
Proceedings of the International Multiconference on

Computer Science and Information Technology pp. 675–682

ISBN 978-83-60810-22-4

ISSN 1896-7094

Influence of domain-specific notation to program
understanding

Tomaž Kosar∗, Marjan Mernik∗, Matej Črepinšek∗, Pedro Rangel Henriques†,
Daniela da Cruz†, Maria João Varanda Pereira‡ and Nuno Oliveira†

∗ University of Maribor, Faculty of Electrical Engineering and Computer Science,

Smetanova 17, 2000 Maribor, Slovenia

Email: {tomaz.kosar, marjan.mernik, matej.crepinsek}@uni-mb.si
† University of Minho - Department of Computer Science,

Campus de Gualtar, 4715-057, Braga, Portugal

Email: {prh, danieladacruz, nunooliveira}@di.uminho.pt
‡ Polytechnic Institute of Bragança

Campus de Sta. Apolónia, Apartado 134 - 5301-857, Bragança, Portugal

Email: mjoao@ipb.pt

Abstract—Application libraries are the most commonly used
implementation approach to solve problems in general-purpose
languages. Their competitors are domain-specific languages,
which can provide notation close to the problem domain. We
carried out an empirical study on comparing domain-specific
languages and application libraries regarding program under-
standing. In this paper, one case study is presented. Over
3000 lines of code were studied and more than 86 pages long
questionnaires were answered by end-users, answering questions
on learning, perceiving and evolving programs written in domain-
specific language as well as general-purpose language using
application library. In this paper, we present comparison results
on end-users’ correctness and consumed time. For domain-
specific language and application library same problem domain
has been used—a well-known open source graph description
language, DOT.

I. INTRODUCTION

A domain-specific language (DSL) is a language con-

structed to provide a notation close to an application domain,

and is based only on the concepts and features of that domain

[9]. As such, a DSL is a means of describing and generating

members of a program family within a given problem domain,

without the need for knowledge about general programming.

By providing notations close to the application domain, a DSL

offers many advantages. On the other hand, in combination

with an application library, any general-purpose language

(GPL) can act as a DSL. Furthermore, GPLs are the most

commonly used method to solving programming problems.

However, DSLs have in productivity numerous advantages

over GPLs – they are more expressive for the domain in

question, with corresponding gains in productivity and reduced

maintenance costs [17]. Some specific goals of DSLs such as:

• to make programming more accessible to end-users,

• to improve correctness of the written programs, and

• to improve the program developing time

seems to follow implicitly from the DSL definition. But,

were these claims really proved in practice? All the above

claims have a common denominator in the assertion that DSL

programs are easier to comprehend than GPL programs.

Program Comprehension (PC) [2], [14] is a hard cognitive

task. This is usually done by the construction of a mental

model of the program, trying to conceive the meaning of that

model [15]. One of the objectives in our project1 is to measure

how easier is to comprehend programs written in DSLs than

GPLs. Specifically, in this paper we try to bring confirmation

of the hypothesis that DSLs are easier to understand than

GPLs. This hypothesis is defined from the literature by the

experiment under controlled programming environment, using

direct observation, and questionnaires to measure the end-user

understanding of DSL and GPL programs. Both questionnaires

are on solving the same problem domain.

The organization of this paper is as follows. Related work

on domain-specific languages and program comprehension is

discussed in Section II. The definition of the precise focus of

our experimental study, the identification of its main goals, and

the choice of a skeleton for it, according to the goals, are the

topics introduced in Section III. Details about the experiment

carried out are given in Section IV. Key findings are given

in Section V and concluding remarks with future work are

summarized in Section VI.

II. RELATED WORK

Empirical research in software engineering is a difficult but

important discipline. In order to avoid questionable results

from research, certain conditions must be considered while

preparing an experiment. This work follows the framework

[1] introduced to motivate and replicate studies. The proposed

framework concentrates on building knowledge about the

context of an experiment and is based on organizing sets of

related studies (family of studies). These studies contribute

1This work is sponsored by bilateral project “Program Comprehension for
Domain-Specific Languages” (code BI-PT/08-09-008) between Slovenia and
Portugal.

