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Abstract 

 
This paper is concerned to the segmentation of heart 

sounds by using Radial-Basis Functions for acoustical 
modelling, combined with a Hidden Markov Model for 
heart sounds sequence modelling. The idea behind the use 
of RBF’s is to take advantage of the local approximations 
using exponentially decaying localized nonlinearities 
achieved by the Gaussian function, which increases the 
clustering power relatively to MLP’s. This neural model 
can be advantageous over the global approximations to 
nonlinear input-output mappings provided by Multilayer 
Perceptrons (MLP’s), especially when non-stationary 
processes need to be accurately modelled.  

The above described RBF’s properties combined with 
the non-stationary statistical properties of Hidden Markov 
Models can help in the detection of the T-wave which is 
fundamental for the detection of the second heart sound. 

The feature vectors are based on a MFCC based 
representation obtained from a spectral normalisation 
procedure, which showed better performance than the 
MFCC representation alone, in an Isolated Speech 
Recognition framework. Experimental results were 
evaluated on data collected from five different subjects, 
using CardioLab system and a Dash family patient 
monitor. The ECG leads I, II and III and an electronic 
stethoscope signal were sampled at 977 samples per 
second. 
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1. Introduction 

 
The phonocardiogram (PCG) is a sound signal related 

to the contractile activity of the cardiohemic system. The 
general state of the heart in terms of contractility and 
rhythm can be provided by heart sounds characteristics. 
Cardiovascular diseases and defects cause changes or 
additional sounds and murmurs that can be useful for 
diagnosis purposes. A normal cardiac cycle contains two 
major sounds: the first heart sound S1 and the second 
heart sound S2. S1 occurs at the onset of ventricular 

contraction and corresponds in timing to the QRS 
complex hence it can be easily identifiable if the ECG is 
available which is frequently the case. S2 follows the 
systolic pause and is caused by the closure of the 
semilunar valves. The interval between S1 and S2 as well 
as the S2 sound are both very important concerned to the 
diagnosis of several pathologies such as valvular stenosis 
and insufficiency. It is well known, for example, that S1 is 
loud and delayed in mitral stenosis, right bundle-branch 
block causes wide splitting of S2 and left bundle-branch 
block results in reversed splitting of S2 [1,2,3]. Murmurs 
are noise-like events, which can appear in the systolic 
segment, in the interval between S1 and S2 and in the 
diastolic segment representing obviously different 
pathologies. Although they are all noise-like events their 
features aid in distinguishing between different causes. 
For example, aortic stenosis causes a diamond-shaped 
midsystolic murmur whereas mitral stenosis causes a 
decrescendo-crescendo type diastolic-presystolic murmur. 
Automatic diagnosis of these and many others 
cardiovascular defects or diseases require robust 
techniques for segmenting the phonocardiogram. 
Especially the detection of S2 sound is hard to obtain in 
spite of it appears slightly after the end of the T-wave, 
however, as the T-wave is often a low amplitude and 
smooth wave and sometimes not recorded at all, thus the 
T-wave is not a reliable indicator to use for the 
identification of S2. 

Traditional techniques for S2 detection are mainly 
based on the notch in the aortic pressure wave, which can 
be obtained by using catheter tip tensors [4,5], which is an 
invasive procedure. Fortunately, the notch is transmitted 
through the arterial system and may be observed in the 
carotid pulse recorded at the neck. The dicrotic notch in 
the carotid pulse signal will bear a delay with respect to 
the corresponding notch in the aortic pressure signal but 
has the advantage of being accessible in a noninvasive 
manner. This delay is sometimes taken into consideration 
in the detection of S2 [6]. Signal processing techniques 
for the detection of the dicrotic notch and segmentation of 
the phonocardiogram include, among others, least-squares 
estimate of the second derivative of the carotid pulse [6], 
averaging techniques [7] and more recently the use of 
heart sound envenlogram, which reports a 93% success 



 
 

 

rate. However, implementing this algorithm is prone to 
error and it is sensitive to changes in pre-processing and 
setup parameters, which strongly compromises its 
robustness.  

Recently new approaches based on pattern recognition 
have been applied in solving difficult problems concerned 
to classification purposes, such as automatic speech 
recognition, cardiac diagnosis and segmentation of 
medical images, among others. These algorithms rely 
heavily on parametric signal models, which parameters 
are learned from examples.  The most common 
approaches of this class are the Neural Networks (NN) 
approach and the Hidden Markov Model (HMM) 
approach. 

