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In this paper, firstly we study the continuity of the core-EP inverse without explicit
error bounds by virtue of two methods. One is the rank equality, followed from the
classical generalized inverse. The other one is matrix decomposition. The continuity of
the core inverse can be derived as a particular case. Secondly, we study perturbation
bounds for the core-EP inverse under prescribed conditions. Perturbation bounds for the
core inverse can be derived as a particular case. Also, as corollaries, the sufficient (and
necessary) conditions for the continuity of the core-EP inverse are obtained. Thirdly, a
numerical example is illustrated to compare derived upper bounds. Finally, an application
to semistable matrices is provided.
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1 Introduction

It is known that the inverse of a nonsingular matrix is a continuous function. However, in
general, the operations of generalized inverses such as Moore-Penrose inverse, Drazin inverse,

weighted Drazin inverse, generalized inverse A
(2)
T,S and core inverse are not continuous [1–5].

It is of interest to know whether the continuity of the core-EP inverse holds. In this note, we
will answer this question.

Throughout this paper, Cn denotes the sets of all n-dimensional column vectors and Cm×n
is used to denote the set of all m× n complex matrices. For each complex matrix A ∈ Cm×n,
A∗ denotes the conjugate transpose of A, R(A) and N (A) denote the range (column space)
and null space of A respectively. The Moore-Penrose inverse of A, denoted by A†, is the
unique solution to

AXA = A, XAX = X, (AX)∗ = AX and (XA)∗ = XA.
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Let A ∈ Cn×n, the index of A, denoted by ind(A), is the smallest non-negative integer k for
which rank(Ak) =rank(Ak+1). The Drazin inverse of A, denoted by AD, is the unique solution
of the system

AXAk = Ak, XAX = X and AX = XA.

Recall that the core-EP inverse was proposed by Manjunatha Prasad and Mohana [6] for
a square matrix of arbitrary index, as an extension of the core inverse restricted to a square
matrix of index one in [7]. Then, Gao and Chen [8] characterized the core-EP inverse (also
known as the pseudo core inverse) in terms of three equations. For A ∈ Cn×n with ind(A) = k,
the core-EP inverse of A, denoted by A †©, is the unique solution to equations

XAk+1 = Ak, AX2 = X, (AX)∗ = AX. (.)

The core-EP inverse is an outer inverse ({2}-inverse), i.e., A †©AA †© = A †©, see [8]. If k = 1,
then the core-EP inverse of A is the core inverse of A. denoted by A#© (see [7]).

Lemma 1.1. [8] Let A ∈ Cn×n with ind(A) = k. Then we have the following facts:
(1) A †© = ADAk(Ak)† = ADAj(Aj)†, for any j ≥ k;
(2) AD = (A †©)k+1Ak.

From Lemma 1.1, it follows that Ak(Ak)† = AA †© = Aj(Aj)† (for any j ≥ k) and

A †© = ADAk(Ak)† = ADAk+1(Ak+1)† = Ak(Ak+1)†. (.)

Recall that the Euclidean vector norm is defined by

‖x‖2 = x∗x for any x ∈ Cn,

the spectral norm of a matrix A ∈ Cn×n is defined by

‖A‖ = sup
x 6=0

‖Ax‖
‖x‖

,

and
‖Ax‖ ≤ ‖A‖‖x‖ for all A ∈ Cn×n and all x ∈ Cn,
‖AB‖ ≤ ‖A‖‖B‖ for all A, B ∈ Cn×n,
‖A∗‖ = ‖A‖ for all A ∈ Cn×n.

For a nonsingular matrix A, κ(A) = ‖A‖‖A−1‖ denotes the condition number of A. As usual,
this is generalized to the core-EP condition number κ †©(A) = ‖A‖‖A †©‖ if A is singular.

