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Summary

In this paper, we investigate the use of a simple heuristic in the DIRECT method context, aiming to select a set of
the hyperrectangles that have the lowest function values in each size group. For solving bound constrained global
optimization problems, the proposed heuristic divides the region where the hyperrectangles with the lowest function
values in each size group lie into three subregions. From each subregion, different numbers of hyperrectangles are
selected depending on the subregion they lie. Subsequently, from those selected hyperrectangles, the potentially optimal
ones are identified for further division. Furthermore, the two-phase strategy aims to firstly encourage the global search
and secondly enhance the local search. Global and local phases differ on the number of selected hyperrectangles from
each subregion. The process is repeated until convergence. Preliminary numerical experiments show that the proposed
two-phase heuristic coupled DIRECT method is effective in converging to the optimal solution.

Keywords: Global optimization, DIRECT algorithm, heuristic, two-phase.

1 Introduction

This paper addresses the use of a DIRECT-type method that
coupled with a simple heuristic and a two-phase strategy
aims to globally solve non-smooth and non-convex bound
constrained optimization problems. The bound constrained
global optimization (BCGO) problem can de stated as:

min
x∈Ω

f (x) (1)

where f : Rn → R is a nonlinear function and Ω = {x ∈
Rn : −∞ < li ≤ xi ≤ ui < ∞, i = 1, . . . ,n} is a bounded
feasible region. We assume that the optimal set X∗ of
the problem (1) is nonempty and bounded, x∗ is a global
minimizer and f ∗ represents the global optimal value.

When the function f is non-smooth, or its evaluation
requires different simulations, and those simulations
may add noise to the problem, analytical or numerical

gradient-based methods may fail to solve the problem (1).
Derivative-free methods, like the DIRECT method1, 2 , can
solve it. The main idea in the DIRECT method is the
partition of the feasible region into an increasing number
of each time smaller hyperrectangles. At each iteration,
a set of the most promising hyperrectangles are identified
for further division. DIRECT needs to store all the
information about all the generated hyperrectangles. This
means that for larger dimensional problems, computational
requirements may prevent DIRECT to find a high quality
solution. DIRECT has strong convergence properties and
produces a good coverage of the feasible region3 . For
the hyperrectangle division, DIRECT uses two criteria:
the size of the hyperrectangle to favor the global search
feature of the algorithm and the value of the hyperrectangle,
translated by the objective function value at the center point
of the hyperrectangle, to give preference to its local search
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feature4 . DIRECT-type algorithms that are more biased
toward local search are proposed in5, 6 . They are mostly
suitable for small problems with one global minimizer and
a few local minimizers. In3 , the deterministic partition
strategy of the DIRECT method is used, in a multi-start
context, to perform local minimizations starting from
the center points of the most promising hyperrectangles.
Globally biased searches are also reinforced in DIRECT
by making use of a new technique for selecting the
hyperrectangles to be divided7–9 .

For further details on the original DIRECT and other
recent interesting modifications, we refer the reader to7–11 .

This paper investigates the use of a DIRECT-type
method coupled with a heuristic aiming to potentiate
the exploration of the most promising regions in the
DIRECT method context. The heuristic categorizes the
hyperrectangles with the lowest function values in each
size group into three subregions for further sampling
and division. Additionally, a two-phase strategy aims
to cyclically encourage the global search phase (first
phase) and enhance the local search one (second phase).
Our proposal reinforces the global search capabilities
of the DIRECT by avoiding the selection of the
hyperrectangles that were mostly divided and choosing
all the hyperrectangles with largest sizes (first phase).
Conversely, when the new algorithm enters the second
phase, the hyperrectangles with largest sizes are mostly
prevented from being selected and the ones with smallest
sizes are all included in the selection.

The paper is organized as follows. Section 2 briefly
presents the main ideas of the DIRECT method and
Section 3 describes the heuristic and the two-phase strategy
in the DIRECT method context. Finally, Section 4 contains
the results of our preliminary numerical experiments and
we conclude the paper with the Section 5.

