
32. Monsanto Inselberg	
033. Penha Garcia crest	
034. Ponsul Fault scarp	
35. Medronheira valley	
)36. Portas de Ródão crest	
)37. Rodão terraces	
38. Marvão crest	
39. Pulo do Lobo waterfall	
Xarst systems	
40. Lorga de Dine cave	

Table 24.2 (continued)			
041. Santo Adrião caves			
042. Condeixa tufa deposits			
043. Buracas do Casmilo			
044. Anços springs and Poios valleys			
045. Ateanha-Dueça transverse			
046. Lapedo valley			
047. Grota valley and Lis springs			
048. Vale do Mogo springs and caves			
049. Candeeiros fossil sea cliff			
050. Fonte da Bica-Porto de Mós diapiric valley			
051. Mendiga and S. Bento karst landscape			
052. Alvados-Minde transpressive lane			
053. Almonda cave			
054. Arrife fault scarp			
055. Olhos de Água do Alviela springs			
056. Óbidos-Caldas da Rainha diapiric valley			
057. Maceira diapiric valley			
058. Ota canyon			
059. Granja dos Serrões and Negrais karrenfelds			
060. Adraga and Pedra d'Alvidrar caves			
061. Karren and caves of Raso cape			
062. Creiro crevice caves			
063. St. Margarida and Figueira Brava caves			
064. Frade cave			
065. Forte da Baralha wave-cut platform			
066. Escoural cave			
067. Cova da Moura cave			
068. Fossil karren and karst caves of Preguiça mines			
069. Estombar springs and Ibne Ammar cave			
070. Rocha da Pena mesa hill			
071. Nave do Barão and Nave dos Cordeiros depressions			
072. Varejota and Barrocal da Tôr karrenfelds			
073. Fonte Benémola spring and Solustreiras caves			
074. Cerro da Cabeça karrenfeld			
Active and fossil coastal cliffs			
075. Carvoeiro cape cliffs			
076. Costa da Caparica fossil cliff			
077. Serra do Risco cliff			
078. S. Vicente-Sagres coastal platform			
079. Ponta da Piedade cliffs			
Low coasts			
080. Aveiro Ria			
081. Mira–Quiaios dunes			

(continued)

Table 24.2 (continued)	Table 24.2 (continued) 122 Disc day Comparinghes and Dante de Exemption	
082. S. Martinho do Porto bay	123. Pico das Camarinhas and Ponta da Ferraria	
083. Tejo estuary	124. Carvão volcanic cave	
084. Sado estuary and Troia spit	125. Fogo volcano	
085. Ria Formosa	126. Vila Franca islet	
Vestiges of Pleistocene glaciations	127. Congro and Nenúfares maar	
086. Alto Vez valley	128. Furnas volcano	
087. Gorbelas–Junqueira	129. Barreiro da Malbusca	
088. Homem valley	130. Ponta do Castelo	
089. Compadre valley	Volcanism of the Madeira Archipelago	
090. Couce plateau	131. Pico da Selada deposits	
091. Toco–Soutinho	132. Pedras	
092. Lagoacho-Covão do Urso	133. Girão cape	
093. Nave Travessa	134. Arco de São Jorge	
094. Lagoa Comprida plateau	135. Ribeira do Faial mouth	
095. Covões de Loriga	136. Caldeirão do Inferno	
096. Salgadeiras	137. Eira do Serrado	
097. Zêzere valley	138. São Lourenço cape	
098. Lagoa Seca	139. Ana Ferreira peak	
099. Covão Cimeiro-Cântaro Magro	140. Porto Santo beach	
100. Nave de Santo António		
101. Pedrice		
Volcanism of the Azores Archipelago	managers should consider the implementation of good interpretation resources as a priority, not only to foster the geomorphological literacy, but also to better promote geo- sites as touristic attractions.	
102. Caldeirão		
103. Fajã Grande and Fajãzinha		
104. Rocha dos Bordões and volcanic necks		
105. Pico da Sé and volcanic necks		
106. Funda, Comprida, Seca and Branca maars	24.5 Conclusion	
107. Funda and Rasa maars		
108. Capelinhos volcano	Geoconservation in Portugal has developed significantly	
109. Faial Caldera	during the last decade, particularly with the development of the national inventory of geosites, the change in legislation	
110. Pedro Miguel graben		
111. Lajidos de Santa Luzia	supporting nature conservation policies, and the implemen-	
112. Torres volcanic cave	tation of geoparks. However, the efforts to pursue a geo-	
113. Pico Mountain	- conservation strategy must continue, mainly focusing on	
114. Axial volcanic ridge	— management issues of the most important geosites at the	
115. Fajãs dos Cubres and Caldeira de Santo Cristo	national and international levels.	
116. Graciosa Caldera and Furna do Enxofre	Acknowledgements A national inventory of geosites is only possible	
117. Santa Bárbara Volcano and Mistérios Negros	with the participation of geoscientists who are experts in different	
118. Pico Alto, Biscoito da Ferraria and Biscoito Rachado	 geoscience domains. All colleagues that participated in the inventory are acknowledged for this truly national effort. This work was co-funded by the European Union through the European Regional Development Fund, based on COMPETE 2020 (Programa Operacional da Competitividade e Internacionalização), project ICT (UID/GEO/04683/2013) with ref- 	
119. Algar do Carvão		
120. Monte Brasil		
121. D. João de Castro bank		
122. Seta Cidadas valenno	erence POCI-01-0145-FEDER-007690, and national funds provided by Fundação para a Ciência e Tecnologia.	