Lemma 1.2. [4] Let A ∈ Cn×n with ‖A‖ < 1. Then I +A is non-singular and

‖(I +A)−1‖ ≤ (1− ‖A‖)−1.
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The paper is organized as follows. In Section 2, the continuity of the core-EP inverse
without explicit error bounds is investigated by means of a rank equation and a matrix
decomposition respectively. The continuity of the core inverse are obtained as corollaries. In
Section 3, perturbation bounds for the core-EP inverse are investigated respectively under
three reasonable cases:

(1) R(E) ⊆ R(Ak) and N (Ak∗) ⊆ N (E), where k = ind(A);
(2) AA †© = (A+ E)(A+ E) †© and A †©A = (A+ E) †©(A+ E);
(3) rank

(
Ak
)

= rank
(
(A+ E)k

)
, where k = max{ind(A), ind(A+ E)}.

The above three cases are motivated by articles [4, 9–11].
The relation scheme of (1)-(3) states as follows : notice that (1) is equivalent to

(4) E = A †©AE = EAA †©;

in general, (1) and (2) are independent, see Example 1.3 and Example 1.4; (1) and (3) are
independent, see Examples 1.3 and 1.5; (2) implies (3), but (3) may not imply (2), see Example
1.5.

Example 1.3. Let A =

[
1 0
0 0.1

]
, E =

[
0 0
0 −0.1

]
. Then E = A †©AE = EAA †©. However,

AA †© 6= (A+ E)(A+ E) †©, A †©A 6= (A+ E) †©(A+ E) and rank(A) 6= rank(A+ E).

Example 1.4. let A =

1 0 0
0 0 0
0 0 0

 , E =

0.1 0 0
0 0 0.1
0 0 0

. Then AA †© = (A + E)(A +

E) †©, A †©A = (A+ E) †©(A+ E). However, AA †©E 6= E.

Example 1.5. let A =

1 0 0
0 0 0
0 0 0

 , E =

0.1 0.1 0
0 0 0
0 0 0

. Then rank(A) = rank(A + E).

However, A †©A 6= (A+ E) †©(A+ E) and E 6= EAA †©.

Among the above conditions, (3) would be the weakest condition to consider perturbation
bounds for the core-EP inverse. Although (2) is stronger than (3), yet (2) in conjunction with
other restrictions on A, E would help to acquire a better error bound. Thus (1)-(3) are all
worth to be studied. As special cases, perturbation bounds for the core inverse are obtained.
Meanwhile, the sufficient (and necessary) conditions for which the operation of the core-EP
inverse is continuous are derived as natural outcomes. In Section 4, a numerical example is

illustrated to compare upper bounds for ‖(A+E) †©−A †©‖
‖A †©‖ by using derived results in Section 3.

It turns out that upper bounds in case (1) and (2) are slightly better than that in case (3).
In Section 5, an application to semistable matrices is provided.

2 Continuity of the core-EP inverse

The following example shows that the core-EP inverse of a square matrix is not continuous
in general.
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Example 2.1. Let Aj =


1/j 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 and A =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

. Then Aj → A (j →∞).

However,

A †©j =


j 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

9 0 = A †© (j →∞).

In the rest of this section, we consider the necessary and sufficient conditions for which
the core-EP inverse has the continuity property.

2.1 Rank equality method

In [3], the continuity of classical generalized inverses are studied by means of rank equalities.
Analogously, we consider the continuity of the core-EP inverse.

Lemma 2.2. [3] Let {Aj} ⊆ Cm×n, A ∈ Cm×n with Aj → A (j →∞). Then A†j → A† (j →
∞) if and only if there exists j0 such that rank(Aj) = rank(A) for all j ≥ j0.

Lemma 2.3. [3] Let {Aj} ⊆ Cn×n, A ∈ Cn×n with Aj → A (j →∞). Then ADj → AD (j →
∞) if and only if there exists j0 such that rank(A

ind(Aj)
j ) = rank(Aind(A)) for all j ≥ j0.

Lemma 2.4. [3] Let {Aj} ⊆ Cn×n, A ∈ Cn×n with Aj → A (j → ∞), ADj → AD (j → ∞).
Then there exists j0 such that ind(A) ≤ ind(Aj) for all j ≥ j0.

Analogous to Lemma 2.4, we establish a similar result for the core-EP inverse.

Lemma 2.5. Let {Aj} ⊆ Cn×n, A ∈ Cn×n with Aj → A (j → ∞), A †©j → A †© (j → ∞).
Then there exists j0 such that ind(A) ≤ ind(Aj) for all j ≥ j0.

