Modeling and Formal Analysis of Urban Road Traffic

Camelia Avram®, José Machado® and Adina Astilean®

“Department of Automation, Automation and Computer Science Faculty, TUCN, Cluj Napoca, Romania
YCT2M Research Centre, Mechanical Engineering Department, University of Minho, Guimardes, Portugal

Abstract. Modern life in cities leads to complex urban traffic road and, sometimes, to go from one point to another, in a
city, is a hard and very complex task. The use of assisted systems for helping drivers on their task of reaching the desired
destination is being common, mainly systems like GPS location systems or other similar systems. The main gap of those
systems is that they are not able to assist drivers when some unexpected changes occur, like accidents, or another
unexpected situations. In this context, it would be desirable to have a dynamic system to inform the drivers, about
everything that is happening “online”. This work is inserted in this context and the work presented here is one part of a
bigger project that has, as main goal, to be a dynamic system for assisting drivers under hard conditions of urban road
traffic. In this paper is modeled, and formally analyzed, the intersection of four street segments, in order to take some
considerations about this subject. This paper presents the model of the considered system, using timed automata
formalism. The validation and verification of the road traffic model it is realized using UPPAAL model-checker.

Keywords: road traffic modeling; routing algorithms; formal methods; analysis techniques.
PACS: 02.30.Yy

INTRODUCTION

Dependable specification of complex behaviors of discrete and/or real-time discrete events systems can be
improved by using several analysis techniques like, for instance Simulation [1], Diagnosis [2], Test [3] and Formal
Verification [4], among others. Dependable centralized controllers [5] and/or dependable distributed controllers [6]
can be developed using those techniques.

Concerning embedded controllers applied to transportation systems, there are some approaches that consider,
together, Simulation and Formal Verification, as complementary techniques [7]: Simulation for achieving, very fast,
some important results and, then, Formal Verification for achieving results that cannot be guaranteed by using, only,
Simulation.

In this paper it is intended to develop a dependable distributed controller that will be used— not on the
transportation systems itself— but as support decision system, for drivers, when they are under extreme conditions of
urban road traffic having different options of roads for achievement the final destination. In fact, a dynamic decision
support system for drivers — used in this context — has a lot of direct and indirect benefits for users like, for instance:
reduction of stress, reduction of time for achievement of final destinations, reduction of emission of pollution;
reduction of consumption of energy, among others.

In order to achieve the proposed goal, the paper is organized as follows: section 2 is devoted to the presentation
of choices and work hypothesis considered; section 3 presents the results concerning simulation and formal
verification tasks; and, finally, section 4 presents some conclusions and main ideas for future work.

HYPOTHESIS CONSIDERED

In this paper the analysis techniques chosen for improvement of distributed controllers’ dependability were
simulation and formal verification due the same reasons presented in [4]. Concerning Formal Verification technique,
there are some approaches that can be used [8], but we decided to use formal verification by model-checking [9]
because it is an automatic technique and with good results for users. Due the characteristics of the kind of systems
that we intend to model (need of time modeling) there is need to define the formalism and software tools for
performing Simulation and Formal Verification tasks.

A number of formalisms can be used to model timed systems. Timed automata [10] were adopted as the
modeling formalism for modeling due to two main reasons: first, the study of the proposed system needs to take
time into account; and, second, it is the input formalism of the UPPAAL model-checker. Hence, it is well adapted
for Simulation and Formal Verification of timed systems. Also, there is the advantage of using one single software

11th International Conference of Numerical Analysis and Applied Mathematics 2013
AIP Conf. Proc. 1558, 1408-1411 (2013); doi: 10.1063/1.4825779
©2013 AIP Publishing LLC 978-0-7354-1184-5/$30.00

1408

tool for performing Simulation and Formal verification tasks using the same developed models in timed automata.
UPPAAL is a toolbox designed to verify systems that can be modeled as networks of automaton extended with
integer variables, structured data types, defining functions, and channel synchronization [11].

The Automata Model

Street segments interact via the inflow and outflow of vehicles at their boundary. The only major difficulty is to
determine the optimal number of cars passing the observed street to obtain a medium passing speed close to the legal
limits (outputting a stream of numbers describing the flow of vehicles in vehicles/minute crossing a boundary).
Several situations which can occur are also taken into consideration and are introduced in the simulation scenarios.

The Automaton model for one road segment is presented in FIGURE 1 and for one car is presented in FIGURE

2.
leave[id]
InBuff test[51=1.x=0 Leaving
@ x>tt+5 —
appr(id] ;:B i
park[id] x<tt+10 Stop
t=0,%x=0 ')
stop[id] Starting
pproaching
x>tt+10
x=0
Park
FIGURE 1. The automaton model of one road segment FIGURE 2. The automaton model of one car

A buffer was used to model the number of cells (street size). The synchronization is realized with channels
(appr(), go(), stop(), stay() and leave()). Different situations are modeled trough messages exchange (stop and go,
parking). Each street segment will have different configuration parameters (length represented by the buffer length,
minimal and the maximal time to pass the segment). For each vehicle a “car” object will be instantiated. Based on
the driver and vehicle capacity each “car” object will have different values for the “time” variable for braking and
accelerating.

