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Abstract: - We present a sequential quadratic programming (SQP) filter line search method which relies on an 
interior-point paradigm for solving the QP subproblems. Besides the usual step size acceptability criteria, a 
nonmonotone line search approach is also implemented. A comprehensive description of the algorithm, which 
also includes a feasibility restoration phase, is provided. Both monotone and nonmonotone algorithms have been 
implemented in Fortran 90, and the numerical results confirm that relaxing the acceptability criteria is effective.  
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1   Introduction 
The proposed algorithm is a filter line search 
algorithm for solving nonlinear optimization 
problems of the form 

min  ( )
nx R

F x
∈

       (1) 

s.t.  ( ) ,  ,b h x b r l x u≤ ≤ + ≤ ≤  
where : n

kh R R→  for k =1,…,m and : nF R R→  are 
nonlinear and twice continuously differentiable 
functions. r is the vector of ranges on the constraints 

( )h x , u and l are the vectors of upper and lower 
bounds on the variables x and b is assumed to be a 
finite real vector. Elements of the vector r, l and u are 
real numbers subject to the following limitations: 
0 kr≤ ≤ ∞ , ,i il u−∞ ≤ ≤ ∞  for k =1,…,m, i =1,…,n. 
Constraints of the form ( )b h x b r≤ ≤ +  are denoted 
by range constraints. Note that equality constraints 
can still be treated as range constraints with 0r = . 
Let ( )F x∇  denote the gradient of ( )F x  and ( )h x∇  
denote de Jacobian matrix of the constraint vector 

( ) [ ( ) , ( ), , ].Th x h x b b r h x x l u x= − + − − −   

     A solution of (1) will be denoted by *x , and we 
assume that there is a finite number of solutions. We 
also assume that the first order Kuhn-Tucker (KT) 
conditions hold (with strict complementarity) at *x . 
Thus, the constraints are verified and there exists a 
Lagrange multiplier vector * 0λ ≥  such that  

* * * **,( ) ( ) ( ) 0.T TF x h x h xλ λ∇ = ∇ =     (2) 

     Given a starting point 0x , the proposed line search 
algorithm generates a sequence of improved 
estimates kx  of the solution for the problem (1) using 
a sequential quadratic programming (SQP) method. 
At each iteration k the search direction k∆  is the 
solution of a quadratic programming subproblem 
whose objective function approximates the 
Lagrangian function ( , ) ( ) ( )TL x F x h xλ λ= −  and 
whose constraints are linear approximations to the 
constraints in (1). The usual definition of the QP 
subproblem is the following: 

min  
n

T T
k kR

H F
∆∈

∆ ∆ + ∇ ∆       (3) 

s.t.  ,  k k kb h h b r l x u≤ ∇ ∆ + ≤ + ≤ ∆ + ≤  
where ( )h x∇  denotes the Jacobian matrix of the 
constraint vector ( )h x , and kF∇ , kh  and kh∇  denote 
the relevant quantities evaluated at kx . The matrix 

kH is a symmetric positive definite approximation to 
the Hessian of the Lagrangian function. This problem 
has a solution k∆  and a Lagrange multiplier 0kπ ≥  
that satisfy  
        ,

T
k k k kkH F h π∆ + ∇ = ∇  ( ) 0.T

k kk kh hπ ∇ ∆ + =   

     Clearly the most common approach for solving (3) 
considers active set methods (see, for example, [9]). 
Solving QP subproblems with equality constraints is 
straightforward. However, problems that have 
inequality constraints are significantly more difficult 
to solve than problems in which all constraints are 



equations since it is not known in advance which 
inequality constraints are active at the solution.  
     In this paper, we describe a new SQP method that 
is based on the interior-point paradigm for solving the 
QP subproblems (3). To promote the global 
convergence, the filter technique of Fletcher and 
Leyffer [3] is used to globalize the SQP algorithm, 
avoiding the use of a merit function and the updating 
of the penalty parameter. The underlying concept is 
that trial iterates are accepted if they improve the 
objective function or improve the constraints 
violation, instead of a combination of those two 
measures defined by a merit function. In this context, 
we also test a specific implementation of a 
nonmonotone line search approach. 
     The paper is organized as follows. Section 2 
describes the interior-point method used to solve the 
QP subproblems. The filter mechanism is presented 
in Section 3, Section 4 describes the nonmonotone 
strategy and Section 5 contains the numerical results, 
some conclusions and future work. 
 
