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A Kinetic Model for Chemical Reactions without Barriers
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Abstract. A system of coupled Boltzmann equations (BE) is here proposed for a binary gaseous mixture undergoing elastic
and reactive collisions. Reactive cross sections without activation energy, i.e. without barriers, are adopted to model the
chemical process, whereas differential cross sections of rigid spheres are assumed for elastic scattering. The possibility of
a pair of molecules to collide through an elastic mechanism or a reactive process is described by means of probability
coefficients which are introduced in the collision terms. The rate of reaction and temperature exchange rate are explicitly
computed using the non-equilibrium solution of the BE obtained through the Chapman-Enskog method in a chemical regime
such that the reactive process is in its initial stage. Spatially homogeneous solutions are examined for the number density of
reactants and mixture temperature.
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INTRODUCTION

In the literature of the Boltzmann equation extended to chemically reacting gases, most research papers introduce
reactive cross sections with activation energy whereas only few works consider reactive models for processes without
activation energy [1]. On the other hand, chemical reactions without barriers have become an interesting topic in many
engineering applications of reactive flows, in particular in combustion phenomena, but also in other fields such as
astrophysics, organic chemistry, chemical physics and biophysics [2, 3]. The modeling of reactions without barriers can
help to interpret the related experimental data and provide some useful information about the kinetics of the reaction.
Following this idea, a kinetic model of the Boltzmann equation is here proposed for a binary mixture undergoing elastic
and reactive scattering. An appropriate model of reactive cross section without barriers can be found in the literature
(see [4, 5]) and it will correspond to the choice of the proposed non-barrier kinetic theory. At the microscopic scale, the
key idea is to modify the collision terms of the Boltzmann equation, introducing probability coefficients that describe
the possibility of a pair of molecules to collide through an elastic mechanism or a reactive process. This improvement
accounts for the fact that a great number of reactive interactions corresponds to a small number of elastic collisions, and
vice-versa. In this sense, the considered model represents a new approach, since almost all existent papers introduce
reactive cross sections with activation energy and control the presence of both elastic and reactive collisions assuming
rather large activation energies and a steric factor which reduce the number of reactive collisions.

In a chemical regime of slow reaction, the chemical non-equilibrium effects induced on the solution of the Boltz-
mann ¢quation are also characterized using the Chapman-Enskog method and a second order Sonine polynomial
expansion of the distributions. The chemical process is considered in its early stage so that reactive collisions among
molecules of reaction products can be disregarded since the products of the reaction are in a small amount with respect
to the reactants. Morcover, it was considered that the heat of reaction is a small quantity which can be neglected. At
last, as an application of the thermodynamic model proposed here, spatially homogeneous field equations for reactant
number density and mixture temperature are solved and the time evolution of the reactive system is examined.

BOLTZMANN EQUATION AND MACROSCOPIC DESCRIPTION

Consider a binary mixture of constituents & = A, B with binding energies €4 and €g and equal molecular masses,
my = mp = m, undergoing a reversible reaction of type A+ A = B+ B. Gas molecules may participate in binary
elastic collisions preserving momentum and kinetic energy,

2

1 1 1 1
meq -+ meg = mey +mej, Emc(zx +5meg = Emc(f +5me 3 (1)
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as well as in binary reactive interactions preserving momentum and total energy,

mea +mea, = meg -+ meg,, &4+ %mcf\ + &5+ %mcﬁl =&+ %mclz; + e+ %mc%l . )
Above, (¢q,cg) and (c{wcb) denote pre and post collisional velocities, whereas (ca,c4,) and (cp,cp, ) refer to the
the velocities of reactants and products of the forward reaction, respectively. Sub-index 1 is used to distinguish two
molecules of the same species. The relative velocities of the reactants and products is given by g4 = ¢4, — ¢4 and
gp = cp, —¢p, and the reaction heat is defined as Qr = 2(€4 — €p). A pertinent choice of reactive cross sections to
describe chemical reactions without a barrier should not consider an activation energy. Accordingly, assuming an

attractive potential energy of the form V(r) = —K/ M, the following reactive cross sections model is adopted (see
Refs. [4, 5]),
d2 2\ N-1/2
ol = 9r [ M8a 7 (3)
4 \ 4kTy

where Tp is a characteristic temperature, dr a reactive collision diameter and the exponent n may range from —3/2
to 1/2, with the particular values 1/2, 0 and 1/6 standing for hard-spheres reactions, ion-molecule reactions and
reactions of neutral species, respectively. For what concerns the differential cross sections of elastic encounters, the
simple model of rigid spheres is adopted, namely 6,5 = d? /4, where d is the molecular diameter.

