The Group Inverse of the Nivellateur

R.E. Hartwig^{*} P. Patrício[†]

Abstract

We shall derive necessary and sufficient conditions for the Nivellateur to have a group inverse over an algebraically closed field. We then extend these results to arbitrary fields.

Keywords: Nivellateur, group inverse, matrices over a field

AMS classification: 15A09, 15A21

1 The nivellateur

The matrix equation $AX - XB = C$ can be written in column form as $G\text{vec}(X) = \text{vec}(C)$,

where $\text{vec}(Y) =$ $\sqrt{ }$ $\overline{}$ y_1 . . . y_n 1 \parallel when $Y = \begin{bmatrix} \mathbf{y}_1 & \dots & \mathbf{y}_n \end{bmatrix}$, and

$$
G = I \otimes A - B^T \otimes I
$$

is the nivellateur of A and B.

[∗]Mathematics Department, N.C.S.U., Raleigh, NC 27695-8205, U.S.A. e-mail: hartwig@unity.ncsu.edu

Corresponding author.

[†]CMAT – Centro de Matemática and Departamento de Matemática e Aplicações, Universidade do Minho, 4710-057 Braga, Portugal. e-mail: pedro@math.uminho.pt

Partially supported by FCT-'Fundação para a Ciência e a Tecnologia', within the project UID-MAT-00013/2013.

Our aim is to find necessary and sufficient conditions for the existence of the group inverse of this matrix in terms of A and B , and to provide expressions for this group inverse.

We shall use $r(X)$, $\nu(X)$, $R(X)$, $RS(X)$, $N(X)$ to denote rank, nullity, range, rowspace, nullspace of X , respectively.

Throughout let A be $m \times m$ and B be $n \times n$.

A matrix A has a group inverse if there exists a solution to the equations

$$
AXA = A, \quad XAX = X, \quad AX = XA,\tag{1}
$$

in which case the solution is unique and is denoted by $A^{\#}$. We shall refer to this existence as "A is GP".

We begin with the easiest case, which is that of a closed field.

2 The closed field Case

Consider the matrices A and B over a closed field \mathbb{F} , with characteristic polynomials

$$
\Delta_A(x) = |xI - A| = \prod_{k=1}^{s(A)} (x - \lambda_k)^{n_k(A)} = \prod_{i=1}^{n(A)} (x - \alpha_i)
$$

and

$$
\Delta_B(x) = |xI - B| = \prod_{k=1}^{s(B)} (x - \mu_k)^{n_k(B)} = \prod_{i=1}^{n(B)} (x - \beta_i).
$$

Here the λ_k , μ_r are distinct and the α_i , β_i may be repeated. Further let $\sigma(A) = {\lambda_1, ..., \lambda_s}$ be the spectrum of distinct eigenvalues of A and let $\tau(A) = (\alpha_1, ..., \alpha_m)$ be the list of all of its m eigenvalues – repeated or not. Set $T = \sigma(A) \cap \sigma(B)$.

We denote the algebraic and geometric multiplicities of $\lambda_k(A)$ by $n_k(A)$ and $\nu_k(A)$ $\dim[N(A-\alpha_k I)]$ respectively.

It is clear that s \sum (A) $k=1$ $n_k(A) = n(A) = m$ and s \sum (B) $j=1$ $n_j(B) = n(B) = n.$ Furthermore, suppose that the minimal polynomial of A is given by

$$
\psi_A(x) = \prod_{k=1}^s (x - \lambda_k)^{m_k(A)}
$$

with $m_i(A) \leq n_i(A)$. We shall refer to the exponent $m_k(A)$ as the index $ind(\lambda_k)$ of λ_k .

It is well known that the group inverse exists if and only if the geometric and algebraic multiplicities of the **zero** eigenvalue are equal.

We shall compute the algebraic multiplicity $n_0(G)$ and the geometric multiplicity $\nu_0(G)$ of the zero eigenvalue of G.

From Stephanos' theorem (see [6, Theorem 1, page 411]) we know that the eigenvalues of G have the form $\lambda_{ij}(G) = \lambda_i(A) - \lambda_j(B)$ with $i = 1, ..., m$ and $j = 1, ..., n$, counted according to multiplicity. This immediately tell us that

$$
n_0(G) = \sum_{\gamma \in \sigma(A) \cap \sigma(B)} n_{\gamma}(A) n_{\gamma}(B). \tag{2}
$$

To get more information about G , we first reduce B to its Jordan form, via

$$
Q^{-1}BQ = J_B = diag(J_{q_1}(\beta_1), ..., J_{q_u}(\beta_u)),
$$

where $J_k(a) = \begin{bmatrix} a & 1 & 0 \ 0 & a & 1 \ \cdot & \cdot & \cdot & 1 \ \cdot & \cdot & \cdot & \cdot & 1 \ \cdot & \cdot & \cdot & \cdot & a \end{bmatrix}$ and Q is a suitable invertible matrix, made up of

Jordan Chains of generalized e-vectors. The β_j may be repeated and u is the number of Jordan blocks. The associated elementary divisors of B are given by

$$
\mathcal{E}_B = \{ (x - \beta_j)^{q_j}; j = 1, \ldots, u \}.
$$

Likewise the elementary divisors of A are given by $\mathcal{E}_A = \{(x - \alpha_i)^{p_i}; i = 1, \ldots, t\}$.