 
2 The Interior-Point Framework  
This section describes an infeasible primal-dual 
interior-point method for solving the quadratic 
subproblem (3). We refer to [11] for details. Adding 
nonnegative slack variables w, p, g, t, (3) becomes 

 min T T
k kH F∆ ∆ +∇ ∆       (4) 

s.t.  ,  ,k k k kh w b h h p b r h∇ ∆ − = − ∇ ∆ + = + −  
        , , , , , 0.k kg l x t u x w p g t∆ − = − ∆ + = − ≥  
The nonnegativity constraints are then eliminated by 
incorporating them in logarithmic barrier terms in the 
objective function transforming (4) into 

1 1
 ln( ) ln( )min

m mT T
j jk k j j

H F w wµ µ
= =

∆ ∆ + ∇ ∆ − − −∑ ∑  

        
1 1
ln( ) ln( )

n n
i ii i

g tµ µ
= =

− −∑ ∑  

subject to the same set of equality constraints, 
where µ  is a positive barrier parameter. Optimality 
conditions for this subproblem produce the standard 
primal-dual system  

0,T
k k kH F h y z s∆ + ∇ −∇ − + =  0,y q v+ − =  

1 1WVe eµ= , 1 1PQe eµ= , 2 2GZe eµ= , 2 2TSe eµ= , 
0, 0,k kh h b w r w p∇ ∆ + − − = − − =      (5) 

0, 0,k kx l g u x t∆ + − − = − ∆ − − =  
where ( )jV diag v= , ( )jQ diag q= , ( )iZ diag z= , 

( )iS diag s= , ( )jW diag w= , ( )jP diag p= ,

( )iG diag g=  and ( )iT diag t=  are diagonal matrices, 

y v q= − , 1 (1, ...,1)Te =  and 2 (1, ...,1)Te = are m and n 
vectors respectively. This is a nonlinear system of 
5n+5m equations in 5n+5m unknowns. It has a 
unique solution in the strict interior of an appropriate 
orthant in primal-dual space {(∆,w,g,t,p,y,z,v,s,q): 
w,g,t,p,z,v,s,q ≥0}.  
     The central path is an arc of strictly feasible 
points. It is parameterized by the scalar µ , and each 
point on the central path solves the primal-dual 
system (5). As µ  tends to zero, the central path 
converges to an optimal solution to both primal and 
dual problems. For a value of µ  let (∆,w,g,…,q) 
denote the current point in the orthant. Our aim is to 
find the direction vectors (∆∆,∆w, …, ∆q) such that 
the new point (∆+∆∆,w+∆w, …, q+∆q) lies 
approximately on the primal-dual central path at the 
point ( , , ..., )w qµ µ µ∆ . We see that the new point 
(∆+∆∆, w+∆w, …, q+∆q), if it were to lie exactly on 
the central path at µ , would be defined by 

