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Novas observáveis e técnicas para o
estudo de jatos em colisões de hadrões

Resumo

Jatos consistem em conjuntos colimados de hadrões que resultam da ramificação de partões ener-
géticos (quarks e gluões) e sua subsequente hadronização. Por um lado, os jatos providenciam-nos
formas exatas de testar a teoria da interação forte. Por outro, são também ferramentas valiosas
para etiquetar processos específicos (por exemplo, o decaimento do bosão de Higgs para dois
quarks b, medido recentemente) onde desvios relativamente ao Modelo Padrão podem, ou não,
ser encontrados.

Para além disso, os jatos são também ferramentas essenciais no contexto de colisões de iões
pesados, onde o objetivo principal passa por caracterizar um novo estado da matéria - o plasma
de quarks e gluões - que existia no universo primordial (breves instantes após o Big Bang) e no
qual quarks e gluões interagem fortemente, sem estarem confinados em hadrões. Este plasma é
recriado nestas colisões (PbPb no LHC) e tem um tempo de vida muito curto (∼ 10 fm/c), pelo
que não pode ser estudado com recurso a sondas externas. Partões energéticos produzidos como
resultado da colisão e os jatos a que eles dão origem são modificados por interações com o plasma.
Isto é extraordinariamente diferente do que acontece noutras colisões onde não é formado um
outro estado da matéria (por exemplo, colisões pp). O estudo destas modificações permite-nos
extrair informações sobre as propriedades do plasma de quarks e gluões. Infelizmente, algumas
das modificações são subtis e difíceis de detetar (jatos que atravessaram o plasma partilham
muitas propriedades com jatos que não o fizeram).

Tradicionalmente, procuram-se as melhores observáveis que permitam distinguir entre jatos
atenuados (os que atravessaram o plasma) e jatos que se desenvolveram no vácuo (i.e., na aus-
ência do meio denso e quente), através da análise de cada observável individualmente. Muito
recentemente, no contexto de colisões pp, descobriu-se que técnicas que aprendizagem automática
aplicadas a planos de Lund são muito poderosas na distinção entre jatos iniciados por quarks e
aqueles que são iniciados por gluões. O plano de Lund consiste num mapa bi-dimensional no qual
cada ponto corresponde a uma ramificação que ocorreu durante processo de desenvolvimento de
um jato.

O objetivo desta dissertação é migrar e adaptar estas técnicas para o contexto da discrimin-
ação entre jatos que interagiram com o plasma de quarks e gluões e aqueles que não o fizeram.

Palavras-chave: aprendizagem automática, atenuação de jatos, jatos, plano cinemático de
Lund, plasma de quarks e gluões.
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New observables and techniques for the
study of jets in hadron collisions

Abstract

Jets are collimated bunches of hadrons that result from the multiple QCD branching of energetic
partons (quarks or gluons) and their subsequent hadronisation. On the one hand, jets provide
an accurate testing ground for the theory of strong interaction. On the other hand, they are
invaluable tools for tagging specific processes (for example, the recently measured decay of the
Higgs boson to two b-quarks) where deviations from the Standard Model may, or may not, be
found.

Further, jets are essential tools in the context of heavy-ion collisions where the main goal is to
characterise a new state of matter - the quark-gluon plasma (QGP) - that existed in the primordial
universe (shortly after the Big Bang) and in which quarks and gluons are strongly interacting
without being confined into hadrons. This plasma is recreated in such heavy-ion collisions (PbPb
at the LHC) and lives for a very short time (∼ 10 fm/c), such that it cannot be studied using
external probes. Energetic partons are produced as part of the overall collision and the jets they
give rise to are modified by interaction with the QGP. This is strikingly different from what
happens in other collisions where no other state of matter is created (e.g. pp collisions). The
study of these modifications allows us to extract information about the properties of the QGP.
Unfortunately, some of the modifications are subtle and difficult to detect (jets that traversed
the QGP share many properties with jets that did not).

Traditionally, one has searched for the best observables that distinguish between quenched
and non-quenched jets by exhaustively analysing one observable at a time. Very recently, it has
been found, in the context of pp collisions, that machine learning techniques applied to Lund
planes are very powerful in distinguishing between jets initiated by quarks and those initiated
by gluons. The Lund plane is a bi-dimensional splitting map where each point corresponds to
one branching that took place during the development of a jet.

The aim of this dissertation is to migrate and adapt these techniques to the context of
discriminating between jets which have interacted with the QGP and those which have not.

Keywords: jet quenching, jets, kinematical Lund plane, machine learning, quark-gluon plasma.
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Chapter 1

Introduction

Particle physics research is at the heart of our understanding of the laws of nature and provides
our current picture of the universe as made of basic constituents, known as elementary particles,
and governed by four fundamental forces: the electromagnetic, weak, strong and gravitational
forces. The Standard Model of particle physics represents one of the triumphs of modern physics
as it successfully describes how the elementary particles and three of the fundamental forces
are related to each other,1 thereby allowing to explain almost all experimental results as well as
precisely predict a wide variety of phenomena [1]. As such, having seen comprehensive validation
from experimental data, the Standard Modern has established itself as the cornerstone of modern
particle physics.

The first fundamental interaction to be well understood was the electromagnetic interaction.
The physical theory that describes it is known as electrodynamics, and its classical formulation
is due to Maxwell well over one hundred years ago (refs. [2–4], dating from 1861 to 1873).
The quantum theory of electrodynamics (QED) was perfected by the works of Tomonaga [5],
Schwinger [6, 7] and Feynman [8–10] in the late 1940s and provides a covariant formulation for
the interaction between charged particles (mediated by photons) which is finite at any order in
perturbation theory. QED was thus the first prototype of a quantum field theory (QFT).

Some years later, came into existence the important idea that particle interactions are dictated
by local gauge symmetries. Although this was not the view point of the physicists that developed
QED, this theory can actually be regarded as a special class of QFT: an Abelian gauge theory
based upon the U(1) symmetry group. This beautiful idea that symmetry dictates the form
of the interaction was proposed in 1954 by Yang and Mills [11], in an attempt to explain the
strong interaction. They constructed a theory based not on the simple one-dimensional Abelian
U(1) group, but on the three-dimensional non-Abelian SU(2) , hoping that this would become
the theory of strong interaction. It took a few time until the Yang-Mills idea started to be
applied to the weak interaction. However, Glashow [12], in 1961, and independently Salam and
Ward [13], in 1964, proposed a SU(2) × U(1) group structure to explain this interaction, thus
unifying the electromagnetic and weak forces. Later, in 1967, Weinberg [14] and Salam [15]
incorporated the Higgs mechanism into the electroweak interaction thus conferring it its modern
form. Experimental validation for the electroweak model came in 1973 when neutral currents
were discovered at CERN [16] and in 1978 at Stanford Linear Accelerator Center (SLAC) with
the discovery of parity violation in those currents [17].

The final piece of the Standard Model is quantum chromodynamics (QCD), the theory of
strong interaction. In 1964 the quark model was proposed independently by Gell-Mann [18] and
Zweig [19] and presented the idea that hadrons are made of quarks and anti-quarks, allowing

1A satisfactory quantum formulation of gravity is yet to be provided, thus preventing this fundamental force
from being unified with the other three and included into the Standard Model.

1



Chapter 1 – Introduction Filipa C. R. Peres

to explain the growing diversity of hadrons observed in collider experiments. The quark model
got experimental support from an experiment done at SLAC in 1968 under the leadership of
Friedman, Kendall, and Taylor [20]. However, no further advancements had been made in
describing the strong interaction between these “partons”. It was the success of the electroweak
theory that restored interest in Yang–Mills theory and propelled further investigation into the
strong interaction. In 1973, through many different contributions, QCD acquired its modern
form. By that time, the concept that quarks must come in three different colours (red, green
and blue) was already well established (refs. [21–23]), and so it was natural to take the gauge
symmetry of the strong interaction as a SU(3) group acting on the (three-valued) colour quantum
number of the quarks. In that same year, Gross and Wilczek [24] and Politzer [25] independently
discovered that a wide class of non-Abelian gauge theories (amongst which the SU(3) non-
Abelian gauge theory) have the remarkable property of asymptotic freedom. Furthermore, several
independent authors (see refs. [26–28]) proposed that gluons, the mediators of strong interaction,
are massless and cannot be detected for the same reason we do not see quarks: coloured particles
can never be isolated. Indeed, the property that gluons carry colour charge means that they
interact with each other, conducing to the asymptotic freedom of QCD.

In conclusion, the present formulation of the Standard Model would not have been possible
were it not for the conjunction of beautiful and brilliant theoretical ideas and models with
experimental information and validation provided by collider events. It was thus during the
latter half of the twentieth-century and through the works and contributions of many first-class
physicists that remarkable developments were made, allowing our current understanding of the
universe. For an in-depth description of the making of the Standard Model, reference [29], used
as a source of information for writing this overview, is recommended.

In this chapter, each section is built up on top of the knowledge provided by the preceding
ones such that the concepts and results presented gradually grow in complexity and relevance
to the work developed. The idea behind this structure is to provide any interested reader with
the knowledge required for the understanding of this master dissertation and its results. As
such, firstly some core fundamental concepts and properties of QCD are introduced, notably its
Lagrangian (section 1.1) and its structure, i.e., its logarithmic divergences (section 1.2). Following
that, an overview of Monte Carlo (MC) event generators in the context of pp collisions (where
no dense QCD matter is formed) is presented in section 1.3, and with the knowledge acquired
at that point a description of how jets arise in the events is laid out. The quark-gluon plasma
(QGP) and its importance in the understanding of fundamental properties of nature, as well as
its formation and evolution in the context of ultra-relativist heavy-ion collisions, are described
in section 1.4. Finally, the chapter reaches its climax and is concluded with the introduction
of the concept of formation time, a paramount piece in this work. The expression widely used
for its calculation is derived and the connection to a proxy formation time using hadron collider
observables is established.

In some of these sections, the discussions and descriptions are general overviews focusing on
the key concepts required for the understanding of future sections and chapters, rather than in-
depth, detailed descriptions. When that is the case, more comprehensive references are usually
provided for the interested reader. At any rate, it is our understanding that a more exhaustive
description of some points would only serve to increase the bulk of the present text, and would
indeed defeat its purpose, which is to bring focus to the results obtained in the developed research.

1.1 Fundamentals of quantum chromodynamics

In the previous introduction we have been presented with the remarkable idea that particle
interactions are dictated by local gauge symmetries. Owing to that, the QFTs of the three
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fundamental forces described by the Standard Model are gauge theories in which the Lagrangian
L is invariant under a certain Lie group of local transformations. For any study involving
modern particle colliders, may it be experimental, phenomenological or theoretical, it is vital
to understand some QCD fundamentals. However, before delving into such deep waters, it is
advisable to start by having a look at QED, since this is a simpler theory from which we can
build upon to understand the much richer theory that is QCD.2

QED is the theory of the electromagnetic interaction between electrically charged particles.
As we have seen, although is was not originally formulated in the framework of gauge theories, it
has since been established that QED is indeed a gauge theory based upon the one-dimensional
Abelian U(1) symmetry group. From this symmetry, the Lagrangian of QED can be deduced
and is given by:

LQED = ψ̄ (iγµ∂µ −m− efγµAµ)ψ − 1

4
FµνF

µν , (1.1)

where ψ represents a single (fermionic) spinor, µ and ν are Lorentz indices, γµ are the Pauli
matrices, m is the mass of the considered fermion and ef its electric charge,3 Aµ is the gauge
field and Fµν = ∂µAν − ∂νAµ is the gauge field tensor.4 From imposing a U(1) symmetry group
we see that the gauge boson (i.e., the mediator of the electromagnetic interaction) has to be a
massless particle with no electric charge. Indeed, the photon is the gauge boson of QED; it has
zero mass and is electrically neutral.

QCD is the theory of strong interaction, i.e., the theory of quarks and gluons and the interac-
tions between them. We can start by thinking of QCD in terms of its similarities and differences
with respect to QED [31]. Just as the latter describes the interaction between particles which
carry electric charge, the former describes the interaction between particles carrying the “QCD
charge”, known as colour charge (or simply colour). A major difference in this point is that while
there is only one single kind of electric charge, colour comes in three varieties: red, green and
blue. The massless gluons are the gauge bosons of QCD, thus playing a similar role to QED’s
photon. However, while the photon is electrically neutral, gluons are not colour neutral, partic-
ularly, they can be thought of as carrying both colour and anti-colour. There are eight different
combinations of colour and anti-colour for gluons, meaning that there are eight different gluons.
The fact that the gluons themselves carry colour charge means that they can interact directly
with one another. This possibility is not available in QED since photons are electrically neutral.
Field theories in which the field quanta may interact with each other are called non-Abelian. In
QCD, the self-interaction of gluons leads to asymptotic freedom, i.e., the coupling αs tends to
zero for high momentum scales and blows up at small scales (a striking difference with respect
to QED, in which the opposite behaviour is observed). In-between the two limits the evolution
with scale is rather fast: the so-called running coupling effect.

The fact that there are three different colour charges makes the SU(3) group the natural
symmetry group of strong interaction. The fundamental representation of this group is a triplet,
making it the natural representation for quarks. That is, quarks are represented by a field ψ(a),
carrying a colour label a = 1 ... 3. This quark field corresponds to the product of a vector in
colour space with a spinor such that:

ψ(1) = |R〉 ⊗ u(p) , ψ(2) = |G〉 ⊗ u(p) and ψ(3) = |B〉 ⊗ u(p) ,

2The sign conventions used throughout are those by Peskin and Shroeder (ref. [30]), although the notation is
slightly different in some places.

3The convention is such that ef = Q |e| , with Q for example equal to −1,+2/3 and −1/3 respectively for the
electron, up and down quarks.

4Note that while a sum over all flavours could have been written explicitly for completeness, we chose not to
do so because the QED Lagrangian is often written for a single family.
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where

|R〉 =

 1
0
0

 , |G〉 =

 0
1
0

 and |B〉 =

 0
0
1

 .

The generators of SU(3) are eight linearly independent traceless hermitian 3 × 3 matrices, tra-
ditionally denoted by λA, where the index A runs from 1 to 8 :

λ1 =

 0 1 0
1 0 0
0 0 0

 , λ2 =

 0 −i 0
i 0 0
0 0 0

 , λ3 =

 1 0 0
0 −1 0
0 0 0

 , λ4 =

 0 0 1
0 0 0
1 0 0

 ,

λ5 =

 0 0 −i
0 0 0
i 0 0

 , λ6 =

 0 0 0
0 0 1
0 1 0

 , λ7 =

 0 0 0
0 0 −i
0 i 0

 , λ8 =
1√
3

 1 0 0
0 1 0
0 0 −2

 .

These eight generator matrices represent the eight gluons of QCD, which are thus in the adjoint
representation of SU(3) .

Since we say that SU(3) is the symmetry group of strong interaction, this means that the
Lagrangian of QCD must be invariant under local transformations of that group. From this we
can obtain its form as:

LQCD =
∑

flavours

ψ̄(a)

(
iγµ∂µδab −mδab + gsγ

µAAµ tAab
)
ψ(b) −

1

4
FAµνFA,µν , (1.2)

where gs is the coupling constant which relates to the QCD coupling via αs = g2s
4π , t

A ≡ 1
2λ

A ,
AAµ are the gluon or gauge fields (analogous to Aµ in (1.1)) and FAµν are the gluon field tensors
given by:

FAµν = ∂µAAν − ∂νAAµ + gsf
ABCABµACν , (1.3)

with fABC the structure constants of SU(3), given by
[
tA, tB

]
= ifABCtC .

By comparing the QED and QCD Lagrangians in equations (1.1) and (1.2) respectively, we
note that the major difference between the two is the presence of the term gsf

ABCABµACν with
two gluon fields. This is the term that is responsible for the gluon self-interaction and, hence,
for the asymptotic freedom of QCD.

To each Lagrangian there corresponds a set of Feynman rules, that is, a set of propagators
and vertex factors. This section does not aim at deriving such entities from the two Lagrangians
(1.1) and (1.2), but, since these rules will be necessary for the calculations performed in the next
section, the results are presented in appendix A for consultation whenever required. With these
rules identified, it is possible to calculate a desired observable using perturbation theory based
upon Feynman diagrammatic techniques.

Perturbation theory relies on the idea of an order-by-order expansion in a small coupling αs ,
such that a given observable is obtained by:

f = f0 + f1αs + f2α
2
s + f3α

3
s + ... ,

where the coefficients fi can be determined through Feynman diagrammatic techniques and it is
generally sufficient to calculate the first order terms with the understanding that the remaining
terms will be small.

From the above formulation, it is straightforward to understand that the applicability of
perturbation theory rests on the assumption that the coupling is small. Therefore, as a result of
asymptotic freedom, the calculation of a given observable using perturbative QCD is only valid
at high momentum (or energy) scales, where the coupling αs satisfies that condition.
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1.2 The soft and collinear limits of QCD

In the previous section, we have introduced the QCD Lagrangian, from which a set of Feynman
rules can be identified and employed to calculate observables using perturbation theory based
on Feynman diagrams. We have also seen that in order for perturbation theory to be applicable,
we need to limit ourselves to the behaviour of QCD at high momentum scales.

As we shall see, jets take up a particularly prominent role in this master dissertation. Jets
are collimated sprays of hadrons that result from the fragmentation of energetic partons into a
cascade of lower-energy quarks and gluons that eventually hadronise. Jet substructure is, at its
most fundamental, the study of QCD at high momentum scales and in the near-soft and near-
collinear limits [32]. “Soft” means that the emitted gluon carries very little energy compared to
the parent parton that emitted it. That is, if we call the fraction of energy carried out by the
gluon ζ then we say that ζ � 1 . “Collinear” means that the gluon is emitted very close in angle
to another parton in the event. The soft and collinear approximation is important enough in
particle physics in general (and jet physics in particular) that we will repeatedly employ it in
our discussions and calculations.

In this section we intend to derive the probability of emission of a soft and collinear gluon
from a pair of quark and anti-quark qq̄ . The calculations presented follow the steps done in
ref. [31].

To simplify the calculations let us consider the process of e+e− annihilation into hadrons,
specifically into a pair qq̄ :

e+

e−

q

q̄

p1

p2
. (1.4)

Considering this process has the advantage that only the final state involves QCD. We are
interested in the hadronic side of (1.4), so let us write the amplitude of the QED process of a
virtual photon decaying to a qq̄ pair: γ∗ → qq̄,

Mqq̄ =

q

q̄

p1

p2
= ū(p1)(−ieqγµ)δabv(p2) , (1.5)

where ū(p1) and v(p2) are the spinors for the outgoing quark and anti-quark respectively, with
four-momenta p1 and p2 , (−ieqγµ) is the QED vertex (as given in equation (A.1)) and eq is the
electric charge of the quark. The Dirac-δ imposes that the quark and anti-quark carry the same
colour, as required in the process under consideration (QED process/vertex).

By doing this we have discarded the e+e− → γ∗ interaction vertex and also the photon
propagator, since those are inconsequential for the calculations we are interested in. Usually
we need the squared amplitude of matrix element (1.5), summed over all possible (colour) final
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states:

|Mqq̄|2 = |ū(p1)(−ieqγµ)δabv(p2)|2

= ū(p1)(−ieqγµ)δabv(p2)v̄(p2)ieqγ
νδbau(p1)

= NC |ū(p1)ieqγ
µv(p2)|2 , (1.6)

where NC = 3 is the number of colour charges in QCD. Note that, when taking the squared
modulus of the matrix element, there are two implicit sums over the colour indices a and b , i.e.,
there are implicit sums over all possible final states (δabδba = δaa = NC).

Let us now incorporate into this process the emission of a soft gluon with momentum pg and
polarisation vector ε∗, such that the Feynman diagram of the problem is

Mqq̄g =

p1

p2

pg , ε
∗

+

p1

p2

pg , ε
∗

= ū(p1)ε∗α(pg)(igsγ
αtAab)

[
i �p1 + �pg +m

(p1 + pg)2 −m2 + iε

]
(−ieqγµδbc)v(p2)

+ ū(p1)(−ieqγµδab)
[
−i �p2 + �pg +m

(p2 + pg)2 −m2 + iε

]
(igsγ

αtAbc)ε
∗
α(pg)v(p2) .

(1.7)

To write the equation above, the Feynman rules presented in appendix A were used. We note
that there are two different terms that contribute for the amplitude of this process: the first
for the emission of the gluon from the quark and the second for the emission of the gluon from
the anti-quark. In equation (1.7) m stands for the mass of the quark (and anti-quark) and

�p = γµpµ . In high energy physics, it is common to take particles to be massless (m = 0). In that
approximation, we can re-write equation (1.7) as

Mqq̄g = iū(p1)��ε
∗gst

A
ac

�p1 + �pg
(p1 + pg)2

eqγ
µv(p2)− iū(p1)eqγ

µ �p2 + �pg
(p2 + pg)2

gst
A
ac��ε
∗v(p2) . (1.8)

At this stage it is important to pause and consider several details of the matrix element (1.8)
and of the process represented in (1.7). Since we are under the assumption of massless particles,
the Dirac equation for the quark yields ū(p1)�p1 = 0 while for the anti-quark we can write

�p2v(p2) = 0 . Moreover, we assume that all final-state particles (q , q̄ and g) are on-shell, such
that: p2

1 = p2
2 = p2

g = 0 . Additionally, in each term of the diagram there is a virtual particle,
represented by the small internal line (i.e., by a propagator) between the two vertices. Each
one of these particles is an off-shell particle with a given virtuality (p1 + pg)

2, (p2 + pg)
2 6= 0 .

Finally, we have already stated that we are considering that the emitted gluon is soft, meaning
that pµ,g � pµ,i , with pi the four-momentum of either the final-state quark or anti-quark.

Knowing also that the γ-matrices obey the anti-commutation relation {γµ, γν} = γµγν +
γνγµ = 2gµν , where gµν is the Minkowski metric (+,−,−,−) , yields that

��A��B = γµAµγ
νBν = γµγνAµBν

= 2gµνAµBν − γνγµAµBν
= 2A.B −��B��A .
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With all of these considerations in mind, we can re-write each of the terms in equation (1.8),
starting with the first:

iū(p1)��ε
∗gst

A
ac

�p1 + �pg
(p1 + pg)2

eqγ
µv(p2) = iū(p1)gst

A
ac

2ε∗.(p1 + pg)− (�p1 + �pg)��ε
∗

(p1 + pg)2
eqγ

µv(p2)

' iū(p1)gst
A
ac

2ε∗.(p1 + pg)− �pg��ε
∗

2p1.pg
eqγ

µv(p2)

' ū(p1)ieqγ
µtAacv(p2)gs

p1.ε
∗

p1.pg
.

The second term of equation (1.8) can be handled in a similar way to the first term and we get:

iū(p1)eqγ
µ �p2 + �pg

(p2 + pg)2
gst

A
ac��ε
∗v(p2) = iū(p1)eqγ

µ 2 (p2 + pg) .ε
∗ −��ε∗ (�p2 + �pg)

(p2 + pg)2
gst

A
acv(p2)

' iū(p1)eqγ
µ 2 (p2 + pg) .ε

∗ −��ε∗�pg
2p2.pg

gst
A
acv(p2)

' ū(p1)ieqγ
µtAacv(p2)gs

p2.ε
∗

p2.pg
.

As such, we can finally write the matrix element (1.7) as:

Mqq̄g ' ū(p1)ieqγ
µtAacv(p2)gs

(
p1.ε

∗

p1.pg
− p2.ε

∗

p2.pg

)
. (1.9)

Just as before we need the squared amplitude of the matrix element (1.9), summed over all
possible colour and polarisation final states:

|Mqq̄g|2 '
∑
pol.

∣∣∣∣ū(p1)ieqγ
µtAacv(p2)gs

(
p1.ε

∗

p1.pg
− p2.ε

∗

p2.pg

)∣∣∣∣2 ,
where we chose to write the sum over all polarisation states explicitly while leaving the sums
over repeated final-state colour indices (a, b and A) implicit. Proceeding with the calculations,
we can factorise this probability into a product of the sum over all colour final states and the
sum over all polarisation final states:

|Mqq̄g|2 ' g2
s

∣∣ū(p1)ieqγ
µtAacv(p2)

∣∣2∑
pol.

∣∣∣∣p1.ε
∗

p1.pg
− p2.ε

∗

p2.pg

∣∣∣∣2 . (1.10)

The first factor in the equation above resembles the squared amplitude of the matrix element for
qq̄ production (equation (1.6)) except that with a generator matrix tA instead of a Dirac-δ . To
perform the sum over all colour states and thus evaluate this first factor it is useful to keep in
mind the Fierz identity:

tAabt
A
cd =

1

2
δbcδad −

1

2NC
δabδcd .

