

Marseille, 14-16 March 2018

Due to the increasing quantity of data in agrosciences, there is a need for specific tools which place statistics and data science at the heart of challenges of the contemporary world. The AGROSTAT conference gives statisticians, engineers and users of statistical methods a unique opportunity to exchange around topics, such as sensometrics, chemometrics, experimental designs, risk analysis, process control or big data.

This event brings together internationally recognized academic and industrial organizations representatives, to take stock of advances in statistics, express their needs and to anticipate future challenges.

This conference, which is held every two years, is organized this year by **Aix-Marseille University**, the "Mediterranean Institute of Biodiversity and Marine and Continental Ecology", UMR CNRS 7263 / IRD 237, team Toxicology & Environmental Health (TSE), under the auspices of the Agro-Industry Group of the French Statistical Society (SFdS). The SFdS is a non-profit organization bringing together researchers, engineers, teachers and statistics users.

SCIENTIFIC COMMITTEE:

- El Mostafa QANNARI (Oniris, France President)
- Michelle SERGENT (Aix-Marseille University, France Co-presidente)
- Stéphanie BOUGEARD (Anses Ploufragan, France)
- Damien BREMAUD (L'Oréal, France)
- Per BROCKHOFF (Technical University of Denmark, Denmark)
- Philippe COURCOUX (Oniris, France)
- Bernadette GOVAERTS (UC Louvain, Belgium)
- El Mestafa HADRAMI (FST, Fes, Morocco)
- Sébastien LE (AgroCampus Ouest, France)
- Sébastien MARQUE (Capionis, France)
- Hal MCFIE (Hal MacFie Sensory Training Ltd, Great Britain)
- Nicolas PINEAU (Nestlé, Switzerland)
- Michael MEYNERS (P&G, Germany)
- Pascal SCHLICH (INRA Dijon, France)
- Douglas RUTLEDGE (AgroParisTech, France)

ORGANIZING COMMITTEE:

- Michelle SERGENT (Aix-Marseille University, IMBE, France)
- Magalie CLAEYS-BRUNO (Aix-Marseille University, IMBE, France)
- Valérie DEYRIS (Aix-Marseille University, ISM2, France)
- Franck TORRE (Aix-Marseille University, IMBE, France)
- Marine BERRO (Aix-Marseille University, IMBE, France)