Transforming G we have

$$
(Q^T \otimes I)G[(Q^T)^{-1} \otimes I] = I \otimes A - J_B^T \otimes I = diag(G_1, ..., G_s),
$$

where

$$
G_i = I \otimes A - J_{q_i}^T(\beta_i) = \begin{bmatrix} A - \beta_i I & 0 \\ -I & A - \beta_i I \\ 0 & \cdots & \ddots \\ 0 & -I & A - \beta_i I \end{bmatrix}_{\text{of block size } q_i \times q_i}
$$
 (3)

which will also give (2) .

We now observe that if $A\mathbf{u} = \mathbf{0}$ and $B^T\mathbf{v} = \mathbf{0}$ then $G(\mathbf{v}\otimes \mathbf{u}) = \mathbf{0}$. This means that

$$
N(B^T) \otimes N(A) \subseteq N(G),\tag{4}
$$

and hence on taking dimensions

$$
\nu(A) \cdot \nu(B) \le \nu(G).
$$

Consequently we have (product rule)

$$
\nu(G) = \nu(A) \cdot \nu(B) \Leftrightarrow N(G) = N(B^T) \otimes N(A). \tag{5}
$$

Let us now refine the block form of (3) to obtain:

- (i) an expression for $\nu(G)$ in terms of A and B,
- (ii) conditions for G to have a group inverse, and
- (iii) give a formula for $G^{\#}$.

We shall then use the expression for $\nu(G)$ to show when precisely the product rule holds and when $\nu(G) = n_0(G)$, i.e. when $G^{\#}$ exists.

We begin with

Lemma 2.1. Let R be a ring with unity 1, and suppose that

$$
J_n(-a) = \begin{bmatrix} a & & & 0 \\ -1 & a & & \\ & & \ddots & \\ 0 & & -1 & a \end{bmatrix} \text{ and } K_n(a) = \begin{bmatrix} 1 & & & 0 \\ a & 1 & & \\ a^2 & \ddots & \ddots & \\ & & & a & 1 \end{bmatrix}
$$

are over R with $n \geq 2$. Then

(i)
$$
K_n(a)^T J_n(-a) = \begin{bmatrix} 0 & a^n \\ I & \mathbf{b} \end{bmatrix}
$$
, where $\mathbf{b}^T = [a^{n-1}, \dots, a^2, a]$.

(ii)
$$
J_n(-a)^{\#}
$$
 exists iff a^{-1} exists. In which case $J_n(-a)^{\#} = J_n(-a)^{-1} = \begin{bmatrix} a^{-1} & 0 \ a^{-2} & a^{-1} & 0 \ \vdots & \ddots & \vdots \ a^{-n} & \cdots & a^{-1} \end{bmatrix}$.

Proof. (i) Clear.

(ii) Equating (2,1) entries in $J_n(-a)^2X = J_n(-a)$ and $(n,n-1)$ entries in $YJ_n(-a)^2 =$ $J_n(-a)$ we see that a has both left and right inverses. \Box

From (3) we know that $G^{\#}$ exists iff **each** of the blocks G_i has a group inverse. Now when β_i is **not** an eigenvalue of A then G_i is invertible and there is no contribution to $\nu(G)$. So we only need to consider a common eigenvalue $\gamma = \alpha_i = \beta_j$.

So let $\gamma \in T = \sigma(A) \cap \sigma(B)$ and assume that the associated elementary divisors are

$$
\mathcal{E}_A = \{(x-\gamma)^{p_1(\gamma)}, \dots, (x-\gamma)^{p_k(\gamma)}\}
$$

and

$$
\mathcal{E}_B = \{ (x - \gamma)^{q_1(\gamma)}, \dots, (x - \gamma)^{q_t(\gamma)} \},
$$

respectively, where $p_1(\gamma) \ge p_2(\gamma) \ge \cdots \ge p_k(\gamma) \ge 1$ and $q_1(\gamma) \ge q_2(\gamma) \ge \cdots \ge q_t(\gamma) \ge 1$. There are two cases that can happen.