The Boltzmann equation proposed here for the considered mixture contains, as usual, distinct contributions for
elastic collisions and reactive interactions, but now suitable probability coefficients 0 < x4, xz < 1 are introduced in
order to account for the possibility of a pair of molecules interact through an elastic collision or a reactive process. In
absence of external body forces, the BE for f, is written then in the form

P ) 4
St SN (1 gpu) [ [Salh Sl 8peCupd@apdey
ot ax; B=A

v/

The first term on the r.h.s. of (4) refers to elastic collisions and the second one to chemical interactions where one has
to take o £ = A, B. Elastic contributions referred to AA and BB encounters are affected by a reduced factor, namely
1 —xq, @ = A, B, which is compensated by the corresponding factor y, relative to reactive encounters among AA and
BB molecules, respectively.

The macroscopic picture of the mixture can be described by the number densities ny and internal energy densities
Paeq of both constituents, together with the mixture velocity v;, given by

*

2
8
X575.15, Gﬁé ~ XaSatu Of | 8adQpdea,, @)

1 & m
na— [ fadea =P% v =Y et fudea,  puea— [ e fudea, )
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B B
with éi"‘ =" —v; the peculiar velocity of constituent &, and n= Z R, P= Z pea. Each constituent is assumed
o=A o=A

to have the same temperature 7° which is the mixture’s temperature, so that its internal energy density becomes
Paea =3ngkT /2. By rather standard arguments, the balance equations for the fields defined in expressions (5) are
obtained from Eq. (4), in the form

an(x d a _
—at + —aXi (I’L(xlxtl' +n(xvl) = Ta (6)
8pvi J -
o Ix; (pij+pvivi) =0, ™
30ngkT 0 [ 4 3 Pa o9Pij  q9Vi
2 o ow (‘b’ *5”“"”) T oy PGy T ©
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Above, T is the rate of reaction and { the production term of internal energy density of constituent ¢, given by

2
g .
Ta :/ Lcﬁfﬁflﬁ Gﬁg_g — Xofofo, Og gadQpdeg deq, with 13 = —14, ©)
o
5 L oo o
Co= Z(I—Xﬁ&xﬁ)/im(éa — Sa)fafp&BaTpadQpadepdey
B—A

2

m 8
+/Z(§§+§§l) [Zﬁfﬁfﬁlcﬁg_g — XSS O | gadQpdea deq. (10)
o

Moreover, u{’, g and pl‘.’]‘. are the diffusion velocity, heat flux and pressure tensor of each constituent, defined by

1 1
ui' = n_/éiafadcm qi :/Eméééiafadcm Pl(')]" :/méiaéjqfadcm
o
with

B B
Y paf =0, qi=Yaf,  py=Y, 0
a=A a=A

THE NON-EQUILIBRIUM DISTRIBUTION FUNCTION

The deviations induced by the chemical reaction on the distribution functions can be explicitly computed using the
Chapman-Enskog method [9] with Sonine polynomial representation of the distributions. Assuming a chemical regime
of slow processes, for which the reaction is close to its initial stage, reactive collisions are less frequent than clastic
encounters and the chemical relaxation time is larger than the elastic one. This means that reactive collision terms
of the Boltzmann Eqs. (4) and material time derivatives, & = (d/dt) + vid/dx;, are of the same order, whereas the
gradients of the fields are of successive order. This means that the Boltzmann equation (4) can be written as

2

g
@faJrlé“ﬁ —/ [Xﬁfﬁfﬁl Gﬁ_g — Xafafo Og gadQpdey (11)

B
Z 1 —xp0ap /{fafﬁ f(xfﬁ} 2BaCapdQqpdeg,

where A is a formal parameter of the order of the Knudsen number [9]. Proceeding with the insertion of the expansions
fa=fT a4 2204 ad 2=29 122042290 4 (12)

into the Boltzmann Eqs. (11) and equating equal powers of A, one obtains the integral equations for £¥ and féo) in the
form,

B
Z 1 —xp0up /{ é”f;;”/—fé‘ffé”} 2BaCapdQqupdeg =0, (13)

2

8
AP / [Zﬁfg[fgl[ og—f — Xafu for O | 2adQpdeq, (14)

B
- 0= J L& st g = 1854 = 1] 8puOupdSapdes.