Wednesday 14 March

9h00			Welcome speech - M. SERGENT, M. QANNARI		
Inaugural conference					
9h15	PL1	B. K. Ersbøll	Big Data from Farm to Fork, advantages and challenges		
Session 1: BIG DATA/MACHINE LEARNING/DEEP LEARNING - Chair: S. Marque					
10h20	001	P. Rebenaque	Automated analysis of tasting comments in sensory analysis		
10h40	002	MB Blanquart	Impact of the questionnaire structure on overall results in preference mapping: a meta-analysis on 285 consumer studies		
11h00	O03	S. Bougeard	Current multiblock methods: competition or complementarity? A comparative study in a unified framework		
11h20			Coffee break		
		<u>Ses</u>	sion 2: DEVELOPMENT TOOLS - Chair: D. Brémaud		
11h50	004	N. Pineau	Use of R-Shiny apps to communicate sensory and consumer modeling tools outputs		
12h10	005	I. Rebhi	An interactive shiny tool for sensory and consumer data mapping : sensmapui		
12h30			Lunch		
Session 3: CHEMOMETRICS - Chairs: D. Rutledge/ E. Vigneau					
		Session	3: CHEMOMETRICS - Chairs: D. Rutledge/ E. Vigneau		
14h00	PL2	<u>Sessior</u> P. Bastien	3: CHEMOMETRICS - Chairs: D. Rutledge/ E. Vigneau Use of sparse methods in cosmetics		
14h00 15h00	PL2 006	<u>Sessior</u> P. Bastien B. Jaillais	3: CHEMOMETRICS - Chairs: D. Rutledge/ E. Vigneau Use of sparse methods in cosmetics Random forests for the prediction of water content by near-infrared hyperspectral imaging spectroscopy in biscuits		
14h00 15h00 15h20	PL2 006 007	<u>Sessior</u> P. Bastien B. Jaillais C. Peltier	3: CHEMOMETRICS - Chairs: D. Rutledge/ E. Vigneau Use of sparse methods in cosmetics Random forests for the prediction of water content by near-infrared hyperspectral imaging spectroscopy in biscuits What is the better test to detect multivariate differences in large dimensional data?		
14h00 15h00 15h20 15h40	PL2 006 007 008	Session P. Bastien B. Jaillais C. Peltier D.N. Rutledge	3: CHEMOMETRICS - Chairs: D. Rutledge/ E. Vigneau Use of sparse methods in cosmetics Random forests for the prediction of water content by near-infrared hyperspectral imaging spectroscopy in biscuits What is the better test to detect multivariate differences in large dimensional data? Comparison of Principal Components Analysis, Independent Components Analysis and Common Components Analysis		
14h00 15h00 15h20 15h40 16h00	PL2 006 007 008	Session P. Bastien B. Jaillais C. Peltier D.N. Rutledge	3: CHEMOMETRICS - Chairs: D. Rutledge/ E. Vigneau Use of sparse methods in cosmetics Random forests for the prediction of water content by near-infrared hyperspectral imaging spectroscopy in biscuits What is the better test to detect multivariate differences in large dimensional data? Comparison of Principal Components Analysis, Independent Components Analysis and Common Components Analysis		
14h00 15h00 15h20 15h40 <i>16h00</i> 16h30	PL2 006 007 008	Session P. Bastien B. Jaillais C. Peltier D.N. Rutledge E. Vigneau	3: CHEMOMETRICS - Chairs: D. Rutledge/ E. Vigneau Use of sparse methods in cosmetics Random forests for the prediction of water content by near-infrared hyperspectral imaging spectroscopy in biscuits What is the better test to detect multivariate differences in large dimensional data? Comparison of Principal Components Analysis, Independent Components Analysis and Common Components Analysis Coffee break Analyse des relations entre plusieurs blocs de données par l'approche Path-Comdim: une application pour évaluer la qualité environnementale sur le littoral atlantique français		
14h00 15h00 15h20 15h40 16h30 16h30	PL2 006 007 008	Session P. Bastien B. Jaillais C. Peltier D.N. Rutledge E. Vigneau	3: CHEMOMETRICS - Chairs: D. Rutledge/ E. Vigneau Use of sparse methods in cosmetics Random forests for the prediction of water content by near-infrared hyperspectral imaging spectroscopy in biscuits What is the better test to detect multivariate differences in large dimensional data? Comparison of Principal Components Analysis, Independent Components Analysis and Common Components Analysis Malyse des relations entre plusieurs blocs de données par l'approche Path-Comdim: une application pour évaluer la qualité environnementale sur le littoral atlantique français Poster presentations		
14h00 15h00 15h20 15h40 16h00 16h30 16h50 17h15	PL2 006 007 008	Session P. Bastien B. Jaillais C. Peltier D.N. Rutledge E. Vigneau	3: CHEMOMETRICS - Chairs: D. Rutledge/ E. Vigneau Use of sparse methods in cosmetics Random forests for the prediction of water content by near-infrared hyperspectral imaging spectroscopy in biscuits What is the better test to detect multivariate differences in large dimensional data? Comparison of Principal Components Analysis, Independent Components Analysis and Common Components Analysis Coffee break Analyse des relations entre plusieurs blocs de données par l'approche Path-Comdim: une application pour évaluer la qualité environnementale sur le littoral atlantique français POSTER SESSION		

Thurs day	15 March
------------------	----------

Session 4: SENSOMETRICS - Chairs : Ph. Courcoux / P. Schlich				
8h45	PL3	J. Castura	Consumer diversity in sensory evaluation data	
9h30	010	M. Brard	A latent class regression model for the clustering of multivariate binary ratings	
9h50	011	E. Qannari	One thousand and one ways to analyze free sorting data	
10h10	012	N. Pineau	CATA as an alternative method to free sorting	
10h30			Coffee break	
11h00	013	F. Llobell	Clustatis: a cluster analysis of multiblock datasets. application to sensometrics	
11h20	014	G. Lecuelle	Modeling temporal dominance of sensations data with stochastic processes	
11h40	PL4	B. Boulanger	Round table: The world beyond p-values: how to make research in the 21 st ?	
12h30			Lunch & posters	
14h30			SOCIAL EVENT	
19h30			Gala diner : Reverso - Les Terrasses du port	