2 DIRECT method

The DIRECT (DIviding RECTangles) algorithm has been
originally proposed to solve BCGO problems like (1)
where f is assumed to be a continuous function, by
producing finer and finer partitions of the hyperrectangles
generated from Ω1 . The algorithm is a modification of the
standard Lipschitzian approach, in which f must satisfy the
Lipschitz condition

| f (x1)− f (x2)| ≤ K∥x1 −x2∥ for all x1,x2 ∈ Ω,

where K > 0 is the Lipschitz constant. DIRECT is a
derivative-free and deterministic global optimizer since it
is able to explore potentially optimal regions in order to
converge to the global optimum solution, thus avoiding to
be trapped in a local optimum solution. It does not require
any derivative information or the value of the Lipschitz
constant2 . DIRECT views the Lipschitz constant as a
weighting parameter that balances global and local search.
These searches are carried out by exploring some of the
hyperrectangles in the current partition of Ω, in order

to divide them further6, 12 . First, the method organizes
hyperrectangles by groups of the same size and considers
dividing in each group the hyperrectangles that have the
lowest value of the objective function – herein denoted
by candidate hyperrectangles. However, not all of these
candidate hyperrectangles are divided. The selection falls
on the hyperrectangles that satisfy the following two criteria
that define a potentially optimal hyperrectangle (POH):

Definition 1 Given the partition {Pi : i ∈ I} of Ω, let ε be
a positive constant and let fmin be the current best function
value. A hyperrectangle j is said to be potentially optimal if
there exists some rate-of-change constant K̂ j > 0 such that

f (c j)−
K̂ j

2
∥u j − l j∥ ≤ f (ci)−

K̂ j

2
∥ui − li∥, ∀i ∈ I (2)

f (c j)−
K̂ j

2
∥u j − l j∥ ≤ fmin − ε| fmin| (3)

where c j is the center and ∥u j − l j∥/2 is a measure of the
size of the hyperrectangle j.

The use of K̂ j intends to show that it is not the Lipschitz
constant but it is just a rate-of-change constant1 . Condition
in (2) aims to check if the lower bound on the minimum
of f on the hyperrectangle j is lower than the lower
bounds on the minima of the other hyperrectangles of
the partition Pi (for the hyperrectangle j to be potentially
optimal). Condition (3) aims to balance the local and global
search and prevents the algorithm from searching locally a
region where very small improvements are obtained. The
parameter ε aims to ensure that a sufficient improvement
of f for the hyperrectangle j will be potentially found
based on the current fmin

13, 14 . The value of fmin − ε| fmin|
(in contrast to fmin) prevents the hyperrectangle with the
smallest objective function value from being a POH.

DIRECT can be briefly described by Algorithm 11 .
Identifying the set of POH can be regarded as a problem

of finding the extreme points on the lower right convex
hull of a set of points in the plane1 . A 2D-plot can
be used to identify the set of POH. The horizontal axis
corresponds to the size of the hyperrectangle and the
vertical axis corresponds to the f value at the center of the
hyperrectangle. Figures 1 and 2 show the points (marked
with ‘red’ ‘+’ in the plots), each one representing the
center point of the hyperrectangle, generated at iterations
4 (after 47 function evaluations) and 7 (after 159 function
evaluations) respectively, of DIRECT when solving the
problem:

min
x∈Ω

4

∑
i=1

|xi|+1 (4)

where Ω = {x ∈ R4 : −2 ≤ xi ≤ 3}15 . The mark that
identifies a candidate hyperrectangle is a ‘magenta’ circle
and the mark to identify a POH is a ‘black’ square.
The identified POH at iteration 4 have been divided and
generated smaller hyperrectangles. They are no longer
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Input: f , Ω.
Output: (xmin, fmin).
Normalize Ω to be the unit hypercube and compute

f (c) where c is the center;
Set k = 0, fmin = f (c), xmin = c;
while Stopping condition is not satisfied do

Define the set Ik of the candidate
hyperrectangles;

Identify the set Ok ⊆ Ik of POH;
while Ok ̸= /0 do

Select a hyperrectangle j ∈ Ok;
Identify the set L j of dimensions with
maximum size δmax; Set δ = (1/3)δmax;

for all i ∈ L j do
Sample f at c j ±δei;
Divide hyperrectangle j into thirds along
the dimensions in L j starting with the
dimension with lowest
wi = min{ f (c j +δei), f (c j −δei)} and
continue until the dimension with
highest wi;

Set Ok = Ok \{ j};
Update fmin = mini∈Ik f (ci);
Set xmin = argmini∈Ik f (ci);
Set k = k+1;

Algorithm 1: DIRECT algorithm

hyperrectangles of that size at iteration 7, although other
hyperrectangles with the same sizes and higher function
values are identified as POH.