Proof. The proof is similar to the Drazin inverse case. For completeness, let us give the
proof.

Suppose that Aj → A and A †©j → A †© as j →∞. Let {Aji} be a subsequence with constant

index k of {Aj}. Then A †©ji (Aji)
k+1 = (Aji)

k. By taking limits, we derive that

A †©Ak+1 = Ak.

Hence ind(A) ≤ k. Since the index function takes only finitely many values between 0 and n,
we obtain that there exists a j0 such that

ind(A) ≤ ind(Aj) for all j ≥ j0.
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Making an integral application of Lemmas 2.2-2.5, we derive the following result.

Theorem 2.6. Let {Aj} ⊆ Cn×n, A ∈ Cn×n with Aj → A (j →∞). Then the following are
equivalent:

(1) A †©j → A †© (j →∞);

(2) ADj → AD (j →∞);

(3) there exists j1 such that rank(A
ind(Aj)
j ) = rank(Aind(A)) for all j ≥ j1;

(4) there exists j2 such that rank(A
ind(Aj)
j ) = rank(Aind(Aj)) = rank(Aind(A)) for all j ≥ j2.

Proof. (1) ⇒ (2) From Lemma 1.1, it follows that ADj = (A †©j )ind(Aj)+1A
ind(Aj)
j , which con-

verges to (A †©)ind(Aj)+1Aind(Aj). By Lemma 2.5, there exists j0 such that ind(Aj) ≥ ind(A)
for all j ≥ j0. Then for all j ≥ j0,

(A †©)ind(Aj)+1Aind(Aj) = (A †©)ind(A)+1Aind(A) = AD.

Namely ADj → AD (j →∞).
(2)⇔ (3) It is clear by Lemma 2.3.

(3) ⇒ (4) Since rank(A
ind(Aj)
j ) = rank(Aind(A)) for all j ≥ j1, then ADj → AD (j →

∞) by Lemma 2.3. Thus, there exists j′1 such that ind(Aj) ≥ ind(A) for all j ≥ j′1 in view of
Lemma 2.4. Therefore, for all j ≥ j2 =max{j1, j′1},

Aind(Aj) = Aind(A)Aind(Aj)−ind(A) and Aind(A) = (AD)ind(Aj)−ind(A)Aind(Aj)

and hence rank(Aind(Aj)) = rank(Aind(A)).
(4) ⇒ (1) From the assumption, we derive ADj → AD (j → ∞) by applying Lemma 2.3.

Then there exists j3 such that ind(Aj) ≥ ind(A) for all j ≥ j3 by applying Lemma 2.4. Let

j0 = max{j2, j3}, by Lemma 2.2 and the assumption rank(A
ind(Aj)
j ) = rank(Aind(Aj)), we

derive
(A

ind(Aj)
j )† → (Aind(Aj))† (j →∞).

From the above and Lemma 1.1, A †©j = ADj A
ind(Aj)
j (A

ind(Aj)
j )† → ADAind(Aj)(Aind(Aj))† (j →

∞). Since ind(Aj) ≥ ind(A) for all j ≥ j0, A
ind(Aj)(Aind(Aj))† = Aind(A)(Aind(A))† for all

j ≥ j0. Hence, A †©j → ADAind(A)(Aind(A))† = A †© (j →∞).

The continuity of the core inverse can be derived as a particular case ind(A) = ind(Aj) = 1
in Theorem 2.6.

Corollary 2.7. If {Aj} ⊆ Cn×n, A ∈ Cn×n and Aj → A (j → ∞). Then the following are
equivalent:

(1) A#©
j → A#© (j →∞);

(2) A#
j → A# (j →∞);

(3) there exists j0 such that rank(Aj) = rank(A) for all j ≥ j0.
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2.2 Matrix decomposition method

In [1], Pierce decomposition is used to study the continuity of the Moore-Penrose inverse.
However this approach is not suitable for the core-EP inverse since the core-EP inverse is not
an inner inverse. As an alternative, we make use of the core-EP decomposition.