Friday 16 March						
Session 5: EXPERIMENTAL DESIGNS - Chairs: M. Claeys/M. Sergent						
9h00	PL5	J-P Gauchi	Metamodeling and global sensitivity analysis for computer models with correlated input			
9h45	015	S. Marque	Plan d'expériences et simulations sur le contrôle qualité des contaminants microbiologiques de produits finaux			
10h05	016	Q. Carboué	Experimental design and solid state fermentation: a holistic approach to improve cultural medium for the production of fungal metabolites			
10h25			Coffee break			
10h55	017	V. Rodrigues	Food source attribution of human campylobacteriosis by meta-analysis of case- control studies			
11h15	018	U. Gonzales- Barron	An extended bigelow-type meta-regression model describing the heat resistance of neosartorya spores			
11h35	019	V. Cadavez	Dynamic determination of optimum growth rate of listeria monocytogenes in minas soft cheese during cold shelf-life			
11h55		P. Schlich	Statistical analysis of chocolate tasting data obtained from participants			
12h15			Closing of the conference, Awards			
			Lunch			

TEXTURAL QUALITY ATTRIBUTES OF GLUTEN-FREE BATTER AND BREAD AS AFFECTED BY HYDROCOLLOIDS

Christian R. Encina-Zelada^{1,4,5} Vasco Cadavez¹, Fernando Monteiro^{2,3}, José A. Teixeira⁴, Ursula Gonzales-Barron¹

¹CIMO Mountain Research Centre, School of Agriculture, Polytechnic Institute of Braganza (IPB), Portugal
²Department of Electrical Engineering, School of Technology and Management, IPB, Portugal
³INESC-TEC - Institute for Systems and Computer Engineering, Technology and Science, Porto, Portugal
⁴Centre of Biological Engineering, School of Engineering, University of Minho, Portugal
⁵Department of Food Technology, Faculty of Food Industries, National Agricultural University La Molina, Peru
E-mail: ubarron@ipb.pt

Abstract

This study aimed to compare the separate effects of xanthan gum (XG), guar gum (GG) and hydroxyl-propyl methyl-cellulose (HPMC) on gluten-free batter and bread quality; and to explore the interrelationships among 24 measurements of physicochemical and rheological attributes of batter and bread. Twenty-seven formulations were produced with 1.5, 2.5, 3.5% XG and 90, 100, 110% water (9 combinations); 2.5, 3.0, 3.5% GG and 90, 100, 110% water (9 combinations); and 3.0, 4.0, 5.0% of HPMC and 80, 90, 100% water (9 combinations). A principal component analysis revealed that the information contained in the 24 variables could be effectively decomposed into two major components, one related to bread crumb porosity and hardness (45%), and the other to batter viscosity (32%). XG and GG produced gluten-free batter and bread of similar quality, although GG, particularly at high dose, can produce smaller loaves of harder and more resilient and cohesive crumb than XG. Compared to XG and GG, HPMC yielded batters of higher stickiness, consistency and firmness, which, when baked, produced loaves of higher volume, softer crumb, and larger pores.

Keywords: Principal component analysis, gum, xanthan, guar, HPMC, rheology, texture

INTRODUCTION

In order to improve the rheological properties of gluten-free bread, hydrocolloids or gums are added to the batter as these molecules are able to imitate the viscoelastic properties of gluten. Xanthan gum (XG), a polysaccharide obtained from a fermentation process of *Xanthomonas campestris*, and guar gum (GG), a polysaccharide derived from guar beans, have the ability to thicken the batter and improve the elasticity of the crumb. Another hydrocolloid, hydroxyl-propyl methyl-cellulose (HPMC) is known to enhance gas retention during proofing. These three hydrocolloids are largely used in gluten-free preparations, and many optimised concentrations alone and in combination (mixture designs) have been proposed. Nonetheless, the differences in bread quality that each of these gums produce are still not well understood. Thus, the objectives of this study were: (i) to unveil and compare the separate effects of XG, GG and HPMC on gluten-free batter and bread quality; and (ii) to explore the interrelationships between physicochemical and texture characteristics of gluten-free batter and bread. To meet these objectives, bread could not be formulated with a mixture of gums, but with each gum separately, and at different concentrations and water levels to create variability.