Using this result and noting that the squared modulus yields
∣∣tAac∣∣2 = tAact

A
ca , we obtain

tAact
A
ca =

1

2

(
δccδaa −

1

NC
δacδca

)
=

1

2

(
N2
C − 1

)
= CFNC ,
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which means we get an extra CF multiplicative factor with respect to |Mqq̄|2 . CF is the Casimir
of the fundamental representation and arises in the previous equation because

CF =
N2
C − 1

2NC
=

4

3
.

For the sum over polarisations states it is important to know that,∑
pol.

εµε
∗
ν = −gµν .

Using this result we can develop the sum over all polarisation states such that

∑
pol.

∣∣∣∣p1.ε
∗

p1.pg
− p2.ε

∗

p2.pg

∣∣∣∣2 =
∑
pol.

(
pµ1εµ
p1.pg

− pµ2εµ
p2.pg

)(
pν1ε
∗
ν

p1.pg
− pν2ε

∗
ν

p2.pg

)

=

(
pµ1
p1.pg

− pµ2
p2.pg

)(
pν1
p1.pg

− pν2
p2.pg

)∑
pol.

εµε
∗
ν

=
2p1.p2

(p1.pg) (p2.pg)
.

Finally, returning to equation (1.10) yields,

|Mqq̄g|2 ' g2
sCF |Mqq̄|2

2p1.p2

(p1.pg) (p2.pg)
.

One main point of this result is that, in the soft limit, the |Mqq̄g|2 squared matrix element
factorises into two terms: the |Mqq̄|2 matrix element and a piece with a rather simple dependence
on the gluon momentum.

The next piece we need is the phase space of the qq̄g system, dΩqq̄g, which also factorises
into the product of the phase space of the qq̄ pair production, dΩqq̄, with the phase space for
gluon emission dΩg emission : dΩqq̄g = dΩqq̄dΩg emission . The Lorentz invariant phase space for the
soft-gluon emission corresponds to the phase space available for the gluon, which can be written
as

dΩg emission =
d3pg

2(2π)3Eg
.

where Eg is the energy of the gluon [31]. As such, the phase space of the qq̄g system is given by

dΩqq̄g = dΩqq̄
d3pg

2(2π)3Eg

Finally, we can thus say that the full differential cross section for the qq̄g production, dσqq̄g ,
is given by the squared amplitude of the qq̄ production matrix element and corresponding phase
space, |Mqq̄|2 dΩqq̄, multiplied by the probability of soft-gluon emission, dS , such that

dσqq̄g = |Mqq̄g|2 dΩqq̄g = |Mqq̄|2 g2
sCF

2p1.p2

(p1.pg)(p2.pg)
dΩqq̄

d3pg
2(2π)3Eg

≡ |Mqq̄|2 dΩqq̄dS .
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We can thus identify the probability of emission of a soft gluon as,

dS = g2
sCF

2p1.p2

(p1.pg)(p2.pg)

d3pg
2(2π)3Eg

= αsCF
2p1.p2

(p1.pg)(p2.pg)

d3pg
(2π)2Eg

= αsCF
2p1.p2

(p1.pg)(p2.pg)

p2
gdpg sin θdθ dφ

(2π)2Eg

=
αsCF
π

p1.p2

(p1.pg)(p2.pg)
EgdEg sin θdθ

dφ

2π
,

where θ and φ are, respectively, the polar and azimuthal angles of the gluon with respect to the
other final-state child resulting from the splitting (either the quark or the anti-quark, in the first
and second terms, respectively). We can proceed, with a little bit more algebra, to re-arrange
this result in a different fashion. We place ourselves in the rest frame of the qq̄ pair such that
the quark and anti-quark are back-to-back: p1 = −p2 and E1 = p1 = p2 = E2 . Under this
condition the probability of soft-gluon emission can be written as:

dS =
αsCF
π

E2
1 + p2

1

(E1Eg − p1 · pg)(E1Eg + p1 · pg)
EgdEg sin θdθ

dφ

2π

=
αsCF
π

2E2
1

E2
1E

2
g − (p1 · pg)2

EgdEg sin θdθ
dφ

2π

=
2αsCF
π

EgdEg sin θdθ

E2
g (1− cos2 θ)

dφ

2π

=
2αsCF
π

dEg
Eg

dθ

sin θ

dφ

2π
.

It will prove useful to write the probability of soft-gluon emission as a function of a dimensionless
quantity: the energy fraction, ζ , carried out by the gluon with respect to that of its parent
(emitter),

ζ =
Eg

Eparent
=

Eg
Eg + E1

, (for the first term).

Using this dimensionless quantity and further considering that we are within the collinear limit
where sin(θ) ' θ, the probability of emission of a soft and collinear gluon can be written in the
final form:

dS =
2αsCF
π

dζ

ζ

dθ

θ

dφ

2π
=

2αsCF
π

d (ln ζ) d (ln θ)
dφ

2π
. (1.11)

This result presents two different non-integrable logarithmic divergences: the first, when ζ → 0 , is
called the soft divergence while the second, when θ → 0 , is the collinear divergence, corresponding
to the emission of the gluon with a direction collinear with that of the quark (or anti-quark). For
this reason, the soft and collinear limit is usually referred to as the “double-logarithmic regime”
or “double-logarithmic approximation” (DLA).

We will return to this expression in chapter 3, where the kinematical Lund planes are intro-
duced and we can use equation (1.11) as motivation for the choice of axes.

It is very important to note that, although derived in the specific context of e+e− → qq̄
production, these soft and collinear (logarithmic) divergences are a very general property of QCD
and appear whenever a soft gluon is emitted from a quark or from another gluon, regardless of
the process originating the original parent [31].
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1.3 A brief overview of Monte Carlo event generators

General-purpose Monte Carlo (MC) [33] event generators, such as Herwig [34], Pythia [35]
and Sherpa [36], are essential tools in modern high energy physics without which many physics
analyses would not be feasible. They provide a detailed description of the final state of high
energy particle collisions,5 such as those at the Tevatron or the LHC, and can therefore be
employed in a multitude of ways. Namely, they can be used (i) to estimate signal and background
processes, thus allowing to devise data analysis strategies for separating them from one another;
(ii) to plan and design new experiments or estimate the feasibility of a new physics study; (iii) to
optimise the detector and its triggers to a specific investigation; (iv) as a vehicle to disseminate
ideas from theorists to experimentalists, etc. [38].

In this section we present a general overview of the various MC event generator components
through which an event is build up. From amongst these, the understanding of the final-state
parton shower is of particular importance to our work. Once the description of the flow of an
event in a generator has been presented, we take this opportunity to properly introduce the
notion of jets and how they arise in hadron collider events.

One important note is due at this stage: the discussions in this section focus only on the
high energy physics of pp collisions. Heavy-ion physics is not addressed in here since it involves
rather different aspects, which are left for the two final sections (1.4 and 1.5) of this chapter and
for section 2.1 of chapter 2.

1.3.1 The structure of an event

Understanding and describing the final states of high energy particle collisions is a formidable
theoretical task. Such final states typically involve the production of hundreds of particles,
potentially from every species predicted by the Standard Model (and possibly even beyond it)
and with momenta spanning several different orders of magnitude. Therefore, the relevant matrix
elements are often too laborious to compute beyond a first few orders in perturbation theory and,
additionally, in the case of QCD processes, they involve the unsolved, non-perturbative problem
of colour confinement and resulting hadronisation [39].

In spite of these difficulties, modern MC event generators are very successful in describing such
final states. That success stems from the large amount of work that has been invested in recent
years in the development of techniques to help tackle this extremely challenging problem. From
among these, one crucial tool is factorisation. It allows us to separate the treatment of many
different processes into three main regimes, according to the momentum (or energy) transfer
scales involved. At the core lie the hard interactions between pairs of partons, described by
matrix elements which can be computed perturbatively given that the momentum transfer scales
are high; this is the hard regime or hard scattering. Following that, a perturbative evolution
process is responsible for the production of a multitude of final-state partons, through a cascade
of emissions that successively lower the momentum scale down to scales around 1 GeV , where
QCD is strongly coupled and perturbation theory breaks down. Finally, at low momentum
transfer scales, the final-state coloured partons interact non-perturbatively turning into colourless
hadrons; this is the soft regime.

Each one of these regimes is suitable for computer simulation using MC methods and the
factorisation means that each element can be improved individually if new advances have been
made. In the end, when all of these pieces have been put together, we have a MC event generator
capable of simulating a wide range of interesting physical processes.

5It should be noted that the final state produced by MC event generators does not include detector effects,
which can be incorporated into this picture resorting to detector simulation programs such as Geant4 [37]. Since
this is outside the scope of this work no further mentions will be made to this particular point.
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The steps by which event generators build up the structure of a hadron collision are presented
in figure 1.1. We will now outline what happens individually at each of these steps. Reference
[39] is recommended for a detailed description, and has served to inspire the general overview
presented here.

Figure 1.1: Schematic picture of the flow of hard collisions in a MC event generator. The three different
regimes are represented, together with a list of the main steps by which the generators build up the
structure of an event involving a hard process.

Hard scattering

In a hadron collider, two hadronic beams are accelerated and made to collide with each other.
Each hadron is made up of quarks and gluons such that, as a result of a collision of two hadrons
(one from each beam), there are interactions between incoming partons. Most of these inter-
actions are soft, i.e., they involve low momentum transfer scales. However, a small fraction of
the incoming partons may interact through the transfer of large amounts of momentum, a hard
scattering which produces a (relatively) small number of outgoing quarks, leptons and/or gauge
bosons at large angles. The processes of interest in hadron collisions generally stem from these
rarer hard interactions and, as such, a hard scattering lies at the core of events in MC generators.

Although we are generally interested in a particular kind of event, the variety of 2→ n (hard)
processes that can occur as a result of the collision of the incoming partons is substantial. As
such, instead of generating typical events and waiting for one of them to be of the desired type,
MC event generators allow us to generate events around specific hard subprocesses of interest
according to their matrix elements and phase space. Since the momentum transfer scales involved
are high, these matrix elements can be computed using perturbation theory.

Thus, from the collision of two hadrons, a primary hard interaction between two partons
produces a flow of outgoing primary particles. However, since hadrons are complex bound-states
of strongly interacting partons, within the collision of these same two hadrons, further parton
pairs (other than the first) may interact via the transfer of large amounts of momentum. This
means that besides the primary hard subprocess, one or more secondary hard interactions may
occur and produce additional outgoing quarks, leptons and/or gauge bosons of their own. These
additional secondary interactions may add significant contributions to any observable besides
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that of the primary subprocess. This part of the event structure is known as “underlying event”,
and should not be confused with pile-up which stems from the interaction of more that one
hadron pair at each beam crossing.

Evolution processes

As we have seen, as a result of the hard primary interaction outgoing primary partons can be
produced. These outgoing partons can afterwards radiate gluons, which can, in turn, radiate
further gluons themselves or produce quark-anti-quark pairs. Thus, the primary outgoing partons
initiate a cascade of successive splittings of the form q → qg , g → gg and/or g → qq̄ , responsible
for the extraordinarily high multiplicity of final-state partons. This process is simulated by the
so called “parton shower algorithm” which consists in a stepwise Markov process. This algorithm
probabilistically evaluates whether or not a new parton - emitted by a pre-existing one - should be
added to the final state. A key feature of these parton showers is that the successive emissions are
explicitly ordered according to a momentum-tranfer-like ordering variable, which is successively
lowered at each splitting: t1 > t2 > t3 > ... (t being the ordering variable). New partons are
added to the final state as long as the ordering variable associated with their emission is larger
than a predefined threshold; when that condition is no longer met the showering is stopped.

Typically, the ordering variable should be a variable in which QCD is naturally ordered, i.e.,
it should be related to QCD’s logarithmic divergences. In vacuum, QCD showering structure
is thought to be ordered in such a way that large-angled, hard emissions happen first, followed
by gradually softer and smaller-angled emissions. Even so, the choice is by no means obvious
or unique and, indeed, different generators have implemented different ordering variables. For
instance, Herwig has been formulated with an angular ordered shower [40], while the original
Pythia implementation had an ordering in virtuality and the modern Pythia8 generator is
ordered in transverse momentum [41].

At this point it is important to point out that as a result of the hard primary interaction
some of the outgoing particles will be electrically charged. As such, although we have centred
our discussion on QCD showering (since that is the most relevant to the work presented here),
subdominant QED radiation should also be appropriately included in this picture.

We have just described the perturbative evolution process through which the primary outgo-
ing partons give rise to a multitude of final-state partons. In the same way, the outgoing partons
that originate from secondary interactions also produce successive QCD emissions adding more
partons to the final state (underlying event). This branching is formulated exactly as the one for
the primary interaction: as a perturbative downwards evolution in a particular ordering variable.
As such, together, the primary and secondary processes originate the final-state radiation (FSR)
and the parton shower algorithms behind this evolution process are thus called final-state parton
showers.

One subtle detail has not yet been mentioned. The accelerated partons within the incoming
hadrons can themselves radiate prior to the hard interactions. This gives rise to initial-state
radiation (ISR) and the corresponding showering algorithms are known as initial-state parton
showers. Their theoretical formulation and implementation is slightly more complicated than
final-state parton showers because the complex nature of the incoming hadrons and the confine-
ment of the incoming partons therein come into play. But, in any case, the important thing to
take note of is that the final state will have contributions from both FSR and ISR. The latter
should be seen as a contamination to what we actually want to observe.
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Soft regime

As an event is evolved downwards, the ordering variable is successively lowered until the mo-
mentum (energy or virtuality) transfer scale involved reaches a region - around 1 GeV - where
QCD becomes strong interacting (αs(1 GeV) ∼ 1 [42]) and perturbation theory is no longer ap-
plicable. At this stage, the showers must be terminated and we are left with a final state made
up of a large multiplicity of partons. However, as we know, in real-life events hadrons (and not
partons) are observed.

The transition from the final-state partons into hadrons is known as hadronisation and cannot
be calculated from first principles within any calculation technique currently at our disposal.
Therefore, models have been introduced to describe the non-perturbative transition of the final-
state coloured quarks and gluons into colourless hadrons. Since these models are not derived
directly from QCD but rather inspired by it, they are design with free parameters whose values
are adjusted until the model’s results agree with those of a given experimental dataset (usually
one from LEP where the initial state does not involve QCD). It is then said that the model has
been “tuned to data”. Once that has been done, the model is approximately universal, meaning
that it gives a good description of the hadronisation step regardless of the core process that
originated the input final-state coloured partons.

Finally, many of the hadrons output by hadronisation are heavy and unstable, never reaching
the detector in an actual high energy physics experiment. Therefore, once again models are used
to describe the decay of such hadrons into lighter ones, that are long-lived enough to be considered
stable at the time scales of the detector.

1.3.2 The arising of jets

It has already been mentioned in section 1.2 that “jets are collimated sprays of hadrons that result
from the fragmentation of energetic partons into a cascade of lower-energy quarks and gluons
that eventually hadronise”. At the time it was presented, this definition might have struck the
reader as a bit contrived; however, in light of the parton shower description above it should now
be much clearer.

As we have seen, in an event there is an evolution process in which successive emissions of
softer partons gradually lower the momentum scale until the non-perturbative region is reached.
The structure of QCD, i.e., its soft and collinear divergences (recall eq. (1.11)), means that
those emissions are dominated by soft gluon emission and/or collinear parton splittings. As
a result, the event’s final-state partons will mostly be found in bundles around the original
directions of the hard outgoing partons produced in the hard interaction. This distribution
remains essentially unchanged by hadronisation and, hence, jets arise as bunches of collimated
(i.e. collinear) hadrons grouped together roughly around the direction determined by a hard
parent parton resulting from the collision.

1.4 The quark-gluon plasma and heavy-ion collisions

The current generally accepted picture for the origin of the universe was first proposed in 1972
by Geroges Lemaître and is now widely known as “the Big Bang theory” [43]. According to it,
the universe has expanded explosively from an extremely hot and dense initial state, continuing
to expand and cool to this day.

In its early stages, the primordial universe was filled with an extremely hot and dense form
of matter made up of the most elementary building blocks found in nature, but essentially
dominated by quarks and gluons [44,45]. In those first moments the temperature was so extreme
that these partons were only weakly coupled (due to the asymptotic freedom of QCD). However,
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between approximately 10−12 to 10−6 seconds after the Big Bang (i.e., after the start of the
expansion) the universe reached temperatures that, though still incredibly high, were low enough
for the quarks and gluons to start interacting strongly (rather than weakly). This astonishingly
hot and dense soup of strongly coupled quarks and gluons was the first complex form of matter
to be formed in nature and is known as the quark-gluon plasma (QGP). The evolution continued
and as lower temperatures were reached the partons started to bind together to form nucleons
(protons and neutrons). The transition from the QGP phase to the phase where the universe
is made up of protons and neutrons happened via a gradual (smooth) crossover, leaving no
“imprint” in the primordial universe. As such, there is no cosmological observation that can
be made to directly “observe” this primordial QGP and/or its properties. We know only of its
existence through rigorous and complex analytical (lattice) QCD calculations which show the
QGP is a phase of the QCD Lagrangian in a specific temperature range.

A deeper study of the QGP offers a very enticing research field with vast potential. Since this
form of matter was present in the primordial universe, it offers a tangible connection with those
early stages of its evolution and a way of probing its beginnings. Moreover, since QCD governs
the formation and evolution of the QGP, its study can provide insights into the properties of
diverse multi-scale QCD processes. However, as we have seen, while the QGP was present in the
early stages of the universe, it quickly expanded and evolved into a state made up of protons
and neutrons, leaving no trace of its existence that could be observed, probed or analysed today.
Fortunately, the QGP can be recreated in a collision of ultra-relativistic heavy ions, a fact which
has propelled a lot of interest in the field.

In an ultra-relativistic heavy-ion collision, the maximum energy density (or temperature)
happens at the moment of impact between two incoming (highly contracted) nuclei. The colli-
sion is responsible for multiple interactions (both hard and soft) of several different nucleon pairs
while, at the same time, many more nucleons proceed along their route, suffering no such inter-
actions. As a result of the soft interactions, a droplet of highly dense matter is formed. 1 fm/c
after its creation, the energy density of this droplet is about 12 GeV/fm3, a value almost 25 times
larger than that typically found inside hadrons (∼ 0.5 GeV/fm3). This shows that this droplet
cannot be made of a highly packed collection of distinct individual hadrons [46]. On the other
hand, at this energy density, the temperature is not quite high enough for the droplet to be a
nearly free gas of weakly interacting partons. Hence, it must be made of strongly coupled quarks
and gluons that form a collective medium, the QGP, which behaves like a nearly-perfect (i.e.,
low specific viscosity) liquid [47] that evolves according to the laws of relativistic hydrodynamics.

As time passes, hydrodynamic pressure drives the tiny droplets of QGP to gradually expand
in all directions. As this liquid expands and cools, the energy density decreases until it reaches
values of the order of those found inside individual hadrons, which happens at a temperature of
approximately T ∼ 155 MeV. At that point, the quarks and gluons are bound together, getting
confined into hadrons that scatter off one another a few times, before eventually streaming away
freely to eventually reach the detectors.

While some of the interactions are responsible for the production of the QGP, a (simultaneous)
hard scattering may also produce hard outgoing partons - a process which is rare but of particular
interest. These partons will subsequently shower and originate jets, much as we have seen in
the previous section for pp collisions. However, now the presence of the QGP adds an additional
degree of complexity. As particles from the hard scattering evolve and radiate, they traverse
the region where the QGP is being produced and evolved. In particular, in events involving
hard partons, the jets they give rise to are modified, with respect to those stemming from pp
collisions. These modifications and the phenomena originating them are collectively known as
“jet quenching” and contain a wealth of invaluable information that allows us to make grounded
inferences about the nature and properties of the QGP. Although some pieces of information
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have already been extracted much is still to be learnt and this is a blossoming area of research.
Jet quenching is discussed in section 2.1 of chapter 2.

1.5 The concept of formation time

As we have seen, QCD is naturally formulated in momentum space because it is in that space that
(i) its structure - i.e., its logarithm divergences - is manifest and (ii) factorisation is formulated.
We have also discussed that parton showers produce a cascade of successive emissions or splittings
which are explicitly ordered according to a specific ordering variable. All of these discussions
were presented in the context of collisions where no dense QCD matter is formed. However,
as explained in the previous section, in a collision of heavy ions the QGP is created and some
of the partons produced as a result of the hard scattering may interact with it. It is therefore
clear that, in this context, a knowledge of which partons interact with the QGP and at which
spacetime position is desirable.6 In order for that to be possible, we need to give a spacetime
meaning to the parton shower which was formulated in momentum space (section 1.3).

The relation between momentum space and spacetime is encoded in the uncertainty principle.
Recalling that the parton shower evolves the event between two scales (the hard scattering scale
and the hadronisation scale) via successive 1→ 2 splittings of virtual partons, a natural time scale
is the lifetime of a virtual parent to split into two children, with some specific kinematics. Let us
consider one such splitting in which the virtual parent particle has four-momentum q = p1 + p2

and splits into two child particles with four-momenta p1 and p2 such that the corresponding
Feynman diagram is

M = Mh

V
p1 + p2

p1

p2

. (1.12)

We depict not only the splitting vertex V but also another process with an associated amplitude
Mh, responsible for creating the parent particle (either the hard scattering itself or a previous
splitting). This is explicitly presented to highlight the fact that the parent is a virtual particle
(internal line). From the uncertainty principle, the lifetime of a virtual state is given by the
inverse of the square-root of its virtuality q2,

t ∼ 1√
q2
.

Since the particles which we are dealing with are boosted particles travelling at very high velo-
cities, that is, they are relativistic particles, the lifetime of the parent particle in a Lorentz frame
in which it carries an energy E is dilated by the Lorentz boost factor γ = E/

√
q2 . Thus, the

lifetime of the virtual parent particle is given by the ratio between its energy and its virtuality:

tF ∼
2E

q2
. (1.13)

This lifetime can be regarded as the characteristic time for the splitting to occur and is usually
known as the splitting’s “formation time”. The factor of two appearing in equation (1.13) is a
widely spread and accepted convention for the definition of this quantity [48,49].

6Note that it is the QGP itself that provides a physical spacetime reference frame for the formulation of this
problem.
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Although the development of the shower requires the children to be virtual (off-shell) particles
themselves, for the computation of the formation time we will assume that they are on-shell. This
is a good approximation because the off-shellness of the child particles contributes to the lifetime
of their parent at high orders (i.e., the correction is parametrically small). As such, considering
once again massless particles, we can write: p2

1 = p2
2 = 0 . We now assume that the softer child

takes an energy fraction ζ while, by energy conservation, the other takes the remaining fraction
(1− ζ) such that:

• one child particle has p1 = (E1, p1) = ((1− ζ)E, p1) ;

• the other child has p2 = (E2, p2) = (ζE, p2) .

This allows us to write the virtuality of the parent particle as:

q2 = (p1 + p2)2 = p2
1 + 2p1.p2 + p2

2

= 2p1.p2

= 2 (E1E2 − p1 · p2)

= 2E1E2 (1− cos θ)

= 2(1− ζ)ζE2 (1− cos θ) ,

where θ is the angle between the two child particles. As such, the formation time can be written
as

tF ∼
1

(1− ζ)ζE (1− cos θ)
. (1.14)

In this expression the kinematics is exact, except for the aforementioned fact that the two children
were assumed to be on-shell, when they are actually off-shell particles just like their parent.

In the collinear limit we can write: 1− cos θ ' 1− [1− θ2/2] = θ2/2 . Additionally, considering
also the soft limit, in which ζ � 1 , we get ζ(1− ζ) ' ζ . Thus, we can write the formation time
in its commonly used form [48,49]

tF ∼
2

ζEθ2
. (1.15)

One point that is crucial to keep in mind is that the formation time as defined by equation
(1.15) does not define the absolute time at which a given splitting has occurred (or a given pair
of particles was produced). Instead, it describes the time interval between successive splittings,
meaning it is an incremental time. This is clear from the way the derivation was performed.
Hence, when we calculate this quantity using equation (1.15) together with the internal kin-
ematical information provided by the MC event generator, i.e., from the four-momenta of the
particles within the jet, the formation time that we obtain is an incremental quantity.

The formation time of a splitting is responsible for imbuing a spacetime meaning into the
cascade of successive splittings from the parton shower, thus allowing to determine whether a
certain splitting may or may not have interacted with the QGP and been affected by it. To make
things clearer we can consider the simple picture presented in [49], where we take the medium to
have a spatial extent L. In that case, the i-th splitting along a certain branch happens at a time
that is given by the sum of the (incremental) formation times of all the splittings that happened
up to that point in that branch,

ti = tF,1 + tF,2 + ...+ tF,i .