An intersection is modeled as a collection of segments, presented in FIGURE 3. An exit function should be
defined to setup specific trough out rates for each segment. This function is used also in the routing process. In this
model the trough out rate for one segment is analyzed, the same model is used for each other segment of the
crossroad, varying the configuration parameters at the beginning of the simulation.

loadS[idsk
) J

FIGURE 3. Intersection of four streets model

This model is composed by a network of five automata: one automaton to model the vehicle, one automaton to
model the street segment, one to model an intersection and two automata to monitor and to collect the values of the
variables which correspond to monitored road traffic parameters. For each road segment an automaton is
instantiated. To realize a modular and in the same time complex and faithful model to the real life road traffic a
solution based on instantiations was chosen; this way the analyzed road traffic map can be changed fast and the
model will not suffer any modifications.

To model and simulate a 2 km? urban area, 13" intersection, 50 road segments and 200 vehicles the system will
have 265 automata (200 instantiations for car autom., 50 instantiations of the street autom., 13 instantiations of the
intersection autom. and one instantiation of the two autom. related to observe the traffic behavior). Trough out rates

1409

for one analyzed intersection are: Segment 0/Segment 1:0.30; Segment 0/Segment 2:0.50; Segment 0/Segment
3:0.20.

The variation of the vehicle number versus street segment buffer load during simulation time units is presented
in FIGURE 4. A color representation is use to emphasize the traffic type.

Veh. no. 15
20 traffic Io.ad 5
(color grid) — TR

15 &, intense 10 1 * = = .

10 4 i NrTe _
s | : fluid ;\ 0 -*. s

591347
21 25 a9 13
37 41 45

" I ls5g
o 13172125

29
1‘\ o e

4 710
1316 19 22 25 78 31 34 37
40 a3 g5

time units

FIGURE 4. Variation of the buffer load versus intensity FIGURE 5. Congestion propagation between two segments

The representation of two segments connected is presented in FIGURE 5. Segment I has a capacity equal to 20
and Segment 2 is smaller, it has a buffer of 15 positions. The exit of the first road segment is the entrance of the
second road segment. Simulating a deadlock (from various reasons) on the upper segment will determine the
propagation of the congestion. Starting with the 25" until 37" time units Segment 2 is blocked and we can observe
that the Segment I is starting to get congested. During simulation this scenario was implemented as an event
connected to a specific time interval.

SIMULATION AND FORMAL VERIFICATION OF AUTOMATA MODEL

During simulation processes several situations were verified, by varying the intensity of the traffic (light, regular
and crowded). The buffer length is directly influenced by the traffic intensity and will increase or decrease the time
needed to pass a segment. System and states diagnose are checked using the formal verification tool. The designed
system is proved as deadlock free and provide guaranteed in advance time constraints verification. The behavior
properties used to validate the model were composed in such way to verify and guarantee the time interval needed to
pass through a segment for each traffic type. After that, the time intervals are used to determine the best routes to
follow. The behavior properties intended for formal verification are presented on Table 1, where id_s represents the
street segment id and id_c stands for vehicle id. The properties where these acronyms are presented are verified for
each segment and vehicle in part.

For simulations and results interpretation some predefined values for traffic parameters were chosen: Three
intervals to characterize the traffic load (a segment is considered crowded if the number of vehicles is close to buffer
length, bigger than buffer length /2; the traffic is considered fluent and less than buffer length/2; the traffic is fluent,
optimal); The minimal speed (vy,;;) is 1.38 m/s, the average speed is 8.3 m/s and maximal speed (Vyax) is 13.8 m/s;
The average vehicles length is 5.2 m.

It must be highlighted that on TABLE 1 the behavior properties formalization considers the input language for
UPPAAL which use a simplified version of Timed Computation Tree Logic.

TABLE 1. Behavior Properties to be proved

Prop Informal description of behavior properties Formal description of behavior properties
Pl Verify if car(id_c) will pass the street segment in a time interval smaller than a E[] car(id_c).Leaving.t -

predefine time value Tpna for “id_s” segment. car(id_c).Approaching.t <Tp.[id_s]
P2 Verify if the time needed to cross a street segment is kept in an interval; this value E[] Tyin[id_s] < car(id_c).Leaving[id s].t -

is used later to analyze and for interpretation; car(id_c).Approaching[id_s].t < Tu[id_s]
P l\gle?fg if for street segment “id_s” the load can be bigger than the half of the E[] !street(id_s).len[id_s]) > lengthBuflid_s}/2
P4 Verify if the segment “id_s” reach the maximal load; E[] len[id_s] == lengthBuf
Ps \B/:l;lfi;}; if for street segment “id_s” the load can be smaller than the half of the E[] street(id_s).len[id_s]) < lengthBuf[id_s]/2
P6 Verify if deadlock can occur on the model. A[] not deadlock

Consider a road segment having a buffer with 10 positions at each 30 seconds (the intervals of 2 and 10 seconds
were tested also) a vehicle will attempt to enter on the segment and will try to leave it as soon as possible. The
TABLE 2 properties are verified for each simulation scenario. In TABLE 2, a selection of behavioral properties is
presented.