978-83-60810-22-4/09/$25.00 c© 2009 IEEE 675

676 PROCEEDINGS OF THE IMCSIT. VOLUME 4, 2009

to common hypotheses which does not vary for individual

experiments. Therefore, the following guidelines from [1] have

been followed in order to prepare this experiment:

• context of the study,

• comparison validity,

• measurement framework, and

• presentation of key findings, focused on

hard/unexpected/controversial results.

The above listing is further explained in Sections III and IV.

Before this study, authors of this experiment were involved

in the another experiment where they obtained adequate

knowledge in the preparation of experiments in field of

software engineering. Various implementation approaches for

developing a DSL exists and in the paper [8] experiment on

ten diverse implementation approaches for DSLs has been

conducted using the same representative language FDL (Fea-

ture Description Language) [4]. The experiment shows, that

approaches differ in terms of the effort needed to implement

them. Also, the paper provides empirical comparison on

end-users effort to write programs using the various DSL

implementation approaches. Beside that, the paper presents

empirical comparison on DSL programs and equivalent GPL

programs, measured with effective lines of code. This part of

the experiment is similar to this paper, however the focus in

the paper [8] is more on productivity, while here is on end-

users program understanding. Also, the problem domain in the

experiment [8] is different (feature descriptions) than in this

paper (graph descriptions).
The another experiment in field of software engineering

can be found in a work carried out by Prechelt [12], which

provides the comparison of seven programming languages

(C, C++, Java, Perl, Python, Rexx, and Tcl). The advantages

and disadvantages of those programming languages are dis-

cussed on a single given problem (string processing program).

Acquired programs were compared on run times, memory

consumption, source text length, comment density, program

structure, reliability, and the amount of effort required to write

them.
In this paper, we do not want to discuss the construction of

program comprehension tools for DSLs, neither measure the

efficiency of these tools. We just want to infer from empirical

study how easy is to understand a DSL comparing to a GPL.

For a DSL program understanding, the study of cognitive

models can give an important contribute to our work [14].

They are related with the way we organize the information

and the strategies used to understand programs and systems

[16].
III. EXPERIMENT GOALS AND CONTOUR

Before preparing the experiment, the first concern was the

goal of the experiment. To define that, we had to clarify

the difference between program comprehension and program

understanding.
Studying literature, we came to the distinction that usually,

the program comprehension is related with real applications

development and maintaining, while program understanding

is related with the program analysis. Although, the aim of

the experiment was to measure the programmers effort to

understand DSL and GPL programs, we decided not to include

into the study the influence of the development environment.

Development is strongly connected with tools, and both GPL

and DSL development environments provide different tools.

Hence, comparing DSL and GPL tools is outside of this

research interests.

The next question was, how to measure program under-

standing. There are several possibilities. In this experiment it

has been decided to resort to questionnaires measuring end-

users understanding capabilities, assessing their performance

when analysing/interpreting programs. Two questionnaires

have been prepared for program understanding of DSL and

GPL programs.

Then, the structure of questionnaires has been defined ac-

cording to the hypothesis of the work, that DSL programs are

easier to understand than GPL programs. Now, more specific

claims about program understanding have been defined that

DSL programs are easier to learn, perceive, and evolve than

GPL programs. Questions have been prepared to cover this

three groups: learn, perceive, and evolve. In the first group,

questions on learning notation and meaning of programs have

been given to the end-users. In the second group, questions

on program perceiving have been defined, such as identifica-

tion of: correct meaning from the given program, language

constructs, new construct meaning, and meaning of a program

with given comments. In the third group, end-users had been

challenged to expand/remove/replace program functionality.

For these three groups, 11 questions have been defined:

• Learn

Q1 Select syntactically correct statements.

Q2 Select program statements with no sense (unrea-

sonable).

Q3 Select valid program with the given result.

• Perceive

Q4 Select the correct result for the given program.

Q5 Identify language constructs.

Q6 Select program with the same result.

Q7 Select the correct meaning for the new language

construct.

Q8 Identify language constructs in the program with

comments.

• Evolve

Q9 Expand the program with new functionality.

Q10 Remove functionality from the program.

Q11 Change functionality from the program.

Both, DSL and GPL questionnaires have been constructed

using the above questions.