- (i) If $q_i > 1$ then by Lemma 2.1 we know that $G_i^{\#}$ $i^{\#}$ exists iff $(A - \gamma I)^{-1}$ exists, that is, iff $\gamma \notin \sigma(A)$. So this case cannot occur.
- (ii) If $q_i = 1$, i.e when we have a linear elementary divisor $x \gamma$ in \mathcal{E}_B , then $G_i^{\#}$ $i^{\#}$ exists iff $(A - \gamma I)^{\#}$ exists. This happens exactly when γ is a simple root of $\psi_A(x)$.

Thus,

Theorem 2.1. $G^{\#}$ exists if and only if for every $\gamma \in \sigma(A) \cap \sigma(B)$ with $q_i = 1$ (a 1×1) Jordan block) we have $ind_A(\gamma) = 1$.

In other words, for a common eigenvalue all associated elementary divisors for A and B must be linear.

As a by-product we can compute the nullity of G [5]. Indeed, suppose that A is in Jordan form, say $A = A_{\gamma} \oplus X$, where $A_{\gamma} = diag(J_{p_1}(\gamma), \ldots, J_{p_r}(\gamma))$, and X contains Jordan blocks with non common eigenvalues. Note that $\nu(A_\gamma) = r$. Then $I \otimes A_\gamma - J_{q_j}(\gamma) \otimes I$ takes the form

$$
G_{i,j} = \begin{bmatrix} J_{p_1}(0) & & & 0 \\ -I & J_{p_2}(0) & & \\ & \ddots & \ddots & \\ 0 & & -I & J_{p_r}(0) \end{bmatrix}_{q_j \text{ blocks}}
$$
 (6)

Now because $\nu[J_n(0)]^k = \min(n, k)$ we see that

$$
\nu(G_{ij}) = \sum_{i=1}^{r} \min\{p_i, q_j\} \tag{7}
$$

Repeating this for all common eigenvalues we arrive at, c.f. [5],

$$
\nu(G) = \sum_{\gamma \in T} \sum_{j=1}^{r} \sum_{i=1}^{r} \min\{p_i, q_j\}.
$$
\n(8)

Let us now use this result to derive a couple of special cases.

If $T = \emptyset$, there are no common eigenvalues and $\nu(G) = 0$. In particular $0 \notin T$ and either A or B is invertible. Hence $\nu(A) \cdot \nu(B) = 0$ and the product rule holds.

If there are common eigenvalues, but 0 is not one of them, then $\nu(A)\cdot\nu(B) = 0 < \nu(G)$. Lastly, if 0 is a common eigenvalue, then separating off the common zero eigenvalue we get

$$
\nu(G) = \sum_{i=1}^{\nu(A)} \sum_{j=1}^{\nu(B)} \min\{p_i(0), q_j(0)\} + \sum_{0 \neq \alpha \in T} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \min\{p_i(\alpha), q_j(\alpha)\} \geq \nu(A) \cdot \nu(B).
$$

This we rewrite as

$$
\nu(G) - \nu(A)\nu(B) = \sum_{i=1}^{\nu(A)} \sum_{j=1}^{\nu(B)} [\min\{p_i(0), q_j(0)\} - 1] + \sum_{0 \neq \alpha \in T} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \min\{p_i(\alpha), q_j(\alpha)\} \ge 0.
$$
\n(9)

Since all terms are non-negative, we see that $\nu(G) = \nu(A) \cdot \nu(B)$ if and only if there are no common eigenvalues besides zero and for the zero eigenvalue

$$
\sum_{i=1} \sum_{j=1} [\min\{p_i(0), q_j(0)\} - 1] = 0.
$$

That is, $\min(p_i, q_j) = 1$ for all $i = 1, \ldots, \nu(A), j = 1, \ldots, \nu(B)$. Hence if some $p_i(0) > 1$ then all $q_i(0) > 1$ or if some $q_i(0) = 1$ then all $p_i(0) = 1$. That is, either all elementary divisors of A associated with zero are linear or all those of B are. Thus the product rule holds if and only if either $\psi_B(x) = xf(x)$ or $\psi_B(x) = xg(x)$, where $(x, f) = 1 = (x, g)$. In other words, the product rule holds if and only if A and B have at most the zero eigenvalue in common and either $A^{\#}$ or $B^{\#}$ or both, exist.

