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Abstract

An n-by-n real symmetric matrix is called copositive if its quadratic
form is nonnegative on nonnegative vectors. Our interest is in iden-
tifying which linear transformations on symmetric matrices preserve
copositivity either in the into or onto sense. We conjecture that in
the onto case, the map must be congruence by a monomial matrix (a
permutation times a positive diagonal matrix). This is proven under
each of some additional natural hypotheses. Also, the into preservers
of standard type are characterized. A general characterization in the
into case seems diffi cult, and examples are given. One of them provides
a counterexample to a conjecture about the into preservers.
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1 Introduction

Matrix A ∈ Mn(R) is called copositive if AT = A and xTAx ≥ 0 whenever

x ∈ Rn, and x ≥ 0. If xTAx > 0 whenever x ≥ 0 (entrywise), x 6= 0,

then A is called strictly copositive. We write C (Cn) and SC (SCn) to denote
the two classes (with the subscript to indicate the size of the matrices, if

useful). Of course C generalizes the positive semidefinite (PSD) and SC the
positive definite (PD) matrices. Much is known about the copositive matrices

[1, 2, 4, 6, 8] and there are tests for copositivity [4, 9, 15], but, in general,

recognition is more diffi cult than for the PD/PSD cases.

Let Sn = Sn(R) be the n(n+1)
2
-dimensional subspace of Mn(R) consisting

of symmetric matrices. In considering the action of linear transformations on

copositive matrices, it suffi ces to consider linear transformations L: Sn → Sn
(and it can be convenient because there are fewer variables to consider). How-

ever, it may also be convenient to consider L to be a linear map on Mn(R).

We shall do so interchangeably. We say that such a linear transformation

preserves copositivity if A ∈ C implies L(A) ∈ C, and similarly for strict
copositivity. More precisely, such an L is an into copositivity preserver. If

L(C) = C, we have an onto copositivity preserver. Our purpose here is to
better understand both types of linear copositivity preservers. The into pre-

servers of the PSD matrices are fully understood, and they are recognized

to be a diffi cult problem. The onto linear preservers of PSD are straight

forwardly known to be the congruences by a fixed invertible matrix [14].

Certain natural kinds of linear transformations are more amenable to

preserver analysis. We say a linear transformation on Mn(R) is of standard

form if there are fixed matrices R, S ∈ Mn(R) such that L(A) = RAS (or

L(A) = RATS). Such a linear transformation is invertible if and only if R

and S are invertible matrices. More generally, L is a linear transformation

on Mn(R) if L(A) = (lij(A)), in which lij is a linear functional in the entries

of A. It is known that an invertible linear transformation that preserves rank

is of standard form [7, 12] and there are useful variations upon this suffi cient
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condition.

Both the “onto” and especially the “into” copositivity linear preserver

problems appear subtle. For example, in [13] a conjecture of N. Johnston is

relayed: Any (into) copositivity preserver is of the form

X −→
∑
i

ATi XAi.

in which Ai ≥ 0. Since any such map is (clearly) a copositivity preserver,

this is a natural (though optimistic) conjecture. However, it is false even for

2-by-2 matrices. Suppose that a linear map on S2 is given by[
a c
c b

]
→
[

a a+ b+ 2c
a+ b+ 2c b

]
.

If the argument is copositive, then a+ b+ 2c ≥ 0 (since it is the value of the

quadratic form of the argument at
[

1
1

]
), so that the image is nonnegative

and, thus, copositive. But, as the conjectured form is a PSD preserver (by

virtue of being a sum of congruences), the fact that
[

10 −1
−1 10

]
is PSD,

while its image
[

10 18
18 10

]
is not, shows that our linear map is not of the

conjectured form, though a copositivity preserver.

2 Some Linear Copositivity Preservers

Here we indicate several types of linear copositivity preservers. Besides these,

we do not know any others.

2.1 Linear Copositivity Preservers of Standard Form

Since our arguments are always in Sn, a linear transformation of standard
form is of the form

L(A) = RART , or L(A) = RATRT
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R ∈Mn(R). Here we characterize both the into and onto preservers of copos-

itivity of standard form. Such a transformation is invertible on Sn if and only
if R is invertible. First, a useful lemma about copositive matrices. We say

that a vector v ∈ Rn, n ≥ 2, is of mixed sign if v has both positive and

negative entries. Nothing is assumed about 0 entries.

