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Abstract. Here we present an interior point three-D filter line search method for solving optimization problems. Each entry
in the filter includes the feasibility measure, the centrality measure and the barrier objective function value. The algorithm is
tested with benchmark engineering design problems, and a comparison with other published results are also included.
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INTRODUCTION

The optimization problems herein addressed are of the form:

minx∈IRn F(x)
subject to h(x)≥ 0 (1)

where hi : IRn → IR for i = 1, . . . ,m and F : IRn → IR are nonlinear and twice continuously differentiable functions.
In this paper, we use the filter technique of Fletcher and Leyffer [1] to globalize an interior point method for solving

problems like (1). The filter technique uses the concept of nondominance present in the multi-objective optimization
to build a filter that is able to reject poor trial iterates and enforce global convergence from arbitrary starting points.
Filter techniques have already been incorporated into interior point methods. In Ulbrich, Ulbrich and Vicente [2],
a filter trust-region strategy based on two components is proposed. In [3, 4], a filter line search strategy that relies
on two components is used. These components are the barrier objective function and the constraints violation. A
nonmonotone line search filter approach is presented in [5]. The filter therein proposed has three components that
measure feasibility, centrality and optimality. The optimality measure is based on the norm of the gradient of the
Lagrangian function associated to the barrier problem.

This paper aims to present a 3-D filter line search approach that uses, together with the well-known feasibility
and centrality measures of a typical primal-dual interior point method, the barrier objective function to measure
the optimality level of trial iterates. Performance assessment of the proposed algorithm is carried out with a set of
benchmark engineering design problems.

INTERIOR POINT 3-D FILTER LINE SEARCH METHOD

This section briefly describes a primal-dual interior point method for solving (1). Adding nonnegative slack variables w
to transform the inequality constraints into equality constraints, and incorporating the constraints w≥ 0 in logarithmic
barrier terms in the objective function, (1) is transformed into the barrier problem

minx∈IRn,w∈IRm ϕµ(x,w)
subject to h(x)−w = 0,

(2)



where ϕµ(x,w) = F(x)−µ
m
∑

i=1
log(wi) is the barrier function and µ is a positive barrier parameter. The solution to the

problem (2) satisfies the following primal-dual system

∇F(x)−AT y = 0
−µe+WYe = 0

h(x)−w = 0
(3)

where y is the dual variable, ∇F is the gradient vector of F , A is the Jacobian matrix of the constraints h, W = diag(wi)
and Y = diag(yi) are diagonal matrices of order m, and e is an m vector of all ones. Applying the Newton’s method to
solve (3), a reduced KKT system is obtained for (∆x,∆y)

[ −H(x,y) AT

A WY−1

][
∆x
∆y

]
=

[
∇F(x)−AT y
µY−1e−h(x)

]
, (4)

where H(x,y) = ∇2F (x)−
m
∑

i=1
yi∇2hi(x) represents the Hessian of the Lagrangian function associated to (2). Then

∆w = WY−1
(
µW−1e− y−∆y

)
. For simplicity, we use the following notation:

u = (x,w,y), u1 = (x,w), u2 = (w,y), ∆ = (∆x,∆w,∆y), ∆1 = (∆x,∆w), ∆2 = (∆w,∆y).

From an initial point x0, w0 > 0 and y0 > 0 the algorithm proceeds iteratively choosing a step size αk, at iteration
k, and defining a new approximation by uk+1 = uk +αk∆k. The step size αk should guarantee the nonnegativity of the
slack and dual variables. The procedure that decides which trial step size is accepted is a 3-D filter line search method.
A filter is a set Fk that contains values of θ f , θc and ϕµ , that are prohibited for a trial iterate to be acceptable in iteration
k. These three components of each entry in the filter measure feasibility, centrality and optimality, respectively, and
they are defined as follows:

θ f (u1) = ‖w−h(x)‖2 , θc(u2) =
∥∥µW−1e− y

∥∥
2 and ϕµ(u1) is the barrier function.

