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ABSTRACT 

 
This paper is concerned to the segmentation of heart 

sounds by using state of art Hidden Markov Models 
technology. Concerning to several heart pathologies the 
analysis of the intervals between the first and second heart 
sounds is of utmost importance. Such intervals are silent 
for a normal subject and the presence of murmurs indicate 
certain cardiovascular defects and diseases. While the first 
heart sound can easily be detected if the ECG is available, 
the second heart sound is much more difficult to be 
detected given the low amplitude and smoothness of the 
T-wave. In the scope of this segmentation difficulty the 
well known non-stationary statistical properties of Hidden 
Markov Models concerned to temporal signal 
segmentation capabilities can be adequate to deal with 
this kind of segmentation problems. 

The feature vectors are based on a MFCC based 
representation obtained from a spectral normalisation 
procedure, which showed better performance than the 
MFCC representation alone in an Isolated Speech 
Recognition framework. Experimental results were 
evaluated on data collected from five different subjects, 
using CardioLab system and a Dash family patient 
monitor. The ECG leads I, II and III and an electronic 
stethoscope signal were sampled at 977 samples per 
second. 
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1. INTRODUCTION 

 
The phonocardiogram (PCG) is a sound signal related 

to the contractile activity of the cardiohemic system. The 
general state of the heart in terms of contractility and 
rhythm can be provided by heart sounds characteristics. 
Cardiovascular diseases and defects cause changes or 
additional sounds and murmurs that could be useful in 
their diagnosis. A normal cardiac cycle contains two 
major sounds: the first heart sound S1 and the second 
heart sound S2. S1 occurs at the onset of ventricular 

contraction and corresponds in timing to the QRS 
complex hence it can be easily identifiable if the ECG is 
available which is frequently the case. S2 follows the 
systolic pause and is caused by the closure of the 
semilunar valves. The interval between S1 and S2 as well 
as the S2 sound are both very important concerned to the 
diagnosis of several pathologies such as valvular stenosis 
and insufficiency. It is well known, for example, that S1 is 
loud and delayed in mitral stenosis, right bundle-branch 
block causes wide splitting of S2 and left bundle-branch 
block results in reversed splitting of S2 [1,2,3]. Murmurs 
are noise-like events, which can appear in the systolic 
segment, in the interval between S1 and S2 and in the 
diastolic segment representing obviously different 
pathologies. Although they are all noise-like events their 
features aid in distinguishing between different causes. 
For example, aortic stenosis causes a diamond-shaped 
midsystolic murmur whereas mitral stenosis causes a 
decrescendo-crescendo type diastolic-presystolic murmur. 
Automatic diagnosis of these and many others 
cardiovascular defects or diseases require robust 
techniques for segmenting the phonocardiogram. 
Especially the detection of S2 sound is hard to obtain in 
spite of it appears slightly after the end of the T-wave, 
however, as the T-wave is often a low amplitude and 
smooth wave and sometimes not recorded at all, thus the 
T-wave is not a reliable indicator to use for the 
identification of S2. 

Traditional techniques for S2 detection are mainly 
based on the notch in the aortic pressure wave, which can 
be obtained by using catheter tip tensors [4,5], which is an 
invasive procedure. Fortunately, the notch is transmitted 
through the arterial system and may be observed in the 
carotid pulse recorded at the neck. The dicrotic notch in 
the carotid pulse signal will bear a delay with respect to 
the corresponding notch in the aortic pressure signal but 
has the advantage of being accessible in a noninvasive 
manner. This delay is sometimes taken into consideration 
in the detection of S2 [6]. Signal processing techniques 
for the detection of the dicrotic notch and segmentation of 
the phonocardiogram include, among others, least-squares 
estimate of the second derivative of the carotid pulse [6], 
averaging techniques [7] and more recently the use of 



 
 

 

heart sound envenlogram, which reports a 93% success 
rate. However, implementing this algorithm is prone to 
error and it is sensitive to changes in pre-processing and 
setup parameters, which strongly compromises its 
robustness.  

