
FMIS 2006

Towards a Coordination Model for
Interactive Systems

Marco Antonio Barbosa 1,4 Lúıs Soares Barbosa 2,4

José Creissac Campos 3,5

DI-CCTC – Universidade do Minho
Braga, Portugal

Abstract

When modelling complex interactive systems, traditional interactor-based approaches
suffer from lack of expressiveness regarding the composition of the different inter-
actors present in the user interface model into a coherent system. In this paper we
investigate an alternative approach to the composition of interactors for the specifi-
cation of complex interactive systems which is based on the coordination paradigm.
We layout the fundations for the work and present an illustrative example. Lines
for future work are identified.

Key words: Interactors, Coordination models, Configuration.

1 Introduction

Interactive systems can be seen as a special case of the more general class of
reactive systems. However, interactive systems have specificities that present
new challenges when considering modelling and reasoning about them. One
major aspect is the need to consider interaction with the user, and not only
between components of the user interface.

The notion of interactor has long been proposed as an approach to struc-
turing and organizing models of interactive systems. Different authors use
different flavours of interactors. A common trait being the view of interactors

1 Email: marco.antonio@di.uminho.pt
2 Email: lsb@di.uminho.pt
3 Email: jose.campos@di.uminho.pt
4 Research carried out in the context of the PURe Project supported by Fct, the Por-
tuguese Foundation for Science and Technology, under contract POSI/ICHS/44304/2002.
5 Research carried out in the context of the IVY Project supported by Fct, the Portuguese
Foundation for Science and Technology, and FEDER, the European regional development
fund, under contract POSC/EIA/56646/2004.

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Barbosa, Barbosa and Campos

as components capable, not only of communicating between themselves, but
also of conveying information to the user(s).

Two main flavours of interactors are York [11] and CNUCE [19] interac-
tors. York interactors are basically objects equipped with a rendering relation
that maps their internal state into some presentation medium. More than a
concrete specification formalism, they offer a framework for structuring the
user interface specifications, whatever formalism is being used. CNUCE in-
teractors (see Fig. 1) can be seen as blackbox components that communicate,
with each other, and with the user(s), through input and output ports (for
more on CNUCE interactors see section 3).

One main distinction between the two approaches is that with York inter-
actors state can be specified explicitly (cf. MAL interactors [9]), while with
CNUCE interactors state is only referred two indirectly through the interac-
tor’s ports. Whatever the approach, modelling complex interactive systems
entails creating architectures of interconnected interactors. In the case of York
interactors, there is no prescription about how that should be accomplished
(it will depend on the particular specification approach being used). In the
case of CNUCE interactors, specifications are built by connecting the different
ports into an adequate architecture by means of synchronous channels. In-
teractor behaviour is modelled in LOTOS by expressing the relation between
input and output ports.

Managing the coordination between the different interactors is typically
achieved by the introduction of additional interactors to express the control
logic for their communication. This, in turn, adds to the complexity of the
models. Ideally we should be able to express the logic of the coordination
between the different interactors in an as natural and simple way as possible.
In this paper we explore the application of the coordination paradigm to model
architectures of interactors. The approach is based on previous work of some
of the authors (see, [5,6]).

2 Coordination

The coordination paradigm [13,18] offers a promising way to address issues
related to the development of complex systems. Since the coordination com-
ponent is separate from the computational one, the former views the processes
comprising the latter as black boxes, whose internal implementation is hidden
from the outside world. Instead, the composition of components is defined in
terms of their (logical) interfaces which describe their externally observable
behavior. By hiding all system computation in the components, a system
can be described in terms of the observable behavior of its components and
their interactions. As such, component-based software modelling provides a
high-level abstract description of a system that allows for a clear separation
of concerns between the coordination and the computational aspects.

Closely related to the concept of coordination is that of configuration and

2

Barbosa, Barbosa and Campos

architectural description. They view a system as comprising components and
interconnections, and aim at separating structural description of components
from component behaviour. Furthermore, they support the formation of com-
plex components as compositions of more elementary components. Finally,
they understand changing the state of some system as an activity performed
at the level of interconnecting components rather than within the internal
purely computational functionality of some component.