To illustrate the style of the questions used in the question-

naires, an example is presented in Figure 1. This example is

a fragment of concrete Q4 (see listing above) for the DOT

language considered in this experiment – end-users are given

the DOT programs and they have to find a correct meaning.

Figure 1 shows only the correct choice (without false ones). In

all learn and perceive questions the end-users have to select

TOMAŽ KOSAR ET. AL: INFLUENCE OF DOMAIN-SPECIFIC NOTATION TO PROGRAM UNDERSTANDING 677

Fig. 1. The question 8 in DSL and GPL questionnaires with the correct choice

correct answers among five given choices. In the questions

group evolve, to the end-users are given program listings

and they have to remove/expand/replace program parts. The

complete questionnaires can be found at the project group

webpage2.

IV. EXPERIMENT DETAILS

Many problems have to be faced while preparing the exper-

iment. In the following subsections these issues are exposed

and discussed according to their influence on comparison

validity.

2http://epl.di.uminho.pt/∼gepl/DSL/

A. Subject of comparison

Over 3000 programming languages, general-purpose as well

as domain-specific, have been developed in the past [10], [11].

It is unreal to expect, that complete comparison of domain-

specific and general-purpose languages will ever be done.

However, empirical research in software engineering is an

important step [1], [3], [13]. This kind of experiments are

step towards this goal.

There are many different DSLs (focused on different targets

and following different implementation approaches [8], [9]).

DSLs can have a more procedural (imperative) style or follow

678 PROCEEDINGS OF THE IMCSIT. VOLUME 4, 2009

a more declarative one. In the procedural case, those languages

describe data and operations over data. The declarative DSLs

usually describe high level specifications, data or activity

models. This can also be true for application libraries. In com-

bination with application library, any GPL can act as a DSL.

Domain-specific functionality in application libraries is simply

achieved through an object creation and a method invocation

(if object-oriented GPL is used). Therefore, DSLs can be

compared and related with GPLs. Specifically, this experiment

aims to provide some empirical information for comparing

end-user understanding on DSL and GPL programs.

In order to prepare the experiment to obtain realistic results,

it has been decided to test DSL and GPL programs on the

same domain. In order to choose our case study domain, we

took into account the fact that we need a domain that is

implemented in both notations – domain-specific and appli-

cation library. One good language that we had been using for

graph descriptions is the DOT language [5]. With the DOT

language, a directed and an undirected graph can be defined.

Graphs show nodes and relations (edges) between them. Be-

side those constructs, a subgraph inside a graph can be defined.

Associated with graphs, nodes edges and subgraphs various

attributes can be applied. These attributes control properties

such as color, shape, and line styles. The DOT language does

not support rendering, viewing, and manipulation of graphs.

There are several programs that can do that (GraphViz [6]).

The DOT can be used as a plain text language or application

library in the C programming language. This ability makes the

DOT perfectly suitable for this experiment.

B. Conditions when applying comparison

The results from an experiment can be spread out when

repetition of experiment can be proven [13]. Repetition is

strongly connected to agreements set down before starting the

experiment [1]. Consistency of results in our experiment was

obtained creating appropriate conditions to the end-users: us-

ing well-structured questionnaires, domain tutorials and extra

explanations in their native language.

Before starting the experiment, the following steps have

been taken:

• a short tutorial to the end-users has been given on the

problem domain,

• a tutorial on domain specific notation together with an

example of a program has been given to the end-users,

• a tutorial on application library together with an example

of a program has been given to the end-users,

• a tutorial has been given to the end-users in their native

language, but the slides, programs and experiment ques-

tionnaires were in English,

• the slides and the examples has been given to end-users

and could be used during the experiment,

• the first version of questionnaires has been given to a

small group as a training set in order to get feedback,

• a feedback from a training set has been used for refining

the questions before applying them in the experiment.

TABLE I
END-USER EXPERIENCES IN PROGRAMMING (N = 29)

Average Median St.dev.

Skills in programming 3.80 4 0.77

Skills of programming in C 3.45 3 0.83

Prior experience with DSLs 2.69 2 1.11

N = number of received questionnaires

The following conditions have been defined about the end-

users of the questionnaires:

• the end-users must have some experience in GPLs, and

• the DSL experience can be none or poor.