3 Two-phase heuristic coupled DIRECT method

In this section, we reveal how the DIRECT algorithm
is modified to incorporate a heuristic that aims to
divide a promising search region into three subregions.
The implementation of the two-phase strategy aims
to drastically reduce the selection of the mostly
divided hyperrectangles and, in contrast, select all the
hyperrectangles that have the lowest function values in
each group of the largest sizes, when a global search phase
seems convenient. Conversely, for the local search phase,
all the hyperrectangles that have the lowest function values
in each group of the smallest sizes are selected and, at the
same time, the selection of the largest hyperrectangles are
greatly reduced.

3.1 Heuristic

POH either have center points with low function values or
are large enough to provide good and unexplored regions
for the global search15 . Hyperrectangles with the smallest
sizes are the ones that were mostly divided so far. On
the other hand, hyperrectangles with large sizes were the
least divided. Avoiding the identification of POH that were
mostly divided can enhance the global search capabilities
of DIRECT8 . Conversely, identifying POH that are close to
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Figure 1: Points representing hyperrectangles, candidate
hyperrectangles and POH at iteration 4 of DIRECT, when
solving the problem (4).
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Figure 2: Points representing hyperrectangles, candidate
hyperrectangles and POH at iteration 7 of DIRECT, when
solving the problem (4).

the hyperrectangle which corresponds to fmin may improve
the local search process in DIRECT. Thus, at any iteration k,
the present heuristic incorporated into the DIRECT method
aims to divide the region of the candidate hyperrectangles
(the ones with least function values at each size group)
into three subregions. The leftmost subregion includes
hyperrectangles with indices based on size that are larger
than il = ⌊2/3imin⌋ (denoting the set by I3

k ), where imin
is the index based on the size of the hyperrectangle that
corresponds to fmin. The rightmost subregion contains
the hyperrectangles with indices that are smaller than iu =
⌊1/3imin⌋ (denoting the set by I1

k ). The middle subregion
contains hyperrectangles with indices i that satisfy il ≤ i ≤
iu (denoting the set by I2

k ). (We remark that the larger the
size, the smaller is the index based on size.)

We present in Algorithm 2 the main steps of the
proposed heuristic to be integrated into the DIRECT
method, coupled with the two-phase strategy (see details
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in the next subsection).

Input: f , Ω, Gmax, Lmax.
Output: (xmin, fmin).
Normalize Ω to be the unit hypercube and compute

f (c) where c is the center;
Set k = 0, fmin = f (c), xmin = c; phase=global;
kG = 0, kL = 0

while Stopping condition is not satisfied do
Identify the indices based on size il = ⌊2/3imin⌋
and iu = ⌊1/3imin⌋ and define the sets of
indices I1

k , I2
k , I3

k of candidate hyperrectangles;
if phase=global then

Set H1
k = I1

k ; Randomly select 50% of
indices in I2

k to define H2
k ; Randomly select

10% of indices in I3
k to define H3

k ;
Set kG = kG +1;

else
Set H3

k = I3
k ; Randomly select 50% of

indices in I2
k to define H2

k ; Randomly select
10% of indices in I1

k to define H1
k ;

Set kL = kL +1;
Set Hk = H3

k ∪H2
k ∪H1

k ;
Identify the set Ok ⊆ Hk of POH;
while Ok ̸= /0 do

Select a hyperrectangle j ∈ Ok;
Identify the set L j of dimensions with
maximum size δmax; Set δ = (1/3)δmax;

for all i ∈ L j do
Sample f at c j ±δei;
Divide hyperrectangle j into thirds along
the dimensions in L j starting with the
dimension with lowest
wi = min{ f (c j +δei), f (c j −δei)} and
continue until the dimension with
highest wi;

Set Ok = Ok \{ j}
Update fmin = mini∈Hk f (ci);
Set xmin = argmini∈Hk f (ci);
if phase=global and kG ≥ Gmax then

Set phase=local; kG = 0;
else

if phase=local and kL ≥ Lmax then
Set phase=global; kL = 0;

Set k = k+1;

Algorithm 2: Two-phase heuristic coupled DIRECT
algorithm

3.2 Two-phase strategy

Since the balance between global and local information
must be provided with caution so that convergence to
the global solution is guaranteed and stagnation in a
local solution is avoided, the two-phase strategy performs
a cycling process between a globally biased set of

iterations and locally biased iterations. The first phase
(identified in the algorithm by ‘phase=global’) runs for
Gmax iterations and aims to potentiate the exploration
of the hyperrectangles with the largest sizes. Here, all
candidate hyperrectangles with indices based on size in I1

k
are selected. From the middle region, 50% of the indices
in the set I2

k are randomly selected and the corresponding
candidate hyperrectangles are used in the selection. From
the leftmost subregion, 10% of the indices in the set I3

k
are randomly selected and the corresponding candidate
hyperrectangles are selected.