Lemma 1 For each vector v ∈ Rn of mixed sign, there is a matrix A ∈ Cn
such that vTAv < 0.

Proof. By the permutation similarity invariance of Cn, we may assume that
v = [v1, v2, ..., vn]T with v1v2 < 0. Then, let A ∈ Cn be 0 1

1 0
0

0 0

 ,
so that vTAv = 2v1v2 < 0, as claimed.

Theorem 2 Suppose that L is an into linear preserver of Cn of standard
form. Then,

L(A) = STAS,

with S ∈Mn(R) and S ≥ 0.

Proof. Since L preserves symmetry and is of standard form, L(A) = STAS

with S ∈ Mn(R). Suppose that there is an x ≥ 0, x ∈ Rn, such that Sx is
of mixed sign. Then by Lemma 1, the argument A may be chosen so that

0 > (Sx)TA(Sx) = xTSTASx and STAS = L(A) is not in Cn. Hence, L
is not a copositivity preserver. Thus, for any x ≥ 0, Sx must be weakly

uniformly signed. This means that S ≥ 0 or ≤ 0. Since S appears twice, we

may take it to be the former.

Since Cn contains a basis of Sn, a linear map on Sn that is an onto copos-
itivity preserver must be an invertible linear map and the inverse map must

also be an onto preserver. If the map is of standard form, the inverse map
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just corresponds to inverting the S and ST (which, of course, must be invert-

ible). Thus, we have that S−1 ≥ 0, as well as S ≥ 0 (or S−1 ≤ 0 and S ≤ 0.).

It is well known that this happens if and only if S is a monomial matrix,

the product of a permutation matrix and a positive diagonal matrix. Taken

together, this gives the following characterization of linear transformations

of standard form that maps Cn onto itself.

Theorem 3 Suppose that L is an onto linear preserver of Cn of standard
form. Then,

L(A) = STAS,

in which S ∈Mn(R) and S is monomial.

Since Cn forms a cone, we note that (i) any sum of into Cn preservers
is again an into Cn preserver, though a sum of ones of standard form may

no longer be of standard form, and (ii) the sum of onto Cn preservers need
no longer be onto. Also, it follows from the proven forms that both into

and onto copositivity preservers of standard form are also (into and onto,

respectively) PSD preservers.

2.2 Hadamard Multiplier Cn preservers
Recall that the Hadamard, or entry-wise, product of two matrices A = (aij)

andB = (bij) of the same size is defined and denoted by A◦B = (aijbij). If we

consider a fixed n-by-nmatrixH, then a natural type of linear transformation

on n-by-n matrices A is given by

L(A) = H ◦ A. (1)

We may also ask for which H are such transformations (into) Cn preservers.
An n-by-n matrix B is called completely positive (CP) if B = FF T with

F n-by-k and F ≥ 0. Thus, for F = [f1, f2, ..., fk] partitioned by columns,

B = f1f
T
1 + f2f

T
2 + ...+ fkf

T
k .
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Then, the CP matrices, which also form a cone, are special PSD matrices.

It is known [5] that the CP matrices are the cone theoretic dual of Cn, as
Tr(BTA) =

∑k
i=1 f

T
i Afi, which is ≥ 0 if A ∈ Cn.

Now, consider a linear transformation of the form (1) withH a CP matrix

of the form H =

k∑
i=1

hih
T
i , hi ∈ Rn, hi ≥ 0, i = 1, ..., k. If A ∈ Cn, then

H ◦A =

k∑
i=1

hih
T
i ◦A and xT (H ◦ A)x =

k∑
i=1

(x ◦ hi)TA(x ◦ hi), which is ≥ 0

for x ≥ 0.

Theorem 4 A linear transformation of the form (1) is an into copositive

preserver if and only if H is CP.