Recall that the core-EP decomposition [12] of A is

A = U

[
T S
0 N

]
U∗ = U

[
T S
0 0

]
U∗ + U

[
0 0
0 N

]
U∗ = A1 +A2, (.)

where U is unitary, T is non-singular and N is nilpotent with index k, in which case,

A †© = A#©
1 = U

[
T−1 0

0 0

]
U∗.

Fix A ∈ Cn×n with ind(A) = k and consider the following equations

XAk+1 −Ak = E1, AX
2 −X = E2 and AX − (AX)∗ = E3. (.)

Here X may be thought of as an approximation and the Ei (i = 1, 2, 3) as error terms. Let
X = A †© + F. Then (2.2) becomes

FAk+1 = E1, (.)

AA †©F +AFA †© +AF 2 − F = E2, (.)

AF − (AF )∗ = E3. (.)

Suppose that F = U

[
X1 X2

X3 X4

]
U∗. According to (2.3),

U

X1T
k+1 X1

∑
i+j=k

T iSN j

X3T
k+1 X3

∑
i+j=k

T iSN j

U∗ = E1,

i.e.,

[
X1 Θ2

X3 Θ4

]
= U∗E1U

[
(T k+1)−1 0

0 I

]
, (.)

where Θ2 = X1
∑

i+j=k

T iSN j and Θ4 = X3
∑

i+j=k

T iSN j .

Then according to (2.4),

U

[
∆1 ∆2

∆3 NX3X2 +NX2
4 −X4

]
U∗ = E2, (.)
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where

∆1 = TX1T
−1 + SX3T

−1 + TX2
1 + SX3X1 + TX2X3 + SX4X3,

∆2 = TX1X2 + SX3X2 + TX2X4 + SX2
4 ,

∆3 = NX3T
−1 −X3 +NX3X1 +NX4X3.

Finally according to (2.5),

U

[
Γ1 TX2 + SX4 − (NX3)

∗

Γ3 Γ4

]
U∗ = E3, (.)

where Γ1 = TX1+SX3−(TX1+SX3)
∗, Γ3 = NX3−(TX2+SX4)

∗ and Γ4 = NX4−(NX4)
∗.

If Ei → 0, by applying (2.6)-(2.8), then

X1 → 0, X3 → 0, (.)

NX2
4 −X4 → 0, (.)

X2 + T−1SX4 → 0. (.)

From (2.10), it follows that

X4 → NX2
4 → N2X3

4 → · · · → NkXk+1
4 = 0. (.)

Plug X4 → 0 into (2.11), giving
X2 → 0. (.)

In view of (2.9), (2.12) and (2.13), F → 0. Hence we have the following result.

Theorem 2.8. Let A ∈ Cn×n with ind(A) = k. If {Xj} is a sequence of n×n matrices such
that the sequences {XjA

k+1 − Ak}, {AX2
j −Xj} and {AXj − (AXj)

∗} all converge to zero,
then {Xj} converges to A †©.

A consequence of Theorem 2.8 is that it makes sense to check a computed Â †© exactly by
using the system (1.1) if A is known.

The case of the core inverse can be derived by letting k = 1 in Theorem 2.8.

Corollary 2.9. Let A ∈ Cn×n with ind(A) = 1. If {Xj} is a sequence of n × n matrices
such that the sequences {XjA

2−A}, {AX2
j −Xj} and {AXj − (AXj)

∗} all converge to zero,
then {Xj} converges to A#©.

3 Perturbation bounds

In this section, we consider perturbation bounds for the core-EP inverse under reasonable
conditions. We refer readers to [4, 9–11, 13–17] for a deep study of perturbation bounds for
classical generalized inverses and refer readers to [18] for a study of perturbation bounds for
the core inverse.
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3.1 The case: R(E) ⊆ R(Ak) and N (Ak∗) ⊆ N (E)

In this part, we study perturbation bounds for (A+ E) †© in the case:

R(E) ⊆ R(Ak), N (Ak∗) ⊆ N (E), where k = ind(A).

This condition is motivated by literatures [4, 9], in which, perturbation bounds for the Moore-
Penrose inverse and Drazin inverse were considered respectively.