Next we consider

$$
n_0(G) - \nu(G) = \sum_{\alpha \in T} \sum_{i=1}^{k(\alpha)} \sum_{j=1}^{t(\alpha)} [p_i q_j - \min(p_i, q_j)] \ge 0.
$$

It thus follows that $n_0(G) = \nu(G)$, i.e. G^* exists, if and only if for each common eigenvalue $\gamma, p_i q_j = \min(p_i, q_j) \ge 1$, for all $i = 1, \ldots, k, j = 1, \ldots, t$. Next we note that if $r, s \ge 1$, then

$$
rs = \min\{r, s\} \text{ if and only if } r = s = 1 \tag{10}
$$

and conclude that $G^{\#}$ exists if and only if for each common eigenvalue α , the elementary divisors are **linear**. In other words, if and only if $\gamma \in T \Rightarrow \psi_A(x) = (x - \gamma)f(x)$ and $\psi_B(x) =$ $(x - \gamma)g(x)$, where γ is not a root of $f(x)$ or $g(x)$.

Remarks

(i) If $G^{\#}$ exists then $\gamma \in T$ implies $(A - \gamma I)^{\#}$ and $(B - \gamma I)^{\#}$ both exist, yet $A^{\#}$ and/or $B^{\#}$ may not exist. For example, if A is invertible and $\psi_B = x^2 f(x)$ where $gcd(\Delta_A, f) = 1$, then the condition for $G^{\#}$ to exist are satisfied, yet $B^{\#}$ does not exist.

On the other hand, if $A^{\#}$ and $B^{\#}$ both exist, then $G^{\#}$ need not exist since they could have common e-values other than zero.

- (ii) We know that if $G^{\#}$ exists then it is a polynomial in G, the coefficients of which can be derived from $\Delta(G)$, which in turn can be found from the eigenvalues of A and B. Since this becomes intractable, we shall proceed differently. First an alternative proof of the above which is based on the property of Jordan blocks.
- (iii) Since G^T is similar to $(A^T \otimes I I \otimes B)$ and $\psi_A = \psi_{A^T}$ we may interchange the roles of A and B to deduce the desired symmetry of Theorem 2.1.

To compute $G^{\#}$ suppose that $\beta_i \notin \sigma(A)$, for $i = 1, \ldots, t$, and $\beta_i \in \sigma(A)$, for $i =$ $t + 1, \ldots, v$. Next let $Q = [Q_1, \cdots, Q_v]$ and $Y = (Q^T)^{-1} = [Y_1, \cdots, Y_v]$ so that $BQ_i =$ $Q_i J_{q_i}(\beta_i)$ and $B_i^T = Y_i J_{q_i}^T(\beta_i)$. Then

$$
G^{\#} = (Y \otimes I) \begin{bmatrix} G_1^{-1} & & & & 0 \\ & \ddots & & & 0 \\ 0 & & G_t^{-1} & & \\ & & 0 & & G_{t+1}^{\#} \\ & & & 0 & & \ddots \\ & & & & G_v^{\#} \end{bmatrix} (Q^T \otimes I)
$$

$$
= \sum_{i=1}^t Y_i G_i^{-1} Q_i^T + \sum_{i=t+1}^v Y_i G_i^{\#} Q_i^T.
$$

Now G_i^{-1} $i⁻¹$ is given as in (2.1) in which $(A - \beta_i I)^{-r}$ can be calculated from the spectral theorem [3]. Indeed,

$$
(A - \beta_i I)^{-r} = \sum_{k=1}^{s} \sum_{j=0}^{m_k - 1} [(x - \beta_i)^{-r}]_{\lambda_k}^{(j)} Z_k^j = \sum_{k=1}^{s} \sum_{j=0}^{m_k - 1} (-1)^j \frac{(r+j-1)!}{(r-1)!} (\lambda_k - \beta_i)^{-r-j} Z_k^j.
$$
 (11)

Furthermore $(A - \beta_i I)^{\#} = g(A)$ where $g(x) = \begin{cases} 0 & x = \beta_i \end{cases}$ $1/(x - \beta_i) \quad x \neq \beta_i$ and so

$$
(A - \beta_i I)^{\#} = \sum_{k=1}^{s} \sum_{j=0}^{m_k - 1} g^{(j)}(\lambda_k) Z_k^j = \sum_{\lambda_k \neq \beta_j} \sum_{j=0}^{m_k - 1} \frac{(-1)^j}{(\lambda_k - \beta_i)^{j+1}} Z_k^j.
$$
(12)

Substituting these in the above yields G^* .

Let us now turn to the case of an arbitrary field.

3 The Arbitrary Field Case

We shall now give conditions for $G^{\#}$ to exist in term of the invariant factors $\{a_1(x),..,a_r(x)\}$ of A, and $\{b_1(x),...,b_s(x)\}\$ of B, and compute $G^{\#}$ in terms of polynomial matrices associated with A and/or B .