This paper reports the use of RBF’s, which is a type of 
NN appropriated for statistical modeling, combined with 
HMM´s, as a robust model regarding to the  segmentation 
of the phonocardiogram into its component segments: the 
S1 sound, the systole period, the S2 sound and the 
diastole period. 

 
2. PCG Features Extraction 

 
The features extraction method considers noise 

robustness, is based on the power spectral density 
components and consists in dividing the power spectral 
density inside each sub-band by the total short-time 
power. The power in each sub-band is obtained by 
summing the power spectrum components inside the sub-
band. All the sub-bands have the same number of spectral 
components and no one is shared by different sub-bands, 
thus avoiding increases of statistical dependence between 
sub-bands (feature components). This kind of 
normalisation seems to be also adequate for dealing with 
additive distortions since the numerator and denominator 
of the features are both increased, though by different 
values, however this fact contributes for stabilising the 
feature values, which means increasing the robustness. 

To best understand this reasoning, consider Si denoting 
the power in sub-band i and S denoting the short time 
signal power of the considered segment. Similarly, let Ni 
and N denote the power of the interfering noise in sub-
band i and the short time noise power, respectively. So, 
the ith component of the observation vector for the clean 
signal is given by 
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Similarly if the signal appears noisy the next equation 
holds 
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where the index n stands for noisy signal. Equations (1) 
and (2) are computed in the same way without concerning 

to the noise existence, so they can be viewed as the same 
equation. The denominators of equations (1) and (2) 
represent respectively the power of the signal segment in 
clean and noisy conditions and can be both computed by 
summing all the components of the power spectrum 
density.  

If the interfering noise has white noise characteristics 
the environment will shift the clean vector by a noise 
dependent vector Ci(N), which can be computed by 
subtracting equation (1) from equation (2). 

 If the noise is stationary then its short time power 
equals its long time power. Note that this does not occur 
for the phonocardiogram due to its non-stationary 
property, but as an approximation we will consider that 
the short time phonocardiogram signal power equals the 
long time phonocardiogram signal power. Under this 
constraint, S and N can be related by the signal to noise 
ratio (SNR). Therefore the next expression holds 
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Let l, the number of components in each sub-band and 

L the FFT length. Then N and Ni, considering flat noise 
spectrum, are related by the quotient l/L. By using these 
considerations, the calculation of the shift vector imposed 
by the environment to the observed vector component i is 
noise dependent and is accomplished by subtracting 
equation (1) from equation (2)  
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where k is given by  
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and in terms of mean the next expression holds 
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Equation (4) shows that if the clean signal has a flat 

power spectrum density, the means of Ci(N) become null 
as Si/S equals l/L. This is particularly true for example in 
processing unvoiced regions of the speech signal. For the 



 
 

 

present case of phonocardiogram processing we expect 
that this feature can help in the segmentation since the 
segment between S1 and S2 contains only noise or noise-
like signals (murmurs) respectively for a normal and 
abnormal subjects. Therefore, this normalisation process 
becomes optimal in the sense that the environment does 
not affect the means of the phonocardiogram features, 
while the variances are strongly reduced by the intrinsic 
mechanism of energy normalization, which consists of the 
mathematical division of the power in each sub-band by 
the short-time power.  

The normalized spectrum obtained in this manner is 
then applied to a Mel-Spaced filter bank. Mel-Spaced 
filter banks provide a simple method for extracting 
spectral characteristics from an acoustic signal, and are 
largely used in the field of speech processing.  This 
method involves creating a set of triangular filter banks 
across the spectrum. The filter banks are equally spaced 
along the Mel-scale as defined by equation (7) 
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Equal spacing on the Mel-scale provides exponential 

spacing on the normal frequency axis. This exponential 
spacing means that there are numerous small banks at 
lower frequencies and sparse, large banks at higher 
frequencies. Since most of the phonocardiogram energy is 
in the lower frequency ranges, using a Mel-scale matches 
the frequency spectrum of the heart sounds. 

Each triangular filter is multiplied by the normalised 
spectrum obtained from equation (1) and summed for 
each triangular filter. This constitutes the feature vectors 
to be used as HMM observations. 