In Table I self-evaluation of the end-users knowledge in

programming, programming in the C language and prior

experiences with DSLs can be observed. Results given for

the latter one significantly differs from their programming

experiences in GPLs. A five-graded scale, going from very bad

(1) to very good (5) was used for self-evaluation questionnaires

(in Tables I, II, III and V). Note, that the column “Average”

(in Table I) shows the average value given by 29 end-users,

“Median” stands for the middle value in set of end-user grades

(number of grades above and below median is exactly the

same) and “St. Dev.” represents standard deviation on given

opinions.

Additionally, we define the following rules for the question-

naire implementors:

• the same group of questions for both experiment on a

GPL and a DSL (see Section III) must be used,

• the questions for two applications on the same question

groups were prepared (easier and harder application do-

main),

• the learning and perceiving questions must be multiple

choice question,

• the evolving questions must be essay question (end-users

are challenged to add code to existing one),

• the questions on four different applications must be

defined bya single individual to obtain the same level

of question complexity, and

• the questions and the given choices (programs) must be

reviewed by other domain experts, to obtain a code as

optimal as possible.

C. Experiment validity

Reliability of results is hardly connected to the experimental

environment and presenting empirical results without explain-

ing environment details is risky [1]. To restrict the impact of

the environment on the experiment results, following threats

to the validity are given below.

Chosen domain

In Table II, end-users familiarity with the graph description

domain is presented, together with experience on the DOT

language and library application in C. It can be observed

that end-users had almost none experience with the graph

description domain, language or application library. From that

point of view, the end-users had no advantage in knowledge of

TOMAŽ KOSAR ET. AL: INFLUENCE OF DOMAIN-SPECIFIC NOTATION TO PROGRAM UNDERSTANDING 679

TABLE II
END-USER KNOWLEDGE IN GRAPH DESCRIPTIONS DOMAIN AND ITS

IMPLEMENTATIONS (N = 29)

Average Median St.dev.

Familiarity with graph descriptions domain 1,38 1 0.82

Knowledge of DOT language 1.34 1 0.77

Knowledge of DOT application library 1.38 1 0.92

any implementation and with that, this is not a serious threat

to validity of this experiment.

The another concern on the results is how would better

knowledge of the problem domain effect on comparison

results. As we can see from Table II, the end-users were

completely unfamiliar with the DOT domain (median value

is 1). To advocate results of the DOT domain, family of

experiments with the other problem domain needs to be done

and some well-known domains have to be included in the

study.

DOT applications

In Table III, the DOT applications and the end-users famil-

iarity with them before starting the experiment is presented. As

we can see from the results in Table III, the end-users had av-

erage knowledge on compiler construction, UML notation and

flow charts (median value 3) and less experience in application

of branching game (median value 2). It can be concluded,

that the end-user knowledge on the DOT applications used in

the GPL questionnaire (UML and flowcharts) were better then

knowledge on the DSL questionnaire (compiler construction

and branching game). This fact could have minor influence on

comparison results – slightly worse results on DSL questions

are expected than, if knowledge on DSL DOT applications

would be equal to GPL DOT applications.

End-user experience

In the experiment, experienced students from third, fourth

and fifth year of undergraduate computer science studies

were included. Students came with different background and

knowledge, and could have influence on results and an effect

on repetition of the experiment [3]. In Table I, we presented

results from self evaluation test, where students grade their

general knowledge about programming, programming in the C

language and prior experience with DSLs. As it has been stated

above, one of the concerns on the experiment is how would

greater experience with DSLs affect the results on comparison

with GPLs. However, it is hard to find a representative sample

of end-users for the purpose of the experiment where they

would have equal prior experience in using DSLs and GPLs.

Comparability of DSL with GPL questionnaires

Same type of questions in the DSL and the GPL question-

naires were reviewed and calculated by number of graphical

elements (nodes, relations and sub-graphs), to obtain the same

level of complexity. In Table IV number of graphical elements

are presented for both questionnaires (number is calculated on

TABLE III
END-USER KNOWLEDGE IN APPLICATION DOMAINS (N = 29)

DOT application Average Median St.dev.