Recently new approaches based on pattern recognition 
have been applied in solving difficult problems concerned 
to classification purposes, such as automatic speech 
recognition, cardiac diagnosis and segmentation of 
medical images, among others. These algorithms rely 
heavily on parametric signal models, which parameters 
are learned from examples.  The most common 
approaches of this class are the Neural Networks (NN) 
approach and the Hidden Markov Model (HMM) 
approach.  From a theoretical point of view HMM´s are 
more adequate for modeling time event sequences, 
especially when the events appear in the same sequence, 
however this potential advantage is not always proved in 
practical applications. 

This paper reports the use of HMM´s, as a robust 
technique for segmenting the phonocardiogram into its 
component segments: the S1 sound, the systole period, the 
S2 sound and the diastole period. 

 
 

2. PCG FEATURES EXTRACTION 
 

The features extraction method considers noise 
robustness, is based on the power spectral density 
components and consists in dividing the power spectral 
density inside each sub-band by the total short-time 
power. The power in each sub-band is obtained by 
summing the power spectrum components inside the sub-
band. All the sub-bands have the same number of spectral 
components and no one is shared by different sub-bands, 
thus avoiding increases of statistical dependence between 
sub-bands (feature components). This kind of 
normalisation seems to be also adequate for dealing with 
additive distortions since the numerator and denominator 
of the features are both increased, though by different 
values, however this fact contributes for stabilising the 
feature values, which means increasing the robustness. 

To best understand this reasoning, consider Si denoting 
the power in sub-band i and S denoting the short time 
signal power of the considered segment. Similarly, let Ni 
and N denote the power of the interfering noise in sub-
band i and the short time noise power, respectively. So, 
the ith component of the observation vector for the clean 
signal is given by 

 

S
S

c i
i =   (1) 

 
Similarly if the signal appears noisy the next equation 
holds 
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where the index n stands for noisy signal. Equations (1) 

and (2) are computed in the same way without concerning 
to the noise existence, so they can be viewed as the same 
equation. The denominators of equations (1) and (2) 
represent respectively the power of the signal segment in 
clean and noisy conditions and can be both computed by 
summing all the components of the power spectrum 
density.  

If the interfering noise has white noise characteristics 
the environment will shift the clean vector by a noise 
dependent vector Ci(N), which can be computed by 
subtracting equation (1) from equation (2). 

 If the noise is stationary then its short time power 
equals its long time power. Note that this does not occur 
for the phonocardiogram due to its non-stationary 
property, but as an approximation we will consider that 
the short time phonocardiogram signal power equals the 
long time phonocardiogram signal power. Under this 
constraint, S and N can be related by the signal to noise 
ratio (SNR). Therefore the next expression holds 
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Let l, the number of components in each sub-band and 

L the FFT length. Then N and Ni, considering flat noise 
spectrum, are related by the quotient l/L. By using these 
considerations, the calculation of the shift vector imposed 
by the environment to the observed vector component i is 
noise dependent and is accomplished by subtracting 
equation (1) from equation (2)  
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where k is given by  
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and in terms of mean the next expression holds 
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Equation (4) shows that if the clean signal has a flat 

power spectrum density, the means of Ci(N) become null 



 
 

 

as Si/S equals l/L. This is particularly true for example in 
processing unvoiced regions of the speech signal. For the 
present case of phonocardiogram processing we expect 
that this feature can help in the segmentation since the 
segment between S1 and S2 contains only noise or noise-
like signals (murmurs) respectively for a normal and 
abnormal subjects. Therefore, this normalisation process 
becomes optimal in the sense that the environment does 
not affect the means of the phonocardiogram features, 
while the variances are strongly reduced by the intrinsic 
mechanism of energy normalization, which consists of the 
mathematical division of the power in each sub-band by 
the short-time power.  