METHODOLOGY

Gluten-free bread was produced using a mixture of rice (50%), corn (30%) and quinoa flour (20%) to which sunflower oil (6% flour weight), white sugar (3%), refined salt (1.5%) and instant yeast (3%) were added following a standardised procedure. Twenty-seven formulations were produced with 1.5, 2.5, 3.5% XG and 90, 100, 110% of water (nine combinations); 2.5, 3.0, 3.5% GG and 90, 100, 110% of water (nine combinations); and 3.0, 4.0, 5.0% of HPMC and 80, 90, 100% of water (nine combinations). Batter was mixed for 6 min in a food processor equipped with a batter blade. Portions of 280 g were then poured to oiled and floured rectangular tins, and proofed at 30°C and 85% RH for 60 min. Loaves were then baked in a convection oven at 190°C for 60 min, and left to cool down before de-moulding. Determinations on batter were performed 30 min after the end of mixing, while analyses on baked loaves and bread crumb were carried out 24 h after baking. Using a texture analyser TA-XT plus (Stable Micro Systems, UK) fitted with specific fixtures, the batter rheology and bread crumb texture were characterised. From the stickiness analysis (**STK**) on batter, measures of

stickiness (g), work of adhesion (g.s), and strength-cohesiveness (mm) were obtained; while from the back extrusion analysis (**BE**), firmness (g), consistency (g.s), cohesiveness (g) and viscosity index (g.s) of batter were measured. By means of a texture profile analysis (**TPA**) on bread crumb, hardness (g), adhesiveness (g.s), springiness (dimensionless), cohesiveness (dimensionless), gumminess (g), chewiness (g) and resilience (dimensionless) were measured. In addition, bread crumb water activity (Aw) and pH were quantified as well as loaf specific volume (ml/g) and baking loss (%). By image analysis of scanned slices of bread, the following crumb grain features were quantified: mean cell area (mm²); cell density (number of cells/mm²); cell size uniformity (n^o cells <=5 mm² / n^o cells > 5 mm²); void fraction; mean cell aspect ratio; and mean cell solidity. The *FactoMineR* and *factoextra* packages in R were used to perform a principal component analysis (PCA) on the 24 variables.

RESULTS AND DISCUSSION

The first PC accounted for 45% of the variability and was mostly linked to guality properties measured after baking; namely, loaf volume, bread crumb TPA features and image analysis features. The first PC was highly correlated with loaf specific volume (r=-0.90), the image grain features of void fraction (r=-0.96), mean cell density (r=0.92), mean cell area (r=0.88), mean cell solidity (0.85), the crumb TPA features of chewiness (r=0.92), gumminess (r=0.92), hardness (r=0.88), and dough stickiness (r=-0.84), while moderately correlated with cell size uniformity (r=0.79), baking loss (r=-0.78), and TPA cohesiveness (r=0.69), adhesiveness (r=-0.68) and resilience (r=0.61) (Fig.1, left). Since bread crumb grain (visual texture) can be linked with firmness (instrumental texture), the first PC was labelled as "bread crumb porosity". Proofing loaves that undergo a greater gas retention (i.e., higher volume) present higher moisture loss during baking, and tend to produce crumb of higher void fraction, higher mean cell area; therefore lower cell size uniformity (since there are more cells of large size in the crumb) and lower cell density (i.e., lower number of cells since the cells are larger). The first PC also elucidated that less sticky batters tend to have poor gas retention, producing bread crumbs of higher values of hardness, chewiness, cohesiveness and gumminess, and cells of higher solidity (i.e., more rounded, less elongated). The second PC accounted for 32% of the variation, and was highly correlated with the batter BE properties of viscosity (r=0.96), cohesiveness (r=0.92), consistency (r=-0.94) and firmness (r=-0.95), the batter STK properties of cohesiveness (r=0.88) and adhesion (r=0.80), and bread crumb pH (r=0.83) and Aw (r=0.78), while moderately correlated with the bread crumb TPA property of springiness (r=0.76) Since all of the above quality properties are related to viscosity, the second PC was labelled as "batter viscosity". Batters that are more viscous, as a result of greater free water content, will present higher measures of viscosity (BE), cohesiveness (BE and STK), but lower consistency (BE) and firmness (BE), and will tend to present higher dough adhesiveness (STK) and higher crumb Aw, pH and springiness (TPA) after baking. (Fig. 1, left).

Projections of the individual scores on the 2D-map of quality attributes (Fig. 1, right) revealed that XG and GG produced gluten-free batter and bread of comparable quality, although GG, particularly at high dose, can produce smaller loaves of harder and more resilient and cohesive crumb than XG. Comparing with XG and GG, the use of HPMC yielded batters of higher stickiness, consistency and firmness, which, when baked, produced loaves of higher volume, softer crumb, and larger and more elongated cells.