Proof. Suffi ciency follows from the calculation above. The quadratic form of
H◦A on a nonnegative vector is a sum of quadratic forms of A on nonnegative
vectors. On the other hand, if H is not CP, because of the known duality,

eT (H ◦ A) e = TrHTA < 0 for some A ∈ Cn, and H ◦ A /∈ Cn.

If H is CP, H =
k∑
i=1

hih
T
i , hi ≥ 0, let Di = diag(hi). Then H ◦ A =

k∑
i=1

DT
i ADi, with Di ≥ 0, so that a linear transformation of the form (1) is

also a sum of into transformations of standard form. With the exception of

H being a rank 1, positive, symmetric matrix, such a transformation will

not be onto.

2.3 General Linear Maps on Sn
Let L(A) = (lij(A)) in which each entry lij is a linear functional in the entries

of A. Symmetry requires that the functionals lij and lji be the same. It is

possible to design such maps that are copositivity preservers (and in a similar

way, PSD preservers).

Let z(k)ij ∈ Rn, z
(k)
ij ≥ 0 and z(k)ij = z

(k)
ji . If A ∈ Cn, then z

(k)T

ij Az
(k)
ij ≥ 0.
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Define

lij(A) =
∑
k

z
(k)T

ij Az
(k)
ij

and

L(A) = (lij(A)).

Then, for A ∈ Cn, L(A) ≥ 0 and L(A)T = L(A), so that L(A) ∈ Cn and L is
an into Cn preserver. PSD (into) preservers may be designed in a similar way.
For example, let L(A) = diag(l1(A), ..., ln(A)) with li(A) = z∗iAzi, zi ∈ Cn,
so that if A is PSD, L(A) is a nonnegative diagonal matrix and, thus, PSD.

We note that, with this machinery, it is possible to design into, not onto,

but invertible Cn preservers. Here is an example. For

A =

[
a b
b c

]
,

let

l11(A) =
[

1 1
]
A

[
1
1

]
+
[

1 0
]
A

[
1
0

]
,

l12(A) = l21(A) =
[

1 1
]
A

[
1
1

]
,

and

l22(A) =
[

1 1
]
A

[
1
1

]
+
[

0 1
]
A

[
0
1

]
.

Then,

L

([
a b
b c

])
=

[
2a+ 2b+ c a+ 2b+ c
a+ 2b+ c a+ 2b+ 2c

]
.

and, for A ∈ C2, L(A) ≥ 0 and L(A) is PSD. So L is a C2 preserver. Since
l12 ≥ 0, it is only into. However, L is invertible, as

L−1
[
x z
z y

]
=

[
x− z 3z−x−y

2
3z−x−y

2
y − z

]
.

We note that more elaborate maps may be designed, including the possi-

bility of negative off-diagonal entries.
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2.4 PSDPreservers that are not Copositivity Preservers

Of course, a PSD preserver need not be a copositivity preserver, and we note

here a famous example of a PSD preserver that is not a copositivity preserver.

The Choi map [3] is a linear transformation from M3(R) to M3(R) that

preserves PSD, but is not of any typical type. It is defined by

L

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 =

 2a11 + 2a22 −a12 −a13
−a21 2a22 + 2a33 −a23
−a31 −a32 2a33 + 2a11

 .
It is known, and easily checked, that any 3-by-3 (symmetric) PSD matrix

is transformed to another PSDmatrix. Of course, L is not a fixed congruence,

nor onto. However, note that a copositive matrix with 0 diagonal and positive

off diagonal entries is transformed to a matrix that is not copositive.

In general, copositivity preservers need not be PSD preservers and PSD

preservers need not be copositivity preservers. However, we conjecture that

onto copositivity preservers are also onto PSD preservers.

3 Onto Linear Copositivity Preservers

We first make a fundamental observation about onto preservers of Cn.

Theorem 5 Let L : Sn → Sn be a linear transformation that maps Cn onto
Cn. Then L is invertible and L−1 maps Cn onto Cn.

Proof. Since the copositive matrices include the standard basis for the

symmetric matrices, their span is all of Sn, which means that the map is
invertible. Since L(Cn) = Cn, application of L−1 to both sides of the equality
yields the desired statement.