The algorithm also implements a backtracking line search procedure, defining a decreasing sequence of step
sizes αk,l ∈ (0,αmax

k ] (l = 0,1, ...), with liml αk,l = 0, until an acceptance criterion is satisfied. Here, l denotes the
iteration counter for the inner loop. αmax

k is the longest step size that can be taken along ∆k before the nonnegativity
conditions wk ≥ 0 and yk ≥ 0 being violated, with an upper bound of 1. Using this 3-D filter method, the trial iterate
uk(αk,l) = uk + αk,l∆k is accepted by the filter if it leads to sufficient progress in one of the three measures, when
compared to the current iterate:

θ f (u1
k(αk,l))≤

(
1− γθ f

)
θ f (u1

k) or θc(u2
k(αk,l))≤ (1− γθc)θc(u2

k)
or ϕµ(u1

k(αk,l))≤ ϕµ(u1
k)− γϕ θ f (u1

k)
(5)

where γθ f ,γθc ,γϕ ∈ (0,1) are fixed constants. However, to prevent convergence to a feasible but nonoptimal point, and
whenever for the trial step size αk,l , the following switching conditions

mk(αk,l) < 0 and
[−mk(αk,l)

]so [
αk,l

]1−so > δ
[
θ f (u1

k)
]s f and

[−mk(αk,l)
]so [

αk,l
]1−so > δ

[
θc(u2

k)
]sc (6)

hold, with fixed constants δ > 0, s f > 1,sc > 1, so ≥ 1, where mk(α) = α∇ϕµ(u1
k)

T ∆1
k , then the trial iterate must

satisfy the Armijo condition
ϕµ(u1

k(αk,l))≤ ϕµ(u1
k)+ηomk(αk,l), (7)

instead of (5), to be acceptable. Here, ηo ∈ (0,0.5) is a constant. At the beginning of the iterative process, the filter
is initialized to F0 ⊆

{(
θ f ,θc,ϕµ

) ∈ IR3 : θ f ≥ θ max
f ,θc ≥ θ max

c ,ϕµ ≥ ϕmax
µ

}
for some positive constants θ max

f , θ max
c

and ϕmax
µ . Whenever the accepted step size satisfies (5), the filter is updated by

Fk+1 = Fk ∪
{(

θ f ,θc,ϕµ
) ∈ IR3 : θ f ≥

(
1− γθ f

)
θ f (u1

k) and θc ≥ (1− γθc)θc(u2
k) and ϕµ ≥ ϕµ(u1

k)− γϕ θ f (u1
k)

}
,

and it remains unchanged if for the accepted step size, (6) and (7) hold. Finally, when the trial step size αk,l becomes
too small, the algorithm reverts to a restoration phase that aims to find a new iterate uk+1 that is acceptable to the
current filter, for which (5) holds, by decreasing either the feasibility measure 1

2 ‖w−h(x)‖2
2 or the centrality measure

1
2

∥∥µW−1e− y
∥∥2

2. The reader is referred to [6] for details.



NUMERICAL EXPERIMENTS WITH ENGINEERING DESIGN PROBLEMS

Problems of practical interest are important for assessing the effectiveness of any algorithm. Thus, to evaluate the
performance of our interior point 3-D filter line search method a set of 7 benchmark engineering problems is used.
Comparisons with other published results are also included. The parameters were defined as follows (as in [4]):
θ max

f = 104 max
{

1,θ f (u1
0)

}
, θ max

c = 104 max
{

1,θc(u2
0)

}
, ϕmax

µ = 104 max
{

1,ϕµ(u1
0)

}
, γθ f = γθc = γϕ = 10−5, δ = 1,

s f = sc = 1.1, so = 2.3 and ηo = 10−4.
This algorithm is a quasi-Newton based method in the sense that a symmetric positive definite quasi-Newton BFGS

approximation, Bk, is used to approximate the Hessian of the Lagrangian H, at each iteration k. Initial approximations
to the variables are as follows: (i) x0 is taken as published in [10] and y0 is set to 1; or, a better approximation, say
x̃0, as well as y0, are computed by solving a simplified reduced KKT (see (4)) based on the published x0; (ii) the
initial matrix B0 is a positive definite modification of ∇2F (x0); or, B0 is set to the identity matrix, due to numerical
difficulties; (iii) w0 = max{|h(x0)|,0.01}. The µk values are generated with a formula similar to the one used in [4],
in order to guarantee a sequence of decreasing positive values. The main characteristics of the chosen engineering
problems are as follows. They all have bound and inequality constraints. These problems are fully described in the
below cited references.
(1) Design of a welded beam [7, 8, 9, 10, 11, 12]. In this problem, the cost of a welded beam is minimized, subject to

constraints on the shear stress, bending stress in the beam, buckling load on the bar, end deflection of the beam,
and side constraints. The problem has 4 design variables and 7 inequality constraints.