T
k kH h y z s σ− ∆∆ + ∇ ∆ + ∆ − ∆ =

y q v y q v β−∆ − ∆ + ∆ = + − ≡  
1 1 1

1 wV W v w V e w V V wµ γ− − −∆ + ∆ = − − ∆ ∆ ≡  
1 1 1

1 qP Q p q P e q P P qµ γ− − −∆ + ∆ = − − ∆ ∆ ≡  
1 1 1

2 zG Z g z G e z G G zµ γ− − −∆ + ∆ = − − ∆ ∆ ≡     (6) 
1 1 1

2 sT S t s T e s T T sµ γ− − −∆ + ∆ = − − ∆ ∆ ≡  

k k kh w w b h h ρ∇ ∆∆ − ∆ = + −∇ ∆ − ≡  
w p r w p α∆ + ∆ = − − ≡  

kg l x g υ∆∆ − ∆ = − ∆ − + ≡  

kt u x t τ∆∆ + ∆ = − ∆ − − ≡  
where we have introduced notations 

T
k k kH F h y z sσ ≡ ∆ + ∇ −∇ − +  and ,β ,ρ ,α ,τ υ, 

,wγ ,qγ ,zγ sγ  as short-hands for the right-hand side 
expressions. This is almost a linear system for the 
direction vectors (∆∆,∆w, …, ∆q). The only 
nonlinearities appear on the right-side hand of the 
complementarity equations (i.e., in ,wγ ,qγ ,zγ sγ , the 
γ-vectors).  
     The algorithm implements a predictor-corrector 
[8] approach to find a good approximation solution to 
the equations (6). First, a predictor direction 
( , , ..., )p p pw q∆∆ ∆ ∆  is computed from (6) ignoring 
the µ  and ∆-terms of the γ-vectors. Then an estimate 
of an appropriate target value for µ  is made using  

( ) (2 2 )T T T Tz g s t v w p q m nµ δ= + + + +  with 

, , ...,p p p p p pz z z g g g q q qα α α= + ∆ = + ∆ = + ∆ and 



( ) ( )( )2
1 10p pδ α α= − +  where pα  is the longest 

step length that can be taken along this direction 
before violating the nonnegative conditions w, g, t, p, 
z, v, s, q ≥ 0 with an upper bound of 1. The corrector 
step (∆∆,∆w, …, ∆q) is then obtained by reinstalling 
the µ  and the ∆-terms on the γ-vectors in (6). This 
step is used to move to a new point in primal-dual 
space. Again we calculate the maximum step α  that 
can be taken along this direction before violating the 
nonnegativity conditions, yielding the new point 

, ,..., .w w w q q qα α α∆ = ∆ + ∆∆ = + ∆ = + ∆  
     Implementation details to provide initial values for 
all the variables in this interior-point paradigm as 
well as to solve system (6) are described in [2]. 
A solution of the quadratic subproblem is declared 
primal/dual feasible if the relative measures of primal 
and dual infeasibilities are less than 410− . Thus, the 
QP subproblem has a solution ( , )k kπ∆  with k∆ = ∆  

and ( , , , ).T
k v q z sπ =   

 
 
3   A Line Search Filter Method in SQP 
After a search direction k∆  has been computed, we 
consider a backtracking line search procedure, where 
a decreasing sequence of step sizes 

, (0,1] ( 0,1, ...)k l lα ∈ = , with ,lim 0l k lα = , is tried 
until an acceptance criterion is satisfied. The 
procedure that decides which trial step is accepted is 
a “filter method”. Traditionally, a trial step size ,k lα  
is accepted if the corresponding trial point 

, , ,( )k k l k k l kx xα α= + ∆ , ,( ) ,k k l k lk kλ α λ α ξ= +

, ,( ) ,k k l k lk kss ssα α ζ= +  provides sufficient reduction 
of a merit function, such as the augmented 
Lagrangian function [4], which has the form 

( ) 2( , , ; ) ( ) ( ) ( , )
2

Tx ss F x h x ss x ssλ η λ θ
η

= − − +L     (7) 

where the infeasibility measure ( , )x ssθ  is given by  

( )
2

( , ) ( )x ss h x ssθ = −  

and η  is a positive penalty parameter. Here, ss is a 
vector of nonnegative slack variables that are used 
only in the line search procedure and at the beginning 
of iteration k is taken as ( )max 0, ( )k kss h x= . We treat 
the elements of λ  as additional variables so that π  is 
used to define a “search direction”,ξ , for the 
multiplier estimate λ , and the line search is 
performed with respect to ,x λ  and ss. At iteration k, 

a vector triple ( , , )T
k k k kd ξ ζ= ∆  is computed to serve 

as direction of search for the variables ,( , )k k kssx λ . 
The vectors k∆  and πk are found from the QP 
subproblem (3). The kξ  is defined as k k kξ λ π= −  
and the vector kζ  satisfies k k k k kh h ssζ∇ ∆ + = + , 
from which we can see that k kssζ +  is simply the 
residual of the inequality constraints from problem 
(3). In order to avoid the determination of an 
appropriate value of the penalty parameter η , 
Fletcher and Leyffer [3] proposed the concept of a 
filter method in the context of a trust region SQP 
algorithm. The basic idea behind this approach is to 
interpret the optimization problem (1) as a biobjective 
optimization problem with two goals: minimizing the 
constraints violation ( ) 2