We begin by reducing A and B to their respective *rational canonical forms* and as such reduce the problem to one where we have two companion matrices [3, p. 163], i.e.,

$$
P^{-1}AP = A_c = diag[L(a_1(x)),...,L(a_r(x))] \text{ and } Q^{-1}BQ = B_c = diag[L(b_1(x),...,L(b_s(x))]
$$

The nivellateur becomes

$$
(Q^T \otimes P^{-1})G(Q^{-T} \otimes P) = I_n \otimes A_c - B_c^T \otimes I_m
$$

We permute the diagonal blocks using the "universal flip" matrix – see $[3]$ – to get

$$
G \approx \bigoplus_{i=1}^r \bigoplus_{j=1}^s G_{ij},
$$

where $G_{ij} = I_{n_i} \otimes L[a_i(x)] - L^T[b_j(x)] \otimes I_{m_j}$.

We now replace G by G_{ij} and consider the "two-companion" case where $G = I_n \otimes L[a(x)] L^T[b(x)] \otimes I_m$, with $b(x) = b_0 + b_1x + \cdots + b_nx^n$.

Following [3] we reduce $xI - L^T[b(x)]$ to its Smith Normal From via

$$
R(x)[xI - LT(b)]K(x) = \begin{bmatrix} b(x) & 0\\ 0 & I_{n-1} \end{bmatrix},
$$
\n(13)

where $R(x) = \begin{bmatrix} \beta^T(x) & 1 \end{bmatrix}$ $-I$ 0 1 , $K(x)$ is as in lemma (2.1) and $[\boldsymbol{\beta}^T(x), 1] = [b_0(x), \dots, b_{n-2}(x), 1].$ In this the $b_i(x)$ are the *adjoint polynomials* defined by $[\beta^T(x), 1] = [b_1, \ldots, b_n]K(x)$. We

recall in passing that $adj(xI - B) = \sum_{n=1}^{n-1}$ $i=0$ $b_i(B)x^i$. Solving this gives

$$
[xI - L^T(b)] = R(x)^{-1} \begin{bmatrix} b(x) & 0 \\ 0 & I_{n-1} \end{bmatrix} K(x)^{-1}, \tag{14}
$$

and subsequently replacing x by $A = L[a(x)]$ throughout, these polynomial identities we arrive at

$$
G = R(A)^{-1} \begin{bmatrix} b(A) & 0 \\ 0 & I_{n-1} \end{bmatrix} K(A)^{-1} = PDQ.
$$
 (15)

Since P and Q are invertible we may use [10, Corollary 2], which says that $(PDQ)^{\#}$ exists if and only if $U = DQPDD^- + I - DD^-$ is invertible. Since

$$
(1 - ab)^{-1} = 1 + a(1 - ba)^{-1}b,
$$

this is equivalent to $U' = DQP + I - DD^{-}$ being invertible, i.e. to $W = D + (I DD^{-}R(A)K(A)$ being invertible.

Theorem 3.1. W is invertible if and only if $G^{\#}$ exists.

To compute
$$
R(x)K(x)
$$
 we define $T(x) = \begin{bmatrix} \mathbf{b}^T & 1 \\ -K_{n-1}^{-1} & 0 \end{bmatrix}$, where $\mathbf{b}^T = [b_1, \dots, b_n]$. Then
\n
$$
T(x)K_n(x) = R(x) = \begin{bmatrix} \boldsymbol{\beta}^T(x) & 1 \\ -I_{n-1} & \mathbf{0} \end{bmatrix}
$$
 and
\n
$$
R(x)K(x) = T(x)K(x)^2 = \begin{bmatrix} \mathbf{b}^T & 1 \\ -K_{n-1}^{-1} & 0 \end{bmatrix} \begin{bmatrix} K_{n-1}^2(x) & 0 \\ ? & 1 \end{bmatrix} = \begin{bmatrix} \boldsymbol{\gamma}^T(x) & 1 \\ -K_{n-1}(x) & \mathbf{0} \end{bmatrix}, \quad (16)
$$

in which $\boldsymbol{\gamma}^T(x) = [b'(x), \boldsymbol{\rho}^T(x)]$ and $\boldsymbol{\rho}^T = [b'_0(x), \dots, b'_{n-3}(x)]$. These contain the formal derivatives of the adjoint polynomials.

We next form

$$
(I - DD^{-})R(A)K(A) = \begin{bmatrix} I - b(A)b(A)^{-} & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} [b'(A), \rho^{T}(A)] & 1 \\ ? & ? \end{bmatrix}
$$

$$
= \begin{bmatrix} [I - b(A)b(A)^{-}]b'(A) & C \\ 0 & 0 \end{bmatrix},
$$

where $C = [I - b(A)b(A)^{-}] [\boldsymbol{\rho}^T(A), I].$ Adding in $D =$ $\begin{bmatrix} b(A) & 0 \end{bmatrix}$ 0 I_{n-1} 1 we arrive at $W =$ $\int b(A) + [I - b(A)b(A)^{-}]b'(A) C$ 0 I 1 (17)

This will be invertible **exactly** when $b(A) + [I - b(A)b(A)]^{-1}b'(A)$ is invertible. Note that $b(A)$ and $b'(A)$ commute, but that $b(A)^-$ need not be a polynomial in A.