After which, a sufficient condition for the continuity of the core-EP inverse is derived
naturally.

Theorem 3.1. Let A, E ∈ Cn×n and k = ind(A). If R(E) ⊆ R(Ak), N (Ak∗) ⊆ N (E) and
‖A †©E‖ < 1. Then

(A+ E) †© = (I +A †©E)−1A †© (.)

and
‖(A+ E) †© −A †©‖

‖A †©‖
≤ ‖A †©E‖

1− ‖A †©E‖
. (.)

Proof. In view of (2.5), there exist unitary matrices U such that

A = U

[
T S
0 N

]
U∗.

Let

E = U

[
E1 E2

E3 E4

]
U∗.

From the assumption R(E) ⊆ R(Ak), it follows that E = A †©AE, which implies

E3 = 0 and E4 = 0.

Then from the assumption N (Ak∗) ⊆ N (E), we have E = EAA †©, which deduces that

E2 = 0.

Thus,

A+ E = U

[
T + E1 S

0 N

]
U∗.

Hence,

(A+ E) †© = U

[
(T + E1)

−1 0
0 0

]
U∗

= (I +A †©E)−1A †©

and
(A+ E) †© −A †© = −A †©E(A+ E) †©.
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Therefore, by Lemma 1.2,

‖(A+ E) †© −A †©‖
‖A †©‖

≤ ‖A †©E‖
1− ‖A †©E‖

.

It completes the proof.

Corollary 3.2. Let A, E be as in Theorem 3.1 and ‖A †©‖‖E‖ < 1. Then

‖(A+ E) †© −A †©‖
‖A †©‖

≤ κ †©(A)‖E‖‖A‖
1− κ †©(A)‖E‖‖A‖

. (.)

The bound (3.3) is perfectly analogous to bounds for the Drazin inverse in [9], the Moore-
Penrose inverse and the ordinary inverse in [4].

In the following, a sufficient condition for the continuity of the core-EP inverse is derived
as a corollary.

Corollary 3.3. Let A ∈ Cn×n and let {Ej} be a sequence of n × n matrices such that
‖Ej‖ → 0. If there exists a positive integer j0 such that Ej = EjAA

†© = A †©AEj for all
j ≥ j0, then (A+ Ej)

†© → A †©.

Remark 3.4. If ind(A) = 1, then the condition of Theorem 3.1 is reduced to E = EAA#© =
A#©AE and ‖A#©E‖ < 1. Thus, under these assumptions, perturbation bounds for the core
inverse are obtained.

3.2 The case: AA †© = (A + E)(A + E) †© and A †©A = (A + E) †©(A + E)

In this part, perturbation bounds for the core-EP inverse are investigated under the assump-
tion that AA †© = (A+ E)(A+ E) †©, A †©A = (A+ E) †©(A+ E). This condition is motivated
by article [10], in which, perturbation bounds for the Drazin inverse were investigated.

A sufficient condition for which the operation of the core-EP inverse is a continuous func-
tion is derived as a corollary.

Theorem 3.5. Let A, E ∈ Cn×n such that AA †© = (A+E)(A+E) †©, A †©A = (A+E) †©(A+E)
and ‖A †©E‖ < 1. Then

‖(A+ E) †©‖ ≤ ‖A †©‖
1− ‖A †©E‖

(.)

and
‖(A+ E) †© −A †©‖

‖A †©‖
≤ ‖A †©E‖

1− ‖A †©E‖
. (.)

Proof. Since AA †© = (A+ E)(A+ E) †© and A †©A = (A+ E) †©(A+ E), then

(A+ E) †© −A †© = A †©[A− (A+ E)](A+ E) †©.

9



Thus, (A+ E) †© = A †© −A †©E(A+ E) †©. Applying the norm ‖ · ‖,

‖(A+ E) †©‖ ≤ ‖A †©‖+ ‖A †©E‖‖(A+ E) †©‖.

Hence (3.4) is obtained since ‖A †©E‖ < 1.
Again from (A+ E) †© −A †© = A †©[A− (A+ E)](A+ E) †©, it follows that

(A+ E) †© −A †© = −A †©E[A †© + (A+ E) †© −A †©].