DSL Compiler construction 2.86 3 1.10

Branching game 2.14 2 1.25

GPL UML 3.14 3 1.12

Flowchart 3.03 3 1.12

the given program or on the correct choice if question does

not contain any program). Observing the same question in the

GPL and the DSL questionnaires shows, that programs in DSL

questions are at least comparable by the number of elements

to same type of GPL questions (often the number of elements

is bigger).

However, comparison of questions based on the number of

graphical elements has to be taken with caution. Elements

of the DOT language are not equivalent in complexity – for

instance, definition of subgraphs are much more demanding to

understand then definition of nodes (see Figure 1). Therefore,

questions have been studied again and redefined (remove/add

some of the graphical elements) if non-equivalence on ques-

tions complexity has been discovered. Table IV shows the

comparison on graphical components after redefinition.

Order of experiments

Both, DSL and GPL, questionnaires were done by two

groups of the students. All students conducted both experi-

ments – DSL and GPL questionnaires. However, the order

of experiments was different with both groups. To eliminate

effect of questionnaires order on results, the first group started

with answering questionnaire on DSL and the second with

GPL questionnaire (and then proceeded on GPL/DSL ques-

tionnaire).

V. RESULTS

In this section we present results on comparison between

DSL and GPL program understanding. Comparison shows

empirical data on the end-user questions success. Additionally,

comparison on the end-user effort in terms of program length

and used time to complete the questionnaires is presented.

A. End-users opinion on notations

After finishing both questionnaires the end-users were ad-

vised to evaluate both DSL and C implementations. The results

on the end-user notation opinion is presented in Table V.

Results show, that the end-users liked a DSL more than

application library in the language C, however much bigger

difference between a DSL and a GPL was expected. In general,

the end-users opinion was, that they were familiar to the

programming language C notation, while the DOT language

notation was first seen in this experiment. It can be concluded,

that this result is strongly connected to the threat of the

experiment validity shown in Table I – bigger difference would

be obtained if experiences in both, the DSL and the GPL

notation, were equal for the end-users.

680 PROCEEDINGS OF THE IMCSIT. VOLUME 4, 2009

TABLE IV
GRAPHICAL COMPONENT COMPARISON

DSL GPL

Compilers Branching game Average UML Flowcharts Average

Question 1 5 7 6.0 3 7 5.0

Question 2 5 10 7.5 3 9 6.0

Question 3 5 12 8,5 5 9 7.0

Question 4 12 10 11.0 5 13 9.0

Question 5 16 9 12.5 3 14 8.5

Question 6 13 17 15.0 3 19 11.0

Question 7 9 10 9.5 4 10 7.0

Question 8 13 10 11.5 13 16 14.5

Question 9 14 7 10.5 15 13 14.0

Question 10 15 24 19.5 16 16 16.0

Question 11 17 24 20.5 13 20 16.5

TABLE V
END-USER JUDGMENT ON NOTATIONS AFTER EXPERIMENT (N = 29)

Average Median St.dev.

DSL DOT language notation 2.97 3 0.78

GPL DOT API design in C language 2.55 3 0.68

B. End-users success on questionnaires

All together, the end-users answered 11 types of questions

(with two applications) on both experiments (Table VI). It can

be observed that in the most questions, our expectations were

correct about the easier and harder application domain. For

instance, the end-user success in the DSL questionnaire was

better for the compiler construction domain (application 1 in

DSL) than results on the branching game (application 2 in

DSL) – see the end-users success on questions from 3 to 11.

This is also confirmed by results on the end-users opinion

about knowledge on both application domains (see Table III).

Prior knowledge on GPL applications of UML (application

1 in GPL) and flowchart (application 2 in GPL) were quite

equal (see Table III) and that this resulted in questionnaire

success rate. Flowchart questions, which were expected to be

harder, gave better results in some questions than questions on

UML (questions 2, 5, 7, 8, 9 and 10), although the number

of components in flowchart programs was often much bigger

than for UML programs (see Table IV).

The average value on both applications has been calculated

for both DSL and GPL questions. In question 1, the end-users

knowledge on DSL and GPL syntax on DOT has been tested.