If this time is larger than the medium length, that is, if ti > L the splitting happens outside of
the QGP and is therefore not directly affected by its presence. We say that it is a “pure vacuum
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splitting”. On the other hand, if ti < L then the splitting happens inside the medium and can
potentially be affected by it. This kind of splittings are called “in-medium splittings”. It is
important to note that not all splittings that happen inside the medium are necessarily affected
by it; other effects are at play which determine whether or not a certain splitting may or may
not be resolved by the QGP. For a simple and brief discussion on this, the reader is referred to
reference [49].

Equation (1.14) presents the formation time written in terms of the energy of the parent
particle, the energy fraction carried out by the softer child and the angle between the two
children. Instead we could have written this expression using hadron collider variables such as
the transverse momentum of the particles with respect to the beam (pt),7 their rapidity (y) and
their azimuthal angle (φ). For that, it helps to note that the four-momentum of a particle i is
given by

pi = (Ei, pi,x, pi,y, pi,z) = pi,t (cosh yi, cosφi, sinφi, sinh yi) .

Using this result we can write the virtuality of the parent particle in these variables as

q2 = 2p1.p2

= 2p1,tp2,t (cosh y1 cosh y2 − sinh y1 sinh y2 − cosφ1 cosφ2 − sinφ1 sinφ2)

= 2p1,tp2,t (cosh (y1 − y2)− cos(φ1 − φ2))

and its energy as
E = E1 + E2 = p1,t cosh y1 + p2,t cosh y2 .

Thus, making once again use of equation (1.13), the formation time yields

tF ∼
p1,t cosh y1 + p2,t cosh y2

p1,tp2,t (cosh (y1 − y2)− cos(φ1 − φ2))
. (1.16)

This expression is fully equivalent to that of equation (1.14), even if with a rather more complic-
ated look to it.

We can now focus on relevant limits of equation (1.16), in particular, let us consider that the
differences in rapidity and azimuthal angle are sufficiently small so that:

cosh(y1 − y2) ' 1 +
(y1 − y2)2

2
,

cosh(y1) ' cosh(y2) ≡ cosh(y) ,

and,

cos(φ1 − φ2) ' 1− (φ1 − φ2)2

2
.

In this limit, equation (1.16) approximates to,

t′F ∼
2 (p1,t + p2,t) cosh y

p1,tp2,t∆R2
12

,

where ∆R2
12 = (y1 − y2)2 + (φ1 − φ2)2 . Further considering that, not only the difference in

rapidities is small but that the rapidity itself is small (y � 1) we have cosh (y) ' 1 . Moreover, if
we take, once more, the soft approximation (ζ � 1), then we can assume that one of the children
carries almost all of the momentum such that p1,t � p2,t and the formation time can be written
as

t′F ∼
2

p2,t∆R2
12

. (1.17)

7As is usual in literature, the coordinate system is defined such that the z direction is oriented along the beam.
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For convenience, we introduce a dimensionless quantity z defined as the ratio between the trans-
verse momentum carried out by the softer child and the transverse momentum qt of its parent
such that

z =
p2,t

qt
.

In analogy to the energy fraction ζ , we will call z the “momentum fraction” (though the term is
not fully accurate in this case). Finally, we can write

t′F ∼
2

zqt∆R2
12

. (1.18)

The importance of equations (1.17) and (1.18) will be apparent in section 2.2 of chapter 2, when
discussing the different reclustering algorithms used throughout this work. For now, it suffices
to note that t′F as given by these two equations is a proxy for the “real” splitting formation time
tF presented exactly in equations (1.14) and (1.16), and approximately in equation (1.15).
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Chapter 2

Introduction to jet physics

As previously explained, jets consist of bunches of collimated hadrons which result from the
fragmentation of energetic quarks and gluons. They are ubiquitous objects used in the analysis
of the experimental measurements, MC parton-shower results, or even in analytical partonic
calculations [50]. Jets are not fundamental objects defined by QCD theory and despite tending
to be particularly prominent features when one looks at an event display of a collider experiment,
that alone is not sufficient to guarantee their broad application throughout. In order for that to
be possible, a jet algorithm which establishes which particles are projected (or grouped) into
a jet in a reproducible and well defined manner is necessary. Besides that, a recombination
scheme, defining how the four-momenta of the particles should be combined when they are
clustered together to form a single object, is also required. The jet algorithm and its parameters
together with the recombination scheme form the so-called jet definition [50].

In this chapter we will start by making an exposition of the role of jets in heavy-ion physics
research. Afterwards, different jet algorithms will be presented and discussed, with particular
emphasis on the generalised-kt family of algorithms, which encompasses all the algorithms used
in this master dissertation. Finally, the chapter ends with a brief note on recombination schemes.

2.1 Jets and their role in heavy-ion research - jet quenching

In 1975, an experiment performed at the Stanford Positron Electron Accelerating Ring (SPEAR)
at SLAC recorded the observation that the final-state hadrons were not isotropically distributed
but instead accumulated around the axis defined by the quark and anti-quark produced as a result
of the collision (e+e− → qq̄) [51]. This behaviour had been theoretically predicted by Bjorken and
Brodsky five years before [52] and constituted the first experimental evidence of jets. The first
record of these objects in the context of hadron collisions dates from the 1982 Paris Conference,
when the UA2 collaboration announced the observation of very clear hadron jets resulting from
pp̄ collisions at the Super Proton Synchrotron (SPS) at CERN [53, 54]. The quest for the QGP
via the collision of relativistic heavy ions started at the SPS approximately one decade later, in
the early 1990s [55–57]. As we have seen in the previous chapter, in such collisions the presence of
the QGP induces modifications in the properties of jets relative to the baseline given by simpler
collisions where no dense QCD matter is formed. The totality of these modifications together
with the phenomena that give rise to them are collectively known as “jet quenching”. This term
is often used to refer to the suppression of high-pt hadrons (which necessarily belong to jets).
Historically, the first observation of jet quenching as hadron suppression happened in 2001 at the
Relativistic Heavy Ion Collider (RHIC) [58] and preceded our ability to reliably reconstruct full
jets within the large and fluctuating background of heavy-ion collisions. Indeed, it was not until
2003 that first candidate reconstructed jets were obtained at the STAR and PHENIX experiments
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Figure 2.1: The nuclear modification factor RAA as a function of jet transverse momentum pt , for jets
with |y| < 2.8 and three different centralities bins [64].

(again) at the RHIC [47]. A full and systematic reconstruction of jets with statistical reliability
was only possible in 2010 at the LHC, at which time the phenomenon of jet quenching with
fully reconstructed jets was directly observed and confirmed by the ALICE, ATLAS and CMS
collaborations [59–62]. This could only be achieved thanks to the much higher energies reached
at the LHC (

√
sNN = 2.76 TeV , compared with the

√
sNN = 200 GeV at the RHIC) which gave

access to an entirely new kinematic range and novel information, and allowed for new and better
characterisation of the QCD processes in play.

The showering process through which jets are developed in vacuum is understood and de-
scribed by perturbative QCD with remarkable (and enviable) precision. However, in the presence
of a medium, the scenario is considerably more complex and, despite the efforts of the past two
decades, much work is still to be done. As we have seen in section 1.3 of chapter 1, as a result
of the hard scattering it is possible (even if rare) that hard partons are produced. These sub-
sequently radiate into a cascade of successive emissions which, in the case of simpler collisions,
develops in vacuum. In relativistic heavy-ion collisions, the QGP is simultaneously produced and
evolved which means that as the jets develop, i.e., as successive partons are emitted, they may
traverse this hot and dense QCD medium and interact with it through many different mechan-
isms. One of the major challenges in the theoretical description of jet quenching ensues from
the diversity of effects that come into play and which are often intertwined, making it extremely
hard to account for all of those effects simultaneously in the same analytical calculation.

It has been experimentally well instituted that jets lose energy as they traverse the hot and
dense QGP or, in other words, in heavy-ion collisions there is a suppression of high-pt jets [63].
This suppression is quantified by an observable known as nuclear modification factor, RAA(pt) ,

RAA({pt, y, b, ...}) =
dNAA/dΩ

〈TAA〉 dNpp/dΩ
,

where NAA and Npp are, respectively, the inclusive yields in nucleus-nucleus and pp collisions,
〈TAA〉 is the average nuclear overlap function for a given centrality class and dΩ is simply the
relevant phase space. Figure 2.1, taken from reference [64], shows a plot of this observable
as a function of the jet’s pt and the suppression (RAA < 1) is clear, particularly for central
collisions. Parton energy loss is a dominant effect that contributes to the modification of many
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jet observables in heavy-ion collisions, when comparing to the results for those observables in
the pp baseline.

This sort of observation is clear in showing that there are conspicuous differences between jets
stemming from relativistic heavy-ion collisions and those from the pp baseline. These differences
are attributed to scattering processes between the partons from the final-state shower and those
within the deconfined (yet strongly interacting) medium.1 One major effect that has been firmly
established is that these interactions stimulate soft gluon emissions off the partons from the
shower, thus (obviously) causing modifications to the jets’ substructure. While a fraction of
these emitted soft gluons ends up inside the jet, the remaining land outside of it. The specific
proportions will vary depending on the jet definition in place, but a relevant fraction should end
up outside of the jet cone, because the induced soft gluon emissions tend to happen at large
angles (unlike the collinear nature of the vacuum branching process) [62, 65]. These emissions
were early interpreted as a mechanism of radiative energy loss happening in soft modes at large
angles [66–70]. This is observed experimentally as a collection of final-state jets with suppressed
pt , together with an abundance of soft quanta (pt . 2 GeV) at large angles.

Another effect that produces modifications in the jet substructure originates in the fact that
when shower partons scatter off medium partons they may transfer to them part of their energy
and momentum. These partons from the medium may end up as a part of the hadrons that
make up the final-state jet hence promoting further alterations to the jets’ substructure which
cannot be isolated from the contributions from the induce soft gluon radiation. Furthermore,
these recoil effects may also push shower partons that would otherwise end up inside the jet cone
to be outside of it, thus instituting yet another modification to the substructure of the jets.

Our current phenomenological and theoretical understanding of the dynamics behind the
medium-induced modifications was aided by the interpretation of experimental data. The key
idea is that the presence of the QGP undoubtedly introduces several different intertwined effects,
one of which is the modification of the final-state parton showers. One of the many challenges
under work is precisely to reconcile the collinear and the medium-induced radiations in those
showers. For that, an improvement of our theoretical understanding of the phenomena at play
is paramount. The better our grasp of the effects behind the measured experimental results, the
more we can infer about the thermodynamical and transport features of the QGP and, therefore,
about the dynamic and collective properties of QCD that govern its creation and evolution [66].

One central question remains to be explicitly clarified: why jets? The answer to this is
relatively simple: the QGP created in heavy-ion collisions is very shortly lived (∼ 10 fm/c) before
falling apart into a midst of hadrons. Because of this small lifetime, it is impossible to probe
this medium with external probes. Jets are intrinsically hard, multi-scale probes and since they
are produced and developed concurrently with the creation and evolution of the QGP itself they
are natural probes for it. The importance of jets in the context of collisions of relativistic heavy
ions is therefore clear: they provide an unique way of probing the deconfined matter prevalent
in the primordial universe. By constructing and calculating different observables (we have seen
the example of the RAA), we can bring sensitivity to specific aspects of jet substructure and
get a deeper insight into the concrete modifications that are taking place and, hence, a better
understanding of the dynamics of the interactions that lead to them. To that end, the use of
kinematical Lund planes, which will be introduced in chapter 3, proves particularly effective
since they provide an immediate and visual way of identifying which regions of the phase space
of emissions suffer enhancements or suppressions in the presence of the medium.

1Actually, partons from the initial-state shower can also interact with the QGP and the jets they give rise to
are modified by it as well. This will be important for further discussions, though in this section we will always
refer to the final-state shower.
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2.2 Jet algorithms

As explained before, jet algorithms consist in a set of rules which determine which particles
are grouped together to form a jet. There are two main categories of jet algorithms: (i) cone
algorithms, which constitute a “top-down” approach to jet finding and (ii) sequential recombin-
ation algorithms, which can be regarded as “bottom-up” algorithms. A complete and thorough
description of the extensive variety of jet algorithms and their history is not provided here, since
that is outside the scope of this section (and this work in general). Instead, a very brief discussion
on cone algorithms is presented, only for the sake of completeness since they were not used in the
analyses made. The main focus is on the generalised-kt family of the sequential recombination
algorithms, from which we take all the algorithms used in our work. It should be pointed out
that more sequential recombination algorithms other than those from the generalised-kt family
exist, but their description does not fit into the purpose of this section and, as such, we chose
to leave them out. An excellent overview of the main jet algorithms can be found in [50], which
was taken as basis for the text presented in this and the following section.

2.2.1 Cone algorithms

As mentioned above, cone algorithms take a “top-down” approach to finding the jets, relying on
the idea that QCD showering and hadronisation leave the bulk features of an event’s energy flow,
specifically the energy flow into a cone, unchanged. The main idea behind this type of algorithms
is that all final-state particles within a cone with a given angular reach, determined by a jet radius
R, are said to form a jet if the resulting transverse momentum is above a predetermined threshold.

For a better understanding of how these algorithms work, the idea behind iterative cone (IC)
algorithms will be described very briefly. In such algorithms, the momentum of a seed particle
i sets the initial direction of the cone; we then combine the momenta of all particles j within a
circle (“cone”) of radius R around i, in azimuthal angle φ and rapidity y, i.e., we consider that
all particles j such that

∆R2
ij = (yi − yj)2 + (φi − φj)2 < R2 ,

are constituents of the jet and combine their momenta; yi and φi are, respectively, the rapidity
and azimuthal angle of particle i . The direction of the resulting momenta combination is then
used as a new seed direction, and we iterate this procedure until the direction of the resulting cone
is stable. In the end, only those jets that are above a certain transverse momentum threshold
are considered. Besides IC algorithms, there are also fixed cone (FC) algorithms in which the
hardest particle is set as the seed, defining the direction of the cone and there are no further
iterations.

Despite producing jets with clean circular boundaries, which is an experimentally favoured
feature, one major drawback of most cone algorithms (both IC and FC) is that they are either
infrared or collinear (IRC) unsafe [50]. IRC safety means that an observable or algorithm is in-
sensitive to infinitesimally soft or exactly collinear emissions [71]. This is an extremely important
feature of any algorithm or observable because only those experimental results obtained under
the condition of IRC safety can be compared to analytical predictions from perturbative QCD.

2.2.2 Sequential recombination algorithms: the generalised-kt family

The second class of algorithms is that of sequential recombination algorithms which, as was
previously described, take a “bottom-up” approach to jet finding. These algorithms are rather
simple to state: they take the complete set of final-state particles and repeatedly recombine the
pair which is closest into a new pseudo-particle, following some specific distance measure. The
difference between the various algorithms of this class thus lies in the distance measure used.
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Because of the way these algorithms work, sequentially recombining pairs of particles, they go
beyond simply finding the jets but also provide a hierarchical clustering sequence for each jet of
the event. These clustering sequences are the consequence of the algorithms’ attempt to assign a
meaningful QCD substructure to the jet and are closely connected to QCD’s probabilistic picture
of parton showering.

The fact that these algorithms provide us with this clustering sequence is a key advantage
over cone algorithms. In particular, in the context of this master dissertation, the hierarchical
ordering of the particle pairings provided by sequential recombination algorithms is indispensable.
By accessing this hierarchical tree of successive pairings (or conversely, of successive branchings
or splittings) and undoing each pairing we can retrieve the kinematical information associated
with each of these splittings and use it to fill the kinematical Lund planes discussed in chapter
3.

For the analyses performed within the work presented here, we used only sequential recom-
bination algorithms from a specific family of algorithms known as the generalised-kt family. The
distance measures associated with this family of algorithms are defined as [72]:

dij = min
(
p2p
i,t , p

2p
j,t

) ∆R2
ij

R2
, ∆R2

ij = (yi − yj)2 + (φi − φj)2 , (2.1)

diB = p2p
i,t , (2.2)

where the labels i and j are used to designate particles (either real final-state particles or pseudo-
particles which are already the result of particle recombination) in the event and B refers to the
beam, pi,t is the transverse momentum of particle i , R is the parameter of the algorithm which
defines the jet’s reach and is known as jet radius (in an analogy to R in cone algorithms), and p is
the (continuous) parameter which defines this as a family of algorithms. The way the algorithms
of this family work based upon these distance measures is as follows:

1. calculate all dij and diB for all possible combinations, and determine which one is the
minimum;

2. if a distance dij between two particles is the smallest, then combine those particles into a
new pseudo-particle object, and return to step 1;

3. if, on the other hand, a distance diB is the smallest then take object i and declare it as a
final-state jet. Return to step 1 afterwards;

4. repeat this iterative process until there are no more final-state particles left.

From the procedure described above it is quite simple to understand that as long as two particles
are within a distance ∆Rij which is smaller than the jet radius R , the distance dij will always be
smaller than both diB and djB and, hence, the two particles will be recombined together. Only
when there are no more particles within the jet’s reach, that is, only when ∆Rij > R for all pairs
{i, j} will the remaining objects be declared as final-state jets. Although all algorithms in this
family share this common feature, the p parameter determines which particle pairs are perceived
as being closest together, inducing different orderings to the clustering sequences associated with
each algorithm and also producing different jets.

We will now proceed to analyse the main algorithms of this family. Three of the algorithms
described have seen extensive use in literature both in experimental measurements, analysis of
MC event generators and theoretical calculations. These are the Cambridge/Aachen (C/A), the
kt and the anti-kt algorithms. A fourth algorithm belonging to this family will also be discussed
here. It involves the concept of formation time introduced in section 1.5 of chapter 1 and we will
thus name it the “tF algorithm”. Though it has not been explored in literature, it was extensively
used throughout this work.
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The Cambridge/Aachen algorithm

The simplest algorithm of the generalised-kt family is the Cambridge/Aachen (C/A) algorithm
which takes the parameter p to be zero. In this case, the distance measures defined by (2.1)
and (2.2) simplify to dij = ∆R2

ij/R2 and diB = 1 , there being no momentum dependence in
this particular algorithm. This corresponds to a very simple situation: this algorithm starts
by pairing those particles which are closer in angle (i.e., closer in rapidity and azimuth), thus
originating a hierarchical clustering tree which is dictated by an angular ordering. When we
decluster this tree, starting by undoing the pair of particles which were last put together, these
will present the largest angle between them. Successively moving forward with this declustering
will mean the angles will be progressively smaller. This is an extremely powerful feature since it is
closely related to the idea of angular ordering associated with QCD parton branching, discussed
in section 1.3.

The inclusive longitudinally invariant kt algorithm

Another algorithm of this family is the longitudinally invariant kt algorithm, usually simply
referred to as kt algorithm. This algorithm takes p = 1 , such that: dij = min

(
p2
i,t , p

2
j,t

)
∆R2

ij/R2

and diB = p2
i,t . While the way the particles are clustered in the C/A algorithm is energy (or

momentum) independent, for the kt algorithm that is no longer the case. Indeed, objects which
are close in angle still desire to cluster first (such is the tendency of the generalised-kt family
determined by presence of the ratio ∆R2

ij/R
2), but now the kt algorithm assigns a further

preference towards the clustering of particles with smaller transverse momentum, that is, it
tends to form jets around softer particles. Once again, this can be related to the QCD parton
branching structure which states that large-angled, hard emissions tend to happen earlier on
while collinear, soft emissions come at a later stage. As such, we are once again assigning to the
jet clustering sequence a hierarchical ordering which can be related to the way we think of the
QCD branching process. We are essentially producing a tree which collects what we believe to
have been the history of the evolution of the jet in the MC parton shower.

The anti-kt algorithm

Both the C/A and the kt algorithms have their roots on e+e− collisions (see refs. [73] and [74]
respectively). However, the distance measures used in that context differ from the ones that have
been presented in here. The C/A algorithm as defined above and currently used in the context of
hadron colliders was first discussed in the context of deep inelastic scattering (DIS) experiments
[75]. As for the kt algorithm, its metric as defined in the context of e+e− collisions was not
invariant under longitudinal boosts, a characteristic which is desirable in hadron collider context.
For that reason, a new distance measure was proposed in [76] and, around the same time, in [77],
the latter one corresponding to the definition given above. We then understand that although
they can now be regarded as members of the same family of algorithms, they were introduced
separately through adaptations of algorithms originally designed for e+e− experiments. Only
later was the idea of a generalised family introduced.

The concept of such a family was first explored in [72] to introduce the anti-kt jet algorithm.
The motivation behind the introduction of this algorithm arose from the fact that the final-state
jets output by the C/A and kt algorithms present irregular boundaries, unlike those of cone
algorithms. While this is irrelevant for the analysis of MC event generator results or for theor-
etical calculations, from the experimentalists’ stand point it is an undesirable feature essentially
because it complicates detector calibrations. As such, the anti-kt algorithm was proposed (see
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ref. [72]) as a solution to this issue and as simply another algorithm of the generalised-kt family,
which took p = −1 . This corresponds to using as distance measures:

dij = min

(
1

p2
i,t

,
1

p2
j,t

)
∆R2

ij

R2
, ∆R2

ij = (yi − yj)2 + (φi − φj)2 , (2.3)

diB =
1

p2
i,t

. (2.4)

The condition of finding the minimum between the inverse of the two squared transverse momenta
is equivalent to finding their maximum, that is, equation (2.3) could be alternatively written as

dij =
1

max
(
p2
i,t , p

2
j,t

)∆R2
ij

R2
, ∆R2

ij = (yi − yj)2 + (φi − φj)2 . (2.5)

While the objects which are closer in angle still prefer to cluster early, there is now a preference
towards harder particles. As a result, the anti-kt algorithm produces jets which grow around hard
particles, moving on through successively softer ones. By being centred around hard particles,
the jets that arise from this algorithm present pleasant round boundaries, as is experimentally
desired. Besides that, this algorithm also has the advantage that is will not start building
jets from particles which are uninteresting or undesirable, thus preventing (or at the very least
minimising) the occurrence of the so called “junk jets”.

The downsize of this algorithm is that its clustering sequence can not be related to the QCD
branching structure and its soft and collinear divergences. We thus fail in our attempt to ascribe
a physical meaning to the hierarchical clustering tree. For this reason, the following approach to
jet finding has become standard and was thus used in this master dissertation:

1. jets were found using the anti-kt algorithm, such that each jet has assigned a set of final-
state particles and a clustering sequence;

2. we then take the particles within each individual jet and recluster them using either the
C/A, kt or tF (discussed below) algorithms. By doing so, we get back a clustering sequence
which can be related to the structure of QCD;

3. having that new clustering sequence we can proceed by undoing each successive pairing to
get the kinematical information associated with each one, and using it to fill in the Lund
planes (chapter 3).

The tF algorithm

All the algorithms discussed hitherto are standards in literature which have seen extensive use in
all contexts from experimental, to phenomenological and analytical studies. We will now proceed
to propose the use of an algorithm from the generalised-kt family which has not been explored.
Our proposal is to take p = 1/2 which translates into the following distance measures:

dij = min (pi,t , pj,t)
∆R2

ij

R2
, (2.6)

diB = pi,t . (2.7)

Let us now recall the concept of formation time introduced in section 1.5 of chapter 1. In
that section we have arrived at equation (1.17), written in hadron collider variables, and noted
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that the quantity t′F given by it is a formation time which is a proxy for the usually defined
formation time given in equations (1.14) and (1.15). If we compare equation (1.17) with (2.6)
we quickly identify that the distance measure dij for this algorithm is related to that formation
time: min(pi,t , pj,t) ≡ p2,t (the transverse momentum of the softer particle), such that

dij =
2

t′F,ijR
2
. (2.8)

Let us now interpret what this means for the clustering sequence produced by this algorithm.
In this case, particle pairs with larger formation time are recombined first whereby we obtain a
hierarchical tree which is ordered in formation time, such that if we walk back through this tree,
undoing each successive pair, the characteristic time between splittings will increase.

In our discussion of the C/A and kt algorithms, we noted that these produce hierarchical
clustering sequences in which the successive splittings are ordered in angle and transverse mo-
mentum, respectively. We have also argued that these algorithms possess an extraordinary power
associated with the fact that they produce clustering sequences which can be related to the nat-
ural QCD parton branching structure by which hard and large-angled splittings happen first.
While this is true in vacuum, it is not necessarily the natural ordering of the splittings in the
QGP. In fact, in the presence of this hot and dense medium it is more natural to consider an
ordering of the splittings according to their formation time [49,78]. This is why we have chosen
to explore this algorithm within the context this master dissertation: we use it to recluster the
anti-kt jets since we believe it to be the algorithm which sets the clustering sequence that best
relates to the physical structure of QCD showering in the medium. This idea will be explored
further in the upcoming chapters.