Now we may see that linear onto preservers of Cn also preserve several
related sets. For B ∈ Cn, let

C(B) = {A ∈ Cn : ∃α > 0 : B − αA ∈ Cn}
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and

R = {B ∈ Cn : C(B) = Cn}.

Corollary 6 Let L : Sn → Sn be a linear transformation that maps Cn onto
Cn. Then L also preserves (in the onto sense)

a) the boundary copositive matrices;

b) the interior of Cn;

c) SCn; and

d) R.

Proof. a) and b) follow since the copositive matrices are the closure of

the strictly copositive matrices and an invertible linear transformation is

continuous. c) follows since SCn is the interior of Cn. Now we show d). Let
R ∈ R and A ∈ C. Then R−αA ∈ C for some α > 0. So, L(R−αA) ∈ C and
L(R) − αL(A) ∈ C. Since L is onto, L(A) runs over C when A runs over C.
So L(R) ∈ R and L(R) ⊆ R. Similarly, L−1(R) ⊆ R. Thus, R ⊆ L(R) ⊆ R
implying that L(R) = R.

Since both a fixed permutation similarity (equivalently, congruence) or a

fixed positive diagonal congruence is an onto copositivity preserver, we have

that monomial congruence is an onto copositivity preserver. We

Conjecture. The onto copositivity preservers are exactly the fixed mono-
mial congruences.

In a moment, we prove this in the 2-by-2 case. However, a proof, with-

out additional hypothesis, appears subtle. We have already shown that the

conjecture holds if

1) the map is of standard form (Section 2.1). However, each of the fol-

lowing alternative additional hypotheses is suffi cient:

2) the map is an (onto) PSD preserver;
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3) the map is rank nonincreasing (in which case it is of standard form

[10, 11]);

4) in the language of the Introduction, each of the component maps lij is

a function of only one entry of A (i.e., it is a monomial map on vec Sn);
5) each of the component maps lij must have nonnegative coeffi cients.

We now study the onto 2-by-2 copositivity preservers. A symmetric ma-

trix A ∈ S2 is copositive if and only if

A =

[
a b
b c

]
with a ≥ 0, c ≥ 0 and b ≥ −

√
ac. The matrix A is strictly copositive if all

the inequalities are strict.

From now on, we assume that L : S2 → S2 is a linear transformation that
maps C2 onto C2 and we use the following notation

L

([
1 0
0 0

])
=

[
α11 α12
α12 α22

]
=: Πα

L

([
0 0
0 1

])
=

[
γ11 γ12
γ12 γ22

]
=: Πγ

L

([
0 1
1 0

])
=

[
β11 β12
β12 β22

]
=: Πβ,

so that

L

([
a b
b c

])
= aΠα + bΠβ + cΠγ.

Lemma 7 We have α11α22 = 0 and γ11γ22 = 0.

Proof. We show the first claim. The proof of the second claim is analogous.
According to Corollary 6, either α11α22 = 0 or

Πα =

[
α11 −√α11α22

−√α11α22 α22

]
,

with α11 > 0 and α22 > 0. In order to get a contradiction, suppose that Πα

has this latter form.
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• Suppose that β11β22 6= 0. Then, by Corollary 6,

Πβ =

[
β11 −

√
β11β22

−
√
β11β22 β22

]
.

Since Πα and Πβ are linearly independent, we have α11β22−α22β11 6= 0.

Thus,

det(aΠα + bΠβ) = ab
(
α11β22 + β11α22 − 2

√
α11α22

√
β11β22

)
is positive if ab > 0. Hence, for a > 0 and b > 0, aΠα + bΠβ has

positive diagonal entries and positive determinant, and, thus, is strictly

copositive. Therefore, for a > 0, b > 0, and c < 0 suffi ciently close to

0, A is not copositive and L (A) is copositive.

• Suppose that β11 = 0. Then, β12 ≥ 0.

— If β12 > 0, let a > 0 and c < 0 be so that aα11 + cγ11 ≥ 0 and

aα22 + cγ22 ≥ 0. Then, for b > 0 large enough, A is not copositive

and L (A) ≥ 0 is copositive.