122. Sete Cidades volcano

(continued)

Fundação para a Ciência e Tecnologia.

Fig. 24.2 Examples of geomorphosites in Portugal. A. Ria Formosa barrier islands geosite in Ria Formosa Natural Park, south-eastern Portugal. Geological framework: low coasts. Geomorphosite Nr. 85 in Fig. 24.1, B. Coastal cliffs of Ponta da Piedade geosite in south-western Portugal. Geological framework: Active and fossil coastal cliffs. Geomorphosite Nr. 79 in Fig. 24.1, C. Pulo do Lobo waterfall geosite in Vale do Guadiana Natural Park, south-eastern Portugal. Geological framework: landforms and river network of the Portuguese Iberian Massif. Geomorphosite Nr. 39 in Fig. 24.1, D. Lateral moraine at

Compadre valley geosite in Peneda-Gerês National Park, north-western Portugal. Geological framework: vestiges of Pleistocene glaciations. Geomorphosite Nr. 89 in Fig. 24.1, E. Furnas volcano caldera geosite in São Miguel Island, Azores. Geological framework: volcanism of the Azores archipelago. Geomorphosite Nr. 128 in Fig. 24.1, F. Coastal landforms in São Lourenço cape geosite in Madeira island. Geological framework: volcanism of Madeira archipelago. Geomorphosite Nr. 138 in Fig. 24.1