Our approach is based on the coordination model Reo [2], a subset of
Reo, to be more exact. A more formal treatment of the semantics of our
approach is shown in [5,6] where we describe an exogenous coordination model
wherein complex coordinators, called “connectors” are compositionally built
out of simpler ones. This implies that not only should it be generally possible
to produce different systems by composing the same set of components in
different ways (creating different configurations), but also that the difference
between two systems composed out of the same set of components must arise
out of the actual rules that comprise their two different compositions, i.e.,
their glue code. In such a context we may specify different configurations
for a given scenario only by constructing different connectors and patterns of
interactions.

Another feature of this work is that our approach takes advantage of the
authors’ previous work on named generic process algebra [3,21]. Such work
provides a more general and adaptable approach to the design of complex
systems using process algebras. For example, some applications may require
similar constructs coexisting with different interaction disciplines (see section
4.2).

Using process algebra to model interactors is not new, and we may refer to
the usage of LOTOS in [19] and CSP in [10] (just to name a few). However,
our generic approach provides a more flexible way to represent interactors
by proposing a clear separation between structural aspects and interaction
disciplines.

3 CNUCE Interactors

Paternò views interactors (CNUCE interactors — see Fig. 1) as blackbox en-
tities which communicate through a public interface identified by ports with
opposite polarity (i.e., either input or output). Ports are divided into differ-
ent categories. There are ports to communicate with the users (somewhat
equivalent to the rendering relation in York interactors) and ports to commu-
nicate with the underlying application functional core. There are also triggers,
needed to synchronize the flow of information from input to output ports.

Specifications are built by connecting the ports of different interactors
into an adequate architecture by means of synchronous channels. Interactor
behaviour is modelled in LOTOS by expressing the relation between input
and output ports.

3

Barbosa, Barbosa and Campos

input_trigger

output_send

input_send

If

input_receive

output_receive

User side

Application side

output_trigger

Fig. 1. CNUCE Interactors

An interactor can generate data in two directions: towards the user, and
towards the application. This means that interactor behaviour is divided into
two distinct parts: the external one, which contributes to the definition of
the appearance, and the internal one, which consists of sending data to other
interactors or application processes. Hence, an interactor is defined by a couple
of functions: FI is associated with the internal behaviour (the information flow
from the user towards the application side); FO is associated with the external
behaviour (the information flow from the application towards the user side).

An interactor I, with input receive ports Im1
to Imn

, input send ports Inp1

to Inpt, output receive ports Ic1 to Ics
and output send ports Out1 to Outz,

is defined as (with Φ representing the absence of information)

I = (FI, FO), where:

FI : (Im ×Bool × T)→ (Inp ∪ Φ)× If

with Im = Im1
× . . .× Imn

, If = If1 × . . .× Ifk , Inp = Inp1 × . . .× Inpt

FO : (Ic × If ×Bool × T)→ (Out ∪ Φ)

with Ic = Ic1 × . . .× Ics
, and Out = Out1 × . . .×Outz

As can be seen Im, If , Inp, Ic, and Out are domains defined by Cartesian
products of subdomains. This is mainly because an interactor can receive
(and generate) different data types from (to) collections of channels.

In the definition of FO, Ic represents the domain describing the output
entities which it receives from the outside. Out is the type which describes
the external appearance which can be generated, and If is the data type which
the input part of the interactor passes to the output part for echoing. T , in
both the FI and FO definitions, is the time that can be considered as a one-
dimensional quantity, made up of points, where each point is associated with
a value. At moment t, FO is applied to data from Ic and to an element in
domain If produced by FI at moment t− 1.

For interactors without explicit triggers (interactors that generate mean-
ingful results whenever they receive any input), the Boolean in the above can
be ignored.

Generally speaking the main difference between the two functions describ-
ing one interactor is that the external function receives input data from the

4

Barbosa, Barbosa and Campos

input part of the interactor (in order to echo the current measure value) as
well as from the outside. This indicates that the presentation of an interactor
is defined by the information it receives from higher levels (levels closer to the
application) and the feedback information generated by the users’ input.