( ) min 0, ( )x h xθ =  and 

minimizing the objective function ( ).F x  A certain 
emphasis is placed on the first measure, since a point 
has to be feasible in order to be an optimal solution of 
(1).  
     Following this paradigm, we propose an approach 
based on the two components of the augmented 
Lagrangian function (7):  

( )( , , ) ( ) ( )TL x ss F x h x ssλ λ= − −     (8) 

and ( , )x ssθ  (or, equivalently, 2( , )x ssθ ) rather than 
on ( )xθ  and ( ).F x (Recently, in [10] a related 
approach using the Lagrangian function in a filter 
trust region based method is proposed.) The trial 
point ,( ( ),k k lx α , ,( ), ( ))k k l k lkssλ α α  is accepted by the 
filter if it improves feasibility, i.e., if 

, ,( ( ), ( )) ( , )k k l k k l k kx ss x ssθ α α θ< , or if it improves 
the Lagrangian function (8), i.e., if 

, , ,( ( ), ( ), ( )) ( , , ).k k l k l k l kL x ss L x ssk k k kα λ α α λ<  Note 

that this criterion is less demanding than the 
enforcement of decrease in the penalty function (7) 
and might in general allow larger steps.  
 
3.1 Sufficient reduction  
Line search methods that use a merit function ensure 
sufficient progress toward the solution by enforcing 
an Armijo condition for the augmented Lagrangian 
function (7). Following this idea, we might consider 
the trial point ,( ( ),k k lx α ,( ),k k lλ α  ,( ))k k lss α  during 
the backtracking line search to be acceptable, if the 
next iterate provides at least as much progress in one 
of the measures θ  or L  that corresponds to a small 
fraction of the current constraints violation, 

( , )k kx ssθ , i.e, if 



, ,( ( ), ( )) (1 ) ( , )k k l k k l k kx ss x ssθθ α α γ θ≤ −   (9a) 
or  

, , ,( ( ), ( ), ( )) ( , , )- ( , )k k l k k l k k l k k k k kLL x ss L x ss x ssα λ α α λ γ θ≤  
(9b) 

holds for fixed constants , (0,1).Lθγ γ ∈  However, we 
change to a different sufficient reduction criterion 
whenever, for the current iterate, we have 

min( , )k kx ssθ θ≤ , for some min (0, ]θ ∈ ∞ , and the 
following “switching conditions”  
 

( , , ) 0T
k k k kL x ss dλ∇ <     and 

, ,( , , ) ( , )Ls sT
k kk l k k k kL x ss d x ss θα λ δ θ  −∇ >    

(10) 
hold with fixed constants 20, 1, Ls s sθ θδ >> > . If 

min( , )k kx ssθ θ≤  and (10) is true for the current 
iterate, the trial point , , ,( ( ), ( ), ( ))k k l k k l k k lx ssα λ α α , 
has to satisfy the Armijo condition  
 

, , ,

, ,

( ( ), ( ), ( )) ( , , )

( , , )

k k l k k l k k l k k k

T
k l k k kL k

L x ss L x ss

L x ss d

α λ α α λ

η α λ

≤ +

+ ∇
 

                  (11) 
instead of (9), in order to be acceptable. Here, 

(0, 0.5)Lη ∈  is a constant. According to previous 
publications on filter methods we call a trial step 
size ,k lα  for which (10) holds, a “ L -step size”. 
Similarly, if an L -step size is accepted as the final 
step size kα  in iteration k, we refer to k as an “ L -
type iteration”. At each iteration k, the algorithm also 
maintains a “filter”, here denoted by 

( ){ }2, : 0k L Rθ θ⊆ ∈ ≥F . Following the ideas in 

[12, 13, 14], the filter here is not defined by a list but 
as a set kF  that contains those combinations of 
constraints violation values θ  and Lagrangian 
function values L , that are prohibited for a 
successful trial point in iteration k. So, during the line 
search, a trial point , , ,( ( ), ( ), ( ))k k l k k l k k lx ssα λ α α  is 
rejected, if  

( ), , , , ,( ( ), ( )), ( ( ) ( ), ( ))k k l k k l k k l k k l k k lx ss L x ssθ α α α λ α α ∈

kF . The authors in [12, 13, 14] apply this simplified 
notation to active set SQP and barrier interior-point 
line search based algorithms. At the beginning of the 
optimization, the filter is initialized to  