2.3 Quick note on recombination schemes

Alongside the jet algorithm used, a recombination scheme must be defined which determines
how to combine the four-momenta of the particles which are clustered to form the jet. The
most widespread and used algorithm in the E-scheme or 4-vector recombination scheme which
operates by simply adding the four-momenta of the two objects (final-state particles or pseudo-
particles) which are merged together. Since this is the current recommendation [79], it was the
recombination scheme which was used in this dissertation.
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Chapter 3

The kinematical Lund plane

Jet substructure studies aim at extracting information from the radiation pattern inside jets.
The information gathered from these studies is extremely valuable because it can be employed
in a multitude of different investigations. For example, it can be used (i) to determine whether
a jet stems from the branching of a hard parton or from the hadronic decay of a boosted Z, W
or H boson produced in the hard scattering, (ii) to probe the Standard Model or (iii) to increase
sensitivity to new physics studies. In the past years, researches involving jet substructure have
been dominated by two main approaches [80]. The first of these consists in engineering (often
complex, high-level) observables whose properties can be analytically calculated by perturbative
QCD. Those observables can later be experimentally measured and the results compared to the
theoretical analytical predictions. The second approach exploits the power of machine learning
(ML) algorithms to extract useful information from data (either experimental or from MC parton
showers). The inputs for these algorithms have mainly been (η, φ) or (y, φ) jet images, the jets’
clustering sequences obtained with sequential recombination algorithms or a set of (simple) jet
substructure observables (see ref. [80] and references therein for more details). Each approach has
its advantages and disadvantages. The first requires a laborious effort to be employed into the
construction of observables that are sensitive to whichever phenomenon or feature we desire to
examine and it is, therefore, straightforward to understand that it involves a high-level processing
of the data. At the same time, this approach grants a solid understanding of the physics which
is being exploited. The second approach, on the other hand, requires minimum to no (physical)
processing: the data can be fed to the ML algorithm, which will extract from it the relevant
information for the particular investigation under way. While the performances obtained by this
method can be substantially higher than those achieved with manually constructed observables,
that comes at the expense of a loss of clarity and physical intuition as to which features are
actually being exploited.

Recently, a third approach has been put forward in [80] to bridge the fault-line between manu-
ally constructed observables and machine learning approaches. That is, the proposed method aims
at finding a compromise between the maximum (laborious) processing and solid physical grasp
offered by the engineering of (high-level) observables and the minimum processing, low phys-
ical understanding provided by ML approaches, while also retaining the remarkable performance
achieved by the latter. To that end, the use of kinematical Lund planes [81] is suggested. These
provide a visual representation of the radiation pattern inside jets, allowing to easily identify
interesting or distinct features of the jet substructure. That (simple) visual identification can
then motivate the construction of specific observables which are sensitive to specific regions of
those planes. At the same time, the information used to build the Lund planes can also be input
into a ML algorithm to extract information. However, contrary to the previously described ML
approaches, in this case the visual analysis of the kinematical Lund planes means that the dis-
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criminating features detected by the ML algorithm can, in principle, have been clearly identified
and understood a priori.

In the context of relativistic heavy-ion collisions, the study of jet substructure aims at dis-
criminating between jets which have interacted with the QGP and those which have not or,
analogously, aims at identifying which aspects of jet substructure are modified by the presence
of the medium. Any of the three approaches presented above can potentially be employed. How-
ever, the use of Lund planes has stirred up some interest in the heavy-ion community since the
2017 CERN TH Institute “Novel tools and observables for jet physics in heavy-ion collisions”
where it was established consensually that a comprehensive comparison of existing and future jet
quenching models can be based on the distribution of hadronic fragments in the kinematical Lund
plane [49].

In the context of this dissertation, we focus on the exhaustive analysis of a myriad of different
Lund planes. We exploit the use of different kinematical variables for the y−axis, fill the planes
in three different ways and make use of clustering sequences from three different jet algorithms.
This comprehensive set of studies allows us to draw firm and consistent conclusions onto how
jets are modified in the presence of the QGP, when compared to those from pp collisions. These
studies are entirely visual in nature, involving the interpretation of the different kinematical
planes to understand the effects in play. Within the timeframe set for this dissertation it was,
unfortunately, not possible to manually construct observables sensitive to the regions of phase
space where stronger modifications were observed. We leave that for future work. However,
a ML architecture was explored for confirmation of some of the visually drawn and physically
motivated conclusions.

With this chapter we intend on making clear the concept of Lund plane. By the end of it,
the reader should be completely comfortable with the idea of what is a kinematical Lund plane
and how it is constructed, making it easy to follow the analyses and interpretations of the planes
presented in chapters 4 and 5. To that end, in the next three sections, we will motivate and
discuss different definitions for the axes of the Lund plane, describe the main features of each
one of those definitions, explain the three different ways in which the kinematical planes were
filled and examine the matter of normalisation.

3.1 The choice of kinematical variables for the Lund plane

We have seen that a jet is developed through a cascade of successive 1→ 2 parton splittings of the
form q → qg , g → gg or g → qq̄ . The Lund plane explores the idea that the phase space of these
emissions can be described by two key kinematical variables. As we have emphasised repeatedly
throughout this dissertation, the structure of QCD involves two logarithmic divergences: the soft
divergence, when ζ → 0 , and the collinear divergence, when θ → 0 .We introduced this property
promptly in section 1.2 of chapter 1, when we demonstrated that the probability of emission of a
soft and collinear gluon is given by equation (1.11). Recalling this equation, it is straightforward
to understand that, in the DLA at fixed coupling, the emissions of a soft and collinear gluon are
uniformly distributed in a plane with axes defined as (ln (θ) , ln (ζ)) , with a density given by

ρ =
2αsCF
π

.

Hence, the structure of QCDmotivates the use of logarithmic scales for the axes of the kinematical
Lund plane. Using non-logarithmic scales would mean that emissions would be exponentially
spaced throughout the plane, making for an inadequate and unintelligible representation of the
phase space.

The structure of QCD obviously also inspires the particular choice of kinematical variables.
Specifically, we look for variables that, in the DLA at fixed coupling, grant us an uniform
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distribution of emissions throughout the allowed region of the Lund plane. This is motivated by
the fact that, in reality, running coupling effects, higher order corrections and hadronisation ruin
the simple picture painted by the DLA at fixed coupling, and the Lund planes are anything but
uniformly filled (as we will have the chance to observe in chapters 4 and 5). Selecting kinematical
variables that ensure that the phase space is uniformly filled according to the DLA at fixed
coupling means that any deviations from that uniform behaviour come from the aforementioned
effects, allowing us to directly observe the impact that they have on jet substructure.

Typically, the x−axis uses the angle of the emission θ, i.e., the angle between the two children
resulting from the branching. This explores the collinear (logarithmic) divergence of QCD. The
standard choice for this axis is to take x ≡ ln (1/θ) , such that collinear emissions are cast away
to +∞ and the part of the axis that is actually represented is filled with more interesting (larger-
angled) emissions. The x−axis will not be filled all the way down to ln(1/θ) = 0 . A kinematical
limit is imposed by the jet radius used with the anti-kt jet-finding algorithm: the angle between
the two child partons cannot be larger than the jet radius, since that would cause them to be
outside of the jet. This imposes a restriction that θ 6 R and, as a consequence, the region below
ln (1/R) is kinematically prohibited and will be empty in all the constructed Lund planes.

The definition of the y−axis depends on the particular preference of the author and has seen
several different variants in literature. However, all of those variants share the characteristic that
they take a kinematical variable relatable to the soft divergence of QCD, i.e., to the logarithmic
derivative d (ln ζ) in equation (1.11). This serves to guarantee the desired uniform distribution
of the emissions in the allowed region of the Lund plane. As a matter of fact, in the DLA
and from the point of view of QCD’s logarithmic structure, all the kinematical variables used
are equivalent. This correspondence is apparent from equation (1.11), by performing a variable
transformation of ζ to the desired kinematical variable. We will exemplify this explicitly below
for one particular case. That should suffice in making this point clear, given that the remaining
cases can be treated identically.

We will now proceed with the presentation of all the kinematical variables exploited for the
vertical axis and of the different features of the corresponding Lund planes.

3.1.1 y ≡ ln(1/z)

Usually, the momentum fraction z carried out by the softer child is used instead of the energy
fraction ζ. This transformation is harmless, since equation (1.11) could have been derived directly
using the momentum sharing fraction z, rather than ζ.

Analogously to the x−axis, we can define the vertical axis as ln (1/z) such as to cast the soft
emissions away to +∞ , leaving more relevant emissions to be represented in the visualised plane.
Just as we have seen above, in the DLA at fixed coupling, these emissions will be uniformly
distributed on the kinematical plane. However, they will not fill the entire region defined by
ln (1/z) > 0 . Since we fill the plane using the momentum fraction of the softer child, z is limited
such that z 6 1/2 , which means that there will be no emissions below ln(2) . Other than that,
there are no restrictions to the filling of this plane, and it is a semi-finite plane whose appearance
should resemble that of figure 3.1. Harder emissions appear at the bottom of the plane, near the
horizontal line y = ln(2) and large-angled emissions populate the left of the diagram, close to
the vertical line x = ln(1/R) .
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Figure 3.1: Schematic of a Lund plane with the choice of y−axis as ln (1/z) . The two kinematical limits
are represented by the lines x = ln(1/R) and y = ln(2) . Soft and/or collinear emissions are cast away to
+∞ in this plane, just as depicted. The hashed zone is kinematically prohibited and the green region is
uniformly filled (in the DLA at fixed coupling).

3.1.2 y ≡ ln(zθ)

Figure 3.1, presents a schematic of the (ln(1/θ), ln(1/z)) Lund plane and it allows us to perceive
that the phase space is limited to a semi-finite rectangular region. Some authors have a prefer-
ence towards triangular Lund planes, i.e., planes in which emissions are bound in a semi-finite
triangularly-shaped region and prohibited elsewhere. To achieve such a shape, it is necessary to
correlate the two axes, x and y. This can be accomplished by introducing an angular depend-
ence in the kinematical variable chosen for the vertical axis. At the same time, we still desire to
retain a variable that is relatable to the soft (logarithmic) divergence of QCD. One simple way
to do this, which has been extensively used in literature, is to keep using the momentum sharing
fraction but multiply it by the angle of the emission, such that the vertical axis is defined as
ln (zθ) . We can show explicitly that this choice of variable is equivalent to the use of ln (1/z)
from the point of view of QCD’s logarithmic structure and that it also ensures that the plane is
uniformly filled by emissions. To do this we take equation (1.11), replace ζ with z (this equation
could have been derived in that form anyway) and perform the variable transformation z → zθ ,
such that

dS =
2αsCF
π

d (ln (zθ)) d (ln θ)
dφ

2π

=
2αsCF
π

[d (ln z) + d (ln θ)] d (ln θ)
dφ

2π

' 2αsCF
π

d (ln z) d (ln θ)
dφ

2π
.

In the last step we have discarded the term in [d (ln θ)]2 since this is of higher (logarithmic)
order in the kinematical variable θ . Thus, we see that in the DLA, the variables z and zθ are
(ordering-wise and logarithmically) equivalent. Moreover, with this kinematical variable (and
using a logarithmic scale) the Lund plane will be uniformly filled with emissions. Both of these
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Figure 3.2: Schematic of a (ln(1/θ), ln(zθ)) Lund plane. The two kinematical limits are represented by
the lines x = ln(1/R) and y = ln(1/2)− ln(1/θ) , the latter corresponding to the condition z = 1/2 . The
phase space of emissions is triangular-shaped and is uniformly filled (in the DLA at fixed coupling).

statements are true for all of the kinematical variables presented subsequently and we will abstain
from repeating this explicit demonstration.

In the Lund plane with the vertical axis defined as ln (zθ), diagonal lines of slope m = −1
mark sets of emissions with the same z = const. , i.e., emissions in which the softer child parton
carries out the same momentum fraction z . Therefore, in this Lund plane construction, the
kinematical limit is established by the diagonal line of slope m = −1 for which z = 1/2 . As
such, we are left with an uniformly filled (in the DLA at fixed coupling), semi-finite plane of
triangular shape, just as depicted in figure 3.2. There is no lower limitation to this plane. Close
to the diagonal kinematical limit, there lie the hard splittings, i.e., splittings with z ' 1/2. As
we successively move away from that line (in the transverse direction), z decreases, that is, the
emissions get increasingly softer.

3.1.3 y ≡ ln(kt)

So far, none of the Lund plane definitions considered the absolute momentum scale involved in
the splitting; only the momentum fraction z has been taken into account. We can also choose
the kinematical variable using the absolute transverse momentum carried out by the softer child
parton, that is, we can replace z with p2,t = zpt , where pt is the transverse momentum of the
parent parton (with respect to the beam). To get a triangularly shaped plane, we can once
again introduce the angle of the emission in the definition of the y−axis kinematical variable
via a multiplication. By doing so, we are left with a Lund plane with the y−axis defined as
ln (kt) = ln (zptθ) , kt being the transverse momentum of the softer child parton measured with
respect to the direction defined by other (harder) emitted parton. Therefore, we have two
different transverse momenta: (i) pt, which refers to the transverse momentum of a given parton
with respect to the beam; and (ii) kt, which is a local property of each splitting (much like z)
and will be usually referred to as the “transverse momentum of the splitting or emission”. At
places we also refer to kt simply as “transverse momentum”, same as for pt; however, from the
context, it should be fairly simple for the reader to understand to which of the two quantities
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Figure 3.3: Schematic of a Lund plane with the y−axis defined as ln(kt). The two kinematical limits
are represented by the lines x = ln(1/R) and y = ln( 1

2pjet,t) − ln(1/θ) . Diagonal lines of slope m = −1

correspond to sets of emissions with the same absolute transverse momentum of the softer child parton
(p2,t = zpt = const.). On the other hand, horizontal lines plainly stand for splittings with the same
transverse momentum kt . Finally, lines with slopem = 1 correspond to splittings with the same formation
time t′F . The intersection of the latter lines with the y−axis determines the formation time associated
with each one: b = ln(2/t′F ) .

the discussion refers to.
In this case, the diagonals of slope m = −1 are not lines of constant z , but rather lines with

constant p2,t = zpt , i.e., correspond to splittings in which the respective softer child partons
share not the same relative transverse momentum but the same absolute transverse momentum.
As such, in this construction, it is impossible to identify if a splitting in one of those lines
corresponds to a hard emission with z ' 1/2 or rather to a softer emission (e.g., z = 1/10)
from a parent parton with larger transverse momentum pt. Once again we will have a diagonal
kinematical limit, in this case imposed by the condition that zpt ≤ 1

2pjet,t .
On the other hand, it is plain to see that horizontal lines correspond to sets of splittings

which share the same transverse momentum kt . Also noteworthy about this plane is that unit
slope lines (i.e., m = 1) define sets of emissions with the same formation time t′F ,

y = ln (kt) = ln (zptθ)

= ln
(
zptθ

2
)

+ ln (1/θ)

= ln
(
2/t′F

)
+ x .

The interception with the y−axis is valued to b = ln(2/t′F ) , meaning that the higher a line
intersects that axis the shorter the corresponding formation time.1 The main features of the
(ln(1/θ), ln(kt)) Lund plane are presented in figure 3.3. Close to the kinematical diagonal limit
there lie the emissions where the softer splitting child has the largest allowed absolute transverse
momentum with respect to the beam (p2,t ' 1

2pjet,t).

1Note that this feature has been attributed to Lund planes of the form (ln(1/θ), ln (zθ)) [49], but that is
misleading.
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3.1.4 y ≡ ln (t′F )

Figure 3.4: Schematic of a (ln(1/θ), ln(t′F )) Lund plane. The two kinematical limits are represented by
the lines x = ln(1/R) and y = ln( 4

pjet,t
) + 2 ln(1/θ) (slope m = 2, unlike any of the other constructions).

Diagonal lines parallel to the kinematical limit define sets of emissions with the same absolute transverse
momentum of the softer child parton (p2,t = zpt = const.), while horizontal lines characterise splittings
with the same formation time t′F .

We have already seen that, in heavy-ion collisions, as the QGP is created and evolved, jets are,
simultaneously, produced and developed, interacting with it. For this reason, it would be desir-
able to be able to ascertain at which spacetime point an interaction between two partons occurs.
It is the QGP itself that provides the spacetime reference frame to formulate this problem and, as
we have seen in section 1.5 of chapter 1, a variable which should help in describing the evolution of
jets within the medium is the formation time. Thus, in our current context of constructing Lund
planes with different kinematical variables, the formation time is a natural choice to consider for
studying the radiation pattern inside jets from heavy-ion collisions. Furthermore, it is manifest
that the formation time t′F , as defined in equation (1.18), is logarithmically equivalent to any
of the previous definitions. We can perform a transformation z → t′F and retain the structure
of QCD with its logarithmic divergences, the allowed region of the Lund plane will be uniformly
filled and the emission probability will be exactly the same. This was our motivation for explor-
ing a novel Lund plane construction not yet seen in literature: a (ln(1/θ), ln(t′F )) kinematical
Lund plane. Alternatively, tF can also be used and indeed we have done so to demonstrate that
the kinematical Lund planes that it yields are identical to those using t′F , thus proving that t′F
is really a good proxy for the formation time tF (as stated in section 1.5 of chapter 1).

In the (ln(1/θ), ln(t′F )) Lund plane, lines of constant formation time are simply horizontal
lines, with larger times corresponding to higher y−coordinates. This means that early splittings
populate the bottom of the plane, while later ones crowd its top. In this particular kinematical
Lund plane, lines of slope m = 2 are lines of constant p2,t = zpt , that is, the splittings in those
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lines share the absolute transverse momentum of the softer child parton,

y = ln(t′F ) = ln

(
2

zptθ2

)
= ln

(
2

zpt

)
+ ln

(
1/θ2

)
= ln

(
2

zpt

)
+ 2 ln (1/θ)

= ln

(
2

zpt

)
+ 2x .

The kinematical limit is still given by the condition that zpt ≤ 1
2pjet,t , which in this case

means that the splittings need to be above the line with slope m = 2 , corresponding to the
condition that zpt = 1

2pjet,t . Figure 3.4 shows all the main features of this Lund plane, which
will take a prominent role in our results. Note that there is no kinematical restriction binding
its top, meaning that splittings can, in principle, extend to infinity (as shown).

3.2 Different filling procedures for the kinematical Lund planes

In the previous section, we have seen that the Lund plane is essentially a two-dimensional rep-
resentation of the phase space of emissions within a jet and that, given our careful choice of
kinematical variables, it is uniformly filled in the DLA at fixed coupling. The main features
of the different Lund plane constructions were discussed and, as such, the only thing that still
requires explaining is how exactly the plane is filled.

The procedure to fill the plane is done jet-by-jet. We have explained in chapter 2 that, given
the final-state particles in an event, we find jets using the anti-kt jet algorithm and afterwards
recluster each of the found jets using either the C/A, kt or tF (reclustering) algorithms. By doing
so, we are left with a clustering sequence which relates (in principle) to the natural structure
of QCD. This clustering sequence can be regarded as a history tree of the development of the
jet where the two objects that were last put together by the reclustering algorithm should, in
principle, correspond to the first branching that occurred in the development of the jet. For that
reason, we can walk backwards through this clustering sequence to “see” how the jet developed.

At each branching, we have two child objects with four-momenta p1 and p2 . As always,
we define that p2 is the four-momentum of the softer child and then calculate the appropriate
kinematical variables associated with its emission:

θ ≡ θ12 ,

ζ =
E2

E
,

z =
p2,t

pt
,

kt = p2,tθ = zptθ ,

tF =
2

E2θ2
=

2

ζEθ2
,

and
t′F =

2

p2,tθ2
=

2

zptθ2
.
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where E and pt are, respectively, the energy and transverse momentum of the parent parton
(i.e., the emitter).

This gives us the coordinates of each splitting on each of the previously defined Lund plane
constructions. (Note that in our definitions we take always the properties of the softer child
parton. This has already been pointed out in the preceding section since the restriction z ≤ 1/2
determines one of the two kinematical limits.)

The first way in which we have filled the plane consists in undoing only the first splitting
in the clustering tree and filling the Lund plane with the coordinates of that emission alone.
Therefore, each jet contributes to the Lund plane with one single point (one single splitting or
emission). That point should, in principle, correspond to the branching of the original hard
parton produced in the hard scattering.

The second way in which we have filled the kinematical Lund plane is to consider only the
splittings that happen along the hardest branch. This means that at each splitting we calculate
the appropriate kinematical variables, fill the plane with that coordinate point and then move
along following the harder splitting child. This produces what is called the “primary Lund plane”.
We say that we fill the plane only with the “primary emissions”, i.e., emissions from the hardest
branch.

Finally, we have also produced what we call a “full Lund diagram” in which we consider all the
splittings in the clustering tree. By using this configuration, we make use of all the information
inside the jet and increase the statistics considerably. The disadvantage is that while with the
primary Lund plane we have an explicit sequence or path of emissions along the plane, in the
full Lund diagram we lose that unambiguous ordering. This will be a relevant detail for chapter
6.

At this point, it is important to return to the idea that, in the DLA at fixed coupling, we
expect an uniform distribution of emissions throughout the constructed kinematical Lund planes.
Strictly speaking, that only applies to the latter filling procedure in which all emissions within
the jets are considered. Filling the plane with the primary emissions should still yield a behaviour
which approximates a uniform distribution; however, it is not expected that the first emissions
are uniformly distributed across the plane.

3.3 Comments on event weighting and normalisation

Even though the different events that may result from the hard scattering process are not equally
probable, in a MC event generator they can all be produced following an uniform distribution.
This means, for instance, that there will be much more events with high-pt jets than those that
will be observed, in reality, in a collider experiment. For that reason, each event has a specific
weight, which is a measure of how likely that event actually is. When filling the Lund plane,
each emission that is entered into the splitting map should be weighted by the corresponding
weight of the event. This will compensate for the excess of certain types of events and will bring
the results into concordance with those observed in experimental measurements.

Besides taking care for applying the weight of each event to the corresponding entries in the
kinematical Lund plane, normalisation also deserves consideration. There are several different
possibilities for the normalisation and, once again, the particular choice depends on the particular
preference of the author. Common normalisations are, for instance, normalising the Lund plane
to unity or to the total cross-section of the process in question. In our case, we decided to
perform a normalisation by the effective number of jets N eff ,

N eff =
∑
i

wiN
i
jets ,
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where wi is the weight of event i and N i
jets the number of jets in that same event. The inverse

of this constant (1/N eff ) is used to scale every bin in the 2D Lund plane such that the splitting
map is normalised per jet.

The different normalisations cause only a change on the absolute scale of each individual
Lund plane, and vacuum planes and medium planes will be rescaled in different ways (since the
total effective number of jets in the events will differ from one situation to the other). This calls
for attentiveness when interpreting the results of the differences between medium and vacuum
kinematical Lund planes, because we are subtracting two self-normalised histograms. Therefore,
care should be taken in the conclusions drawn.
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Analysis of Z + jet partonic samples

Now that all the necessary concepts have been introduced, we will turn to the application of
kinematical Lund planes in the context of identifying differences between the radiation pattern
of jets developed in vacuum and that of those that evolve in the presence of a medium. The events
used to perform this study were generated in Jewel [82], for a NN → Z+jet hard process, such
that samples with a quark or a gluon in the final state of the hard matrix element were produced
separately. The vacuum baseline consists in considering pp collisions, while medium events result
from the interaction between two nucleons (each within a Pb nucleus), with the products of that
interaction travelling across the QGP. The centre of mass energy per nucleon pair used in these
samples was

√
sNN = 5.02 TeV and neither ISR or hadronisation were introduced in the picture.

The event selection criteria used for analysing these samples are as follows:

• only events in which a Z boson with pt(Z) > 60.0 GeV is present are considered;

• final-state particles with pt < 0.5 GeV or |η| > 2.5 are removed from the analysis. (η is the
pseudo-rapidity, given by η = − ln

[
tan

(
θ̃/2
)]
, where θ̃ is the angle between the particle’s

three-momentum and the beam axis)1;

• jets are found using the anti-kt algorithm with jet radius R1 = 0.4 and then reclustered
with the C/A, kt and tF algorithms with R2 = 1.0 ;

• final-state jets must have pt > 30.0 GeV and |η| < 2.0 , otherwise they are excluded from
the analysis;

• only events with at least one jet are considered.