4 Interactors and coordination

The main aspects of the CNUCE model of interactors can be summarized
as follows: interactors are seen as black-box entities communicating through
identified ports (input/output), a notion of discrete time and synchronization
constraints (involving a notion of trigger) are included in the model, and
composition is used in order to construct complex interactive systems from
simple components. Such features resemble previous work on coordination
models by some of the authors [6,5].

The goal of this paper is to provide an alternative model for expressing the
composition of interactors. Central to our approach to the rigorous represen-
tation of interactors is the notion of configuration. This captures the intuition
that interactors may be seen as components which cooperate through their
specific interfaces using connectors as the unique communication mechanism,
i.e., interactors do not directly interact among themselves. Such idea of con-
nector abstracts the idea of an intermediate glue code to handle interaction.

In order to represent a configuration we need a notion of a) interactor’s
interface, b) what connectors are and how they compose, and c) how interac-
tors’ interfaces and connectors interact in a configuration. These points are
tackled in the following sub-sections.

4.1 Interfaces

In exogenous coordination models, like [2] or [5], components are black box
entities accessed by purely syntactic interfaces. The role of an interface is
restricted to keeping track of port names and, possibly, of admissible types for
data items flowing through them 6 . Such a notion of components interface is
perfectly extensible with the notion of CNUCE interactors. So, let us define
an interface as

Definition 4.1 An interface for a component C is specified by a port signa-
ture, sig(C) over D, given by a port name and a polarity annotation (either
in(put) or out(put)), and a use pattern, use(C), given by a process term over
port names.

Typically the behaviour of a component’s interface can be expressed us-
ing transition systems [16], regular-expressions [20] or process algebras [1].
Process algebra, in particular, provides an expressive setting for representing

6 In the sequel, however, we assume a unique, general data domain, denoted by D, as the
type of all data values flowing in an application.

5

Barbosa, Barbosa and Campos

behavioural patterns and establish/verify their properties in a compositional
way. Some flexibility, however, is required with respect to the underlying
interaction discipline (captured in this work by θ). Actually, different such
disciplines have to be used, at the same time, to capture different aspects of
component coordination. For example the discipline governing the composi-
tion of software connectors (to build the overall glue code) differs from the
one used to capture the interaction between the connectors and the relevant
components’ interfaces. Meeting this goal entails the need for a generic way
to design process algebras.

The model proposed in this work resorts to the rigorous discipline of
process calculi, namely the calculational style presented in [3] to express both
component and connectors behaviour.

4.2 Generic Process Algebra

References [3,4] introduced a denotational approach to the design of process
algebras in which processes are identified with inhabitants of a final coalge-
bra [15] and their combinators defined by coinductive extension (of ’one-step’
behaviour generator functions). The universality of such constructions entails
both definitional and proof principles on top of which the development of the
whole calculus is based.

As we shall see in the following our generic approach to process algebras
maintains the basic combinators present in classical processes algebras as CCS,
CSP or LOTOS. The fundamental point to be noted is the presence of a
more flexible way to represent an interaction discipline which parametric on
θ. Technically, an interaction discipline is modeled as an Abelian positive
monoid 〈Act; θ, 1〉 with a zero element 0. The intuition is that θ determines
the interaction discipline whereas 0 represents the absence of interaction: for
all a ∈ Act, aθ0 = 0. On the other hand, being a positive monoid entails
aθa′ = 1 iff a = a′ = 1. A typical example of an interaction structure captures
action co-occurrence as in CSP, in which case θ is defined as aθb = 〈a, b〉, for
all a, b ∈ Act. Another example is provided by the action complement match
used in CCS [17], i.e., aθā = τ .

Definition 4.2 Let P be the set of port identifiers and S stand for (the
specification of) a component. Its use pattern, denoted by use(S) is given by
a process expression over Act , PP , given by the following grammar:

P ::= 0 | α.P | P + P | P ⊗ P | P 9 P | P ; P | P | P |

σ P | fix (x = P)

where α is an element of Act (i.e., a set of port identifiers) and σ is a substi-
tution.

Notice that choosing Act as a set of port identifiers allows for the synchro-
nous activation of several ports in a single computational step.