( ){ }0
2 max, :L Rθ θ θ= ∈ ≥F   (12) 

for some ,
maxθ  so that the algorithm will never 

allow trial points to be accepted that have a constraint 
violation larger than .

maxθ  Later, the filter is 
augmented, using the update formula 
 

( ){ }-1
2, : (1- ) andk k k k kLL R L Lθθ θ γ θ γ θ+ = ∪ ∈ ≥ ≥F F  

             (13) 
after every iteration in which the accepted trial step 
size does not satisfy the switching conditions (10). 
This ensures that the iterates cannot return to the 
neighborhood of kx . On the other hand, if both (10) 
and (11) hold for the accepted step size, the filter 
remains unchanged.  
     Overall, this procedure ensures that the algorithm 
cannot cycle, for example between two points that 
alternatively decrease the constraints violation and 
the Lagrangian function L . Finally, in some cases it 
is not possible to find a trial step size ,k lα  that 
satisfies the above criteria. We define a minimum 
desired step size using linear models of the involved 
functions 
 

[ ]

min

min

min

min , ,

           if  0 and

: min ,

          if  0 and

, otherwise

L

s
k kL

sT T
k k k k

T
k k k

kL
k T

k k
T
k k k

L d L d

L d

L d

L d

θ

θ

α θ

θ

γ θ δ θ
γ

θ θ

γ θ
α γ γ

θ θ

γ

>

−∇ −∇

∇ < ≤

=
−∇

∇ <

          



 
  

 







      (14) 

with a safety factor ].1,0(∈αγ  If the backtracking 

line search finds a trial step size min
,k l kα α< , the 

algorithm reverts to a feasibility restoration phase. 
Here, the algorithm tries to find a new iterate ,1( +kx  

), 11 ++ kk ssλ which is acceptable to the current filter 
and for which (9) holds, by reducing the constraints 
violation within an iterative process.  
     Our interior-point SQP filter line search algorithm 
for solving inequality constrained optimization 
problems is as follows: 
 
Algorithm 1  
Given: Starting point 0 0 0,( , )x ssλ  with 

( )00 max 0, ( )ss h x= ; constants ( ]max
0 0( , ),x ssθ θ∈ ∞ , 



min 0θ > ; , (0,1)Lθγ γ ∈ ; 0δ > ; (0,1]αγ ∈ ; 1sθ > ; 

2Ls sθ> ; 
2

, (0,1)L θη η ∈  

1.  Initialize. Initialize the filter (using (12)) and the 
iteration counter 0.k ←  

2.  Check convergence. Stop if kx  is a stationary point 
of the problem (1), i.e., if it satisfies the KT 
conditions (2) for some .mRλ ∈  

3. Compute search direction. Compute the search 
direction k∆  and the Lagrange multiplier kπ  from 
the linear system (6) (using the interior-point 
strategy presented in Section 2). 

4.  Backtracking line search.  
4.1 Initialize line search. Set ( )max 0, ( )k kss h x= , 

k k kξ λ π= − , k k k k kh h ssζ −= ∇ ∆ + , , 1k lα = , 0l ← . 
4.2 Compute new trial point. If the trial step size 
becomes too small, i.e., min

,k l kα α<  with min
kα  

defined by (14), go to feasibility restoration phase in 
step 8. Otherwise, compute the trial points 

, , , ,,( ) ( )k k l k k l k k k l k k l kx xα α λ α λ α ξ= + ∆ = + , 

, ,( )k k l k k l kss ssα α ζ= + . 
4.3 Check acceptability to the filter. If 

( ), , , , ,( ( ), ( )), ( ( ) ( ), ( ))k k l k k l k k l k k l k k lx ss L x ssθ α α α λ α α ∈

kF , reject the trial step size and go to step 4.5. 
4.4 Check sufficient decrease with respect to current 
iterate.  
Case I: ,k lα  is an L -step size (i.e., (10) holds): If the 

Armijo condition (11) for the L  function holds, 
accept the trial step and go to step 5. Otherwise, go to 
step 4.5.  
Case II: ,k lα  is not an L -step size: If (9) holds, 
accept the trial step and go to step 5. Otherwise, go to 
step 4.5. 
4.5. Choose new trial step size. Set , 1 , 2k l k lα α+ ← , 

1l l← + , and go back to step 4.2. 
5.  Accept trial point. Set ,k k lα α← , 1 ( )k k kx x α+ ← , 

and 1 ( )k k kλ λ α+ ← . 
6.  Augment filter if necessary . If k is not an L -type 

iteration, augment the filter using (13). Otherwise, 
leave the filter unchanged. 