The results obtained for the different Lund plane constructions and filling procedures detailed
in chapter 3 are described and discussed in sections 4.1 to 4.4. A comparison between the two
different formation times (tF and t′F ) is presented in section 4.5 and the explicit paths of splittings
in the primary Lund plane are analysed in section 4.6. Finally, the effect of employing a different
pseudo-rapidity cut is briefly examined in section 4.7. Because of the large volume of information
lying herein, the chapter ends with a summary of the main observations and results (section 4.8).

1θ̃ should not be confused with the angle θ of an emission (i.e., the angle between the two children of a
splitting), which is used as kinematical variable for the Lund planes.
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4.1 Analysing the (ln(1/θ), ln(1/z)) Lund planes

4.1.1 Gluon-initiated jets

(a) (b)

(c)

Figure 4.1: Lund planes filled only with the first splitting of gluon-initiated jets, in vacuum, found with
the anti-kt algorithm and reclustered with the (a) C/A algorithm, (b) kt algorithm and (c) tF algorithm.

Let us start by analysing the results obtained for the samples in which the parton resulting
from the hard scattering is a gluon. Before having a look at the kinematical Lund planes it
is interesting to note that, the effective number of jets present in the totality of (non-vetoed)
vacuum events is 1.6 times larger than the corresponding medium quantity. This is consistent
with the well established phenomenon of medium-induced energy loss, which causes a suppression
in the number of jets that meet the requirement that pt > 30 GeV.

The results for the Lund planes filled only with the first splitting of jets developed in vacuum
are presented in figure 4.1. There are several interesting and relevant observations that are
immediate from this figure. First of all, we note that the first splitting of C/A-reclustered jets
tends to be a large-angled splitting. We see that (first) emissions pool near ln (1/θ) ' 1.0 ⇔
θ ' R1 = 0.4 and are roughly uniformly spread vertically along that line, over a region where z
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(a) (b)

(c)

Figure 4.2: Lund planes filled only with the first splitting of gluon-initiated jets, in medium, found with
the anti-kt algorithm and reclustered with the (a) C/A algorithm, (b) kt algorithm and (c) tF algorithm.

ranges between 0.03 and 1/2 . That is, it is approximately equally probable for these emissions to
be hard emissions or very soft ones. Moreover, we can also see that, for these jets, it is extremely
rare for the first emission to be such that ln (1/θ) & 2.0 ⇔ θ . 0.15 . These observations are
all comfortingly consistent with the internal procedure of the C/A algorithm, which produces
a clustering sequence that is angular ordered thus identifying as the first splitting the one with
larger angle.

On the other hand, the kt algorithm tends to start by clustering soft particles first, while
simultaneously maintaining the preference towards angular proximity (natural to the generalised-
kt family of algorithms). As a result, the first splitting of the clustering tree produced by
this algorithm should, in principle, correspond to a hard, (relatively) large-angled emission.
Indeed, we observe that using this algorithm yields a Lund plane in which a large portion of
(first) emissions is pooled in an area that corresponds to a momentum fraction z approximately
between 0.35 and 1/2 , spread over angles θ that range between 0.1 and 0.3. Interestingly, the
first emissions are much more densely packed in this case than for C/A-reclustered jets, for which
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(a) (b)

(c)

Figure 4.3: Lund planes that register the difference between the radiation pattern of first emissions with
and without quenching effects, when the jets are reclustered with the (a) C/A algorithm, (b) kt algorithm
and (c) tF algorithm.

we see a much more uniform (spread out) distribution.
Regarding tF -reclustered jets, we remark that the distribution of (first) emissions appears to

be a middle ground between the results from the C/A and kt algorithms.
The important conclusion here is that the radiation pattern of first emissions is different from

one algorithm to another. This follows from the fact that these algorithms reconstruct the history
of the shower following different distance measures and consequently produce clustering sequences
with different orderings. Another important observation is that since no grooming procedures
were employed for “cleaning up” the jet clustering sequences, it may be that many of the first
splittings which are being identified are not indeed the ones that would be interesting to isolate.
This appears particularly true for C/A-reclustered jets, where the emissions are approximately
uniformly distributed in hardness - something that goes against the expected natural QCD
ordering, from which we believe hard emissions to happen earlier on. Therefore, it should be
clear to the reader that throughout the discussions in this master dissertation the expression “first
emission(s)” is meant in the sense of the first as identified by each of the reclustering algorithms.
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(a) (b)

(c)

Figure 4.4: Primary Lund planes for gluon-initiated jets developed in vacuum, found with the anti-kt
algorithm and reclustered with the (a) C/A algorithm, (b) kt algorithm and (c) tF algorithm.

Hence, conclusions drawn from the corresponding kinematical planes should be approached with
caution, and these splitting maps serve essentially as a visual indicator that each algorithm is
working as expected.

We can now have a look at the corresponding in-medium results, presented in figure 4.2,
where quenching effects come into play and promote modifications to the radiation pattern. The
medium appears to promote a dispersion of the emissions throughout the plane.

For the C/A reclustering algorithm that effect is apparent by the spread of emissions beyond
ln (1/θ) & 2.5 - a region which is nearly empty in vacuum. However, the first emissions still tend
to cluster around ln (1/θ) ' 1.0 and span over the region defined by z ranging from 0.03 to 1/2 .

For the kt and tF algorithms, we also see that the emissions spread to smaller-angle regions
of the phase space, namely, beyond ln (1/θ) & 3.0 , where nearly no emissions are present in
the absence of the medium. In the case of these two algorithms, there is also an observable
difference to the large-angle emissions around ln(1/θ) ' 1.0 , which stretch much more into the
soft region than they do in the absence of the QGP. The large splitting concentration observed in
vacuum with the kt algorithm appears to migrate to larger angles and then spread in all (allowed)
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(a) (b)

(c)

Figure 4.5: Primary Lund planes for in-medium, gluon-initiated jets found with the anti-kt algorithm
and reclustered with the (a) C/A algorithm, (b) kt algorithm and (c) tF algorithm.

directions. This is also the case for the (slightly smaller) splitting concentration registered in
vacuum with the tF algorithm.

To corroborate these observations, we can subtract the Lund planes obtained in the presence
of the QGP and those produced in vacuum. The results are presented in figure 4.3 from which it
is clear that the fraction of splittings that populate the hard, small-angle region of the plane is
larger in the medium than in vacuum. Analogously, the fraction of in-medium splittings which
populates the soft, large-angle region is also larger than the corresponding vacuum fraction, a fact
which is particularly clear for the kt and tF algorithms. On the other hand, hard, large-angled
regions of the phase space are (comparatively) more densely populated in vacuum than in the
medium. These results are consistent with the previously stated observation that the medium
spans the emissions throughout the plane.

Let us now analyse the results for the primary Lund planes of both vacuum jets and in-
medium jets. First of all, the effective number of splittings entered into the vacuum planes is
approximately 2.5 times larger than the effective number of entries in the presence of the medium.
This factor is much larger than the factor by which the samples differ in terms of effective number
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(a) (b)

(c)

Figure 4.6: Lund planes that register the difference between the radiation pattern of primary emissions
with and without quenching effects, when the jets are reclustered with the (a) C/A algorithm, (b) kt
algorithm and (c) tF algorithm.

of jets. This suggests that not only are there fewer jets in the medium case, but these have also
fewer emissions within them (at least along the primary branch). This indicates that the QGP
causes a fraction of the splittings to be “thrown” outside of the jet cone.

Another interesting feature that deserves some commenting is the fact that the overall num-
ber of effective entries in the primary Lund planes corresponding to the different reclustering al-
gorithms is not the same. This indicates that the length of the primary (or hardest) branch, i.e.,
the number of emissions along that branch, differs from one algorithm to the other. Specifically,
C/A-reclustered jets, in vacuum, produce 20% more primary emissions than do kt-reclustered jets
and 10% more than tF -reclustered ones. In the medium, the differences are slightly attenuated
and C/A-reclustered jets yield 15% and 8% more primary emissions than kt- and tF -reclustered
jets, respectively.

The primary Lund planes for jets developed in vacuum are presented in figure 4.4, for the three
different reclustering algorithms. Remarkably, we note that the phase space of primary emissions
is triangular-shaped, although there is no kinematical restriction binding the splittings into such
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a region (recall figure 3.1). We also note that the plane is not uniformly filled, a fact which stems
from the presence of running coupling effects and higher order corrections implemented into the
MC parton shower. Finally, the radiation patterns of primary emissions obtained with the three
different reclustering algorithms are much more similar amongst themselves than they are for
first emissions.

Once again, the tF algorithm appears to yield an intermediate behaviour between those of
the C/A and kt algorithms. The former has a large fraction of splittings concentrated between
ln (1/θ) ' 2.0 and ln(1/θ) ' 3.0 , while for the latter there seems to be a slight migration of
the emission concentration to the region between ln (1/θ) ' 1.5 and ln(1/θ) ' 2.5 . That is,
fascinatingly, the kt algorithm appears to yield a displacement of the splitting pool towards
larger angles. Furthermore, those large splitting concentrations appear to be bound closer to
the kinematical limit z = 1/2 for the C/A algorithm, while extending farther away from it (in
the upwards direction) to regions where z ' 0.3 for the kt algorithm. It is also apparent that
C/A-reclustered jets have a larger fraction of soft, large-angled emissions than do kt-reclustered
ones.

We can now have a look at the primary Lund planes obtained for jets which develop in the
presence of the QGP. These results are presented in figure 4.5 from which it is straightforward
to understand that the medium (once again) spreads the emissions throughout the plane. In
particular, it is clear that the fraction of emissions in the soft, large-angle region is enhanced.
This conclusion is consistent with the picture of jet quenching presented in section 2.1 of chapter
2, from which we stated that medium-induced radiation tends to appear in the final state as soft
quanta at large angles. Furthermore, the fraction of emissions in the hard, small-angle region
is also enhanced by the medium. These conclusions are corroborated by plotting the differences
between the radiation pattern of quenched and non-quenched jets (see figure 4.6). The reader
should keep in mind that, since the kinematical Lund planes have been normalised by the total
effective number of jets, whenever we discuss enhancements (or suppressions) of specific regions
of the phase space, in the presence of the QGP, that means that those regions have become more
(or less) important per jet, and not in absolute terms.

The results for the full Lund diagram resemble those of the primary Lund planes. For that
reason, and as to not overextend this section, those planes are presented in appendix B. However,
it is worth mentioning that the total effective number of emissions in vacuum is 2.8 times larger
than that for in-medium jets. This is consistent with the result obtained for the primary Lund
plane, and reinforces the idea that a lot of the emissions are being “thrown out” of the jet cone
by the medium.

4.1.2 Quark-initiated jets

We can now have a look at the behaviour of quark-initiated jets. First of all, it is interesting to
note that vacuum samples yield 1.4 times more jets than medium samples. Just as for gluon-
initiated jets, this result is in agreement with the well established effect of jet energy loss which
happens in the presence of the QGP. More interesting is to note that the suppression in the
total effective number of jets is smaller in the present case than it is for gluon-initiated jets.
That is, gluon jets lose more energy in the medium. This is consistent with the picture that
those jets have (in average) more constituents than quark-initiated ones. And, indeed, for the
generated events, gluon jets present approximately 30% and 20% more splittings than do quark
jets, respectively for the vacuum and in-medium cases.

In this subsection, we opted towards removing the Lund planes obtained for the tF algorithm.
This was done to reduce the bulk of this part of the discussion and because this algorithm yields
an intermediate behaviour between those of the C/A and kt algorithms, just as we have seen
above.
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(a) (b)

Figure 4.7: Lund planes filled only with the first splitting of quark-initiated jets, in vacuum, found with
the anti-kt algorithm and reclustered with the (a) C/A algorithm and (b) kt algorithm.

The results for the kinematical Lund planes filled only with the first splitting of vacuum jets
are presented in figure 4.7. Comparing these planes with those obtained for gluon-initiated jets
(figure 4.1), we see that the main features observed for those jets remain. The first emissions
obtained from declustering the history tree of the C/A algorithm pool themselves along the line
ln(1/θ) ' 1.0 , stretching vertically from z ' 0.02 to z ' 1/2 . Also similarly to what we have
seen before, the kt reclustering algorithm produces a large concentration of first emissions in the
hard radiation region, specifically where z ranges approximately between 0.4 and 1/2 and the
emission angle θ spans roughly from 0.07 to 0.2 .

Besides recording these behavioural similarities, we should also take notice of the differences
between quark- and gluon-initiated jets, in vacuum. In the case of the C/A reclustering of quark-
initiated jets, we see that the large-angle emissions concentrated along the ln(1/θ) ' 1.0 line
stretch more into the soft radiation zone than they do for the gluon case. Furthermore, in the
present situation, we see much more first emissions populating the region ln(1/θ) & 2.0 , which
was nearly empty in the gluon case. As for the reclustering of quark-initiated jets with the kt
algorithm, just as for the C/A algorithm we see that (first) emissions stretch much more into
the soft, large-angle region and into the hard, collinear region. The large splitting concentration
displayed with this reclustering algorithm, while being a similar feature to gluon-initiated jets
also exhibits some differences compared to that case. In particular, it migrates towards smaller
angles and it is more concentrated vertically, i.e., it remains closer to the kinematical limit.

Overall, the (first) emissions of quark-initiated jets extend much more throughout the plane,
while retaining the distinct features that are observed for gluon-initiated jets.

The impact of the medium over these jets is analogous to that over gluon-initiated ones.
Specifically, it destroys a great portion of the structure observed in vacuum and spreads emissions
throughout the plane, as can be seen from figure 4.8. For that reason, once again we see that
the impact of the medium is such that the fraction of splittings that happen in the soft, large-
angle region and in the hard, collinear region is larger in the presence of the medium than it
is in vacuum. To help corroborate this observation, we can look at the difference between the
radiation pattern of first emissions of quenched and non-quenched jets (figure 4.9).
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(a) (b)

Figure 4.8: Lund planes filled only with the first splitting of quark-initiated jets, in medium, found with
the anti-kt algorithm and reclustered with the (a) C/A algorithm and (b) kt algorithm.

(a) (b)

Figure 4.9: Lund planes that register the difference between the radiation pattern of first emissions
with and without quenching effects, when the jets are reclustered with the (a) C/A algorithm and (b) kt
algorithm.

Let us also have a look at the primary Lund planes for quark-initiated jets, in vacuum,
depicted in figure 4.10. Once again we can compare these splitting maps with those of gluon-
initiated jets (figure 4.4). Just as for the kinematical planes filled only with the first splittings,
we notice that the overall features observed for the gluon case remain present while, at the
same time, the radiation pattern of quark-initiated jets is more spread out through the plane.
In particular, the fraction of emissions in the soft, large-angle region and in the hard, collinear
region is larger for these jets than for the gluon case. Once again, the large concentrations of
splittings - present both in the C/A and kt algorithms - migrate slightly towards smaller angles.
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(a) (b)

Figure 4.10: Primary Lund planes for quark-initiated jets in vacuum, found with the anti-kt algorithm
and reclustered with the (a) C/A algorithm and (b) kt algorithm.

(a) (b)

Figure 4.11: Primary Lund planes for in-medium, quark-initiated jets found with the anti-kt algorithm
and reclustered with the (a) C/A algorithm and (b) kt algorithm.

The impact of the medium is the same as noted for gluon-initiated jets, as can be seen by
analysing figure 4.11. It visibly destroys much of the observed vacuum structure and disperses
the emissions throughout the plane. Once again, it is clear that the fraction of emissions in the
soft, large-angle region of the phase space is enhanced in the presence of the medium with respect
to vacuum. As we have already noted for gluon-initiated jets, this observation is consistent with
the picture that medium-induced radiation manifests as soft quanta at large angles. There is
also a migration of the emissions towards the hard, collinear region, though this one is less
manifest. These differences can once again be clearly seen by presenting the difference between
the radiation patterns in the medium and in vacuum - figure 4.12.
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(a) (b)

Figure 4.12: Lund planes that register the difference between the radiation pattern of primary emissions
with and without quenching effects, when the jets are reclustered with the (a) C/A algorithm and (b) kt
algorithm.

Just as for gluon-initiated jets, the overall behaviour and conclusions regarding de full Lund
diagram are similar to those associated with the primary Lund plane. For that reason, we chose
to put these planes in appendix B, only for consultation of the reader.

This discussion on quark-initiated jets has served to show that the overall features exhibited
by the radiation pattern of gluon-initiated jets are present in the quark case, while with some
slight migrations and modifications, in particular a larger span of emissions throughout the plane.
This is true regardless of the Lund plane construction used and, for that reason, in the following
sections we will focus the discussion on gluon-initiated jets. From the behaviour of such jets and
with the previous analysis in mind, it should be fairly simple for the reader to understand the
expected behaviour for the quark case. The idea behind this omission is simply to reduce the
overall bulk size of the discussions and avoid the repetition of the same ideas over and again.
Furthermore, with this same motivation in mind, we will abstain from presenting the kinematical
Lund planes for the tF reclustering algorithm, since its behaviour is a middle ground between
the other two reclustering algorithms.

4.2 Analysing the (ln(1/θ), ln(zθ)) Lund planes

We can now have a look at the kinematical Lund planes with the vertical axis defined as ln(zθ) .
Since the jets under analysis are exactly the same as in the previous section, the same conclusions
as drawn before regarding the influence of the medium should apply, even though the radiation
pattern itself will have a different look to it, as a consequence of the use of a different plane
definition. Just as before, we can start by analysing the phase space of the first emission within
gluon-initiated jets, in vacuum. This is depicted in figure 4.13, which is the analogous of figure
4.1 and, hence, should yield the same information. We note that emissions are constrained into
a triangular-shaped region of the plane, as outlined in figure 3.2.

Just as observed with the preceding Lund plane construction, the first emissions obtained
from the C/A clustering sequence pool themselves vertically along the line ln(1/θ) ' 1.0 , and
are extremely rare for ln(1/θ) & 2.0 .

Once again, the kt algorithm yields a much more packed concentration of (first) splittings
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(a) (b)

Figure 4.13: Lund planes filled only with the first splitting of gluon-initiated jets, in vacuum, found with
the anti-kt algorithm and reclustered with the (a) C/A algorithm and (b) kt algorithm.

than does the C/A algorithm. The large splitting pooling lies near the kinematical diagonal
limit thus corresponding, just as before, to hard emissions with z approximately between 0.35
and 1/2 . Moreover, this large splitting concentration is associated with emissions at angles θ
roughly between 0.1 and 0.3 (same before).

Essentially, we remark that all the distinct features observed with the (ln(1/θ), ln(1/z)) plane
definition can now be observed with this construction as well.

(a) (b)

Figure 4.14: Lund planes filled only with the first splitting of gluon-initiated jets, in the presence of
the medium, found with the anti-kt algorithm and reclustered with the (a) C/A algorithm and (b) kt
algorithm.

Recalling our observations from the previous section regarding the impact of the medium
over the first emissions, we expect it to spread emissions throughout the plane. In particular, for
the C/A reclustering algorithm we anticipate that the fraction of emissions beyond ln(1/θ) & 2.5
is considerably enhanced by the presence of the medium. For the kt algorithm, we predict that

49



Chapter 4 – Analysis of Z + jet partonic samples Filipa C. R. Peres

(a) (b)

Figure 4.15: Lund planes that register the difference between the radiation pattern of first emissions
with and without quenching effects, when the jets are reclustered with the (a) C/A algorithm and (b) kt
algorithm.

the fraction of emissions in the soft, large-angle and in the hard, collinear regions of the phase
space is larger for jets developed in the medium than for vacuum jets. All of these expectations
are corroborated by figures 4.14 and 4.15.

Let us also have a look at the appearance of the primary Lund planes with this definition.
These are presented in figure 4.16 for non-quenched, gluon-initiated jets. Inevitably, the radiation
patterns of primary emissions of C/A- and kt-reclustered jets exhibit the exact same features
as noted in the (ln(1/θ), ln(1/z)) Lund plane construction. Namely, there are large splitting
concentrations near the kinematical limit defined by z = 1/2 . The emission pooling associated
with the C/A algorithm lies flatter and closer to the kinematical boundary, while the one obtained
with the kt algorithm grows a little more away from that boundary to regions where z ' 0.3 .
Moreover, the C/A splitting concentration lies bounded between ln(1/θ) ' 2.0 and ln(1/θ) '
3.0 , while the one stemming from the kt algorithm is displaced towards larger angles, within
ln(1/θ) ' 1.5 and ln(1/θ) ' 2.5 . Finally we also see that the C/A reclustering algorithm yields a
larger fraction of emissions in the soft, large-angle region of the plane than does the kt algorithm.
All of these conclusions are the same as the ones that had been drawn in section 4.1.

The impact of the medium is expected to modify the radiation pattern exactly in the same
fashion as before. That is, it is expected to destroy a big part of the structure observed in the
vacuum primary Lund planes, i.e., to destroy a big part of the splitting concentrations observed
near the kinematical limit and disperse the emissions throughout the plane. Particularly, figure
4.17 shows that the fraction of emissions in the soft, large-angle region is enhanced in the presence
of the medium, comparatively to the corresponding vacuum fraction. Similarly, the portion of
emissions in the hard, collinear region is also larger for quenched jets than it is for jets that
evolve in vacuum.

The differences between the radiation pattern, in the primary Lund plane, with and without
jet quenching are presented in figure 4.18 and corroborate the picture described above.
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(a) (b)

Figure 4.16: Primary Lund planes for gluon-initiated jets, developed in vacuum, found with the anti-kt
algorithm and reclustered with the (a) C/A algorithm and (b) kt algorithm.

(a) (b)

Figure 4.17: Primary Lund planes filled with emissions within gluon-initiated jets, in the presence of
the medium, found with the anti-kt algorithm and reclustered with the (a) C/A algorithm and (b) kt
algorithm.
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(a) (b)

Figure 4.18: Lund planes that register the difference between the radiation pattern of primary emissions
with and without quenching effects, when the jets are reclustered with the (a) C/A algorithm and (b) kt
algorithm.

4.3 Analysing the (ln(1/θ), ln(kt)) Lund planes

We will now have a chance of analysing the kinematical planes defined using ln(kt) for the y−axis.
These planes yield new information with respect to the two previous constructions because they
provide us with details about the transverse momentum scale of the splittings, kt. Just as we
have done so far, we start by analysing the Lund planes for the first emission within each jet.
These are presented in figure 4.19 for gluon-initiated jets, in vacuum and reclustered with the
C/A and kt algorithms.

(a) (b)

Figure 4.19: Lund planes filled only with the first splitting of gluon-initiated jets, in vacuum, found with
the anti-kt algorithm and reclustered with the (a) C/A algorithm and (b) kt algorithm.

One of the most immediate observations is that there appears to be a switch in behaviour
between the C/A and kt algorithms in the sense that now the C/A originates a larger concentra-
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tion of (first) emissions in a specific kinematical region, while the kt algorithm yields a much more
uniform distribution. This behavioural reversal is a remarkable observation. It means that when
it comes to using the momentum sharing fraction z , the kt algorithm identifies a large fraction of
self-similar first splittings with identical z values, but whose transverse momentum values kt are
distinct amongst themselves, translating into a less packed distribution in the current Lund plane
construction. On the other hand, by using the momentum fraction z with the C/A algorithm we
see an almost uniform distribution of emissions among different values of z , but which turn out
to correspond to splittings with similar kt values, that crowd together in the present kinematical
Lund plane construction. To phrase the previous observations more succinctly, by changing the
kinematical variable used in the y−axis from ln(1/z) (or ln(zθ)) to ln(kt) , a uniform distribution
of first emissions is transformed into a localisation of those same emissions, and vice-versa.

Further analysis of the radiation pattern reconstructed by the C/A algorithm shows that, once
more, first emissions pool very tightly around ln(1/θ) ' 1.0 and are rare beyond ln(1/θ) & 2.0 .
The large splitting concentration that is now observed with this algorithm corresponds to a
transverse momentum of the first splitting approximately between ln(kt) ' 0.5⇔ kt ' 1.6 GeV
and ln(kt) ' 1.5 ⇔ kt ' 4.5 GeV. Finally, the region below ln(kt) . −0.5 ⇔ kt . 0.6 GeV is
(nearly) deprived of any emissions.

The analysis of the kinematical Lund plane obtained from the first splitting of kt-reclustered
jets shows that emissions below ln(kt) . 1.0 are rare, i.e., the transverse momentum of the first
splitting is sparsely below kt ' 2.7 GeV. The noteworthy observation here is that, overall, the
transverse momentum scale of the first splitting is larger for kt-reclustered jets than for C/A-
reclustered ones, as is to be expected given the distance measures of each of these algorithms.