6

Barbosa, Barbosa and Campos

Combinators 0, ., +, ⊗, 9, and |, represent inactive process, prefix, non-
deterministic choice, synchronous product, interleaving, and parallel composi-
tion, respectively. Renaming is given by term substitution. The fix (X = P)
is a fixed point construction, which, as usual, can be abbreviated in an explicit
recursive definition. Sequential composition, as in CSP [14], is given by ‘;’ and
requires its first argument to be a terminating process.

The semantics of such expressions is fairly standard, but for the parame-
trization of all forms of parallel composition (i.e., ⊗ and |) by an interaction
discipline as discussed above. The reader is referred to [21] for the full details.

Definition 4.3 The joint behaviour of a collection {Si| i ∈ n} of components
is given by

use(S1) | . . . | use(Sn)

where the interaction discipline is fixed by θ = ∪ , i.e., the synchronisation of
actions in α and β corresponds to the simultaneous realization of all of them.

This joint behaviour is computed by the application of Milner’s expan-
sion law 7 , while obeying the interaction discipline given by θ. The following
example illustrates this construction.

Example 4.4 Consider a component C1 with two ports a and b whose use
pattern is restricted to the activation of either a or b, forbidding their simul-
taneous occurrence. The expected behaviour is captured by

use(C1) = fix (x = a.x + b.x)

Now consider another component, C2, with ports c and d whose behaviour is
given by the co-occurrence of actions in both ports. Therefore,

use(C2) = fix (x′ = cd.x′), where, cd
abv
= {c, d}

According to definition 4.3, the joint behaviour of C1 and C2 is

use(C1) | use(C2) = fix (x = acd.x + bcd.x + a.x + b.x + cd.x)

As a final example, consider still another component C3, with ports e and f

activated in strict order, e.g., first input e and then output f

use(C3) = fix (y = e.f.y)

Clearly, expansion leads to

use(S2) | use(S3)

= fix (x = cd.x + e.f.x + cde.f.x + cde.cdf.x + e.cdf + · · ·+ cdf.x)

7 This law, which states that a process is always equivalent to the non deterministic choice
of its derivatives, is a fundamental result in interleaving models for concurrency.

7

Barbosa, Barbosa and Campos

4.3 Connectors

Our approach resorts to connectors as the only inter-component communi-
cation mechanism. This allows a clean, flexible, and expressive model for
construction of the glue code for component composition which also supports
exogenous coordination.

Connectors are glueing devices between services which ensure the flow of
data and the meet of synchronization constraints. Their specification builds
on top of our previous work on component interconnection [5], extended with
an explicit annotation of activation, or use, patterns for their ports.

Ports are interface points through which messages flow. Each port has an
interaction polarity (either input or output). Another particular characteristic
is the capability to construct complex connectors out of simpler ones using a
set of combinators.

Let C be a connector with m input and n output ports. Assume, again,
D as a generic type of data values and P as a set of (unique) port identifiers
Formally, the behaviour of a connector may be given by

Definition 4.5 The specification of a connector C is given by a relation
data.[[C]] : D

m // D
n which records the flow of data, and a process ex-

pression port.[[C]] which gives the pattern of port activation.

The model provides a set of basic connectors and combinators which allow
us to construct more elaborated connectors and define more complex patterns
of coordination and interaction. In the following let us consider some of these
basic connectors. For more connectors and a more formal treatment of them
we refer to [5,6].

4.3.1 Synchronous channel.

The synchronous channel has two ports of opposite polarity. This connector
forces input and output to become mutually blocking, in the sense that any
of them must wait for the other to be completed.

data.[[• �

// •]] = IdD and port.[[• �

// •]] = fix (x = ab.x)

Its semantics is simply the identity relation on data domain D and its behav-
iour is captured by the simultaneous activation of its two ports.

4.3.2 Drain.

A drain has two input, but no output, ports. Therefore, it loses any data
item crossing its boundaries. A drain is synchronous if both write operations
are requested to succeed at the same time (which implies that each write
attempt remains pending until another write occurs in the other end-point).
It is asynchronous if, on the other hand, write operations in the two ports do

8

Barbosa, Barbosa and Campos

not coincide. The formal definitions are, respectively,

data.[[• � H � •]] = D× D and port.[[• � H � •]] = fix (x = ab.x)

and,

data.[[• � ▽ � •]] = D× D and port.[[• � ▽ � •]] = fix (x = a.x + b.x)

4.3.3 Fifo1.

This is a channel with a buffer of a single position.

data.[[• �

// •]] = IdD and port.[[• �

// •]] = fix (x = a.b.x)

4.4 Combinators

Connectors can be combined to build more complex glueing code. The follow-
ing are the required combinators.