We now need

Lemma 3.1. Suppose R is a von Neumann finite regular ring and $ah = ha$. If $a + (1 - aa^{-})h$ is a unit then $a^{\#}$ must exist.

Proof. Let $u = a + (1 - aa^{-})h$. Then $ua = a^{2} + (1 - aa^{-})ha = a^{2} + (1 - aa^{-})ah = a^{2}$ and thus $a = u^{-1}a^2$. Since R is finite we may conclude that $a^{\#}$ exists. \Box

Suppose now that W is invertible. Then $b(A)$ is GP and we can replace $b(A)^-$ by $b(A)^{\#} = g(A)$ in W, implying that

Theorem 3.2. W is a unit if and only if $b(A)$ is GP and $f(A) = b(A) + [I - b(A)b(A)^{\#}]b'(A)$ is a unit.

We shall now reduce these conditions to suitable polynomial results. First we recall the trivial gcd result

Lemma 3.2. $(u, d) = 1$ if and only if $(dm + u, d) = 1$.

and the group inverse result

Lemma 3.3. Suppose M has minimal polynomial $\psi_M(x)$, and let $f(x)$ be a polynomial with $d(x) = gcd(f(x), \psi_M(x))$. The following are equivalent:

(i) $f(M)^{\#}$ exists (ii) $d(M)^{\#}$ exists (iii) $(d, \psi/d) = 1$ (iv) $(f, \psi/d) = 1$.

The proof is left as an exercise.

The latter says that if $f = p^r \tilde{f}$ and $\psi = p^s \tilde{\psi}$ for some prime factor p, with $(\tilde{f}, p) = 1$ $(p, \tilde{\psi})$, then $r \geq s$. In other words, common factors of f and ψ occur with minimal degree in ψ_M .

Since we may interchange $L(a)$ and $L(b)$ we must actually have that $r = s$. In other words the common prime factors of any invariant factor $a(x)$ of A and any invariant factor $b(x)$ of B must have the same multiplicity.

Now recall that $\psi_A = a(x)$ and set $(a, b) = d$. Then $b = d\tilde{b}$ and $a = d\tilde{a}$ for some \tilde{b}, \tilde{a} , with $(\tilde{a}, \tilde{b}) = 1$. Moreover $b(A)$ has a group inverse if and only if $(d, \tilde{a}) = 1$ or if $(b, \tilde{a}) = 1$.

The existence of $b(A)^{\#}$ also says that $b(A)^{2}g(A) = b(A)$ which holds iff $a|b(1 - bg)$ iff $d\tilde{a}|\tilde{d}(1-gb)$ iff $\tilde{a}|\tilde{b}(1-gb)$. But $(\tilde{a},\tilde{b})=1$ and thus $\tilde{a}|(1-gb)$ and conversely. We may as such write $1 - gb = \tilde{a}h$, for some $h(x)$. This ensures that $(\tilde{a}, b) = 1 = (\tilde{a}, g)$ and gives $f = b + \tilde{a}hb'.$

Next recall, by Hensel's theorem [8, p. 21, Theorem 15.5], that $f(A)$ is invertible if and only if $(f, a) = 1$, i.e. if and only if $(f, d) = 1 = (f, \tilde{a})$. First we observe that $(f, d) = 1$ if and only if $(b + (1 - bg)b', d) = 1$ if and only if $(d\tilde{b}(1 - gb') + b', d) = 1$. By Lemma (3.2) this happens precisely when $(b', d) = 1$.

Next we note that because $b = d\tilde{b}$ we have $b' = d'\tilde{b} + d(\tilde{b})'$ and thus again by the lemma, $(b', d) = 1$ if and only if $(d'\tilde{b} + d(\tilde{b})', d) = 1$ if and only if $(d'\tilde{b}, d) = 1$ if and only if $(d, d') = 1 = (\tilde{b}, d) = 1.$

Since $(\tilde{a}, \tilde{b}) = 1$ it follows that $(a, \tilde{b}) = (d\tilde{a}, \tilde{b}) = 1$ so that $\tilde{b}(A)$ is invertible.

We now cancel $\tilde{b}(A)$ in $d(A)^2 \tilde{b}(A)^2 g(A) = b(A)^2 g(A) = b(A) = d(A) \tilde{b}(A)$. This implies that

$$
d(A)^2\tilde{b}(A)g(A) = d(A),
$$

so that $d(A)^{\#}$ exists and

$$
d(A)^{\#} = g(A)\tilde{b}(A)
$$
 and $b(A)b(A)^{\#} = d(A)d(A)^{\#}$.