— If β12 = 0, then β22 > 0. For a > 0, c < 0 suffi ciently close to 0,

and b > 0 large enough, A is not copositive and L (A) is copositive.

• The proof is similar if β22 = 0.

Lemma 8 We have α11 = α12 = β11 = β22 = γ22 = γ12 = 0 or α22 = α12 =

β11 = β22 = γ11 = γ12 = 0.

Proof. By Lemma 7, α11α22 = 0 and γ11γ22 = 0.

• Suppose that α11 = 0. We will show that α12 = β11 = β22 = γ22 =

γ12 = 0, which implies α22, β12, γ11 > 0.
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— If β11 6= 0 then for b < 0 and a, c > 0 with b < −c γ11
β11
and a > b2

c
, A

is copositive and L (A) is not copositive as its 1, 1 entry is negative.

So β11 = 0 and, then, β12 ≥ 0.

— Suppose that α12 = 0 (and β11 = 0).

∗ If β22 6= 0, for b > 0, c = 0 and a < 0 suffi ciently close to

0, A is not copositive and L (A) is copositive. If γ22 6= 0,

then γ11 = 0 and γ12 ≥ 0. Thus, for c > 0, b = 0 and a < 0

suffi ciently small, A is not copositive and L (A) is copositive.

Thus, β22 = γ22 = 0.

∗ If α11 = α12 = β22 = γ22 = β11 = 0 and γ12 6= 0, then γ12 > 0.

For a = 0, c > 0 large and b < 0 suffi ciently small, A is not

copositive and L (A) is copositive. Thus, γ12 = 0.

— Suppose that α12 6= 0 (and β11 = 0). Then α12 > 0.

∗ If α22 6= 0 or β22 = 0, for a > 0, c = 0, and b < 0 suffi ciently

close to 0, A is not copositive and L (A) is copositive.

∗ If α22 = 0 and β22 6= 0, for b < 0 and a, c > 0 with b < −c γ22
β22

and a > b2

c
, A is copositive and L (A) is not copositive as its

2, 2 entry is negative.

• With similar arguments we show that if α22 = 0 then α12 = β11 =

β22 = γ11 = γ12 = 0.

Theorem 9 L : S2 → S2 is a linear transformation that maps C2 onto C2 if
and only if

L

[
1 0
0 0

]
=

[
α11 0
0 0

]
, L

[
0 0
0 1

]
=

[
0 0
0 γ22

]
, L

[
0 1
1 0

]
=

[
0 β12
β12 0

]
,

(2)
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or

L

[
1 0
0 0

]
=

[
0 0
0 α11

]
, L

[
0 0
0 1

]
=

[
γ22 0
0 0

]
, L

[
0 1
1 0

]
=

[
0 β12
β12 0

]
,

(3)

for some α11 > 0, γ22 > 0 and β12 =
√
α11γ22.

Proof. The suffi ciency is obvious. Now we show the necessity. From Lemma
8 it follows that either (2) or (3) holds for some α11 ≥ 0, γ22 ≥ 0 and β12 ≥ 0.

Suppose that (2) holds. The proof is similar if (3) holds. Since L is a linear

transformation that maps C2 onto C2 it follows that α11γ22β12 6= 0. Thus, we

just need to see that β12 =
√
α11γ22. Let a, c > 0 and b = −

√
ac. Then[

a b
b c

]
is copositive and

L

[
a b
b c

]
=

[
aα11 −

√
acβ12

−
√
acβ12 cγ22

]
is copositive if and only if −

√
acβ12 ≥ −

√
acα11γ22, which implies β12 ≤√

α11γ22.

Suppose that 0 < β12 <
√
α11γ22. Let b =

−
√
ac
√
α11γ22

β12
< −
√
ac. Then,[

aα11 bβ12
bβ12 cγ22

]
is copositive and [

a b
b c

]
is not copositive. Thus, we conclude that β12 =

√
α11γ22.

Corollary 10 If the linear transformation L : S2 → S2 maps C2 onto C2
then there is a monomial matrix E ∈ Mn(R) such that L(A) = EAET for

any A ∈ S2.
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