In questions (“Please select correct DOT statements (without

syntax errors)”) average success rate on DSL was 83,78% and

equivalent question in GPL 69,44% – the difference on using

DSL instead of GPL in terms of learning new notation was

14,34%. Also, in question 2 (“Please select DOT program with

no sense (unreasonable - incorrect compiler diagram)” for the

first application on DSL) much better results were obtained

by DSL notation then with GPL. It turned out, that question

2 was hard for the end-users (note, poor results in all DOT

applications). In question 2 all given programs were correct

(executable), however one program produced a semantically

incorrect diagram.

Looking at the average success on questions, in most cases

the end-users were much more successful in DSL questions

then in equivalent GPL questions. Except of question 5. From

the results it can be observed that average success rate on the

first application in both questionnaires (compiler construction

and UML) gave better results on DSL (94,59%) then on

GPL (63,89%). However, results on the second domain were

unexpected – much better results were obtained by GPL

question (success rate 51,35% on DSL and 88,89% on GPL

question). Having closer look on both question uncovers that

the DSL question was much more complex than the GPL.

Very close results were also obtained by questions 8.

Question 8 is connected with measuring effect of comments on

the end-users program understanding. It can be concluded that

DSLs already contain only relevant concepts from the domain

and the usefulness of comments on the end-user understanding

of domain-specific programs is rather small. On the other

hand, comments in GPL programs bring useful information to

the end-user while they often contain descriptions of program

close to domain concepts and with that they are helpful for

the end-user understanding.

Making general conclusions on basis of the average value

of two questions can be extremely risky. That can be learned

from the results on question 5, as described above. Although

paying attention on different experiment variables (equivalent

number of graphical elements, experts overview of questions,

giving tests to the training group, etc), still, some questions

can be a serious threat to validity of the experiment results.

Therefore, more questions have to be defined for the individual

hypothesis to get more reliable results. We did that by grouping

questions for the hypothesis (on learn, perceive and evolve) as

explained in Section IV. In Table VII the average success rate

on questions by the individual group are presented. Table VII

confirms our hypothesis that program understanding in terms

of learn, perceive and evolve is much better for domain-

specific programs than on general-purpose programs.

TOMAŽ KOSAR ET. AL: INFLUENCE OF DOMAIN-SPECIFIC NOTATION TO PROGRAM UNDERSTANDING 681

TABLE VI
COMPARISON OF END-USER SUCCESS ON QUESTIONS (N = 38)

DSL GPL

Compilers Branching game Average UML Flowchart Average Dif.

Q1 72,97% 94,59% 83,78% 91,67% 47,22% 69,44% 14,34%

Q2 35,14% 54,05% 44,59% 16,67% 25,00% 20,83% 23,76%

Q3 78,38% 72,97% 75,68% 80,56% 50,00% 65,28% 10,40%

Q4 97,30% 78,38% 87,84% 91,67% 58,33% 75,00% 12,84%

Q5 94,59% 51,35% 72,97% 63,89% 88,89% 76,39% -3,42%

Q6 67,57% 56,76% 62,16% 38,89% 27,78% 33,33% 28,83%

Q7 89,19% 81,08% 85,14% 41,67% 69,44% 55,56% 29,58%

Q8 72,97% 54,05% 63,51% 50,00% 63,89% 56,94% 6,57%

Q9 75,68% 70,27% 72,97% 41,67% 72,22% 56,94% 16,03%

Q10 94,59% 86,49% 90,54% 66,67% 72,22% 69,44% 21,10%

Q11 91,89% 81,08% 86,49% 83,33% 52,78% 68,06% 18,43%

TABLE VII
AVERAGE END-USER SUCCESS ON LEARN, PERCEIVE AND EVOLVE

(N = 38)

Question DSL GPL Difference

Learn Q1, Q2, and Q3 68,02% 51,85% 16,17%

Perceive Q4, Q5, Q6, Q7, and Q8 74.32% 59.44% 14.88%

Evolve Q9, Q10, and Q11 83.33% 64.81% 18.52%

C. Program length

Another comparison is done in terms of the number of

lines of code (LOC). We measured the size of code with

the numbers of effective lines of code (eLOC) – that is, all

lines that are not blanks, standalone-braces or parentheses. In

Table VIII we present eLOC for correct question choices from

questionnaires. Comparing eLOC for DSL and GPL programs

on the same type of question, reveals that GPL programs are

much bigger then those in DSLs. This comparison has to be

taken with caution and must include number of components

from Table IV into account.