Let us now analyse what is the impact of the medium in the radiation pattern of jets as
depicted in this Lund plane construction (figure 4.20).

(a) (b)

Figure 4.20: Lund planes filled only with the first splitting of gluon-initiated jets, in the presence of
the medium, found with the anti-kt algorithm and reclustered with the (a) C/A algorithm and (b) kt
algorithm.

The medium-induced behavioural modifications are similar between the two algorithms. Just
as before, the larger emission concentrations tend to be (partially) destroyed and radiation is
spread throughout the plane. Particular to this case is the fact that the radiation stretches along
two prominent prongs. The first of those lies in the vertical direction, along ln(1/θ) ' 1.0 ,
downwards to regions where ln(kt) ' −1.5 ⇔ kt ' 0.2 GeV. This prong is especially prominent
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(a) (b)

Figure 4.21: Lund planes that register the difference between the radiation pattern of first emissions
with and without quenching effects, when the jets are reclustered with the (a) C/A algorithm and (b) kt
algorithm.

for the C/A algorithm. The second prong stretches horizontally, approximately along the line
ln(kt) ' 0.5 ⇔ kt ' 1.6 GeV, towards the collinear region where ln(1/θ) ' 4.0 ⇔ θ ' 0.02 .
This one is a more striking feature for kt-reclustered jets. These prongs highlight once again
the fact that the presence of the medium enhances radiation in the soft, large-angle region of
phase space (vertical prong) and also in the hard, collinear region (horizontal prong). They
make for particularly conspicuous features when plotting the difference between the radiation
pattern of quenched and non-quenched jets, as can be seen in figure 4.21. In particular, it is
clear that the vertical prong is more dominant with the C/A algorithm while the horizontal
prong is more prominent for kt-reclustered jets. The enhancement of the soft, large-angle region
when using the C/A reclustering algorithm is relevant because that region did not suffer such
a large enhancement when using the other two Lund plane constructions. As such, the use of
this kinematical definition for the vertical axis appears to have brought some sensitivity towards
that region of the phase space of emissions for C/A-reclustered jets. Once again we reinforce
the important idea that whenever we mention enhancements (or suppressions) of specific phase
space regions in the presence of the QGP, these refer to those regions becoming more (or less)
prominent per jet, and not in absolute terms.

The migration of the (first) splittings into the two prongs should correspond to an increase
of the formation time of such splittings (recall figure 3.3), something that should be legitimised
in the next section by the (ln(1/θ), ln(t′F )) Lund planes.

Given the interesting new behaviours observed for the radiation pattern of the first emissions,
we undoubtedly anticipate exciting findings for the primary Lund planes. These are presented in
figure 4.22, for gluon-initiated jets, in vacuum. We see that the radiation pattern is remarkably
similar between the two algorithms: the overall shape and useful region are identical. In light
of that, the seeming attenuation of the primary Lund plane obtained for kt-reclustered jets
is probably due to the overall shorter length of their primary branch, with respect to that of
C/A-reclustered ones (notably 20% shorter in vacuum, as stated in section 4.1). For the C/A
algorithm, the larger splitting concentration appears to pool between ln(kt) ' 0.0 ⇔ kt '
1.0 GeV and ln(kt) ' 1.0 ⇔ kt ' 2.7 GeV, with the angle of emissions spanning approximately
between ln(1/θ) ' 1.5 and ln(1/θ) ' 3.0 . On the other hand, in the primary Lund plane
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for kt-reclustered jets, the splitting concentration appears to have a dominant fraction between
ln(kt) ' 0.5⇔ kt ' 1.6 GeV and ln(kt) ' 1.5⇔ kt ' 4.5 GeV (i.e., at larger transverse momenta
than for C/A-reclustered jets) and with an angular range from ln(1/θ) ' 1.5 to ln(1/θ) ' 2.5 .

(a) (b)

Figure 4.22: Primary Lund planes for gluon-initiated jets, in vacuum, found with the anti-kt algorithm
and reclustered with the (a) C/A algorithm and (b) kt algorithm.

(a) (b)

Figure 4.23: Primary Lund planes for gluon-initiated jets, developed in the presence of the medium,
found with the anti-kt algorithm and reclustered with the (a) C/A algorithm and (b) kt algorithm.

By now, the effect of the medium is remarkably well established. We anticipate that it will
(partially) destroy the large pools of splittings set at the centre of the primary Lund planes of
vacuum jets, dispersing emissions throughout the plane. In particular, we expect two prongs:
one horizontal around ln(kt) ' 0.5 and the other vertical about ln(1/θ) ' 1.0 . Indeed these
predictions are corroborated by figure 4.23. Once again, the migration of splittings towards
these two prongs indicates that the presence of the QGP delays emissions, i.e., enhances the
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fraction of splittings with larger formation times.2

The differences in the radiation pattern of quenched and non-quenched jets are presented in
figure 4.24, corroborating our previous analysis.

(a) (b)

Figure 4.24: Lund planes that register the difference between the radiation pattern of primary emissions
with and without quenching effects, when the jets are reclustered with the (a) C/A algorithm and (b) kt
algorithm.

4.4 Analysing the (ln(1/θ), ln(t′F )) Lund planes

Finally, we can turn to the analysis of the jet radiation pattern in the Lund plane defined using
the formation time of the splittings. We will comply with the same structure that has been
followed so far and will start by analysing the kinematical Lund planes filled only with the first
emission within each gluon-initiated jet, in vacuum. These planes are presented in figure 4.25,
for the C/A and kt reclustering algorithms.

All the conclusions we have drawn so far regarding the first emission of C/A-reclustered
jets are valid for this novel Lund plane construction (as is to be expected). In particular,
the (first) emissions pool around ln(1/θ) ' 1.0 and are extremely rare beyond ln(1/θ) & 2.0 .
In the case of the kt reclustering algorithm, the splittings are much more evenly distributed
through the plane (in similarity with the behaviour for the (ln(1/θ), ln(kt)) kinematical Lund
plane construction). Also noteworthy is the fact that first emissions are approximately restricted
to the region ln(t′F ) . 2.5⇔ t′F . 2.5 fm/c .

We expect the medium to span emissions throughout the plane, specifically, we anticipate
that the radiation pattern of quenched jets in this kinematical Lund plane extends upwards,
such that there is an enhancement of the fraction of emissions with larger formation times, when
compared to the pattern of emissions in vacuum. This is observed in figure 4.26. In particular,
we see the formation of an extended vertical prong along the line ln(1/θ) ' 1.0 , i.e., large-angled
emissions are delayed by the presence of the QGP. Besides that, there is a second prong which
extends along a diagonal line of slope m ' 2 . Just as the first prong, this second one, also
indicates that the medium delays emissions but further implies that it also enhances the fraction

2Here it is important to note that we shall use the expression “delay emissions” in the sense of an enhancement
of the phase space region associated with larger formation times. To make an actual full correspondence of this
observation to a physical time delay of the splittings a more extensive study is needed.
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of hard, collinear splittings (as we have already seen in the other Lund plane definitions). Overall,
we note that radiation is now rare only beyond ln(t′F ) & 4.0⇔ t′F & 10.8 fm/c , a value which is
approximately four times larger than the one obtained for vacuum jets.

(a) (b)

Figure 4.25: Lund planes filled only with the first splitting of gluon-initiated jets, in vacuum, found with
the anti-kt algorithm and reclustered with the (a) C/A algorithm and (b) kt algorithm.

(a) (b)

Figure 4.26: Lund planes filled only with the first splitting of gluon-initiated jets, in the presence of
the medium, found with the anti-kt algorithm and reclustered with the (a) C/A algorithm and (b) kt
algorithm.

Figure 4.27 depicts the difference between the radiation pattern of quenched and non-quenched
jets. That the medium promotes late (first) emissions with respect to vacuum radiation is ap-
parent from the Lund planes presented.

57



Chapter 4 – Analysis of Z + jet partonic samples Filipa C. R. Peres

(a) (b)

Figure 4.27: Lund planes that register the difference between the radiation pattern of first emissions
with and without quenching effects, when the jets are reclustered with the (a) C/A algorithm and (b) kt
algorithm.

Let us now analyse what happens along the primary branch of gluon-initiated jets. As always,
we start by having a look at the picture in vacuum, which is illustrated in figure 4.28. Remarkably,
although the emissions can, in principle, extend all the way up through the plane (recall figure
3.4), this does not happen. From the splitting maps presented we see that large-angled radiation
(along ln(1/θ) ' 1.0) is bound to short formation times: ln(t′F ) . 2.5 ⇔ t′F . 2.5 fm/c . As
we consider the whole set of primary emissions, we see that overall smaller-angled radiation
yields larger formation times. There seems to be a strong concentration of splittings oriented
diagonally around a line of slope m ' 2 and indicating a strong correlation between the angle of
the emission and its formation time.

(a) (b)

Figure 4.28: Primary Lund planes for gluon-initiated jets, in vacuum, found with the anti-kt algorithm
and reclustered with the (a) C/A algorithm and (b) kt algorithm.

The effect of the medium over the primary emissions is presented in figure 4.29. From
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the analysis of the radiation pattern of quenched jets it is particularly clear that the medium
undoubtedly promotes delayed emissions (dominantly) at large angles. This is again visible by
the prominent vertical prong along the line ln(1/θ) ' 1.0 . The diagonal prong is slightly subdued,
though there still seems to be a slight increase of the fraction of emissions with larger formation
times in the collinear region.

The difference between the radiation patterns with and without jet quenching is presented in
figure 4.30, for the primary Lund plane of gluon-initiated jets. The enhancement of the regions
associated with larger formation times is plain to be seen. Indeed, as it has been stated so far,
the medium spreads radiation through the plane. However, that dispersion is not at random:
emissions are spanned such that there is a systematic migration to larger formation times.

(a) (b)

Figure 4.29: Primary Lund planes for gluon-initiated jets, developed in the presence of the medium,
found with the anti-kt algorithm and reclustered with the (a) C/A algorithm and (b) kt algorithm.

(a) (b)

Figure 4.30: Lund planes that register the difference between the radiation pattern of primary emissions
with and without quenching effects, when the jets are reclustered with the (a) C/A algorithm and (b) kt
algorithm.
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4.5 Comments on tF vs t′F
We had the chance of analysing the novel Lund planes defined by (ln(1/θ), ln(t′F )) . In section
1.5, we have seen that the formation time t′F is a boost invariant quantity which is a proxy for
the (often used) formation time tF (equation (1.15)). We have shown this by deriving equation
(1.18) for t′F , resorting to reasonable approximations and assumptions. To further support this
statement that the both formation times can be used, we present in figure 4.31, the primary
Lund planes obtained for quenched, gluon-initiated jets using a construction (ln(1/θ), ln(tF )) .
The comparison between the radiation patterns in this kinematical plane and those in figure 4.29
testifies that the two physical quantities tF and t′F are, indeed, equivalent to one another or, in
other words, that t′F is a good proxy for the formation time tF .

(a) (b)

Figure 4.31: Primary Lund planes for gluon-initiated jets, developed in the presence of the medium,
found with the anti-kt algorithm and reclustered with the (a) C/A algorithm and (b) kt algorithm.

4.6 The explicit path of emissions in the primary Lund plane

In this section we present the explicit, average paths of the primary emissions obtained with the
same sample of jets as used to fill the kinematical Lund planes in the preceding five sections.
To produce these paths we take the coordinates of each primary emission within each jet and
average the first emissions, the second emissions, the third emissions, etc. of that sample. Since
all the considered jets will have at least one splitting, they all contribute to this procedure with at
least one coordinate point - the coordinate point corresponding to the first splitting. Subsequent
emissions have a successively smaller number of available data points, i.e., the statistics gets
lower as we move along the primary branch. We consider only emissions for which more than
500 coordinate points are at our disposal for the averaging procedure, that is, emissions with the
contribution of at least 500 jets. Splittings for which this threshold is not met are not used to
build the paths.

The idea behind building these explicit paths of emissions along the primary branch is to
show that they are a distinct feature between quenched and non-quenched jets. This is expected
given the differences recorded in sections 4.1 to 4.4 between the radiation patterns of vacuum
and in-medium jets, but here we decided to explicitly verify that expectation.

We draw the paths of emissions for three of the kinematical Lund plane constructions:

60



Chapter 4 – Analysis of Z + jet partonic samples Filipa C. R. Peres

(ln(1/θ), ln(1/z)) , (ln(1/θ), ln(kt)) and (ln(1/θ), ln(t′F )) , since each of these allows us to ex-
plore different path features and thus provides us with additional information. For the first case
(the (ln(1/θ), ln(1/z)) plane), we will consider (once again) both gluon- and quark-initiated jets,
as to analyse the repercussions that the nature of the original parton has on the primary emis-
sions’ path. Afterwards, we focus on gluon-initiated jets to lighten the comparisons between the
different kinematical Lund plane definitions and to reduce the bulk size of this section.

4.6.1 Explicit path in the (ln(1/θ), ln(1/z)) primary Lund plane

Following the structure that has been set forth, we start by examining the average paths of
primary emissions of the jets in the kinematical Lund plane construction (ln(1/θ), ln(1/z)) . We
will begin with the analysis of gluon-initiated jets and afterwards discuss quark-initiated ones,
comparing both situations to establish general differences and similarities. Understanding how
the two different jet origins compare to one another allows us to later focus only on the case of
gluon-initiated jets.

4.6.1.1 Gluon-initiated jets

The average paths of the splittings along the primary Lund plane for gluon-initiated jets in
vacuum are presented in figure 4.32 for the three different reclustering algorithms: C/A, kt and
tF .

The average sequence of primary emissions for C/A-reclustered jets is, as expected, angular-
ordered such that the angle of successive emissions progressively decreases. The (average) first
emission is large angled belonging to the region between ln(1/θ) ' 1.0 and ln(1/θ) ' 1.5 . This
is consistent with the observation of figure 4.1. Furthermore, we see that this first emission
corresponds to the softest splitting in the sequence and is followed by successively harder ones,
something that deviates from the strict double-logarithmic ordering and might indicate that the
C/A algorithm is not properly reconstructing the history of the shower.3

On the other hand, jets reclustered with the kt algorithm exhibit the same angular ordering
but are simultaneously ordered such that harder emissions happen first, followed by successively
softer ones. As such, this algorithm appears to better reconstruct the development of jets than
does the C/A algorithm. Moreover, it is also worth noting that kt-reclustered jets yield fewer
emissions along the primary branch: seven emission data points against the nine observed with
the C/A algorithm. This observation is consistent with the fact that the primary Lund plane
obtained from the clustering sequence of the kt algorithm is filled with roughly 20% less splittings
than that of C/A-reclustered jets (as was mentioned in section 4.1). Finally, we observe that, on
average, the first emission obtained with the kt algorithm is displaced (with respect to that of
the C/A) towards a region associated with harder and smaller-angled splittings, a picture that
is, once again, consistent with figure 4.1.

Finally, the tF algorithm originates a path of emissions that appears to be almost an average
between those of the C/A and kt algorithms. In particular, the first emission is not as large-
angled as that yielded by the C/A algorithm but the migration towards smaller angles is shorter
than the one registered by the kt algorithm. Similarly, this first emission is not as hard as the
one obtained with the latter but not as soft as the one from the former either. The sequence
of splittings for tF -reclustered jets is nearly horizontally flat, meaning that there is almost no
change in the overall splitting hardness along the primary branch. This, once again, appears
to lie as a middle ground to the fact that in C/A-reclustered jets the hardness of emissions
progressively increases while the opposite behaviour is recorded for kt-reclustered jets. The fact

3A similar observation has been made in the workshop https://indico.gsi.de/event/8938/, for which there are
as of yet no published results.
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that the tF algorithm yields a compromise between the other two algorithms is also in agreement
with our observations from previous sections. It further promotes the idea that the kt algorithm
may be the best choice (amongst the three) to reconstruct the history of the MC parton shower
(at least for the vacuum situation).

(a) (b) (c)

Figure 4.32: Average path of emissions along the primary Lund plane for gluon-initiated jets, in vacuum,
reclustered with the: (a) C/A, (b) kt and (c) tF algorithms. The ordering of emissions is the following:
red (first), yellow (second), green (third), light-blue (fourth), dark-blue (fifth), light-purple (sixth), dark-
purple (seventh), pink (eighth) and grey (ninth).

We are particularly interested in understanding in what way the presence of the medium and,
hence, jet quenching effects, influences these paths of primary emissions. To that end we can
have a look at figure 4.33. Globally, the medium shifts the splittings upwards, meaning that,
on average, it appears to induce an enhancement of soft radiation. Moreover, the (average) first
emission happens at a smaller angle. These observations are common to all three reclustering
algorithms and concordant with the results from preceding sections.

(a) (b) (c)

Figure 4.33: Average path of emissions along the primary Lund plane for quenched gluon-initiated jets,
reclustered with the: (a) C/A, (b) kt and (c) tF algorithms. The ordering of emissions is the following:
red (first), yellow (second), green (third), light-blue (fourth), dark-blue (fifth), light-purple (sixth), dark-
purple (seventh), pink (eighth) and grey (ninth).
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4.6.1.2 Quark-initiated jets

(a) (b) (c)

Figure 4.34: Average path of emissions along the primary Lund plane for quark-initiated jets, in vacuum,
reclustered with the: (a) C/A, (b) kt and (c) tF algorithms. The ordering of emissions is the following:
red (first), yellow (second), green (third), light-blue (fourth), dark-blue (fifth), light-purple (sixth), dark-
purple (seventh), pink (eighth) and grey (ninth).

We can now have a look at the paths of primary emissions for quark-initiated jets and compare
the results with those obtained for the gluon case. The paths of primary splittings for these
jets, in vacuum, and reclustered with the C/A, kt and tF algorithms are presented in figure 4.34.
The common difference which is observed throughout the three sequences is that the first two
emissions of quark-initiated jets are displaced towards smaller angles (with respect to the gluon
case) - a feature which is in comforting agreement with the observations done for quark-initiated
jets in section 4.1, namely, in figures 4.7 and 4.10.

Another interesting observation here is that the sequence of the kt algorithm appears to devi-
ate from the the strict double-logarithmic ordering of QCD (after the third emission), something
that did not happen in the gluon case. However, this apparent deviation may stem from the
reduced statistics of quark-initiated jets, which introduces more fluctuations to the average be-
haviour of the emissions (especially later ones). To sustain this hypothesis we should calculate
the standard deviation associated with each (average) point in the splitting map. Due to the
shortage of time, we chose to leave this as an improvement for future work. The reduced stat-
istics of quark-initiated jets is also a further motivation to focus (as we will) on the case of jets
in which the original parton is a gluon.

Despite the apparent deviation of the sequence of primary emissions of kt-reclustered jets
from the double-logarithmic ordering of QCD (which, as we stated, is possibly a result of the
reduced statistics), this algorithm still appears to exhibit the best behaviour in reconstructing
the history of the shower (just as for gluon-initiated jets).

The differences between the path of quenched and non-quenched quark-initiated jets are
analogous to the ones observed in gluon jets. Particularly, we see that the first emission is
slightly shifted towards smaller angles and that the (average) splittings are overall softer (figure
4.35).

From now on we will focus the analysis on the explicit splitting paths of gluon-initiated jets.
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(a) (b) (c)

Figure 4.35: Average path of emissions along the primary Lund plane for quenched quark-initiated
jets, reclustered with the: (a) C/A, (b) kt and (c) tF algorithms. The ordering of emissions is the
following: red (first), yellow (second), green (third), light-blue (fourth), dark-blue (fifth), light-purple
(sixth), dark-purple (seventh), pink (eighth) and grey (ninth).

4.6.2 Explicit path in the (ln(1/θ), ln(kt)) primary Lund plane

Analysing the explicit sequence of primary emissions in the (ln(1/θ), ln(kt)) kinematical Lund
plane will provide us with additional information that could not be gathered from the previously
used construction. In particular, we gain some insight into the evolution of the transverse
momentum of the splittings, kt.

Figure 4.36 presents the paths of primary emissions for gluon-initiated jets in vacuum. In-
terestingly, from this figure we note the path is approximately linear for all three reclustering
algorithms. Moreover, the transverse momentum of the splittings decreases as we move along
the primary branch, as we would expect from the natural (vacuum) QCD ordering.

(a) (b) (c)

Figure 4.36: Average path of emissions along the primary Lund plane for gluon-initiated jets, in vacuum,
reclustered with the: (a) C/A, (b) kt and (c) tF algorithms. The ordering of emissions is the following:
red (first), yellow (second), green (third), light-blue (fourth), dark-blue (fifth), light-purple (sixth), dark-
purple (seventh), pink (eighth) and grey (ninth).

We notice that the sequence of primary emissions of kt-reclustered jets yields the (average)
first splitting with largest transverse momentum: kt ' 5.3 GeV , followed by kt ' 4.6 GeV for
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(a) (b) (c)

Figure 4.37: Average path of emissions along the primary Lund plane for gluon-initiated jets, in the
presence of the medium, reclustered with the: (a) C/A, (b) kt and (c) tF algorithms. The ordering of
emissions is the following: red (first), yellow (second), green (third), light-blue (fourth), dark-blue (fifth),
light-purple (sixth), dark-purple (seventh), pink (eighth) and grey (ninth).

tF -reclustered jets and kt ' 3.0 GeV for C/A-reclustered ones. These results are in agreement
with our analysis of figure 4.19 in section 4.3. On the other hand, the seventh (and last) primary
emission of the kt clustering sequence has the same transverse momentum value as that same
emission in the tF algorithm - kt ' 0.2 GeV - while the ninth and last (average) emission of
C/A-reclustered jets has kt ' 0.4 GeV .

It will be interesting to see how these results are altered by the occurrence of jet quenching
effects. The paths of primary emissions in the presence of the medium are depicted in figure
4.37 from which it is apparent that, overall, the medium lowers the transverse momentum scale
of the splittings. For instance, the (average) first emissions of C/A- and kt- reclustered jets have
transverse momenta values which are approximately three times smaller than the corresponding
vacuum values: respectively, kt ' 0.9 GeV and kt ' 1.8 GeV. This is comfortingly consistent
with the observations made in section 4.3.

Finally, these paths also yield information about the formation time, which clearly increases
as we progress along the primary branch, meaning that the emissions take progressively longer
time to occur. This is true for all algorithms and it is consistent with the behaviour we expect.
We shall corroborate this observation in the following subsection, where the y−coordinate of the
emissions in the kinematical plane is explicitly related to the formation time: y = ln(t′F ) .

4.6.3 Explicit path in the (ln(1/θ), ln(t′F )) primary Lund plane

Similarly to what has been done in the previous two subsections, we will start by analysing the
average, explicit paths of primary emissions for gluon-initiated jets which develop in vacuum.
Such paths are presented in figure 4.38 for the three different reclustering algorithms. There
are several different observations that can be made here. First, we note that the paths are
remarkably close to a linear behaviour. Moreover, we confirm that indeed the formation time
between successive splittings increases. For the C/A algorithm we note that the (average) first
emission takes a total time of ln(t′F ) ' 1.0⇔ t′F ' 0.6 fm/c to occur while the time between the
eighth and the ninth splittings is much larger: ln(t′F ) ' 5.7 ⇔ t′F ' 56.9 fm/c . The progressive
delay of emissions is clearly substantial. For kt-reclustered jets the results are perfectly similar,
with the first emission taking approximately t′F ' 0.4 fm/c to occur while between the sixth
and seventh emissions there is a time span of t′F ' 55.5 fm/c . Finally, the tF algorithm yields
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identical values.

(a) (b) (c)

Figure 4.38: Average path of emissions along the primary Lund plane for gluon-initiated jets, in vacuum,
reclustered with the: (a) C/A, (b) kt and (c) tF algorithms. The ordering of emissions is the following:
red (first), yellow (second), green (third), light-blue (fourth), dark-blue (fifth), light-purple (sixth), dark-
purple (seventh), pink (eighth) and grey (ninth).

More interesting now is to analyse how this picture is altered by the presence of the QGP.
From our discussion in section 4.4, we expect that the medium is responsible for a delay of
emissions, particularly at large angles. This suggests that the average first emissions should yield
a (much) larger formation time than the corresponding vacuum value. This is also expected for
the later emissions while in lesser scale.

To substantiate these predictions, we can examine the paths of quenched, gluon-initiated
jets presented in figure 4.39. Indeed it is immediate to notice that there is an upwards shift
of the (average) first splittings, towards larger formation times. In particular, the (average)
first emission taken from the C/A clustering sequence has a formation time t′F ' 2.1 fm/c , a
value which is nearly four times larger than the corresponding result obtained in vacuum. The
(average) first emission of quenched, kt-reclustered jets is also delayed by a factor of (almost)
four: t′F ' 1.4 fm/c .