Applying the norm ‖ · ‖,

‖(A+ E) †© −A †©‖ ≤ ‖A †©E‖[‖A †©‖+ ‖(A+ E) †© −A †©‖].

Since ‖A †©E‖ < 1, then (3.5) is derived.

Corollary 3.6. Let A, E be as in Theorem 3.5 and ‖A †©‖‖E‖ < 1. Then

‖(A+ E) †© −A †©‖
‖A †©‖

≤ κ †©(A)‖E‖/‖A‖
1− κ †©(A)‖E‖/‖A‖

. (.)

The bound (3.6) is perfectly analogous to a bound for the Drazin inverse in [10].
From Theorem 3.5, we derive a sufficient condition for the continuity of the core-EP

inverse, as follows.

Corollary 3.7. Let A ∈ Cn×n and let {Ej} be a sequence of n × n matrices such that
‖Ej‖ → 0. If there exists a positive integer j0 such that AA †© = (A+Ej)(A+Ej)

†© and A †©A =
(A+ Ej)

†©(A+ Ej) for all j ≥ j0, then (A+ Ej)
†© → A †©.

Remark 3.8. If ind(A) = ind(A+ E) = 1, then the condition of Theorem 3.5 is reduced to
AA#© = (A + E)(A + E)#©, A#©A = (A + E)#©(A + E) and ‖A#©E‖ < 1. Thus, under these
assumptions, a perturbation bound for the core inverse is obtained.

3.3 The case: rank
(
Ak
)

= rank
(
(A + E)k

)
It is known from [11] that if A and {Ej} are n× n matrices such that ‖Ej‖ → 0, then there
exists a positive integer j0 such that

rank
(

(A+ Ej)
kj
)
≥ rank

(
Akj
)

for all j ≥ j0, where kj =max{ind(A), ind(A+ Ej)}.
Let A, E ∈ Cn×n. For an arbitrary positive integer h, define E(Ah) by E(Ah) = (A +

E)h −Ah. Then ‖(A+ E)h‖ ≤ ‖Ah‖+ ε(Ah), where

ε(Ah) =

h−1∑
i=0

Ci
h‖A‖i‖E‖h−i ≥ ‖E(Ah)‖

and Ci
h is the binomial coefficient.
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Lemma 3.9. Let k = max{ind(A), ind(A+ E)}. If rank
(
(A+ E)k

)
> rank

(
Ak
)
, then

‖(A+ E) †©‖ ≥ 1

[ε(Ak)]1/k
.

Proof. The proof is analogous to the proof of [11, Theorem 3]. For completeness and conve-
nience, we give a proof.

Since R(Ak) ⊕ N (Ak) = Cn, rank
(
(A+ E)k

)
> rank

(
Ak
)
, then there exists x 6= 0 such

that x ∈ R((A + E)k) ∩ N (Ak) by [3, Lemma 1]. Without loss of generality, we can assume
‖x‖ = 1. Then x = [(A+ E) †©]k(A+ E)kx and

1 = x∗x = x∗[(A+ E) †©]k(A+ E)kx = x∗[(A+ E) †©]kE(Ak)x ≤ ‖(A+ E) †©‖kε(Ak).

Hence ‖(A+ E) †©‖ ≥ 1
[ε(Ak)]1/k

.

Lemma 3.9 declares that ‖(A+ E) †©‖ → ∞ as ‖E‖ → 0 provided

rank
(

(A+ E)k
)
> rank

(
Ak
)
.

Also, from Lemma 3.9 we immediately obtain the following result.

Corollary 3.10. Let {Ej} be a sequence of n × n matrices such that ‖Ej‖ → 0, kj =
max{ind(A), ind(A+Ej)}. If (A+Ej)

†© → A †©, then there exists j0 such that rank
(
(A+ Ej)

kj
)

=
rank

(
Akj
)
for all j ≥ j0.

Proof. Proof by contradiction.

Thus, in this section, to consider perturbation bounds for the core-EP inverse, it sufficies
to consider the case: rank

(
Ak
)

= rank
(
(A+ E)k

)
.