Before running any simulation some configurations must be done and depending the scale of the analyzed map
several car and street objects are instantiated and setup with personal constraints and local variables. For each
vehicle a car object is instantiated and the driver behavior can be seen in the time intervals to accelerate, breaking

1410

and to pass the street segment. Each street segment has a corresponding street object. The length and the capacity of
the street segment are particular to each object corresponding to the real analyzed map. To cope different situations,
like: U turn, parking, leaving to an unmonitored segment, several places was introduced to update the state of the
segment.

TABLE 2. Results obtained on formal verification tasks

Property Safety (S) / Verification Time interval P S/L VR Ti P S/L VR Ti
(9] Liveness (L) Result (VR) (Ti)
P1 L Yes P1 L Yes o P1 L Yes o
P2 L Yes 8 ‘E P2 L Yes g P2 L Yes <8
P3 L No TE s P3 L Yes % S P3 L Yes % g
P4 L Yes 8 E P4 L No z 35’ P4 L No z &
P5 L No 24 PS5 L Yes &% P5 L Yes 2°F
P6 S Yes P6 S Yes ~ P6 S Yes i

Properties P1 determine for each vehicle the time interval needed to pass the street segment. Property P2 verify if
the time needed to pass a segment is staying in a predefined interval specific to each segment. Properties P3, P4 and
P5 verify if the congestion segment occurs. If property P4 is true then the bottle neck occur on the segment.
Depending on the configuration of the simulation some properties cannot be true. The properties P4 and P5 cannot
be true at the same time, is like a double check of the traffic conditions.

The simulations were run on a PC having: 64-bit Windows 7 OS, CPU: Intel Core Duo, 2.20 GHz, 4.00 GB. The
result, obtained from UPPAAL, regarding the traffic flow, vehicles passed and verifications results are used later to
control the traffic in various situations. From command line the .xm!/ file (which contains the models of the vehicles,
segments and instantiations) are “called” in order to be verified and validated. The behavioral properties are checked
after the model is validated. For a large simulated map an interrogation tool can be proposed in order to send
interrogations to UPPAAL and to interpret the results file and to put the information in a way that can be used
during the control process.

CONCLUSIONS AND FUTURE WORK

The obtained results confirmed the success of the used approach for modeling and analyzing the urban road
traffic. Timed automata, as formalism, and UPPAAL, as software tool, allowed the correct and adapted modeling of
this kind of systems and are well adapted for performing formal verification of the complex networked model
obtained. Because it allows modular modeling, those formalism and tool make easily the work of the designer. As
future work, the team related with this project intends to analyze more complex situations and systematize this
approach for implementation in realistic scenarios like, for instance, in a part of a city or in an entire city.

ACKNOWLEDGMENTS

This paper was supported by the project "Development and support of multidisciplinary postdoctoral programs in
major technical areas of national strategy of Research-Development-Innovation" 4D-POSTDOC, contract no.
POSDRU/89/1.5/ S/52603, project co-funded by the European Social Fund through Sectorial Operational Program
Human Resources Development 2007-2013.

REFERENCES

1. E. Seabra, and J. Machado, Using Advanced Simulation Techniques to Improve Industrial Controller’s Dependability,
INDIN, Lisbon, 2011

2. A. Philippot, Survey on diagnosis of a pick and place benchmark: Special session on diagnosis of Discrete Event Systems:
Application on a benchmark, DCDS, 2011.

3. J.C. Campos and J. Machado, Supporting requirements formulation in software formal verification, LADC, Brazil, 2011.

4. J. Machado, E. Seabra, J.C. Campos, F. Soares and C. P. Ledo, Safe controllers design for industrial automation systems.
CIE’2011, doi:10.1016/j.cie.2010.12.020

5. J. Fitzgerald, P.G. Larsen, K. Pierce, M. Verhoef and S. Wolff, Collaborative Modeling and Co-simulation in the
Development of Dependable Embedded Systems, IFM 2010, vol. 6396 pp. 12-26..

6. W. Fokkink, A. Kakebeen and J. Pang, Adapting the UPPAAL model of a distributed lift system, FSEN'07 pp. 81-97, 2007.

7. G. Kunz, E. Perondi and J. Machado, Modeling and simulating the controller behavior of an Automated People Mover using
IEC 61850 communication requirements, IEEE -INDIN, Lisbon, Portugal, 2011.

8. G. Frey and L. Litz, Formal methods in PLC programming. SMC 2000, Nashville, October 8—11, 2000.

9. Moon, Modeling programmable logic controllers for logic verification. IEEE Control Systems, 14(2) pp- 53-59, 1994.

10. R. Alur and D.L. Dill, Automata for modeling real-time systems. ICALP’90, England, 1990.

11. P. Ravn, J. Srba and S. Vighio, Modeling and Verification of Web Services Business Activity Protocol, CTACAS, 2010.

1411