Comparing program length presented in Table VIII seems

unfair, since we compare length of different programs (for

instance, in question 1 DSL program length on compiler is

compared with GPL program length on UML).

Therefore, we prepare programs of both GPL application

domains (UML and flowchart) also in DSL. Results are

presented in Table IX and for instance, the program in question

7 for the first domain (UML program) has 7 eLOC in the

domain-specific notation and equal program in the C language

22 eLOC.

Note, that in the general-purpose notation only eLOC for

defining graph, nodes, edges and attributes were measured.

To that number we did not accumulate lines needed to render

graph, preparation of graph layout (DOT), writing diagram to

console/file, etc. So, approx. 20 eLOC were eliminated from

Tables VIII and IX on GPL programs.

Tables VIII and IX confirm that GPL programs are much

bigger in size than DSL programs. Also, from Table IX, it can

TABLE VIII
PROGRAM LENGTH IN QUESTIONNAIRES

DSL GPL

Compilers Branching game UML Flowchart

Question 1 3 8 11 31

Question 2 6 14 6 32

Question 3 7 16 27 19

Question 4 16 13 32 30

Question 5 21 7 18 31

Question 6 17 18 23 43

Question 7 5 14 22 47

Question 8 14 18 24 38

Question 9 15 13 104 29

Question 10 20 22 102 40

Question 11 23 22 102 69

TABLE IX
PROGRAM LENGTH FOR SAME DOMAINS (UML AND FLOWCHART) IN

DSL AND GPL

DSL GPL

UML Flowchart UML Flowchart

Question 1 6 11 11 31

Question 2 6 12 6 32

Question 3 8 13 27 19

Question 4 11 20 32 30

Question 5 5 22 18 31

Question 6 6 23 23 43

Question 7 7 19 22 47

Question 8 14 17 24 38

Question 9 35 15 104 29

Question 10 34 18 102 40

Question 11 34 29 102 69

be observed that when applications in the domain increase, the

ratio between length of DSL and GPL programs stays the same

(compare questions 4 and 10 for application on UML).

682 PROCEEDINGS OF THE IMCSIT. VOLUME 4, 2009

TABLE X
AVERAGE END-USER TIME EFFORT ON LEARN, PERCEIVE AND EVOLVE

QUESTION GROUPS (N = 38)

DSL GPL Difference

Learn 18 min 58 sec 29 min 48 sec 57.09%

Perceive 22 min 49 sec 29 min 27 sec 29.08%

Evolve 12 min 36 sec 18 min 08 sec 44.02%

Total 54 min 23 sec 1h 17 min 23 sec 42.30%

D. End-user time effort

Before starting the experiment, it has been decided to

measure the time to complete both questionnaires. The results

are split in the three parts – time to finish questions on: learn,

perceive and evolve programs. The average time effort of the

end-users is shown in Table X.
Also, Table X show that the total average time to complete

the DSL study was 54 minutes and to complete the GPL ques-

tionnaire was more then 1 hour and 17 minutes, so the end-

users needed 42.3% more time to complete the questionnaire

on GPL. It can be concluded that the bigger program length

(see Table VIII) requires more time to understand, perceive

and evolve GPL programs. The importance of a syntax [8],

[9] should not be underestimated.

VI. CONCLUSION AND FUTURE WORK

As it does not exist any empirical study on advantages of

DSLs over GPLs, the purpose of this paper was to compare

them on program understanding. Questionnaires for hypothesis

have been prepared and given to the end-users. Each end-

user answered questionnaires in 86 pages and on average

spent more then 2 hours solving 44 questions. The experiment

sample included 38 end-users.
In the paper we present the empirical comparison on DSL

and GPL programs understanding. The end-user success rate

on questionnaires were on average 15% better in all three

categories: learn, perceive and evolve. Also, end-users average

time to complete the DSL questionnaire was 42.3% better

then time to solve the GPL questionnaire. The standard metric

eLOC was used to achieve fair comparison among equal DSL

and GPL programs and shows that DSL programs were much

shorter than GPL programs. All metrics show that program

understanding is more efficient by DSL.
We consider that the results of this experiment are reliable