Since the average duration of S1 is about 0.16 seconds, 
the HMM segments the phonocardiogram in frames of 
0.15 seconds with a 0.015 seconds frame overlapping.  
Each signal segment has 146 samples, which are 
converted into 256 spectral coefficients by using a 
conventional FFT algorithm. The signal is then divided in 
16 sub-bands each one with 16 spectral coefficients. Then 
equation (1) is applied to perform spectral normalization, 
and the spectrum obtained in this way is applied to the 
Mel-scale filter banks. Since spectral dynamics is very 
important concerned acoustic signal modelling delta 
coefficients are computed and inserted in the observation 
vectors.  

It is well known that the frequency spectrum of S1 
contains peaks in the 10 to 50 Hz range and the 50 to 140 
Hz range, while the frequency spectrum of S2 contains 
peaks in the 10 to 80 Hz range, the 80 to 200 Hz range 
and the 220 to 400 Hz range. Hence, this study limits the 
spectral feature extraction between the frequencies of 10 
Hz and 420 Hz.   

 
 
 

3. Heart Sound Model 
 
The cardiac sound model is a composition of various 

RBF’s, each one modeling each different sound unit. The 
different sound units are the silence and the major cardiac 
sounds S1 and S2. Each RBF provides a probability 
(likelihood) of generating each sound unit, which is 
assumed to be the emission probability associated with 
each HMM transition.   

 
3.1. Heart Sound Markov Model 
 
A Hidden Markov Model (HMM) is a probabilistic state 

machine where hidden (unobservable) states output 
observations. In the case of Discrete Density Hidden 
Markov Models (DDHMM’s) the observations are 
discrete symbols from a finite alphabet. This kind of 
HMM can model the phonocardiogram as it traverses a 
specific labeled region such as S1, systolic, S2 or diastolic 
segments.  

The segmentation of the phonocardiogram can be 
heuristically accomplished by the discrete HMM which 
four state (one state for each event) structure is shown in 
figure 1. 

 
 
 
 
 
 
 
 
 
 
 
 
 

This HMM does not take into consideration the S3 and 
S4 heart sounds since these sounds are difficult to hear 
and record, thus they are most likely not noticeable in the 
records. 

 
3.2. Acoustic Model 

The acoustic model is RBF network based. The method 
of radial-basis functions is a technique for interpolation in 
a high dimensional space and provides an alternative to 
learning in the neural networks framework. The RBF 
network consists of an only hidden layer of high enough 
dimension which provides a non-linear transformation 
from the input space. The output layer provides a linear 
transformation from the hidden-unit space to the output 
space.  The activation function f(x) called RBF responds 
to a field of view around a fixed location c such that the 
function is largest for x=c  and decreases (approaches 
zero) as x becomes more distant of c. Usually the 
considered distance is the Euclidean distance and the 
activation function is the Gaussian function. Figure 2 
shows the Probabilistic neural network architecture. 

Figure 1. Heart sound Markov Model 
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When using radial-basis function neurons, a category of 
patterns can be regarded as a Gaussian distribution of 
points in pattern space. The RBF neuron fires when its 
input is sufficiently close to activate the Gaussian. For 
this reason the RBF’s are usually known as NN’s for 
statistical applications.    

 
4. Experimental Results 

 
Experimental results were evaluated by using five 

records from different subjects. The results were 
computed on the basis of frame error rate where each 
frame of the labelled signal was compared to the output 
signal. The system error rate was computed by dividing 
the number of mismatched frames by the total number of 
frames in the system.  

Three from the existing five records were used for 
training purposes after labelling.  

Another evaluation was done on the basis of model 
inaccuracies. The difference between the centre of the 
heart sound label and the centre of the learned heart 
sound was computed. The maximum value allowed for 
this delta was 40 milliseconds. The model error rate was 
computed as the number of mismatched S1 or S2 labels 
divided by the total number of sound labels in the system. 
The testing set is composed by the five records, so it 
includes the training set. Table 1 shows the results 
separately for the training set and for the two remaining 
records, which represents really the test set.    
 

 
 
 

Table 1 – Error rates. 
Testing set Frame error rate Model error rate 
Training records 0.055±0.024 0.029±0.012 
Remaining records 0.11±0.082 0.098±0.063 

 
6. Conclusions 

 
The main objective of the work described in this paper 

was to develop a robust segmentation technique for 
segmenting the phonocardiogram into its main 
components. In a variety of experiments RBF´s showed 
some advantages over MLP´s such as faster training, 
better retention of generalization, more accuracy, less 
sensitivity to bad training data, to name a few. The 
performance obtained was slightly better than the one 
reported in [8]. However, the performance of our system 
can be increased by increasing the training set.  
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Figure 2. PNN used for acoustic modelling 