7.  Continue with next iteration. Increase the iteration 
counter 1k k← +  and go back to step 2. 

8.  Feasibility restoration phase. Use a restoration 
algorithm to produce a point 1 1 1,( , )k k kx ssλ+ + +  that 
is acceptable to the filter, i.e.,  

1 1 1 11,( ( , ), ( , ))k k k kkx ss L x ssθ λ+ + + ++ ∉ kF . Augment the 
filter using (13) and continue with the regular 
iteration in step 7. 
 
3.2 Feasibility restoration phase 
In this section we present a restoration algorithm. The 
task of the restoration phase is to compute a new 
iterate acceptable to the filter by decreasing the 
infeasibility, whenever the regular backtracking line 
search procedure cannot make sufficient progress and 
the step size becomes too small. To compute a trial 
point that sufficiently decreases infeasibility, we 

introduce the function ( ) 2
2 2

1( , ) ( )2x ss h x ssθ = − . The 

restoration algorithm herein presented works with the 
step framework ( , )Td ζ= ∆  that should be a descent 
direction for 2 ( , )x ssθ . In fact,  

2

2 0.

( ) ( )

( ) ( )

( ) ( ) 2

T T T

T

T

d h ss h h ss

h ss h

h ss h ss

θ ζ

ζ

θ <

∇ = − ∇ ∆ − −

= − ∇ ∆ −

= − − − = −

 

Additionally, we also ensure that the new iterate 
1kx + does not deviate too much from the current 

iterate kx  (see step 5 in Algorithm 2).  
     Several other restoration algorithms are plausible 
but we chose the following one because it is 
consistent with the step calculation of our interior-
point SQP filter line search method:  
 
Algorithm 2 (restoration algorithm) 
0. Set ,0 ,0 ,0, ,k k k k k kss ssx x λ λ= == , 0l =  and start 

with step 4. 
1. If , , ,, ,( )k l k l k lx ssλ  is acceptable to the filter 

(conditions (9)) then set 1 , 1 ,,k k l k k lx x λ λ+ + == , and 

stop restoration. 
2. Compute lk ,∆  and lk ,π  by solving the QP 

subproblem (3), with , ) , ), ,( (k k k l k lx xλ λ= . 

3. Compute lkss , , lk ,ξ , lk ,ζ  and define the vector 

, , ,( ) ( , )T
k l k l k ld ζ= ∆  which is used as direction of 

search for the variables , ,( , )k l k lx ss . 

4. Set 1kα = . 
5. If  

2
2

( )2 2, , , , , ,( ), ( ) ( , )+ T
k l k k l k k l k l k k lx ss x ss dθθ α α θ α η θ≤ ∇  

and 
2, ,|| ( ) || (1 || ( ) ||)k l k k k l kx x xθα ε α− ≤ +  



then set , 1 , ( ),k l k l kx x α+ =  , 1 , ( )k l k l kss ss α+ = , 

, 1 , ( )k l k l kλ λ α+ = , 1l l= + , and return to step 1. 

Otherwise 2k kα α← , and repeat step 5. 
 
 
4   Nonmonotone Line Search  
Nonmonotone line search methods that use a merit 
function ensure sufficient progress toward the 
solution by imposing that the merit function value of 
each new iterate satisfies an Armijo condition with 
respect to the maximum merit function value of a 
prefixed number of previous iterates, see for example 
[6]. Thus, the condition which implies a monotonic 
decrease of the merit function is relaxed without 
affecting the global convergence. Transposing this 
idea to this interior-point SQP filter line search 
framework,  we  now  should  consider  the trial  
point ( ), , ,,( ) ( ), ( )k k l k k l k lkx ssα λ α α , during the 

backtracking line search technique, to be acceptable 
if it leads to sufficient progress in one of the two 
measures (θ  or L ) compared to a previous iterate 
that yields the maximum value of the corresponding 
measure within the last ( )m k  iterates, where 