The surprising fact is that the condition $(f,\tilde{a}) = 1$ automatically follows if $b(A)$ is GP. Indeed, we have

$$
b(a)^{\#} \text{ exists } \Rightarrow (b, \tilde{a}) = 1 \Rightarrow (b + \tilde{a}hb', \tilde{a}) = 1 \Rightarrow (b + (1 - bg)b', \tilde{a}) = 1 \Rightarrow (f, \tilde{a}) = 1.
$$

We recap in

Theorem 3.3. If $G = I_n \otimes L[a(x)] - L^T[b(x)] \otimes I_m$, then $G^{\#}$ exists if and only if $(d, \tilde{a}) =$ $1 = (d, d')$, where $d = (a, b)$ and $a = d\tilde{a}$.

Now $(d, d') = 1$ means that d only has simple prime factors. As a consequence, the common invariant factors have simple prime factors. For the closed field case, this says that all elementary divisors corresponding to common eigenvalues must be linear – as we met in the previous section.

To compute the actual inverse of $f(A)$ we observe that because $(d, d') = 1$, we can find s and t by Euclid's algorithm, such that $d(x)s(x) + d'(x)t(x) = 1$. This means that

$$
d'(A)t(A) = 1 - d(A)s(A).
$$
 (18)

Substituting for b' we may rewrite $f(A) = b(A) + [I - b(A)g(A)]b'(A)$ as $f(A) =$ $b(A) + [I - d(A)d(A)^{\#}]d'(A)\tilde{b}(A)$, which we may invert to give

$$
f(A)^{-1} = b(A)^{\#} + [I - d(A)d(A)^{\#}]\tilde{b}(A)^{-1}t(A).
$$
 (19)

Indeed, this follows because

$$
[I - d(A)d(A)^{#}]d'(A)\tilde{b}(A).\tilde{b}(A)t(A) = [I - d(A)d(A)^{#}]d'(A)t(A)
$$

= [I - d(A)d(A)^{#}][I - d(A)s(A)]
= I - d(A)d(A)^{#}.

Remark We could have used the fact that $(b', d) = 1$ which gives $b'u = 1 - dv$ for some $v(x)$ and write $f(A)^{-1} = b(A)^{\#} + [I - b(A)b(A)^{\#}]u(A)$. The computation of u, however, is more difficult than that of $t(x)$.

Since $d(x)$ only has simple pime factors, the computation of $t(A)$ can be done via the gcd algorithm and the Chinese remainder theorem. Indeed, suppose $d = p_1p_2\cdots p_k$, where the p_i are distinct prime polynomials. Further set $M_i = \frac{d}{n_i}$ $\frac{d}{p_i}$ and $g_i = M_i^{-1} \mod p_i$. Next we observe that if $sd + td' = 1$, then $t = (d')^{-1} \mod d$, which is equivalent to $t = (d')^{-1} \mod p_i$ for all $i = 1, ..., k$. Because $d' = p'_1 M_1 + p'_2 M_2 + ...$ we see that $(d')^{-1}$ mod $p_i = (p'_i M_i)^{-1} \mod p_i = g_i (p'_i)^{-1} \mod p_i$. Using the Chinese remainder theorem we may conclude that

$$
t = \sum_{i=1}^{k} g_i^2 M_i (p_i')^{-1} \mod p_i.
$$
 (20)

.

4 Computation of $G^{\#}$

We may compute the actual group inverse of G via the formula [10],

$$
G^{\#} = PU^{-2}DQ = R(A)^{-1}[I + (I - DK(A)^{-1}R(A)^{-1})(U')^{-1}DD^{-}]^{2}DK(A)^{-1}
$$

= $R(A)^{-1}[I + (RK - D)W^{-1}DD^{-}]^{2}DK(A)^{-1}$,

in which $(U')^{-1} = P^{-1}Q^{-1}W^{-1} = R(A)K(A)W^{-1}$ and $W^{-1} =$ $\int f(A)^{-1} - f(A)^{-1}C$ 0 I 1 .