4.4.1 Aggregation.

This combinator places its arguments side-by-side, with no direct interaction
between them.

port.[[C1 ⊠ C2]] = port.[[C1]] | port.[[C2]], with θ = ∪ (1)

4.4.2 Hook.

This combinator encodes a feedback mechanism, drawing a direct connection
between an output and an input port. Formally, port.[[C �

j
i]] is obtained from

port.[[C]], by deleting references to ports i and j. To be well-formed it is
required that i and j appear in different factors of some form of parallel
composition (9, ⊗, or |).

4.4.3 Join.

Its effect is to plug ports with same polarity. The aggregation of output ports
is done by a right join (C i

j > z), where C is a connector, and i and j are
ports and z is a fresh name used to identify the new port. Port z receives
asynchronously messages sent by either i or j. When messages are sent at the
same time the combinator chooses one of them in a nondeterministic way. On
the other hand, aggregation of input ports resorts to a left join (z <i

j C). This
behaves like a broadcaster sending synchronously messages from z to both
i and j. Formally, at a behavioural level, both operators effect is that of a
renaming operation

port.[[(C i
j > n)]] = port.[[(n <i

j C)]] = {n← i, n← j}port.[[C]]

9

Barbosa, Barbosa and Campos

4.5 Configurations

Finally, let us complete the whole picture providing a notion of configuration.
A configuration is simply a collection of components, characterized by their
interfaces, interconnected through a connector network built from elementary
connectors using the combinators mentioned above. Formally,

Definition 4.6 A configuration involving a collection C = {Ci| i ∈ n} of
components is a tuple

〈U, C, σ〉 (2)

where U = use(C1) | use(C2) | · · · | use(Cn) is the (joint) use pattern for C, C

is a connector and σ a mapping of ports in C to ports in C.

The relevant point concerning configurations is the semantics of the inter-
action between the connector’s port behaviour and the joint use patterns of
the involved components. This is captured by a synchronous product ⊗ for a
quite peculiar θ, which is expected to capture the following requirements:

• Interaction is achieved by the simultaneous activation of identically named
ports.

• There is no interaction if the connector intends to activate ports which are
not linked to the ones offered by the interactors’ side. For example if a port
a of an interactor S is connected to the input end of a synchronous channel
whose output end is disconnected, no information can flow and port a will
never be activated.

• The dual situation is allowed, i.e., if the interactors’ side offers activation
of all ports plugged to the ones offered by the connectors’ side, their inter-
section is the resulting interaction.

• Moreover, and finally, activation of unplugged interactors’ ports is always
possible.

Formally, this is captured in the following definition.

Definition 4.7 The behaviour bh(Γ) of a configuration Γ = 〈U, C, σ〉 is given
by

bh(Γ) = σ U ⊗ port.[[C]] (3)

where θ underlying the ⊗ connective is given by

c θ c′ =







c ∩ (c′ ∪ free) ⇐ c′ ⊆ c

∅ ⇐ otherwise
(4)

and free denotes the set of unplugged ports in U , i.e., not in the domain of
mapping σ.

10

Barbosa, Barbosa and Campos

5 An Example

As an example let us consider a variation of an air traffic control system
presented in [12]. Our example (see Fig. 2) is centred in a scenario where
aircrafts A2 and A3 are on their final approach to the runway, aircraft A1 is

Fig. 2. Air Traffic Control Configuration

on the runway waiting the response for its ‘accepted’ to take off requirement,
and the tower T is responsible for air traffic control. Aircraft A2 and A3 are
on their “downwind leg” and are to be turned onto a heading towards the
runway. Before A2 can be turned it must reduce speed. This means that A3

must reduce speed also to avoid loss of separation with A2. Of course, A2 will
be allowed to land just after A1 has taken off.