Lemma 3.11. [11] Suppose rank
(
(A+ E)h

)
= rank

(
Ah
)
and ‖(Ah)†‖ε(Ah) < 1. Then

‖[(A+ E)h]†‖ ≤ ‖(Ah)†‖
1− ‖(Ah)†‖ε(Ah)

.

Combine (1.2) with Lemma 3.11, then we have the following result.

Theorem 3.12. Suppose ind(A+E) = k, rank
(
(A+ E)k

)
= rank

(
Ak
)
and ‖(Ak+1)†‖ε(Ak+1) <

1. Then

‖(A+ E) †©‖ ≤ (‖Ak‖+ ε(Ak))‖(Ak+1)†‖
1− ‖(Ak+1)†‖ε(Ak+1)

. (.)

Theorem 3.12 states that (A+ E) †© is bounded provided

rank
(

(A+ E)ind(A+E)
)

= rank
(
Aind(A+E)

)
.

11



This is one of the bases for obtaining a perturbation bound for the core-EP inverse. The other
one is contained in the asymptotic expansion of (A+ E) †© −A †©.

Let k =max{ind(A), ind(A+ E)}. Then

(A+ E) †© −A †© = −(A+ E) †©EA †© + (A+ E) †© −A †© + (A+ E) †©(A+ E −A)A †©

= −(A+ E) †©EA †© + (A+ E) †©(I −AA †©)− [I − (A+ E) †©(A+ E)]A †©

= −(A+ E) †©EA †© + (A+ E) †©[(A+ E) †©]k∗[E(Ak)]∗(I −AA †©)

+ [I − (A+ E) †©(A+ E)]E(Ak)(A †©)k+1.
(.)

Take ‖ · ‖ on (3.8), then

‖(A+ E) †© −A †©‖ ≤ ‖(A+ E) †©‖‖A †©‖‖E‖+
‖(A+ E) †©‖k+1(I + ‖A‖‖A †©‖)ε(Ak)+
[I + ‖(A+ E) †©‖‖A‖+ ‖(A+ E) †©‖‖E‖]‖A †©‖k+1ε(Ak).

(.)

Now suppose ‖(Ak+1)†‖ε(Ak+1) < 1 and rank
(
(A+ E)k

)
= rank

(
Ak
)
, then by Theorem

3.12, (A + E) †© is bounded. Thus, from Equality (3.9), ‖(A + E) †© − A †©‖ → 0 as ‖E‖ → 0,
that is to say,

(A+ E) †© = A †© +O(‖E‖). (.)

In order to derive a perturbation bound, we plug (3.10) into the right side of (3.8). Then

(A+ E) †© −A †© = −A †©EA †© +A †©[(A †©)k]∗(
k−1∑
i=0

AiEAk−1−i)∗(I −AA †©)

+ (I −A †©A)

k−1∑
i=0

AiEAk−1−i(A †©)k+1 +O(‖E‖2)

= −A †©EA †© +A †©[

k−1∑
i=0

AiE(A †©)i+1]∗(I −AA †©)

+ (I −A †©A)
k−1∑
i=0

AiE(A †©)i+2 +O(‖E‖2).

(.)

Take ‖ · ‖ on (3.11), then we obtain the following result.

Theorem 3.13. Let k = max{ind(A), ind(A+ E)}, rank
(
(A+ E)k

)
= rank

(
Ak
)
and

‖(Ak+1)†‖ε(Ak+1) < 1. Then

‖(A+ E) †© −A †©‖
‖A †©‖

≤ C(A)
‖E‖
‖A‖

+ o(‖E‖2), (.)

where C(A) = [2
k−1∑
i=0
‖A‖i‖A †©‖i+1(1 + ‖A‖‖A †©‖) + ‖A †©‖]‖A‖.

12



Corollary 3.14. Let {Ej} be a sequence of n × n matrices such that ‖Ej‖ → 0 and let
kj = max{ind(A), ind(A + Ej)}. If there exists j0 such that rank

(
(A+ Ej)

kj
)

= rank
(
Akj
)

for all j ≥ j0, then (A+ Ej)
†© → A †©.