(0) 0m =  and min0 ( ) { ( 1) 1, }m k m k M≤ ≤ − + , 
1k ≥  (M is a nonnegative integer). So, the conditions 

(9a) and (9b) are now rewritten as follows: 
 

, , max
0 ( )

( ( ), ( )) (1 ) ( , )j jk k l k k l k kj m k
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                  (15a) 
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                  (15b) 
     Similarly in the switching conditions (10), only 
the second condition is modified as follows:  

, max .
0 ( )

( , , ) ( , )L
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sT
k kk l k k k k j j

j m k
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                    (16) 
     The acceptability Armijo condition (11) for the 
step size is now relaxed and given by 

0 ( ), , ,

, .
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                    (17) 
     The inclusion of the nonmonotone strategy also 
affects the update formula to augment the filter which 
has now the following form 

( )1
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                   (18) 
     Finally the computation of the min

kα  (last (14)) has 
to take into account the previous relaxed conditions 
and is given by 
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                                                                               (19) 
     The algorithm for the interior-point SQP filter 
nonmonotone line search approach is similar to 
Algorithm 1. The references to equations (9), (10), 
(11), (13) and (14) should now be replaced by (15), 
(16), (17), (18) and (19) respectively. Further, in step 
1, (0)m  should be initialized to 0 and in step 7, after 
the increase of the iteration counter k , the update 

min( ) { ( 1) 1, }m k m k M= − +  is required. 
     The modifications to Algorithm 2 of the feasibility 
restoration phase are as follows: 
- replace the Armijo condition in step 5 by the 

relaxed condition 

0 ( ) 2
2

( )2 2, , ,( ), ( ) max ( , )+j jj m l

T
k l k k l k k k k k lx ss x ss dθθ α α θ α η θ

≤ ≤ − −≤ ∇

 
- include (0)m =0 in step 0 and the update 

min( ) { ( 1) 1, }m l m l M= − +  in step 5 before 
returning to step 1. 

 
 
5   Results and Conclusions 
To test this SQP framework based on the interior-
point strategy with a filter line search method we 
selected 32 small inequality constrained problems 



from the Hock and Schittkowski (HS) collection [7] 
and other 6 problems, usually known in the literature 
as difficult problems, named P0-P5 in the Table 1. 
P0-P4 are from [1] and P5 from [15]. The tests were 
done in double precision arithmetic with a Pentium 4 
and Fortran 90. For the successful termination of the 
algorithm, the iterative sequence of x-values must 
converge and the final point must satisfy the first-
order Kuhn-Tucker conditions (see (2)) with a 10-4 
tolerance.  
     The chosen values for the constants are similar to 
the ones used in [14]: max 4

0 010 max{1, ( , )}x ssθ θ= , 
min 4

0 010 max{1, ( , )}x ssθ θ−= , 510θγ
−= , 510Lγ

−= , 

1δ = , 0.05αγ = , 1.1sθ = , 2.3Ls = , 410Lη
−= , 

2

410θη
−=  and 

2
0.1θε = , where 0x  is the starting 

point and 0 0max(0, ( ))ss h x= . 
     The numerical results concerning our interior-
point SQP filter line search method are reported in 
the first part of Table 1. For comparative purposes, 
we include in the second part of the table the results 
obtained when a line search method based on the 
merit function (7) is used as in [2] instead of the 
herein proposed filter method. Each set of two 
columns contains the number of QP subproblems 
solved (NQP) and the number of function evaluations 
(Nfe) - L  for the Filter Method and L  for the Merit 
Function approach.  
     In most problems the results are similar while in 9 
of the 38 problems the filter method requires less 
function evaluations than the merit function based 
line search. Slightly better results were obtained with 
the merit function in 5 problems. 
     The implementation of the nonmonotone 
approach, as described in Section 4, for 5M = , gives 
similar results for the majority of the tested problems 
with the following exceptions: 
HS1 73 91( = , = ),QP feN N  HS2 26 27( = , = ),QP feN N  

HS5 18 28( = , = ),QP feN N  HS17 14 15( = , = ),QP feN N  

HS18 6 7( = , = ),QP feN N  HS21 2 3( = , = ),QP feN N  

HS34 7 13( = , = )QP feN N , P4 11 12( = , = )QP feN N . 