Thereafter, the set of POH are identified (following
Definition 1) from all these selected hyperrectangles.

The second phase runs for Lmax iterations. Now, all
candidate hyperrectangles that have indices in the set I3

k are
selected, 50% of randomly selected indices from I2

k are used
to choose the corresponding candidate hyperrectangles, and
10% of randomly selected indices from I1

k are used to pick
the corresponding candidate hyperrectangles.

Then, based on all these selected hyperrectangles, the
set of POH are identified. This process is repeated until
convergence.

Figures 3 and 4 show the hyperretangles generated by
Algorithm 2 at iterations 4 (after 43 function evaluations)
and 7 (after 79 function evaluations) respectively, when
solving the problem (4). In each plot, the ‘green’ circles
correspond to the selected candidate hyperrectangles from
the set I3, the ‘magenta’ circles correspond to the selected
candidate hyperrectangles from I2, and the ‘blue’ circles
correspond to the selected candidate hyperrectangles from
I1. The identified POH are marked with the ‘black’ squares.
Comparing with the previous Figures 1 and 2 obtained from
DIRECT, it may be concluded that the heuristic and the
two-phase strategy have reduced the number of selected
candidate hyperrectangles from which POH are identified,
without affecting the convergence to a global solution.
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Figure 3: Points representing hyperrectangles, selected
candidate hyperrectangles and POH at iteration 4 of
Algorithm 2, when solving the problem (4).
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Figure 4: Points representing hyperrectangles, selected
candidate hyperrectangles and POH at iteration 7 of
Algorithm 2, when solving the problem (4).

4 Numerical experiments

Numerical experiments were carried out to analyze the
performance of the presented two-phase heuristic coupled
DIRECT method, when compared with other DIRECT-type
methods. The used benchmark problems are the
well-known Jones test set (also used in1, 5, 10–12, 15). It
contains nine problems: Shekel 5 (S5) with n = 4, Shekel
7 (S7) with n = 4, Shekel 10 (S10) with n = 4, Hartman 3
(H3) with n= 3, Hartaman 6 (H6) with n= 6, Branin RCOS
(BR) with n = 2, Goldstein and Price (GP) with n = 2,
Six-Hump Camel (C6) with n= 2, 2D Schubert (SHU) with
n = 2.

The MatlabTM (Matlab is a registered trademark of the
MathWorks, Inc.) programming language is used to code
the algorithm and the tested problems. The parameter ε
is set to 1E − 04. Because there is some elements of
randomness in the algorithm, each problem was solved 20
times by the algorithm.

4.1 Termination based on a budget

First, we want to analyze what would be the most favorable
set of Gmax and Lmax to be used in the Algorithm 2. The
following three sets are tested:

• Gmax = 10 and Lmax = 10 giving the variant V_1;

• Gmax = 10 and Lmax = 5 giving the variant V_2;

• Gmax = 5 and Lmax = 10 giving the variant V_3.

The algorithm runs for a budget of 100 function evaluations.
This type of stopping condition is what would be used in
practice5 . Table 1 shows the perror value given by

perror ≡ ( fmin − f ∗)
| f ∗|

(5)

where fmin is the best obtained function value and f ∗ is the
best known global minimum. Our results are compared to

those reported in5 . The perror value reported from our
algorithm is obtained by using the average value of the
solutions fmin obtained over the 20 runs. Although the
differences in the performance of the variants V_1 and V_2
are almost negligible, the variant V_1 is slightly superior,
and both outperform the variant V_3. We may conclude
that adopting a larger maximum number of global search
iterations gives a better advance in the convergence issue.
The comparison with the results in5 is slightly favorable to
the therein locally-biased form of the DIRECT algorithm
since it finds slightly better solutions for S5, H3 and H6.
However, the results for the remaining six test problems are
almost identical to our results.