The delay of later (average) splittings (i.e., the increase of their respective formation time)
can also be spotted in these plots, particularly for the kt and the tF algorithms. Overall, our
predictions of medium-delayed radiation are easily corroborated by this study.

It is also worth noting that the (average) fifth splitting in the C/A clustering sequence has
a formation time t′F ' 12.7 fm/c meaning that this and all posterior emissions should happen
outside of the QGP. On the other hand, the (average) fourth splitting of kt- and tF -reclustered
jets has, respectively, t′F ' 19.4 fm/c and t′F ' 18.1 fm/c , such that this and all subsequent
splittings (also) occur outside of the medium.

66



Chapter 4 – Analysis of Z + jet partonic samples Filipa C. R. Peres

(a) (b) (c)

Figure 4.39: Average path of emissions along the primary Lund plane for gluon-initiated jets, in the
presence of the medium, reclustered with the: (a) C/A, (b) kt and (c) tF algorithms. The ordering of
emissions is the following: red (first), yellow (second), green (third), light-blue (fourth), dark-blue (fifth),
light-purple (sixth), dark-purple (seventh), pink (eighth) and grey (ninth).

4.7 The effect of the pseudo-rapidity cuts

In the event selection criteria used in all of the preceding analyses there were two different
cuts involving the pseudo-rapidity. The first one demanded that the final-state particles had
|η| < 2.5 , while the second required that the final-state jets had |η| < 2.0 . We decided to
investigate how the radiation pattern presented in the kinematical Lund planes is altered by
making more constraining selection criteria. To that end, we changed the cuts to |η| < 1.5 for
the final-state particles and |η| < 1.0 for the final-state jets. Using these more restricting values
we constructed once more several different kinematical Lund planes. In this section, we chose
to present only the results for the Lund plane definition (ln(1/θ), ln(t′F )) and for gluon-initiated
jets. The overall conclusions are the same for the other kinematical planes and also for the case
of quark-initiated jets.

The Lund planes filled only with the first emissions of gluon jets in vacuum and in the medium
are presented, respectively, in figures 4.40 and 4.41, which can be compared to figures 4.25 and
4.26. By doing so, it is fairly straightforward to realise that the use of more constraining pseudo-
rapidity cuts yields nearly no difference in the observed radiation patterns. It appears that the
previous splitting maps exhibit a smoother behaviour but, other than that, we observe no evident
or remarkable differences. Notably, there is no apparent increase in the discrimination between
vacuum and in-medium jets. This is clearly observed by examining the kinematical planes with
the difference between the radiation patterns with and without quenching effects. These are
presented in figure 4.42, to be compared with those depicted in figure 4.27.
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(a) (b)

Figure 4.40: Lund planes filled only with the first splitting of gluon-initiated jets, in vacuum, found with
the anti-kt algorithm and reclustered with the (a) C/A algorithm and (b) kt algorithm. These maps are
obtained using more constraining pseudo-rapidity selection criteria, namely: |η| < 1.5 for the final-state
particles and |η| < 1.0 for the final-state jets.

(a) (b)

Figure 4.41: Lund planes filled only with the first splitting of gluon-initiated jets, in the presence of
the medium, found with the anti-kt algorithm and reclustered with the (a) C/A algorithm and (b) kt
algorithm. These maps are obtained using more constraining pseudo-rapidity selection criteria, namely:
|η| < 1.5 for the final-state particles and |η| < 1.0 for the final-state jets.
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(a) (b)

Figure 4.42: Lund planes that register the difference between the radiation pattern of first emissions
with and without quenching effects, when the jets are reclustered with the (a) C/A algorithm and (b) kt
algorithm. These maps are obtained using more constraining pseudo-rapidity selection criteria, namely:
|η| < 1.5 for the final-state particles and |η| < 1.0 for the final-state jets.

The same results are true for the radiation pattern in the primary Lund plane. That can
be taken from the comparison of figures 4.43, 4.44 and 4.45, with figures 4.28, 4.29 and 4.30 of
section 4.4.

(a) (b)

Figure 4.43: Primary Lund planes for gluon-initiated jets, in vacuum, found with the anti-kt algorithm
and reclustered with the (a) C/A algorithm and (b) kt algorithm. These maps are obtained using more
constraining pseudo-rapidity selection criteria, namely: |η| < 1.5 for the final-state particles and |η| < 1.0

for the final-state jets.
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(a) (b)

Figure 4.44: Primary Lund planes for gluon-initiated jets, developed in the presence of the medium,
found with the anti-kt algorithm and reclustered with the (a) C/A algorithm and (b) kt algorithm. These
maps are obtained using more constraining pseudo-rapidity selection criteria, namely: |η| < 1.5 for the
final-state particles and |η| < 1.0 for the final-state jets.

(a) (b)

Figure 4.45: Lund planes that register the difference between the radiation pattern of primary emissions
with and without quenching effects, when the jets are reclustered with the (a) C/A algorithm and (b) kt
algorithm. These maps are obtained using more constraining pseudo-rapidity selection criteria, namely:
|η| < 1.5 for the final-state particles and |η| < 1.0 for the final-state jets.

4.8 Summary of the main results

In this chapter we have done a comprehensive analysis of the radiation pattern of jets with
and without quenching effects, resorting to different kinematical Lund plane definitions, filling
procedures and jet reclustering algorithms. We have also shown that t′F is a good proxy for tF
and analysed in detail the (average) explicit paths of primary emissions. Finally, we studied the
effect of employing different pseudo-rapidity cuts. Since this was an extensive section with a lot

70



Chapter 4 – Analysis of Z + jet partonic samples Filipa C. R. Peres

of results, it might be useful at this point to pause and take note of some of the most important
findings:

• The effective number of jets available in vacuum is approximately 1.6 and 1.4 times larger
than the corresponding in-medium value, respectively for gluon- and quark-initiated jets.
This result is consistent with the well established phenomenon of jet energy loss. Further-
more, the fact that the attenuation of quark-initiated jets is slightly smaller than that of
gluon-initiated ones corroborates the picture that the former lose less energy in the medium
than the latter, as a consequence of the smaller number of emissions in their development.

• The overall number of primary emissions for the totality of vacuum jets is around 2.5 times
larger than for quenched jets. This means that the latter have smaller particle multiplicity
than the former, suggesting that the medium “throws” a lot of particles outside of the
jet cone. Here it is however worth noting that, realistically, this reduction in the overall
number of particles within quenched jets should not be as marked as the one obtained with
these samples. On the one hand, the inclusion of hadronisation translates in a depletion
that is considerably smaller (as we will have a chance to see in the next chapter); on the
other hand, some particle content can be recovered by the inclusion of recoil-effects, i.e.,
by considering jet-induced excitations of the QGP, some of which can end up inside of the
jet cone.

• The primary branch is the longest for C/A-reclustered jets and the shortest for kt-reclustered
jets.

• The radiation pattern of quark-initiated jets is less structured and more spread out than
that of gluon-initiated jets, while at the same time it retains the distinct features associated
with the latter.

• The medium is responsible for destroying part of the structure of the radiation pattern in
vacuum and spanning the emissions across the plane. In particular, the relative fractions
of large-angled, soft radiation and collinear, hard radiation are enhanced in the medium
with respect to the corresponding vacuum fractions. We have also seen that the medium
delays emissions, i.e., it enhances the fraction of splittings with larger formation times,
particularly in the large-angle region; for instance, on average, the first emission is delayed
approximately by a factor of four.

• The kt algorithm appears to be the best candidate to perform the reclustering of the jets.

• The path of primary emissions along the kinematical Lund planes is a distinct feature
between vacuum and in-medium jets. Particularly, the average emissions within quenched
jets involve smaller transverse momentum scales and are shifted towards larger formation
times with respect to vacuum.

• The pseudo-rapidity selection criteria have almost no influence in the radiation pattern
depicted in the kinematical Lund planes.
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Analysis of Z + jet hadronic samples

In the previous chapter we have provided a comprehensive set of studies on the potential of
kinematical Lund planes for discriminating between the radiation pattern of quenched and non-
quenched jets. These studies were performed on vacuum and medium Z+jet samples at partonic
level. This allows us to gain some insight into jet quenching at the fundamental level and without
the contribution of effects which are not understood from first principles. However, as we know,
the final-state particles of collider experiments are hadrons and not partons. For that reason,
we decided to investigate in what way our findings from the previous chapter are altered by
the introduction of hadronisation and ISR into the picture. Every other feature of the event
generation remained the same and the event selection criteria were also maintained. This way,
the results from this chapter can be directly compared to the preceding ones.

Our expectation is that the introduction of hadronisation destroys some of the previously
observed structure (or features), i.e., we expect that it smears the radiation patterns obtained
at parton level. Even still, we believe that the Lund planes should continue to carry useful
information for the discrimination between quenched and non-quenched jets.

Once again, we focus our studies on gluon-initiated jets for which we see, in this case, a
suppression of the effective number of in-medium jets by a factor of 1.8 with respect to vacuum,
that is, in vacuum there are 1.8 times more jets than in the same amount of in-medium events.
This suppression factor is close to the one obtained at partonic level and (once again) evidences
the phenomenon of medium-induced energy loss. Furthermore, the total effective number of
emissions is 2.0 times larger for vacuum events than for medium events. In this case, the difference
between the medium-induced suppression factor of the effective number of jets and of the total
effective number of emissions in the events is not as large as in the partonic samples. In fact, the
results show that, at parton level, the average effective number of particles per jet for medium
events corresponds to 58% of that in the vacuum case, while at hadron level that value is 88%.
Furthermore, as it is to be expected, at hadron level the particle multiplicity per jet is much
larger than at parton level, specifically, approximately 5.4 and 8.2 times larger, respectively for
the vacuum and in-medium cases.

After these introductory findings we can now construct different kinematical Lund planes. We
chose to analyse the traditional Lund plane construction (ln(1/θ), ln(zθ)) used in [49] and also our
novel kinematical definition (ln(1/θ), ln(t′F )) . The results found with each of these constructions
can be compared to the findings in sections 4.2 and 4.4, respectively, and also to one another.
This is what we set out to do in the following two sections.
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5.1 Analysing the (ln(1/θ), ln(zθ)) Lund planes

The kinematical Lund planes filled only with the first splitting of hadronised, gluon-initiated
jets reclustered with the C/A and kt algorithms are presented in figures 5.1 and 5.2, respectively
for the vacuum and in-medium cases. The smearing of structure with respect to the parton
level situation (figures 4.13 and 4.14) is clear from the analysis of these kinematical planes. In
particular, the radiation pattern of quenched jets is essentially featureless.

(a) (b)

Figure 5.1: Lund planes filled only with the first splitting of hadronised, gluon-initiated jets, in vacuum,
found with the anti-kt algorithm and reclustered with the (a) C/A algorithm and (b) kt algorithm.

(a) (b)

Figure 5.2: Lund planes filled only with the first splitting of hadronised, gluon-initiated jets, in medium,
found with the anti-kt algorithm and reclustered with the (a) C/A algorithm and (b) kt algorithm.

The considerable smearing which is observed in these splitting maps with respect to the
corresponding parton level results complicates the evaluation of the effect of the presence of the
medium in the radiation pattern of jets. Based on our observations at parton level, we manage to
identify that there still appears to be a dispersion of emissions throughout the plane. Particularly,
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the fractions of emissions in the soft, large angle region of the phase space (for C/A-reclustered
jets) and in the hard, collinear region (for the kt algorithm) seem to be enhanced in the presence
of the medium, with respect to vacuum. However, this is not nearly as apparent as it was before.
In fact, plotting the differences between the radiation pattern with and without quenching effects
clearly shows that now it is much more difficult to discern between vacuum and in-medium jets
(see figure 5.3).

(a) (b)

Figure 5.3: Lund planes that register the difference between the radiation pattern of first emissions
with and without quenching effects, when the jets are reclustered with the (a) C/A algorithm and (b) kt
algorithm.

(a) (b)

Figure 5.4: Primary Lund planes for hadronised, gluon-initiated jets developed in vacuum, found with
the anti-kt algorithm and reclustered with the (a) C/A algorithm and (b) kt algorithm.

We can also have a look at the radiation pattern of primary emissions, presented in figures 5.4
and 5.5, respectively for the vacuum and medium cases. Once more, there is a significant smearing
of structure to the radiation pattern of both quenched and non-quenched jets. However, for the
former the results obtained are practically structureless (as we have already noted for the first
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emissions). In fact, the radiation pattern of primary emissions of quenched jets is nearly uniform
throughout the plane. As a result, it appears that, in the presence of the QGP, the tendency
towards larger fractions of softer radiation remains. Nevertheless, most of the discrimination
power of the kinematical Lund planes seems to have been lost, as corroborated by figure 5.6.

(a) (b)

Figure 5.5: Primary Lund planes for in-medium, hadronised, gluon-initiated jets found with the anti-kt
algorithm and reclustered with the (a) C/A algorithm and (b) kt algorithm.

(a) (b)

Figure 5.6: Lund planes that register the difference between the radiation pattern of primary emissions
with and without quenching effects, when the jets are reclustered with the (a) C/A algorithm and (b) kt
algorithm.

5.2 Analysing the (ln(1/θ), ln(t′F )) Lund planes

The results from the previous section were not very encouraging since they appear to indicate
that the inclusion of hadronisation and ISR spoils the large discrimination power provided by
the kinematical Lund planes. Of course, this observation is not benefiting from the absence of
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grooming techniques to “clean-up” the jets but even still, given that such procedures were also not
applied at parton level, we would like to confirm that this approach to the study of jet quenching
is, indeed, promising and worth investing in. Fortunately, the results obtained with our proposed
Lund plane definition - (ln(1/θ), ln(t′F )) - are not as discouraging as the ones obtained in the
preceding section.

Figures 5.7 and 5.8, show the splitting maps filled only with the first emissions of C/A- and
kt-reclustered jets, respectively in vacuum and in the presence of the QGP. The first reassuring
observation which is obvious to make is that these kinematical planes are not as structureless
as the ones presented in the previous section. That is particularly true for the C/A algorithm,
for which we see a large pooling of first emissions along the vertical line ln(1/θ) ' 1.0, i.e., at
large angles, and in the region between ln(t′F ) ' 2.0 ⇔ t′F ' 1.5 fm/c and ln(t′F ) ' 3.0 ⇔
t′F ' 4.0 fm/c . The concentration of a large fraction of splittings in this specific region of phase
space is present both in vacuum and in the medium, but in the latter there seems to be a slight
migration of a dominant fraction towards larger formation times, as we would expect.

Given that the kinematical Lund planes are not as featureless as before, the observation of
differences in the radiation pattern of quenched and non-quenched jets is facilitated. Particularly,
we see that, in the presence of the medium, emissions are shifted towards larger formation times.
In fact, although the two remarkable prongs that were present in the medium radiation patterns
at parton level are no longer a perceivable feature, the effect of medium-delayed radiation is still
observed. This is manifest in figure 5.9.

(a) (b)

Figure 5.7: Lund planes filled only with the first splitting of hadronised, gluon-initiated jets, in vacuum,
found with the anti-kt algorithm and reclustered with the (a) C/A algorithm and (b) kt algorithm.

76



Chapter 5 – Analysis of Z + jet hadronic samples Filipa C. R. Peres

(a) (b)

Figure 5.8: Lund planes filled only with the first splitting of hadronised, gluon-initiated jets, in medium,
found with the anti-kt algorithm and reclustered with the (a) C/A algorithm and (b) kt algorithm.

(a) (b)

Figure 5.9: Lund planes that register the difference between the radiation pattern of first emissions
with and without quenching effects, when the jets are reclustered with the (a) C/A algorithm and (b) kt
algorithm.

Given the positive results obtained for the radiation pattern of first emissions, we expect
that the (ln(1/θ), ln(t′F )) primary Lund plane also exhibits more structure than the one from
the preceding section. Attached to that, should also come a good discrimination power between
samples with and without quenching effects. The results for the splitting maps of primary
emissions are presented in figures 5.10 and 5.11 for vacuum and medium samples, respectively.
Indeed, from these figures we see that there is much more structure than for the (ln(1/θ), ln(zθ))
kinematical plane, particularly, the C/A exhibits some interesting concentrations of emissions at
large angles and along a diagonal of slope m ' 2 . Similarly, kt-reclustered jets also present a
predilection towards pooling around that same diagonal line.

By comparing the vacuum and medium radiation patterns, we observe that quenched jets once
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again appear to present larger splitting fractions at larger formation times, as is corroborated by
figure 5.12.

(a) (b)

Figure 5.10: Primary Lund planes for hadronised, gluon-initiated jets developed in vacuum, found with
the anti-kt algorithm and reclustered with the (a) C/A algorithm and (b) kt algorithm.

(a) (b)

Figure 5.11: Primary Lund planes for in-medium, hadronised, gluon-initiated jets found with the anti-kt
algorithm and reclustered with the (a) C/A algorithm and (b) kt algorithm.
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(a) (b)

Figure 5.12: Lund planes that register the difference between the radiation pattern of primary emissions
with and without quenching effects, when the jets are reclustered with the (a) C/A algorithm and (b) kt
algorithm.

The essential conclusion here is that the introduction of hadronisation greatly diminishes
the discrimination power provided by the kinematical Lund planes. However, that reduction is
much smaller with our proposed Lund plane definition, which retains more structure than the
traditional (ln(1/θ), ln(zθ)) construction used in [49]. While this conclusion is drawn entirely
based on the visual observation of the radiation patterns with and without quenching effects and
their respective differences, that does not make it any less significant. In fact, we have argued
that much of the power of the kinematical Lund plane lies in its visual nature, which allows us
to easily identify enhancements and/or suppressions in specific regions of phase space and later
use those observations to manually craft observables sensitive to those particular regions.

Even still, we desire to corroborate our statement that the (ln(1/θ), ln(t′F )) construction does
better at discriminating between vacuum and in-medium jets. This validation was performed
resorting to a machine learning (ML) architecture, specifically a recurrent neural network (RNN),
and is detailed in chapter 6 of this dissertation.
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Chapter 6

Machine learning results on the Z + jet
hadronic samples

While artificial intelligence (AI) was once no more than mere science fiction, the astonishing
progress registered in the field since its birth in 1956 [83] makes it so that it is nowadays ubiquitous
in our daily life. The field of AI deals with programming machines to automate intellectual tasks
that would otherwise have to be performed by humans [84]. Initial approaches to this problem
consisted in hardcoding explicit rules which encompass the knowledge required by the computer
to perform the desired task. While these approaches proved very useful in formal settings with
well-defined rules, for instance, for teaching a computer how to play chess, they turned out to
be unfruitful in more abstract tasks which are simple to humans, such as object recognition [85].
Thus, researchers realised that, for a large variety of problems, AI systems needed the ability
to acquire their own knowledge from an input dataset. This gave rise to a new approach to AI
known as machine learning (ML). In this case, the ML algorithm (or model) is given a set of
training data and the corresponding answers (or targets). From these, the algorithm learns the
appropriate rules, which can afterwards be applied to new sets of data to give back the answers
associated with them [84]. In our modern society, ML is behind personalised result refinement in
search engines, email spam detection, online advertising and product recommendation, personal
assistants such as Siri or Google Now, online fraud detection, etc. It is also used to perform
natural language processing, speech, handwriting and object recognition, medical diagnosis, etc.

The large amount of data involved in modern high energy physics experiments motivated
physicists to explore ML techniques. These have long since established their worth in the field
and are now widely used for (i) analysing experimental results or data from MC parton showers;
(ii) reconstructing events and (iii) improving the trigger system.

In the context of this dissertation, we desire to build a ML model that is able to learn
distinct features between quenched and non-quenched jets (given our sample of events) and can
afterwards correctly classify each jet from a new jet sample as either quenched or non-quenched.
In order to provide the reader with the background knowledge required for the understanding of
our implemented ML solution, the next section is devoted to making a brief introduction to ML,
deep learning (DL) and artificial neural networks (ANNs). The aim is to provide an overview of
the most important concepts and not an in-depth description of the broad fields that are ML,
DL and ANNs. For that, the reader is referred to [84] and [85]. In section 6.2, we describe our
approach to the classification task at hand and present the results obtained.
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6.1 A brief overview of machine learning, deep learning and ar-
tificial neural networks

We have seen that ML algorithms are able to learn the appropriate rules that convert input data
into the respective answers (or targets). In a more formal language, we say that ML models
work by automatically performing transformations on the input data with the goal of finding the
most useful representation for that data, i.e., the representation that gets the model closer to
the expected target [84]. The “learning” in “machine learning” refers to the automated, iterative
process of searching for the best representation of the data.

DL is a specific field of ML in which we perform several consecutive (simple) transformations
on the data (instead of a single input-to-target transformation), such that we have successive
layers of different representations for the data. ANNs are the dominant models in deep learning.
They were originally inspired by the neurobiology of the human brain [85] and consist in literal
layers stacked on top of each other, each with a certain number of units or neurons. Each layer
takes as input the information output by its predecessor, performs a transformation on the re-
ceived data and passes that information forwards to the subsequent layer. The transformation
performed by each layer is encoded into the layer’s weights. The process of searching for the
optimal representation (i.e., for the optimal weights of the layers) is guided by a feedback signal,
which is a measure by which the model is able to evaluate its own performance. This feedback
signal is provided by the loss function (also known as objective function) which takes the pre-
dictions from the network and checks them against the true targets, yielding a loss score which
determines how far the predictions are from the targets. The larger the value of the loss score,
the larger the distance between the predictions and the targets and the worse the performance
of the model. Since the weights of the NN are initialised at random, the first loss score value
obtained will be large. The learning process then consists in using that score as feedback to the
NN, so that the weights are iteratively updated in directions that successively reduce the loss.
The adjustment of the weights is the job of the optimiser which implements a specific variant of
stochastic gradient descent. The training workflow of a generic NN model (with two layers) is
depicted in figure 6.1.

There are several different types of layers which can be put together to produce different
NN architectures. It is the data processing task at hand that determines the appropriate NN
architecture. For instance, to process sequences of data, recurrent neural networks (RNNs) built
from recurrent layers such as gated recurrent units (GRUs) or long short-term memory (LSTM)
layers are indicated. On the other hand, for dealing with image data processing, convolutional
neural networks (CNNs) have proved long ago to be the best ML solution.

Figure 6.1: Pictogram of the training workflow of a NN, taken from reference [84].
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To summarise, the four essential ingredients in the training of an ANN model are: (i) the
input data and respective targets; (ii) the (adequate) choice of architecture for the task at hand;
(iii) the (appropriate) choice of the loss function to measure the performance of the NN; and (iv)
the optimiser to update the weights of the model. The generic description provided above serves
the purpose of providing the reader with a general (superficial and oversimplistic) understanding
of the overall training process of a NN model and the role played by each of these key ingredients.
However, there is still a plethora of ideas, concepts and details that have not been discussed but
which are paramount to any ML task. We will address some of them briefly, given their relevance
to our own work.

Data partitioning, underfitting, overfitting and early-stopping

In the previous description of the training process of an ANN model, we have seen that we use
a loss score to act as a feedback signal so that the optimiser knows in which direction it should
update the weights of the model. If we have a given sample of input data (and, of course, the
respective targets) we should not use the totality of that sample for the training itself. Instead,
we should partition it into three sets of data: (i) a training set; (ii) a validation set; and (iii) an
evaluation set. As the name indicates, the training set is used for the training proper, just as
described above: the weights of the different layers are initialised, the model is used to generate
predictions for the targets of the input training set, the training loss score is computed and
the optimiser updates the weights of the ANN such as to minimise that score. This process is
iterated a given number of times and each iteration step is called an epoch. Inevitably, given
the way this process is implemented, as we move along the successive epochs, the training loss
(computed using the training set) gets progressively lower. However, this does not necessarily
mean that our model is getting better. In fact, at some point, it will happen that the NN starts
to get sensitive to specific features of the training set. This means that, while it performs well
on that particular dataset, it will perform poorly on new (unseen) sets. When that happens, the
model is said to be overfitting the data.

To establish whether a model is overfitting or not, we use the validation set. This set remains
unseen by the training process proper, i.e., it is not used in the search for the optimal weights.
At the end of each epoch, this (unseen) set of data is used for computing a loss score of its
own - the validation loss score. While the training loss always decreases as we move along the
successive epochs, the validation loss will start to increase when the model begins to overfit.
At that point, the training should be stopped. Opposite to overfitting lies underfitting which
consists in stopping the training before the optimal model has been reached.