despite that the experiment has been done only on one domain

(DOT). One of the future tasks of this project, aiming at

consolidating those achievements, is to do similar experiments

in different domains. So, we will repeat this experimental

study, with DSLs and application libraries implementations

for the following two domains: domain feature descriptions

(using FDL [4]) and construction of graphical user-interfaces

(using XAML and C# Forms).
Another project direction is to include cognitive dimension

framework (CDF) [7] – to identity the aspects among the CDF

that enhanced in the context of DSL over GPLs. We need to
study which dimensions are relevant or not for a DSL. So far,

the CDF has been used in visual programming languages to

assess their usability, while no such study exists for DSLs and

GPLs.

Another objective of the work under discussion is to identify

the precise needs in terms of information and visualization

to comprehend DSL programs, in order to know if the ex-

isting approaches and techniques for the comprehension of

GPL programs can be reused. Just as happens with program

understanding tools, the tools for domain-specific program

comprehension have to extract and display static or dynamic

data about a program to help the analyst on understanding its

structure and behavior.

REFERENCES

[1] V. Basili and F. Shull and F. Lanubile, Building Knowledge through
Families of Experiments, IEEE Transactions on Software Engineering
25(4) 456–473, 1999.

[2] R. Brooks, Using a behavioral theory of program comprehension in
software engineering, In Proceedings of the 3rd international conference
on Software engineering, Piscataway, NJ, USA, IEEE Press 196–201,
1978.

[3] J. Carver, L. Jaccheri, S. Morasca and F. Shull, A Checklist for Integrating
Student Empirical Studies with Research and Teaching Goals, To appear
in Empirical Software Engineering, doi: 10.1007/s10664-009-9109-9.

[4] A. van Deursen, and P. Klint, Domain-Specific Language Design Requires
Feature Descriptions, Journal of Computing and Information Technology
10(1) 1–17, 2002.

[5] Dot – Graph Description Language, Available at: http://en.wikipedia.
org/wiki/DOT language

[6] GraphViz – Graph Visualization Software, Available at: http://www.
graphviz.org/

[7] T. Green and M. Petre, Usability analysis of visual programming environ-
ments: a “cognitive dimensions” framework, Journal of Visual Languages
and Computing 7(2) 131–174, 1996.

[8] T. Kosar, P. E. Martı́nez López, P. A. Barrientos and M. Mernik, A

Preliminary Study on Various Implementation Approaches of Domain-
Specific Language, Information And Software Technology 50(5) 390–405,
2008.

[9] M. Mernik and J. Heering and A. Sloane, When and How to Develop

Domain-Specific Languages, ACM Computing Surveys 37(4) 316–344,
dec 2005.

[10] Categorized Lists of Computer Programming Languages, Available at:

http://en.wikipedia.org/wiki/List of programming languages
[11] Collection On Computer Programming Languages, Available at:

http://www.people.ku.edu/ nkinners/LangList/Extras/langlist.htm
[12] L. Prechelt, An Empirical Comparison of Seven Programming Lan-

guages, IEEE Computer 33(10) 23–29, 2000.
[13] F. Shull, J. Carver, S. Vegas and N. Juristo, The Role of Replications in

Empirical Software Engineering, Empirical Software Engineering 13(2)
211–218, 2008.

[14] M. A. Storey, Theories, methods and tools in program comprehension:

Past present and future, In Proceedings of the 13th International Work-
shop on Program Comprehension (IPWC’05), pp. 181–191, 2005.

[15] M. J. Varanda Pereira, M. Mernik, D. da Cruz and P. R. Henriques
Program Comprehension for Domain-Specific Languages, Journal on
Computer Science and Information Systems, 5(2) 1–17, dec 2008.

[16] A. Walenstein, Theory-based Analysis of Cognitive Support in Software
Comprehension Tools, In Proceedings of the 10th International Workshop
on Program Comprehension (IWPC’02), pp. 75–84, 2002.

[17] Ž. Živanov, P. Rakić and M. Hajduković Using Code Generation Ap-

proach in Developing Kiosk Applications, Journal on Computer Science
and Information Systems, 5(1) 41–59, jun 2008.