Table 1: Achieved perror with a budget of 100 function
evaluations.

variant V_1 variant V_2 variant V_3 results in5

perror perror perror perror
S5 0.12E +00 0.17E +00 0.21E +00 0.59E −02
S7 0.58E −02 0.58E −02 0.62E −01 0.58E −02
S10 0.57E −02 0.57E −02 0.81E −01 0.41E −02
H3 0.66E −03 0.62E −03 0.77E −03 0.85E −04
H6 0.13E +00 0.13E +00 0.13E +00 0.23E −01
BR 0.16E −03 0.19E −03 0.20E −03 0.39E −03
GP 0.27E −03 0.27E −03 0.14E −02 0.27E −03
C6 0.10E −01 0.11E −01 0.63E −02 0.16E −01
SHU 0.83E +00 0.83E +00 0.83E +00 0.82E +00

4.2 Termination based on the known global minimum

We now test the Algorithm 2 with a stopping condition
that uses the knowledge of the global minimum f ∗. The
algorithm aims to guarantee a solution as close as possible
to the f ∗. Thus, the algorithm stops when

perror ≤ τ, (6)

where perror has been defined in (5) and τ is a positive
small tolerance. It is assumed that f ∗ ̸= 0. However, if
condition (6) is not satisfied, the algorithm runs until a
specified number of function evaluations is reached. When
f ∗ = 0, the perror becomes fmin − f ∗.

Based on the previous results, we set now Gmax = 10,
and used Lmax = 10 or Lmax = 5. Tables 2 and 3 show
the number of function evaluations required to achieve a
solution with accuracy given by τ = 1E − 04 and τ =
1E − 06, in the context of the stopping condition (6). The
results from the Algorithm 2 are the average value of the
required number of function evaluations of 20 runs. Our
results are compared to those reported in1, 10, 11, 15 and the
maximum number of function evaluations is set to 1E +05.

The first of these two tables compares our results from
variant V_1 with DIRECT1 and the solver RDIRECT-b10 .
RDIRECT-b is a robust (insensitive to linear scaling of f )
version of DIRECT with a bilevel strategy to accelerate
convergence to a higher accurate result. The comparison

5
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Table 2: Number of function evaluations reached when
Gmax = 10 and Lmax = 10, with τ as shown in each column.

Algorithm 2 results in10 † DIRECT §

1E −04 1E −06 1E −04 1E −06 1E −04 1E −06
S5 256 329 159 251 155 255
S7 173 538 157 325 145 4879
S10 171 580 157 325 145 4939
H3 141 1140 173 853 199 751
H6 488 6908 559 1209 571 182623
BR 145 258 181 287 195 377
GP 129 208 175 373 191 305
C6 190 362 115 115 145‡ 211
SHU 2093 2684 3501 4259 2967 3867
† results from the solver RDIRECT-b.
§ results reported in10 , for both values of τ .
‡ different from result in1 (285) for τ = 1E −04.

Table 3: Number of function evaluations reached when
Gmax = 10 and Lmax = 5, with τ as shown in each column.

Algorithm 2 results in15† DISIMPL-V§ DISIMPL-C§

1E −04 1E −06 1E −04 1E −04 1E −04
S5 201 704 155 2454 90948
S7 170 430 145 723 (fail)
S10 171 480 145 750 (fail)
H3 137 1027 199 261 334
H6 454 5587 571 6799 25334
BR 147 246 259 242 292
GP 127 209 191 17 180
C6 179 317 285 337 308
SHU 2409 2567 3663 4509 518
† modified DIRECT based on an update to (3).
§ results reported in11 .

with the results for a 0.01% accuracy is favorable to10 on
four problems, but is favorable to our Algorithm 2 on five
problems. On the other hand, for a higher accuracy demand
(0.0001%), the overall balance is six against three. From
the comparison with the original DIRECT, we conclude that
our algorithm wins (requires less function evaluations) for
a 0.01% accuracy solution on five problems and wins for a
0.0001% accuracy solution on six problems.

In the second of these two tables, we also report the
results of our variant V_2, since the stopping condition
(6) with a higher accuracy demand (0.01% and 0.0001%)
provided results different from what would be expected
after the comparisons in Table 1. In fact, when τ = 1E−04,
V_2 is better – reaches the required accuracy with fewer
function evaluations – than V_1 on 6 problems (out of 9)
and is a tie in one problem. When a higher accuracy is
demanded (τ = 1E −06), V_2 is still better on 7 problems.
Table 3 also shows the results obtained by a modified
DIRECT version that uses an update to the condition (3)15 ,

and those reported in11 of the two versions DISIMPL-V and
DISIMPL-C of a DIRECT-like method that uses simplices
instead of hyperrectangles. The first evaluates f at 2n

vertices and divides a simplex into two new simplices,
the second evaluates f at n! centroid points and divides
a simplex into three new simplices. From the results in
Table 3, for a 0.01% accuracy solution, we may conclude
that our algorithm outperforms the modified DIRECT15 on
six problems, the DISIMPL-V11 on eight problems, and the
DISIMPL-C11 also on eight problems.