“Let k = max{ind(A), ind(A+E)}, rank
(
(A+ E)k

)
= rank

(
Ak
)
” is the same meaning as

“rank
(
(A+ E)ind(A+E)

)
= rank

(
Aind(A)

)
”. Thus, Corollary 3.14 in conjunction with Corol-

lary 3.10 gives another proof for the equivalence of (1) and (3) in Theorem 2.6, which means
that rank

(
(A+ E)k

)
= rank

(
Ak
)

is the weakest condition for the continuity of the core-EP
inverse.

Remark 3.15. If k = 1, then the condition of Theorem 3.13 becomes rank(A+E) = rank(A)
and ‖(A2)†‖ε(A2) < 1. Thus, under these assumptions, we derive a perturbation bound for
the core inverse.

4 Numerical examples

In this section, we shall establish a numerical example to compare upper bounds for ‖(A+E) †©−A †©‖
‖A †©‖

derived in (3.5) and (3.12). Let

A =

1 0 0
0 0 0
0 0 0

 , E =

ε ε 0
0 0 0
0 0 0

 .
Then ind(A) = ind(A + E) = 1, rank(A) =rank(A + E) = 1 and AA †© = (A + E)(A + E) †©,
A †©A = (A + E) †©(A + E). Thus A and E satisfy the conditions in Theorems 3.5 and 3.13.
Table 1 shows that our bound (3.5) is slightly better than (3.12).

Table 1: Comparison of upper bounds of ‖(A+ E) †© −A †©‖/‖A †©‖
ε = 0.1000 ε = 0.0100 ε = 0.0010 ε = 0.0001

Exact 0.0909 0.0099 0.0010 1.0000e-04
(3.5) 0.1647 0.0143 0.0014 1.4143e-04
(3.12) 0.7070+o(‖E‖2) 0.0705+o(‖E‖2) 0.0070+o(‖E‖2) 7.0710e-04+o(‖E‖2)

5 Applications to semistable matrices

Following [19], a matrix A ∈ Cn×n is called semistable if ind(A) ≤ 1 and the nonzero eigen-
values λ of A satisfy Re λ < 0; a semistable matrix with ind(A) = 0 is stable. It is known
that we have an integral representation for the inverse of A if A is stable (for example, see
[19]):

A−1 = −
∫ ∞
0

exp(tA)dt. (.)
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In this section, an integral representation for the core-EP inverse of a perturbed matrix A+E
is discussed under the condition E = EAA †© = A †©AE, where A is a semistable matrix.

Theorem 5.1. Let A ∈ Cn×n be semistable and let E ∈ Cn×n such that E = EAA †© =
A †©AE. Then there exists δ(A) > 0 such that for ‖E‖ < δ(A),

(A+ E) †© = −
∫ ∞
0

exp(t(A+ E))AA †©dt. (.)

Proof. For A ∈ Cn×n, we have

A = U

[
T S
0 N

]
U∗

as in (2.5), where U is unitary, T is nonsingular and N is nilpotent.

From the assumption E = EAA †© = A †©AE, it follows that E = U

[
E1 0
0 0

]
U∗ according

to the proof of Theorem 3.1. Then ‖E1‖ = ‖U∗EU‖ ≤ ‖U−1‖‖E‖‖U‖ = κ(U)‖E‖. Observe
that

exp(t(A+ E))AA †© = U

[
exp(t(T + E1)) ∆

0 exp(tN)

] [
I 0
0 0

]
U∗

= U

[
exp(t(T + E1)) 0

0 0

]
U∗.

Since A is semistable, T is stable. By the continuity of eigenvalues ([20, Section IV.1.1],
[19]), there exists η > 0 such that ‖E1‖ < η implies that T+E1 is also stable. Set δ(A) = η

κ(U) ,

if ‖E‖ < δ(A), then ‖E1‖ < η, thus T + E1 is stable. Therefore T + E1 is integrable on the
interval [0,∞). In view of (5.1),

−
∫ ∞
0

exp(t(A+ E))AA †©dt = −U
[∫∞

0 exp(t(T + E1))dt 0
0 0

]
U∗

= U

[
(T + E1)

−1 0
0 0

]
U∗ = (A+ E) †©.

It completes the proof.
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