Although the observed differences are not significant 
a comparative analysis is possible considering the 
cumulative results. In the monotone filter approach 
the ratio between the number of function evaluations 
and the number of QP subproblems solved is 2.8 
while in the nonmonotone filter approach the ratio is 
2 (Total NQP= 379, Total Nfe =776). Thus a slightly 
more efficient framework is achieved when the 

acceptability criteria for the step size are relaxed. The 
ratio for the merit function based method is 3. 
 
                      Table 1: Comparative results  

Problem Filter Method Merit Function
 NQP Nfe NQP Nfe 
HS1 44 59 44 59 
HS2 13 16 13 16 
HS3 1 2 1 2 
HS4 2 3 2 10 
HS5 9 31 9 31 
HS15 8 9 10 61 
HS16 5 6 5 6 
HS17 13 15 12 15 
HS18 9 43 6 67 
HS19 7 8 7 8 
HS20 8 9 7 9 
HS21 2 13 2 13 
HS23 6 7 6 7 
HS24 6 7 6 7 
HS30 11 12 11 12 
HS31 7 8 7 68 
HS32 5 6 5 6 
HS33 5 6 5 6 
HS34 7 17 8 31 
HS35 2 3 2 3 
HS36 6 7 6 29 
HS37 9 10 9 10 
HS38 13 14 13 14 
HS41 12 13 12 13 
HS44 6 7 6 16 
HS45 5 6 5 6 
HS53 3 4 3 4 
HS55 1 2 1 2 
HS60 8 9 12 52 
HS63 12 15 9 12 
HS64 19 173 19 173 
HS65 9 10 10 54 
P0 22 197 15 17 
P1 5 6 5 6 
P2 4 5 4 5 
P3 F - F - 
P4 11 145 11 96 
P5 15 16 15 16 
Cum. 330 919 323 962 

   Cum. – cumulative results; F – failure (unbounded objective) 
 

     When solving the problems HS2, HS16, HS20, 
HS38 and HS44, our algorithms converged to 
solutions that are different from the ones reported in 
the literature [7]. Thus, we decided to run well-
known nonlinear programming solvers in order to 
compare the solutions. We also included in this 
analysis the set P0-P5 of the most difficult problems. 
This comparative analysis includes two solvers that 
are available in the NEOS Server (http://www-
neos.mcs.anl.gov/neos/). This Server provides the 



possibility to run problems on powerful machines in a 
user friendly manner through the internet. The chosen 
solvers were: 
- FILTER, which is an SQP active set trust region 

algorithm with a filter to promote global 
convergence [3]; 

- SNOPT, which is a specific SQP implementation 
of an active-set method based on a smooth 
augmented Lagrangian merit function [5]. 

 
     Table 2 reports the results that we obtained for the 
above referred problems. For the problems HS2, 
HS16 and HS20, both solvers also converged to the 
same solutions that we found. Comparisons with 
SNOPT and FILTER are not meant to be a rigorous 
assessment of the performance of our algorithms 
since the termination criteria are not comparable.  
 
                 Table 2: FILTER and SNOPT results  

Problem       SNOPT       FILTER  
 NQP Nfe NQP Nfe 
HS2 18 15 8 9 
HS16 1 5 4 5 
HS20 1 5 4 5 
HS38 160 119 53 54 
HS44 2 ni 1 2 
P0 1 ni 23 21 
P1 3 4 2 3 
P2 8 5 4 5 
P3 F - F - 
P4 16 44 11 12 
P5 2 7 33 34 

F – failure (unbounded objective); ni – no information is 
available on the output file sent by NEOS 

 
     Despite some similarities, our SQP monotone 
filter line search method has some differences from 
the SQP filter line search method proposed and 
analyzed in [12, 13]. The differences are mainly on 
the defined min

kα  and on the feasibility restoration 
phase. The steps computed from the QP subproblems 
are in our case obtained by an interior-point method. 
The implementation of a nonmonotone strategy in a 
filter line search framework is new. The obtained 
results seem promising and a global convergence 
analysis of the proposed method will be carried out in 
the near future. 
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