At this stage we are mainly interested in investigating how to combine
interactors in different ways for different scenarios. Investigating the appro-
priateness of each configuration would be the next step in the design process.

First we express the expected behaviour of the interactors involved in this
configuration.

interactor: Ai

ports: slow′

i
, turn′

i
, accept′

i

external behaviour:

use(Ai) = fix (x = slow′

i
.x + turn′

i
.x + accept′

i
.x), where 0 < i ≤ 3.

Such a specification represents the three aircrafts involved in the scenario.
Each aircraft has three input ports (distinguished by the symbol: ′) available
for communication in a non-deterministic manner. The tower is represented
by interactor T.

interactor: T

ports: slowi, turni, accepti
external behaviour:

use(T) = fix (x = slowi.x + turni.x + accepti.x), where 0 < i ≤ 3.

Once the interactors defined, the following step is to define how they will

11

Barbosa, Barbosa and Campos

Fig. 3. Air Traffic Control Configuration

cooperate, i.e., we need to represent how the whole system will behave. Such
is done by creating an architecture of interactors and connectors.

The scenario captured by Fig. 2 represents a critical situation where the
aircrafts must respond to actions appropriately or the safety will be danger-
ously compromised. So, let us consider a situation where T sends a message
accepted1 to A1, in order for A1 to take off, the message slow2 to A2, in for A2

to slow before turning to the runway, and the message slow3 to A3 in order for
A3 decrease speed maintaining a safety distance to A2. In order to ensure that
the response to these actions will happens synchronously we may consider a
special connector, called synchronization barrier SB which enforces that all
messages are delivered to their destinations in a synchronous way.

Such a connector (see Fig. 3) is an aggregation among six synchronous
channels (c1, . . . , c6) and two synchronous drains (c7 and c8) which are com-
posed using hook and join combinators. This connector is computed start-
ing from the behaviours of the elementary connectors, e.g., port.[[c1]] =
fix (x = aa′.x), till the behaviour of the whole connector is calculated:
port.[[SB]] = fix (x = abce ′f ′g ′.x)

The resulting behaviour of this connector means that the six ports must be
activated synchronously. It should be noted that, since we are not considering
timing issues at this stage, this synchronicity does not meant that the ports
are activated concurrently. In the current context, what we are stating is
that if one port is activated, then all the other must be activated, before the
connector can engage in a new interaction.

The configuration of such a scenario is given by

Cf1
= 〈USC, C, σSC〉, where

USC = use(T) | use(A1) | use(A2) | use(A2)

C = SB

σcf1
= {a← A, b← B, c← C, e′ ← E ′, f ′ ← F ′, g′ ← G′}

12

Barbosa, Barbosa and Campos

Fig. 4. Parallel and broadcaster connectors

For a cleaner notion let us consider A = accept1, B = slow2, C = slow3,
E ′ = accept′

1
, F ′ = slow′

2
, and G′ = slow′

3
.

The result of the ⊗ composition of USC and SB is the behaviour of con-
figuration Cf1

. There is no need, however, to compute the complete expansion
of the parallel composition in USC expression, which is

fix (x = a.x + · · ·+ e′.x + f ′.x + g′.x+

ae′.x + · · ·+ be′.x + · · ·+ ce′.x + · · ·+ abce′.x + · · ·+

ae ′f ′.x + · · ·+ be ′f ′.x + · · ·+ ce ′f ′.x + · · ·+ abce ′f ′.x + · · ·+

ae ′f ′g ′.x + · · ·+ be ′f ′g ′.x + · · ·+ ce ′f ′g ′.x + · · ·+ abce′f ′g′.x + · · ·+

e ′f ′.x + e ′g ′.x + f ′g ′.x + e ′f ′g ′.x)

because, according to interaction discipline (4), the only successful case of
composition with port.[[SB]] corresponds to the underlined alternative in the
expression above. Clearly, the θ-composition of abce ′f ′g ′ with abce ′f ′g ′ (from
the connector side) is abce ′f ′g ′, while for all other cases it results in the empty
set ∅. Therefore, and finally,

bh(Cf1
) = fix (x = abce ′f ′g ′.x) (5)

Consider now the configuration in Fig. 4 (a) where T sends messages to
A2 and A3 synchronously. We may specify a situation where T can only send
a message for A2 to slow down if it also sends a slow down message to A3.
This is captured by

interactor: T

ports: slow2, slow3

external behaviour: use(T) = fix (x = slow3.x +(slow2.slow3.x))

Consider now a situation where T needs to send synchronously a message
to both A2 and A3. A solution for this situation is pictured in Fig. 4 (b).