The solution of the integral equation (13) is the Maxwellian distribution function, given by

mo\3 _m
i) ¢ as)

?

fé‘c/[:”a<
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with partial number densities ny completely uncorrelated, since no chemical equilibrium condition is involved.
Concerning Eq. (14), since the ficld gradients are absent, one admits that its solution is a small deviation from the
Maxwellian distribution, expressed in terms of Sonine polynomials as

O | of3 mEE\ | o (15 5Smég  mP&y
fa©=Ja {“1 (2 2kT>+a2<8 ar | serr )| (16)

where af and af are scalar coefficients to be determined. First, the insertion of distributions (16) into definition (5),
of the internal energy density and integration of the resulting equation lead to a{ = a® = 0. Afterwards, the balance
Egs. (6-8) for an Eulerian mixture where u{* = 0, p;; = pd;; and g; = 0 are used to eliminate the material derivatives
in Eq. (14). The successive multiplication of the resulting equation by m and (3/2—mé&2 /2kT) and further integration
over ¢q lead to identities, whereas the multiplication by (15/8 —Smé&Z /4kT + m*ES/8k*T?) and integration give the
following system of coupled equations for a5 and a5

2 n-1 2
T 2 3 d ngh
v (N T 2 nin=1) () = —4(1 - xa)ndal + B (1548 ~31a%), B —A,B, (17)
2 To 2 d 4
where v4 = —vg = —1 are stoichiometric coefficients. For the purpose of the present study, it was considered that in

the early stage of the reaction the probability of a reactive collision between B molecules is negligible so that yz ~ 0.
Furthermore, the heat of reaction is a small quantity so that it can be neglected. These assumptions have been taken
into account to deduce Eqs. (17). More details about the approximating procedure here employed are reported in a
paper in preparation, concerning the kinetic theory of chemical reactions without barriers (see Ref. [10]).

From the system of equations (17) one obtains

n-1 2
24%4 T\" 2 3 dr
as = (—) r<n —>n n—1 (—) 18
2 152 xa + 16xa)0a —31 \ o o n=Dig ) (18)
—1
a5 = Xa(xaxa —1) a, (19)
l—XA

where x4 = na/n and xp = 1 — x4 represent the molar fraction of the constituents.

LKL
N0
NS

>
000
SRR
INSLEER

= L2

FIGURE 1. Deviations of the non-equilibrium distribution function with respect to the Maxwellian distribution, versus X and
chi = y4, for x4 = 0.9. Left frame: Fy; right frame: Fp.
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All the representative effects induced on the non-equilibrium distribution function are illustrated in Fig. 1, where the
deviations with respect to the Maxwellian distribution function, namely

1/ 27kT \*"? 1 1
[ 1O = xge X ag B Sy Iya)  aas (20)
n m 8 2 2

are plotted versus chi=y4 and X = \/méj /2kT, when dr = d and x4 = 0.9 for the case of hard-spheres reactions

without barrriers, i.e., for n = 1/2. The left frame refers to the Maxwellian deviation for the reactants whereas the
right frame to the corresponding deviations for the products. One can infer from the figures that the modulus of
deviation from a Maxwellian distribution function becomes larger when the probability of reactive encounters among
the reactants increases. Furthermore, the deviation is positive for the reactants and negative for the products, which
means that the non equilibrium distribution is larger than the Maxwellian one for the reactants and smaller for the
products.

Note that for y4 = 0 the distribution is Maxwellian and all collisions are elastic, i.¢., no reactive encounter occurs.

A SPATIALLY UNIFORM PROBLEM

From the knowledge of the non-equilibrium distribution function previously obtained, it is now possible to evaluate
the reaction rate and internal energy exchange rate of the reactants. In fact, it is enough to insert expressions (16) into
definitions (9) and (10) and performing the corresponding integrations. One obtains

kT (T \"N? 3
TA_,/%(TO) F<n+§>mnid%[4+n(n—1)a‘§]7 D

-4
£y — _kT,/”kTT {nAanz(ag‘ —a§)+% <T£> r <n+%> xara {12+4n+n(5+4n+n2)a§‘} } 22)
0

with a5 and a5 given by expressions (18) and (19), respectively.
In the particular case of chemical reactions of ion-molecule type (n = 0), the effects related to the coefficients aff

disappear from the production terms (21) and (22), and also from the non-equilibrium deviations féo).
From the balance equations (6) and (8), with the production terms (21) and (22) referred to the present case,
one obtains the spatially uniform evolution equations for particle number density and internal energy density of the

reactants,
d)CA - \/ﬁ 3 d()CAT) - 3 \/ﬁ )
TR x5 and k= =~k (23)

t*t . 1 m
s © 4ngd? \ mkTy’

where 7. is the mean free time of elastic collisions, and ng, Tp denote the number density and temperature of the mixture
in a reference initial state. Moreover the collision diameters have been considered equal to each other, i.e. dr = d.
The solution of the differential equations (23) is given by

with

0
X4

X = A,
4)62)(At+1

T="Tp. (24)

From the above equations, one concludes that the temperature of the mixture remains constant while the reactant
concentration decreases with time and that the decay is more pronounced when the probability y4 of reactive
encounters increases. This last result can be observed in Figure 2 where the ratio x4 /x5 is represented as function
of t and chi=ya for x4 =0.9.
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FIGURE 2. Ratio x4 /xg as function of t and chi=y4 for xg =0.9.
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