With the next figure – Figure 5 – we aim to illustrate the
influence of the heuristic coupled DIRECT on the selected
candidate hyperrectangles and the POH, at iteration 8
of the global phase, when solving the problem BR, a
two-dimensional problem with three global minima. As
previously reported the ‘green’ circles correspond to the
selected candidate hyperrectangles from the set I3, the
‘magenta’ circles are from I2, and the ‘blue’ circles are from
I1. The ‘black’ squares mark the identified POH.
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Figure 5: Center points of generated hyperrectangles,
selected candidate hyperrectangles and identified POH at
iteration 8 of Algorithm 2, when solving the problem BR.

In Figure 6 we can see the progress of fmin as the
number of function evaluations increases, when solving the
problem BR by Algorithm 2 with Gmax = 10 and Lmax =
10. The value of fmin rapidly drops (after 20 function
evaluations) to a value near the global minimum (0.398).

Figure 7 shows the center points of the hyperrectangles
generated at iteration 9 when Algorithm 2 uses Gmax = 10
and Lmax = 10 (corresponding to the variant V_1) to solve
the problem BR. Figure 8 shows the center points at the
final iteration where the reported solution is within 0.01%
of the global minimum. Figures 9 and 10 display similar
information, but when Gmax = 10 and Lmax = 5 (variant
V_2) are used instead. Finally, Figures 11 and 12 show
the center points of the generated hyperrectangles when
Gmax = 5 and Lmax = 10 (variant V_3). It can be seen that
the points cluster around the three global solutions, being
variant V_2 the one that concentrates the search the most.
After exploring the feasible region looking for promising
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Figure 6: Progress of fmin when solving the problem BR by
Algorithm 2.

regions, the variant V_2 gathers around one of the global
solutions instead of jumping and gathering around the other
global optima.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x
1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x 2

Figure 7: Generated hyperrectangles at iteration 9
(55 function evaluations) – variant V_1.

5 Conclusions

The DIRECT method is coupled with a heuristic aiming to
divide the region of promising hyperrectangles into three
subregions for a discerned selection of a reduced number of
hyperrectangles.

Furthermore, a two-phase strategy that aims to
cyclically encourage the global search capabilities (first
phase) and enhance the local search (second phase) is
implemented. During the first phase, the heuristic DIRECT
avoids the selection of the hyperrectangles that were
mostly divided and chooses all the hyperrectangles with
largest sizes. Conversely, during the second phase, the
hyperrectangles with largest sizes are mostly avoided and
the ones with smallest sizes are all included in the selection.
The preliminary numerical experiments show that a cycle
of a global search phase of ten iterations and a local search
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Figure 8: Generated hyperrectangles at final iteration
(131 function evaluations) – variant V_1.
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Figure 9: Generated hyperrectangles at iteration 9
(51 function evaluations) – variant V_2.

phase of five iterations provides in general a more efficient
process.
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[11] Paulavičius, R. and Žilinskas, J. Simplicial Lipschitz
optimization without the Lipschitz constant. Journal
of Global Optimization 59(1), 23–40 (2014).

[12] Liu, Q. Linear scaling and the DIRECT algorithm.
Journal of Global Optimization 56(3), 1233–1245
(2013).

[13] Liu, Q., Zeng, J., and Yang, G. MrDIRECT:
a multilevel robust DIRECT algorithm for
global optimization problems. Journal of Global
Optimization 62(2), 205–227 (2015).

[14] Liu, H., Xu, S., Chen, X., Wang, X., and
Ma, Q. Constrained global optimization via a
DIRECT-type constraint-handling technique and
an adaptive metamodeling strategy. Structural and
Multidisciplinary Optimization 55(1), 155–177
(2017).

[15] Finkel, D.E. and Kelley, C.T. Additive scaling and the
DIRECT algorithm. Journal of Global Optimization
36(4), 597-–608 (2006).

8