References

- Brilha J (2005) Património Geológico e Geoconservação: a Conservação da Natureza na sua Vertente Geológica. Palimage Editores, Viseu, p 190
- Brilha J (2010) Enquadramento legal de suporte à protecção do património geológico em Portugal. In: Cotelo Neiva JM, Ribeiro A, Mendes Victor L, Noronha F, Magalhães Ramalho M (eds) Ciências Geológicas: Ensino, Investigação e sua História. Associação Portuguesa de Geólogos, Volume II, pp 443–450
- Brilha J (2012) Portugal. In: Wimbledon WAP, Smith-Meyer S (eds) Geoheritage in Europe and its conservation. ProGEO, Oslo, pp 264–273
- Brilha J (2016) Inventory and quantitative assessment of geosites and geodiversity sites: a review. Geoheritage 8(2):119–134
- Brilha J, Galopim de Carvalho AM (2010) Geoconservação em Portugal: uma introdução. In: Cotelo Neiva JM, Ribeiro A, Mendes Victor L, Noronha F, Magalhães Ramalho M (eds) Ciências Geológicas: Ensino, Investigação e sua História. Associação Portuguesa de Geólogos, Volume II, pp 435–441
- Brilha J, Pereira P (eds) (2012) Património geológico: geossítios a visitar em Portugal/geological heritage: geosites to visit in Portugal. Porto Editora, Porto, p 137
- Brilha J, Barriga F, Cachão M, Couto MH, Dias R, Henriques MH, Kullberg JC, Medina J, Moura D, Nunes JC, Pereira DI, Pereira P, Prada S, Sá A (2008) Geological heritage inventory in Portugal: implementing geological frameworks. In: Proceedings of 5th International Symposium ProGEO on the Conservation of the Geological Heritage, Rab, Croatia, pp 93–94
- Brilha J, Alcala L, Almeida A, Araújo A, Azeredo A, Azevedo MR, Barriga F, Brum da Silveira A, Cabral J, Cachão M, Caetano P, Cobos A, Coke C, Couto H, Crispim J, Cunha PP, Dias R, Duarte LV, Dória A, Falé P, Ferreira N, Ferreira Soares A, Fonseca P, Galopim de Carvalho A, Gonçalves R, Granja H, Henriques MH, Kullberg JC, Kullberg MC, Legoinha P, Lima A, Lima E, Lopes L, Madeira J, Marques JF, Martins A, Martins R, Matos J, Medina J, Miranda R, Monteiro C, Moreira M, Moura D, Neto Carvalho C, Noronha F, Nunes JC, Oliveira JT, Pais J, Pena

dos Reis R, Pereira D, Pereira P, Pereira Z, Piçarra J, Pimentel N, Pinto de Jesus A, Prada S, Prego A, Ramalho L, Ramalho M, Ramalho R, Relvas J, Ribeiro A, Ribeiro MA, Rocha R, Sá A, Santos V, Sant'ovaia H, Sequeira A, Sousa M, Terrinha P, Valle Aguado B, Vaz N (2010) The national inventory of geosites in Portugal. Abstracts Book of the International Conference on Geoevents, Geological Heritage and the Role of IGCP (First Meeting of ProGEO Regional Working Group SW Europe), Ayuntamiento de Caravaca de la Cruz, Spain, pp 18–24

- Brilha J, Gray M, Pereira D, Pereira P (2018) Geodiversity: an integrative review as a contribution to the sustainable management of the whole of nature. Environ Sci Policy 86:19–28
- Crofts R, Gordon J, Santucci V (2015) Geoconservation in protected areas. In: Worboys GL, Lockwood M, Kothari A, Feary S, Pulsford I (eds) Protected area governance and management. ANU Press, Canberra, pp 531–568
- Gray M (2013) Geodiversity: valuing and conserving abiotic nature, 2nd edn. Wiley, Chichester, p 512
- Henriques MH, Pena dos Reis R, Brilha J, Mota TS (2011) Geoconservation as an emerging geoscience. Geoheritage 3 (2):117–128
- Pereira P, Pereira D, Crispim J, Nunes JC, Brum da Silveira A (2013) Geomorphosites within the inventory of geosites with national and international relevance in Portugal. In: 8th International Conference on Geomorphology Abstracts Volume, Paris, p 554
- Pereira D, Pereira P, Brilha J, Cunha P (2015) The Iberian Massif Landscape and Fluvial Network in Portugal: a geoheritage inventory based on the scientific value. Proc Geol Assoc 126(2):252–265
- Reynard E, Brilha J (eds) (2018) Geoheritage: assessment, protection and management. Elsevier, Amsterdam, p 450
- Wimbledon WAP (1996) Geosites—a new conservation initiative. Episodes 19(3):87–88
- Wimbledon WAP, Andersen S, Cleal CJ, Cowie JW, Erikstad L, Gonggrijp GP, Johansson CE, Karis LO, Suominen V (1999) Geological World Heritage: GEOSITES—a global comparative site inventory to enable prioritisation for conservation. Memorie Descrittive della Carta Geologica d'Italia, vol LIV, pp 45–60