13

Barbosa, Barbosa and Campos

As a final remark is important to note that this work reports on the main
ideas of this approach only. The full specification of the calculi involved in
the development of the examples was not demonstrated in this paper. We
refer to [7] for a complete view of this approach applied to another kind of
application.

6 Conclusions and Future Work

When modelling complex interactive systems, traditional interactor-based ap-
proaches suffer from lack of expressiveness regarding the composition of the
different interactors present in the user interface model into a coherent sys-
tem. In this paper we have started exploring the application of a coordination
based approach to express the interconnection glue between interactors.

By using the notion of a black-box component, defined only by its inter-
face to the outside, this approach can be closely related to that of CNUCE
interactors. The definition of an interactor in CNUCE as I = (FI, FO), is a
relation among input port to output ports, i.e., I : FI → FO quite similar to
our approach where an interactor is given by a relation data.[[C]] : D

m → D
n.

Although the definition does not clearly separate ports according to categories
(as is done in CNUCE interactors), this can be easily accomplished by using
syntactic annotation, as hinted at in the example. Nevertheless, the rendering
of information to users is one characteristic of interactors that has not been
fully explored in this paper. With the formal underpinning now in place, we
intend to explore this as the next step in this work.

Our approach promotes a clear separation of concerns between the speci-
fication of the individual components of the model (the interactors), and the
specification of how they are organized into an architecture, and how they
interact with each other. This separation of concerns was not as clear neither
in CNUCE interactors, or in the York based MAL interactors [9], but it is
fundamental to enable the modelling of complex systems in a more clear and
concise manner.

In the CNUCE model we have an explicit representation of time and a
trigger to regulate the synchronisation constraints. Although this aspect has
not been addressed here, in [6] a preliminary version of our approach was pre-
sented where time was also explicitly defined by a time stamp T representing,
in fact, not real time but a way to represent an order of data occurrence. In
the current model the notion of ‘time’ is implicitly represented by the sequence
in which the ports are activated, i.e., the sequence in which the data flows
thought the ports. For instance, if we have a synchronous channel, both ports
are activated ‘at same time’ i.e., ports are activated in an atomic way without
being interleaved by another operation while both operations have not been
well succeed. If we model an asynchronous channel between the activations
of both ports, then other port activations might succeed in between the two.
Another point to note is that with a parametric interaction discipline and the

14

Barbosa, Barbosa and Campos

rigour provided by the connectors, there is no need for triggers in our model.

The use of connectors allows for more flexibility in the design of complex
systems. This constitutes an advantage not only compared with CNUCE
models but with any model which uses simple channels as communication
medium. The capability to define a filter in the connectors without the need to
change the definition of an interactor can be a desirable feature. Or, as shown
in our example, we may construct different configurations from a scenario.
The theme of defining different architectures to achieve different interaction
effects in the user interface is also one that deserves further research.

As a final note, it should be point out that, when modelling complex
interactive systems, the need arises to express dynamic aspects of the user
interface, such as user interface components being created and destroyed, or
the interconnections between components being changed in runtime. This is
a complex area which we have not addressed here. A very preliminary work
in this direction was presented in [8]. In that work the basic connectors are
enriched with a special connector called orchestrator which is responsible to
handle the mobility and the dynamism of the system. We plan to explore this
aspect further, as it is one of the main drives for our research in identifying
alternative modelling notations for interactive systems.

References

[1] R. Allen and D. Garlan. A formal basis for architectural connection. ACM
TOSEM, 6(3):213–249, 1997.

[2] F. Arbab. Reo: a channel–based coordination model for component
composition. Mathematical Structures in Comp. Sci., 14(3):329–366, 2004.