The normalized spectrum obtained in this manner is 
then applied to a Mel-Spaced filter bank. Mel-Spaced 
filter banks provide a simple method for extracting 
spectral characteristics from an acoustic signal, and are 
largely used in the field of speech processing.  This 
method involves creating a set of triangular filter banks 
across the spectrum. The filter banks are equally spaced 
along the Mel-scale as defined by equation (7) 
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Equal spacing on the Mel-scale provides exponential 

spacing on the normal frequency axis. This exponential 
spacing means that there are numerous small banks at 
lower frequencies and sparse, large banks at higher 
frequencies. Since most of the phonocardiogram energy is 
in the lower frequency ranges, using a Mel-scale matches 
the frequency spectrum of the heart sounds. 

Each triangular filter is multiplied by the normalised 
spectrum obtained from equation (1) and summed for 
each triangular filter. This constitutes the feature vectors 
to be used as HMM observations. 

Since the average duration of S1 is about 0.16 seconds, 
the HMM segments the phonocardiogram in frames of 
0.15 seconds with a 0.015 seconds frame overlapping.  
Each signal segment has 146 samples, which are 
converted into 256 spectral coefficients by using a 
conventional FFT algorithm. The signal is then divided in 
16 sub-bands each one with 16 spectral coefficients. Then 
equation (1) is applied to perform spectral normalization, 
and the spectrum obtained in this way is applied to the 
Mel-scale filter banks. Since spectral dynamics is very 
important concerned acoustic signal modelling delta 
coefficients are computed and inserted in the observation 
vectors.  

It is well known that the frequency spectrum of S1 
contains peaks in the 10 to 50 Hz range and the 50 to 140 
Hz range, while the frequency spectrum of S2 contains 
peaks in the 10 to 80 Hz range, the 80 to 200 Hz range 
and the 220 to 400 Hz range. Hence, this study limits the 
spectral feature extraction between the frequencies of 10 
Hz and 420 Hz.   

 
 

3. HIDDEN MARKOV MODELS 
 
A Hidden Markov Model (HMM) is a probabilistic 

state machine where hidden (unobservable) states output 
observations. In the case of Continuous Density Hidden 
Markov Models (CDHMM’s) the observations are 
modeled by mixture densities, usually Gaussian, such that 
the probability density function for each HMM 
state/transition is given by 
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where C is the number of components in the mixture, p is 
the mixture coefficient (weigth), µc and Σc are 
respectively the mean vector and covariance matrix of the 
cth mixture component and G stands for Gaussian 
function. This kind of HMM can model the 
phonocardiogram as it traverses a specific labeled region 
such as S1, systolic, S2 or diastolic segments.  

However our interest is in the segmentation of the 
phonocardiogram which can be heuristically 
accomplished by the discrete HMM which four state (one 
state for each event) structure is shown in figure 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This HMM does not take into consideration the S3 and 
S4 heart sounds since these sounds are difficult to hear 
and record, thus they are most likely not noticeable in the 
records. 

In order to model accurately the continuous transitions 
between sound and silence a CDHMM which structure is 
shown in figure 2 is embedded in the model shown in 
figure 1. This model structure is used in speech 
recognition systems where the transition of words or 
phonemes is modeled by an HMM similar to the one 
shown in figure 1, while phonemes are modeled by a 
structure similar to the one shown in figure 2. 
 
 
 
 
 
 
 
 

 

Figure 1. Heart sound Markov Model 
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Concerned to the more adequate number of HMM 

states to model a given signal a rule does not exist. 
However it is very common to use a three state model for 
pauses and/or silences in speech recognition applications 
since in these regions the non-stationary nature of the 
signal is usually not very strong. Therefore in our 
experiments the silences were modelled by a three state 
HMM. 

Since our acoustic model has only transitions for the 
next state and not for example for the next of the next, a 
model which number of states is larger than the number of 
observations does not makes sense once the model must 
begin on the first state and ends on the last state for each 
observation sequence. For example the S1 duration is 
about 160 ms and the frame step size is 15 ms, therefore a 
10 state HMM can segment the S1 sound in just 10 
segments, one segment for each observation. Usually 
some parts of the signal are quasi-stationary and a small 
number of states is usually considered. In our case we 
used 6 states and 3 mixture components in each state 
transition.  