First we see that

$$
W^{-1}DD^{-} = \left[\begin{array}{cc} f(A)^{-1}b(A)b(A)^{\#} & -f(A)^{-1}C \\ 0 & I \end{array} \right]
$$

Hence

$$
R(A)K(A)W^{-1}DD^{-} = \begin{bmatrix} b'(A) & \rho^T(A) & I \\ -I & 0 & 0 \\ -\begin{bmatrix} A \\ A^2 \\ \vdots \\ A^{n-2} \end{bmatrix} & -K_{n-2}(A) & 0 \\ -K_{n-2}(A) & 0 & 0 \end{bmatrix} \begin{bmatrix} f(A)^{-1}b(A)b(A)^{\#} & -f(A)^{-1}C \\ 0 & I \end{bmatrix}
$$
\n
$$
= \begin{bmatrix} b'(A)f(A)^{-1}b(A)b(A)^{\#} & -b'(A)f(A)^{-1}C + \begin{bmatrix} \rho^T(A), I \end{bmatrix} \\ -\begin{bmatrix} I \\ \vdots \\ A^{n-2} \end{bmatrix} f(A)^{-1}b(A)b(A)^{\#} & -\begin{bmatrix} I \\ A \\ \vdots \\ A^{n-2} \end{bmatrix} f(A)^{-1}C + \begin{bmatrix} 0 & 0 \\ -K_{n-2}(A) & 0 \end{bmatrix} \end{bmatrix}.
$$

Recalling the definition of C we see that the $(1,2)$ entry becomes

$$
\boldsymbol{\sigma}^T = [I - b'(A)f(A)^{-1}(I - b(A)b(A)^{\#})][\boldsymbol{\rho}(A)^T, I].
$$

On the other hand,

$$
DW^{-1}DD^{-} = \begin{bmatrix} b(A)f(A)^{-1}b(A)b(A)^{\#} & f(A)^{-1}b(A)C \\ 0 & I \end{bmatrix} = \begin{bmatrix} f(A)^{-1}b(A) & 0 \\ 0 & I \end{bmatrix},
$$

because $b(A)C = 0$.

Whence $U^{-1} = I + (RK - D)W^{-1}DD^{-}$ takes the form

$$
U^{-1} = \begin{bmatrix} I + f(A)^{-1}b(A)[b'(A)b(A)^{\#} - I] & \sigma^{T}(A) \\ I \\ - \begin{bmatrix} I \\ A \\ \vdots \\ A^{n-2} \end{bmatrix} f(A)^{-1}b(A)b(A)^{\#} & I - \begin{bmatrix} I \\ A \\ \vdots \\ A^{n-2} \end{bmatrix} f(A)^{-1}C + \begin{bmatrix} 0 & 0 \\ -K_{n-2}(A) & 0 \end{bmatrix}
$$

This we substitute in

$$
G^{\#} = R(A)^{-1}[I + (R(A)K(A) - D)W^{-1}DD^{-}][I + (R(A)K(A) - D)W^{-1}DD^{-}]DK(A)^{-1},
$$

which is not conducive to simplification.

5 Open Questions and remarks

We end with some pertinent questions and remarks.

- 1. Squaring the matrix U^{-1} does not look appealing!
- 2. The expression for $G^{\#}$ should be "symmetric" in $L(a)$ and $L(b)$, i.e $a(x) b(x)$ symmetric, and as such there should be some simplification.
- 3. Can we find a good representation for $(p')^{-1}$ mod p for a prime polynomial $p(x)$?
- 4. Can we find the polynomial $g(A) = A^{\#}$?
- 5. Can Lemma (3.1) be extended to regular rings?
- 6. Can we use the invertibility of $ag + 1 aa^{-}$ to get a better result?

Acknowledgment

The authors thank an anonymous referee for his/her valuable corrections.

References

- [1] A. Ben-Israel and T.N.E.Greville, Generalized Inverses: Theory and Applications, Wiley, New York, 1974.
- [2] R.E. Hartwig, The resultant and the matrix equation $AX = XB$. SIAM J. Appl. Math. 22 (1972), 538–544.
- [3] R.E. Hartwig, $AX XB = C$, resultants and generalized inverses. SIAM J. Appl. Math. 28 (1975), 154–183.
- [4] R.E. Hartwig, Applications of the Wrońskian and Gram matrices of $\{t^i e^{kt}\}\$. Linear Algebra Appl. 43 (1982), 229–241.
- [5] V. Kucera, The matrix equation $AX + XB = C$. SIAM J. Appl. Math. 26 (1974), 15–25.
- [6] P. Lancaster and M. Tismenetsky, The Theory of Matrices: With Applications, 2nd Edition, Academic Press, 1985.
- [7] V. Lovass-Nagy and D.L. Powers, A note on block diagonalization of some partitioned matrices. Linear Algebra and Appl. 5 (1972), 339–346.
- [8] C. C. MacDuffee, The Theory of Matrices, Chelsea, New York, 1956.
- [9] P. Patricio and R.E. Hartwig, The link between regularity and strong-pi-regularity. J. Aust. Math. Soc. 89 (2010), no. 1, 17–22.
- [10] R. Puystjens and R.E. Hartwig, The group inverse of a companion matrix. Linear and Multilinear Algebra 43 (1997), no. 1-3, 137–150.