To prevent both overfitting and underfitting early-stopping methods can be applied. These
methods work by monitoring a given metrics (generally the validation loss) and stopping the
training if that metric has not improved over a pre-defined number of epochs. At that point, the
weights of the NN are updated to the ones that yielded the best validation loss score over the
totality of epochs.

After the training of the NN is completed and its weights set, the model obtained can be
evaluated on the third (independent) dataset: the evaluation set.

Activation functions

The transformation carried out by each layer in a NN is essentially a (mathematical) linear tensor
transformation. However, having a linear model is too restricting to solve most problems, since
it will only perform well on linearly separable data. For more complex datasets, non-linearities
are necessary so that the NN can properly learn the features of the data, i.e., so that it can find
the best representation for that data.
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To give a layer the ability to perform a non-linear transformation, we associate with it
a given (non-linear) activation function. This function is applied element-wise to the tensor
resulting from the (intrinsic) linear transformation performed by the layer, thus originating
different weights and adding non-linearity. An activation function can be incorporated into each
layer of the model, allowing it to explore a much richer hypothesis space and achieve better
performances.

Some common examples of activation functions are the rectified linear unit (ReLU(x) =
max(0, x)), the sigmoid (σ(x) = 1/(1 + ex)) and the hyperbolic tangent (tanh(x)).

Specific considerations on binary classification problems

We are interested in building a ML model which is able to classify jets as quenched or non-
quenched. Since there are only two possible classes, this is called a binary classification problem.
The number of problems which fit this class is immense and, for that reason, extensive research
has allowed for the existence of well established guidelines for tackling such problems. For one,
the appropriate loss function is the binary cross-entropy function. Moreover, the last layer of the
network should be a dense layer with one single unit and sigmoid activation. This way, an input
tensor from the previous layer is converted into a scalar output between 0 and 1. This scalar
value is known as the classifier and should be interpreted as the probability that the input data
point (in our case a jet) belongs to class 1 (in our case, the class of quenched jets) [84]. The
default threshold for the value of the classifier is 0.5 , meaning that the input jet will be classified
as quenched if the value of the classifier is larger than 0.5 , and it will be classified as a vacuum jet
otherwise. When testing our model in the evaluation dataset, we generate predictions for each
input jet according to the value of the classifier. Afterwards, we can compare those predictions
with the real targets. This allows us to determine the binary accuracy of our model, i.e., the
probability that the model assigns the correct class to a given data point. Analogously to the
loss score, the binary accuracy is a metrics which can be used to evaluate the final performance
of the designed NN; however, contrary to the loss, the larger the binary accuracy the better the
model.

Finally, we can also evaluate and visualise the performance of a binary classifier by building
the so-called receiver operating characteristic (ROC) curve. This curve is built by changing the
threshold value of the classifier and computing the fraction of quenched jets which are correctly
classified as quenched (true positive rates) and also the fraction of vacuum jets which are in-
correctly classified as quenched (false positive rates). A curve of the true positive rates against
the false positive rates can then be plotted; this is the ROC curve. If we have a model which is
capable of perfectly separating the two classes, i.e., a model such that probability densities of the
classifier for the two different classes do not overlap, then the corresponding ROC curve should
resemble a step function. On the other hand, with a random (or useless) model the probability
densities of the classifier obtained for the two classes completely overlap and the ROC curve
corresponds to a unit slope line such that the true positive rates equal the false positive rates.
The area under the ROC curve (AUC) is thus another metrics for the performance of the model.
It should yield a value between 0.5 and 1 , the first value corresponding to a random and useless
classifier and the second corresponding to a perfect discriminator. Hence, the higher the AUC
the better the model.

6.2 Our machine learning investigation and results

In the previous chapter, we have declared that our proposed kinematical Lund plane construction
exploiting the formation time of the splittings yields a better discrimination power between
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quenched and non-quenched jets than does the traditional (ln(1/θ), ln(zθ)) plane. This was
based purely on the visual examination of the radiation patterns obtained with each of these two
constructions. In this dissertation, we decided to go a step further and investigate if inputting
the information used to fill these planes into a ML algorithm would allow it to discern patterns
in the data and correctly classify the jets as quenched or non-quenched. The idea is identical to
the one used in [80] to identify jets stemming from the decay of boosted W hadrons.

As we have seen, along the studies made in this dissertation we have used three different
procedures for filling the kinematical Lund planes. While we have mostly abstained from showing
the full Lund diagram filled with all the emissions within each jet (except for the ones presented
in appendix B), we have argued that it exhibits similar appearance to the primary Lund plane
and, hence, should yield identical discrimination power.

To perform our ML investigations, we chose to use as input data the sequence of primary
emissions within each jet, either:

[[ln(1/θ1), ln(z1θ1)] , [ln(1/θ2), ln(z2θ2)] , ..., [ln(1/θn), ln(znθn)]]

or [[
ln(1/θ1), ln(t′F,1)

]
,
[
ln(1/θ2), ln(t′F,2)

]
, ...,

[
ln(1/θn), ln(t′F,n)

]]
,

depending on the axis definition which is being explored.
There are several reasons to motivate this choice. First, at parton level we have seen that

the primary Lund planes yield a good discrimination between quenched and non-quenched jets.
We have also remarked that the explicit (average) path of primary emissions is a distinct feature
between the two classes of jets. Furthermore, because we focus on the primary emissions, we
have an explicit, sensible sequence of coordinate pairs to input to the ML model.

From the visual discrimination viewpoint, neither the use of only the first emission nor of the
totality of emissions lose in comparison to the primary Lund plane. As such, they are potentially
also a good choice. We have decided against the use of the first splittings for two main reasons: (i)
it would yield a very reduced statistics to perform ML on; and (ii) since no grooming procedures
have been employed it is probable that many of the identified first splittings are not the ones
worth investigating. On the other hand, the use of the totality of emissions would certainly win
over the use of primary emissions alone in terms of the larger statistics it provides. However,
using all emissions would spoil the concept of a clear, explicit sequence of emissions and, for that
reason, we decided to leave such a study for the future.

Since our input dataset is a collection of ordered sequences (one for each jet) it is natural to
use a RNN architecture. We tested several different model architectures using different numbers
of stacked recurrent layers and different numbers of units in them. In the end, since the perform-
ances achieved by the different models were identical, we settled on the simplest architecture,
which has the advantage of being quicker to train. As such, our final NN consists in a single
GRU layer with 64 units, followed by a dense layer with a single unit and sigmoid activation.1

Our ML was implemented in Keras 2.2.4 [86], using TensorFlow 1.13.1 [87] as backend. For
the optimisation we opted towards the use of RMSProp [84, 88] with an initial learning rate of
10−2 which is reduced by half if there is no improvement to the validation loss score over the
last 5 epochs. We set the network to train on a batch size of 512 for a total of 1000 epochs, but
implemented an early-stopping method such that, if there is no improvement to the model for
25 consecutive epochs, the training stops and the model’s weights are updated to the ones that
yielded the lowest validation loss. As explained in the previous section, this serves to prevent
both underfitting and overfitting of the model.

1Alternatively, a single LSTM layer could have been used instead of the GRU layer since, according to reference
[80], that should yield an equivalent performance.
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Now that the details of our implemented ML approach have been described, we should get
back to the discussion of our input physical sample. We have two distinct samples of events: one
for vacuum jets and the other for in-medium jets. Different events within each of these samples
present different number of jets. We chose to analyse how those different event types would
behave in terms of discrimination between quenched and non-quenched jets.

First, we decided to study how the NN would perform on events with a single jet, for which the
available sample is 36 767 and 48 767 events, respectively for the vacuum and medium samples.
Secondly, we considered only events with exactly two jets, for which we have 26 887 and 19 743
events, respectively for vacuum and medium samples. For these events, we have concatenated
the ordered sequences of both leading and sub-leading jets into one single sequence and used
this sequence as input for the model. Finally, we considered both events with one and two jets
such that we have a total number of events that is 63 654 and 68 510 , respectively for vacuum
and medium. To study these events with our NN model, we use the sequence of the one jet in
single-jet events while for the remaining events we concatenate the sequences of the two jets.

The use of these three different input data samples allows us to investigate if any of them
stands out in terms of discrimination. For each of these three cases, the input dataset was
partitioned such that 80% of the jet sequences are used for the training, 10% are used for
validation along each epoch and the remaining (independent) 10% are used for evaluating the
final model performance.

We have also chosen to input the data sequences in three different ways. First, we used as
input the sequence of primary emissions obtained with the C/A algorithm together with the co-
ordinate points of those emissions in the traditional Lund plane construction: (ln(1/θi), ln(ziθi)) .
Secondly, we maintained the use of the C/A algorithm but chose to use instead the coordinates
of the primary emissions within our proposed kinematical plane: (ln(1/θi), ln(t′F,i)). The com-
parison between the results of these two cases allows us to either validate or refute our visually
drawn conclusion that our novel plane definition yields a better discrimination between quenched
and non-quenched jets. Finally, to evaluate the influence of the reclustering algorithm, we chose
to use the sequence of primary emissions obtained from the clustering tree of the tF algorithm,
taking once again the coordinate points of the emissions in our proposed plane.

The results obtained for the validation accuracy along the successive epochs are presented in
figure 6.2. These results show that while using the coordinates of emissions in our plane yields
a much better discrimination between quenched and non-quenched jets, the use of different
reclustering algorithms has virtually no impact in improving discrimination. This is consistent
with our visually drawn conclusions from chapter 5. We also note that using either one of
the three event samples yields no difference in the overall accuracy of the model, i.e., in the
discrimination between quenched and non-quenched jets.

The binary accuracy values obtained on the evaluation dataset are presented in table 6.1,
supporting all of the previous conclusions. The reader will note that so far those conclusions are
all comparative in nature, that is, the model was used essentially as a tool to corroborate the
results visualised in the primary Lund planes. In absolute terms, we notice that we manage to
achieve binary accuracies of around 72% , meaning that the model correctly classifies jets 72%
of the times. This is a very encouraging result.
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(a) (b)

(c)

Figure 6.2: This figure presents the binary accuracy achieved by the RNN in the validation set as
a function of the successive epochs, when using as input the sequence of primary emissions of events
with: (a) one single jet; (b) two jets and (c) either one or two jets. The sequence of primary emissions
was input to the RNN as consecutive pairs of coordinate points in the respective kinematical Lund
plane construction and for a given reclustering algorithm: particularly, for the (ln(θ), ln(zθ)) kinematical
construction with the C/A algorithm (blue dots), and for the new definition (ln(θ), ln(t′F )) together with
both the C/A algorithm (red cross) and tF algorithm (green plus).

C/A reclustering + C/A reclustering + tF reclustering +
(ln(1/θi), ln(ziθi)) (ln(1/θi), ln(t′F,i)) (ln(1/θi), ln(t′F,i))

Events with 1 single jet 69.7% 72.8% 72.1%

Events with 2 jets 68.4% 72.4% 72.5%

Events with either 1 or 2 jets 69.1% 72.6% 71.4%

Table 6.1: The table summarises the binary accuracy achieved by the model when applying it to the
evaluation set in each of the nine different situations.

We decided to pursue further investigations on the performance of our model for the par-
ticular case of events with one single jet, reclustered with the C/A algorithm and using the
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(ln(1/θi), ln(t′F,i)) Lund plane coordinates. From table 6.1 it can be seen that for this case we
obtained a binary accuracy of 72.8% with the evaluation set and using the default threshold value
for the classifier (i.e., 0.5). For this particular instance, we decided to analyse the probability
densities of the classifier for quenched and non-quenched jets. These are presented in figure 6.3a.
Indeed we confirm that quenched jets tend to have classifier values close to one, but there is still
a fraction of 24% of data points which yield values smaller than 0.5 . On the other hand, vacuum
jets do not exhibit such a peaked probability density close to zero as do quenched jets close to
unity, but they still yield a larger fraction of data points to the left of the default threshold than
to its right: namely, 69% of vacuum jets return classifier values smaller than 0.5. Conversely
to these two values, we have a true positive rate of 1 − 0.24 = 0.76 and a false positive rate of
1− 0.69 = 0.31 , for the default threshold value of the classifier.

To evaluate how these values change when we vary the threshold of the classifier we can have
a look at the ROC curve plotted in figure 6.3b. The overall look of this curve is very positive
and, particularly, the AUC is approximately 0.80 , which is a good result. Globally, we conclude,
once again, that the results obtained with our model are promising.

(a) (b)

Figure 6.3: This figure presents in (a) the probability density of the classifier values for both quenched
(red) and non-quenched (blue) jets and in (b) the corresponding ROC curve and its respective AUC,
obtained with our model for single jet events with C/A reclustering and Lund plane coordinates
(ln(1/θi), ln(t′F,i)).
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Chapter 7

Concluding remarks

The goal of this master dissertation was to develop a set of tools which allows us to better
distinguish between jets which have interacted with the QGP and those which have not. Instead
of taking one of the two dichotomous approaches widely established in literature - either the
manual crafting of high-level observables or the direct use of a ML model to extract information
from jet images (or other input data with low-level physical processing) - we opted towards the
adaptation of the approach presented in [80]. That means we resorted to the use of kinematical
Lund planes. These present us with a visual representation of the phase space of emissions within
jets. Indeed, much of the power of the Lund planes lies in their visual nature, which allows us
to easily identify regions of the phase space which exhibit enhancements or suppressions in the
presence of the QGP, when compared to the vacuum baseline. By offering that information in
such a straightforward fashion, they can, on the one hand, motivate the construction of suitable
observables, sensitive to the appropriate regions of the phase space. On the other hand, the data
used to build these planes can also be input into a ML algorithm whose architecture should be
optimised to secure the highest achievable performance in the task of discriminating between
quenched and non-quenched jets. Thus, the building of these planes offers us a good starting
ground for further investigations, helping to bridge the two (well established) leading approaches
currently in use.

We started our investigations considering only events at parton level (chapter 4). This is a
natural starting point since it avoids the inclusion of phenomena which are not calculable directly
from perturbative QCD (notably hadronisation). Thus we can study and try to understand the
physical effects in play at the most fundamental level, i.e., at the level of quarks and gluons. Our
results from this chapter were comprehensive: we explored a variety of kinematical definitions
for the y−axis of the Lund planes, different fillings procedures and also diverse reclustering
algorithms. Amongst our principal conclusions is the observation that these kinematical Lund
planes deliver marked differences between the radiation patterns of quenched and non-quenched
jets, thus providing a good (visual) discrimination between the two classes of jets. Specifically, we
have seen that the QGP spreads radiation throughout the plane, consistently to the soft, large-
angle and hard, collinear regions of the phase space. It is also clear that, in the presence of the
hot and dense medium, the momentum scale involved in the emissions is decreased with respect
to vacuum and that there is an enhancement of the fraction of delayed emissions (i.e., emissions
with large formation times). Furthermore, we have seen that the (average) explicit paths of the
primary emissions along the splitting maps are a discriminant feature between quenched and
non-quenched jets. In particular, these paths show (just as the radiation patterns themselves)
the effect of medium-delayed radiation - especially for the large-angled, first emissions which are
delayed, on average, by a factor of four. Overall, our conclusions regarding the kinematical Lund
planes at parton level are that, following our expectation and desire, they provide a remarkable
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discrimination power between quenched and non-quenched jets. Given that observation we expect
that high discrimination performances are achieved either by the construction of the appropriate
observables (sensitive to the relevant regions of the phase space) or by inputting the information
used to build the planes into an adequate ML model.

Following our initial studies at parton level, we decided to investigate in what way our results
and conclusions were altered by the inclusion of both hadronisation and ISR into the picture
(chapter 5). Although this takes us a step closer to reality, it also adds a degree of uncertainty
associated with the fact that hadronisation is modelled and not calculated from first principles
of QCD. As a consequence of the inclusion of these two effects, our analysis of the hadronised
samples shows a considerable smearing of the radiation patterns; there is a substantial loss
of structure to them and the pronounced differences between quenched and non-quenched jets
observed at parton level are significantly subdued. Notably, our proposed Lund plane, exploring
the use of the logarithm of the formation time of the splittings for the vertical axis, appears to
retain more structure and discrimination power than does the tradition (ln(1/θ), ln(zθ)) Lund
plane definition.

The final task of this dissertation consisted in the implementation of a RNN model capable
of classifying jets as quenched or non-quenched, when input with the paths of primary emissions
of the jets along the kinematical Lund plane. We focused this investigation on the comparative
study of the performance of our model using different subsets of events, different Lund plane
coordinates (y ≡ ln(zθ) and y ≡ ln(t′F )) and reclustering trees obtained with different jet al-
gorithms. Our conclusions are that the use of different event subsets and different reclustering
algorithms delivers no perceivable variations in the overall classification performance of the RNN.
On the other hand, the kinematical variable chosen for the y−axis of the Lund plane has a clear
influence on performance. In particular, the results corroborate our visual assessments of the
primary Lund planes for the hadronised samples, from which we conclude that our plane proposal
yields a better discrimination between quenched and non-quenched jets.

The maximum binary accuracy achieved by our model is around 72%, meaning that the
RNN is able to correctly classify a jet as either quenched or non-quenched 72 out of 100 times.
Further, we have also seen that while our model does not yield a perfect discrimination between
the two classes, the ROC curve looks very good and the AUC has a value close to 0.80 . We
regard these results as positive and encouraging, specially in light of the fact that these are our
first, preliminary benchmark studies.

Of course, the work done is by no means finished. There are still a lot of promising ideas,
approaches and avenues of research which need to be pursued in continuation of this work.
One notable improvement, which was mentioned repeatedly along the text, is the inclusion of
grooming and trimming procedures, to clean the jet structure of uninteresting and irrelevant
emissions. The reason to leave the implementation of such techniques out of this dissertation
was that our main goal was to establish a benchmark of what is achievable without the inclusion
of additional pre-processing techniques. Inevitably, these will introduce into the analysis an
additional degree of arbitrariness, which we wanted to avoid at this point. Moreover, it is clear
that the inclusion of underlying event and medium recoil effects into these samples is imperative
to allow the proper comparison with results from real-life events in collider experiments. Also to
that end, the possibility of including the simulation of detector effects should also be analysed.
When it comes to ML there are also further avenues of research that remain open. For instance,
an analysis of the discrimination power that can be achieved by using only the first splittings
or all of the splittings within each jet should be conducted. Further, the study of different
architectures (other than a RNN) could also prove informative and beneficial.

All things considered, while the work conducted was comprehensive in many aspects and
provides a baseline for future endeavours, much remains to be investigated and explored. In
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the end, we hope to show that the Lund planes can potentially be used as observables in the
discrimination between quenched and non-quenched jets at the experimental level.
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Appendix A

Useful Feynman rules

As explained in chapter 1, a set of Feynman rules can be derived from a given Lagrangian [1].
In this appendix we do not intend to proceed with such derivation and instead limit ourselves
to the presentation of various Feynman rules associated with the QED and QCD Lagrangians
given in equations (1.1) and (1.2).

In QED, there is a single interaction vertex which comes from the −ψ̄efγµAµψ term of the
Lagrangian and can be written as:

µ
= −iefγµ . (A.1)

In a Feynman diagram, internal lines are represented by a propagator. In QED, there are two
different propagators: one associated in the (photon) gauge field and the other with the charged
fermions. The photon propagator is given by:

ν µq
= −i gµν

q2 + iε
, (A.2)

where gµν is the Minkowski metric (+,−,−,−), q2 is the photon’s virtuality (i.e., its four-
momentum squared) and iε→ i0+ to ensure that this propagator is a retarded Green function.
On the other hand, the charged fermion propagator is:

p
= i �p+m

p2 −m2 + iε
, (A.3)

where �p = γµpµ .
Also important to know is that external photon lines get polarisation vectors while external

fermion lines get spinors such that:

• an incoming (or initial) photon has a polarisation vector εµ(p) while an outgoing (or final)
photon has a polarisation vector ε∗µ(p);

• an incoming or outgoing fermion has a spinor u(p) or ū(p), respectively, while an incoming
(outgoing) anti-fermion has a spinor v̄(p) (v(p)).
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As discussed in chapter 1, QCD is a much richer theory than QED and such is reflected in its
Lagrangian. In this case, there are three possible interaction vertices. The first vertex comes
from the interaction between quarks and gluons (qqg) described by the ψ̄agsγµtAabAAµψb term
in the Lagrangian. This interaction vertex is analogous to that resulting from the interaction
between photons and charged fermions in QED (equation (A.1)), and can be presented as:

A,µ

a

b

= igsγ
µtAab . (A.4)

The second interaction vertex is the triple-gluon vertex, which comes from the cubic term in the
gluon field: gsfABC

(
∂µAA, ν

)
ABµACν such that

A,µ

B, ν

C, ρ

k p

q

= gsf
ABC [gµν(k − p)ρ + gνρ(p− q)µ + gρµ(q − k)ν ] . (A.5)

The final interaction vertex is the 4-gluon vertex arising from the quartic term in the gluon field
that results from the product of two gsfABCABµACν terms and produces a vertex such that:

A,µ

B, ν

C, ρ

D, σ

= −ig2
s

[
fABF fCDF (gµρgνσ − gµσgνρ) + fACF fBDF (gµνgρσ − gµσgνρ) +

+fADF fBCF (gµνgρσ − gµρgνσ)
]
.

(A.6)

Note that this vertex is proportional to g2
s unlike the other two, making it a higher order term.

Thus, equations (A.4), (A.5) and (A.6) summarise the Feynman rules for the QCD interaction
vertices. The only piece of the puzzle which is missing (and is relevant for this work) are the quark
and gluon propagators. The gluon propagator is exactly the same as the photon propagator but
since gluons carry colour charge, here we explicitly include a Dirac-δ to guarantee conservation
of the fundamental colour between the two vertices,

b, µ a, µq
= −i gµν

q2 + iε
δab , (A.7)

where the indices a and b are colour indices. Similarly, the quark propagator is a specific case of
the fermion propagator written for QCD but which carries colour charge. For that reason, for
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the quark propagation we can make an explicit statement of colour conservation of the quark as
it propagates between the two vertices,

b a
p

= i �p+m

p2 −m2 + iε
δab . (A.8)

It is also important to note that, just like for external photon lines, external gluon lines take
polarisation such that: an incoming gluon has a polarisation vector εµ(p) while an outgoing
gluon has a polarisation vector ε∗µ(p).
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Full Lund diagrams for the
(ln (1/θ) , ln (1/z)) construction

In order to reduce to the bulk size of section 4.1 of chapter 4 and because the behaviour of
the full Lund diagrams closely resembles that of the primary Lund planes, we have decided to
remove their presentation from the main text and instead place them in the present appendix,
for consultation.

Figures B.1 and B.2 depict the radiation pattern of all emissions of gluon-initiated jets de-
veloped, respectively, in vacuum and in the presence of the QGP, for the three jet reclustering
algorithms. Indeed it is straightforward to see the similarities to the radiation pattern in the
primary Lund planes (figures 4.4 and 4.5). The differences between in-medium jets and vacuum
jets are presented in figure B.3.

In the case of quark-initiated jets, following the structure present in the text, we present
only the results using the C/A and kt algorithms, since the tF algorithm yields and intermediate
behaviour between these two. Figures B.4 and B.5 yield the radiation pattern of all emissions
within these jets in vacuum and in medium, respectively, while figure B.6, depicts the difference
between them.
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(a) (b)

(c)

Figure B.1: Full Lund diagram for gluon-initiated jets developed in vacuum, found with the anti-
kt algorithm and reclustered with the (a) C/A algorithm, (b) kt algorithm and (c) tF algorithm.
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(a) (b)

(c)

Figure B.2: Full Lund diagram for in-medium, gluon-initiated jets found with the anti-kt al-
gorithm and reclustered with the (a) C/A algorithm, (b) kt algorithm and (c) tF algorithm.
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(a) (b)

(c)

Figure B.3: Lund planes that register the difference between the radiation pattern of all emissions
with and without quenching effects, when the jets are reclustered with the (a) C/A algorithm,
(b) kt algorithm and (c) tF algorithm.
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(a) (b)

Figure B.4: Full Lund diagram for quark-initiated jets in vacuum, found with the anti-kt al-
gorithm and reclustered with the (a) C/A algorithm and (b) kt algorithm.

(a) (b)

Figure B.5: Full Lund diagram for in-medium, quark-initiated jets found with the anti-kt al-
gorithm and reclustered with the (a) C/A algorithm and (b) kt algorithm.
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(a) (b)

Figure B.6: Lund planes that register the difference between the radiation pattern in the full
Lund diagram with and without quenching effects, when the jets are reclustered with the (a)
C/A algorithm and (b) kt algorithm.
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