As S1 sound is longer than S2 we used 4 states in the 
modelling of S2 and also 3 mixture components in each 
state transition. 

 
4. EXPERIMENTAL RESULTS 

 
Experimental results were evaluated by using five 

records from different subjects. The results were 
computed on the basis of frame error rate where each 
frame of the labelled signal was compared to the output 
signal. The system error rate was computed by dividing 
the number of mismatched frames by the total number of 
frames in the system.  

Three from the existing five records were used for 
training purposes after labelling.  

Another evaluation was done on the basis of model 
inaccuracies. The difference between the centre of the 
heart sound label and the centre of the learned heart 
sound was computed. The maximum value allowed for 
this delta was 40 milliseconds. The model error rate was 
computed as the number of mismatched S1 or S2 labels 
divided by the total number of sound labels in the system. 
The testing set is composed by the five records, so it 
includes the training set. Table 1 shows the results 
separately for the training set and for the two remaining 
records, which represents really the test set.    

 
Table 1 – Error rates. 

Testing set Frame error rate Model error rate 
Training records 0.053±0.021 0.031±0.011 
Remaining records 0.12±0.084 0.096±0.061 

 
5. CONCLUSIONS 

 
The main objective of the work described in this paper 

was to develop a robust segmentation technique for 
segmenting the phonocardiogram into its main 
components. The performance obtained was slightly 
better than the one reported in [8]. However, the 
performance of our system can be increased by increasing 
the training set. Additionally ambient noise can be 
reduced by using state of the art techniques appropriate 
for HMM modelling [9].    

 
REFERENCES 

 
[1] Rangayyan, R. M. and Lehner, R. J.  (1988). 
Phonocardiogram signal processing: A review. CRC 
Critical Reviews in Biomedical Engineering, 153 (3): 
211-236.  
[2] Travel, M. E. (1978). Clinical Phonocardiography and 
External Pulse Recording. Year Book Medical, Chicago, 
IL, 3rd edition.  
[3] Luisada, A. A. and Portaluppi F. (1982). The Herat 
Sounds – New Facts and Their Clinical Implications. 
Praeger, New York.  
[4] Shaver, J. A., Salerni, R., and Reddy, P. S. (1985). 
Normal and abnormal heart sounds in cardiac diagnosis, 
Part I: Systolic sounds. Current problems in Cardiology, 
10(3): 1-68. 
[5] Reddy, P. S., Salerni, R., and Shaver, J. A., (1985). 
Normal and abnormal heart sounds in cardiac diagnosis, 
Part II: Diastolic sounds. Current problems in Cardiology, 
10(4): 1-55. 
[6] Lehner, R. J.  and Rangayyan, (1987).  A three-
channel microcomputer system for segmentation and 
characterization of the phonocardiogram. IEEE 
Transactions on Biomedical Engineering, 34:485-489.  
 [7] Durand, L. G., de Guise, J., Cloutier, G., Guardo, R. 
and Brais, M. (1986). Evaluation of FFT-based and 
modern parametric methods for the spectral analysis of 
bioprosthetic valve sounds.  IEEE Transactions on 
Biomedical Engineering, 33(6):572-578.  
[8] Lang, H., Lukkarinen, S. and Hartimo, I. (1997). Heart 
Sound Segmentation Algorithm Based on Heart Sound 
Envenlogram. Computers in Cardiology; 105-8. 
[9] C. Lima, L. B. Almeida and J. L. Monteiro, 
“Continuous Environmental Adaptation of a Speech 
Recogniser in Telephone Line Conditions,” 7th 
International Conference on Spoken Language Processing 
(ICSLP’2002), pp 1401-1404, 2002. 

 

a6,6 

a1,2 

a1,1 

1 a2,3 

a2,2 

2 a3,4 

a3,3 

3 a4,5 

a4,4 

4 6a5,6 

a5,5 

5 

Figure 2. HMM topology for acoustic modelling. 