[3] L. S. Barbosa. Process calculi à la Bird-Meertens. In M. L. Andrea Corradini
and U. Montanari, editors, CMCS’01, volume 44.4, pages 47–66, Genova, April
2001. Elect. Notes in Theor. Comp. Sci., Elsevier.

[4] L. S. Barbosa and J. N. Oliveira. Coinductive interpreters for process calculi.
In Proc. of FLOPS’02, pages 183–197, Aizu, Japan, September 2002. Springer
Lect. Notes Comp. Sci. (2441).

[5] M. Barbosa and L. Barbosa. Specifying software connectors. In K. Araki and
Z. Liu, editors, Proc. First International Colloquim on Theoretical Aspects of
Computing (ICTAC’04), Guiyang, China, pages 53–68. Springer Lect. Notes
Comp. Sci. (3407), 2004.

[6] M. A. Barbosa and L. S. Barbosa. A relational model for component
interconnection. Journal of Universal Computer Science, 10(7):808–823, 2004.

[7] M. A. Barbosa and L. S. Barbosa. Configurations of web services.
In Proceedings of the 5th International Workshop on the Foundations of
Coordination Languages and Software Architectures (FOCLASA’06), Electr.
Notes Theor. Comput. Sci., Bonn, Germany, August 2006. Elsevier. To appear.

15

Barbosa, Barbosa and Campos

[8] M. A. Barbosa and L. S. Barbosa. An orchestrator for dynamic interconnection
of software components. In Proc. 2nd International Workshop on Methods
and Tools for Coordinating Concurrent, Distributed and Mobile Systems
(MTCoord’06), Electr. Notes Theor. Comput. Sci., Bologna, Italy, June 2006.
Elsevier. To appear.

[9] J. C. Campos and M. D. Harrison. Model checking interactor specifications.
Automated Software Engineering, 8(3/4):275–310, August 2001. ISSN: 0928-
8910.

[10] D. A. Duce, R. van Liere, and P. J. W. ten Hagen. An approach to hierarchical
input devices. Comput. Graph. Forum, 9(1):15–26, 1990.

[11] D. J. Duke and M. D. Harrison. Abstract interaction objects. Computer
Graphics Forum, 12(3):25–36, 1993.

[12] B. Fields, P. Wright, and M. Harrison. Time, tasks and errors. SIGCHI Bull.,
28(2):53–56, 1996.

[13] D. Gelernter and N. Carriero. Coordination languages and their significance.
Commun. ACM, 35(2):97–107, 1992.

[14] C. A. R. Hoare. Communicating Sequential Processes. Series in Computer
Science. Prentice-Hall International, 1985.

[15] B. Jacobs and J. Rutten. A tutorial on (co)algebras and (co)induction. EATCS
Bulletin, 62:222–159, 1997.

[16] J. Magee, J. Kramer, and D. Giannakopoulou. Behaviour analysis of software
architectures. In WICSA1: Proc. of the TC2 First Working IFIP Conf. on
Software Architecture (WICSA1), pages 35–50. Kluwer, B.V., 1999.

[17] R. Milner. Communicating and Mobile Processes: the π-Calculus. Cambridge
University Press, 1999.

[18] G. Papadopoulos and F. Arbab. Coordination models and languages. In
Advances in Computers — The Engineering of Large Systems, volume 46, pages
329–400. 1998.

[19] F. D. Paternò. A Method for Formal Specification and Verification of Interactive
Systems. PhD thesis, Department of Computer Science, University of York,
1995. Available as Technical Report YCST 96/03.

[20] F. Plasil and S. Visnovsky. Behavior protocols for software components. IEEE
Trans. Softw. Eng., 28(11):1056–1076, 2002.

[21] P. R. Ribeiro, M. A. Barbosa, and L. S. Barbosa. Generic process algebra: A
programming challenge. In Proc. 10th Brazilian Symposium on Programming
Languages, Itatiaia, Brasil, 2006.

16

	Introduction
	Coordination
	CNUCE Interactors
	Interactors and coordination
	Interfaces
	Generic Process Algebra
	Connectors
	Combinators
	Configurations

	An Example
	Conclusions and Future Work
	References