(2) Design of a heat exchanger [7, 9, 10]. This problem minimizes the sum of the heat transfer areas of three
exchangers, and has 8 design variables and 6 inequality constraints.

(3) Design of a speed reducer [10, 12]. The objective in this problem is to minimize the total weight of a speed
reducer, subject to constraints on bending stress of the gear teeth, surface stress, transverse deflections of the
shafts and stresses in the shafts. It has 7 design variables and 11 inequality constraints.

(4) Design of a tension/compression spring [8, 10, 11, 12]. This problem minimizes the weight of a ten-
sion/compression spring, subject to constraints on the minimum deflection, shear stress, surge frequency, limits
on outside diameter and on design variables. The problem has 3 design variables and 4 inequality constraints.

(5) Design of three-bar truss [12]. This problem minimizes the volume of a 3-bar truss structure, subject to stress
constraints. The problem has 2 design variables that represent cross-sectional areas of two bars (the third bar is
equal to the first bar), and 3 inequality constraints.

(6) Design of a tubular column [10]. The objective is to minimize the total cost of the material and construction of
a tubular column. The problem has 2 design variables and 2 inequality constraints.

(7) Design of a pressure vessel [8, 9, 11]. In this problem, the total cost of the material, forming and welding of a
cylindrical pressure vessel is minimized. The problem has 4 design variables and 4 inequality constraints.

The results reported in Table 1 include the number of iterations (Nit), the number of objective function evaluations
(N f e) and the solution found (F∗) with the tolerance 10−4 in the stopping criteria. These are similar to the ones in
[4], and are based on relative measures, using equations (3). The results Nit and N f e that are from stochastic methods
correspond to average values obtained over a pre-defined number of runs. The F∗ value is the best function value out
of the specified runs. The results of the first two rows correspond to the method herein proposed. The third and fourth
rows show the results obtained when the third component of the filter is based on the norm of the gradient of the
Lagrangian function (‖∇xL‖) of problem (2). The remaining rows list results obtained by other classes of methods.
In the table, "-" means unavailable information, and values marked with (+) correspond to the weight of the 3-bar
truss structure instead of the volume. Details concerning the methods whose results are reported in the table are as
follow: (a) stochastic population-based method, and best solution found over 50 runs with a population of 80 points;
(b) stochastic point-to-point search method, and best solution found over 30 runs (50 for beam problem); (c) stochastic
population-based method, and best solution found over 20 runs with a population of 20 points; (d) the algorithm stops
when change in F in consecutive iterations is less than 0.01%, and constraints are satisfied with a tolerance of 0.01%
of the initial values of the constraints; (e) stochastic population-based method, and best solution found over 100 runs
with a population of 20 points; (f) stochastic population-based method, and best solution found over 50 runs with a
population of 10n points (n is the number of variables); (g) stochastic population-based method, and best solution
found over 30 runs with a population of 100 points; (h) results reported in [10] from other deterministic methods. We
may conclude that our algorithm is effective in reaching the best solution known in the literature. It is a promising and
efficient strategy for solving engineering problems.



TABLE 1. Comparison with other classes of methods.
beam heat speed spring truss tubular vessel

φµ Nit/N f e 36/195 43/67 126/162 42/170 24/25 36/37 31/40
F∗ 2.38097 7049.25 2994.35 1.2665e-2 263.8958 26.53132 5885.33

‖∇xL‖ Nit/N f e 70/71 44/45 77/78 26/27 12/13 36/37 24/25
F∗ 2.38097 7049.25 2994.35 1.2665e-2 263.8958 26.53132 5885.33

[7] (a) Nit/N f e 4000/40080 4000/320080 - - - - -
F∗ 2.38119 7060.221 - - - - -

[8] (b) Nit/N f e - /56243 - - - /49531 - - - /108883
F∗ 2.38107 - - 1.26653e-2 - - 5868.77

[9] (c) Nit/N f e - /110000 - /150000 - - - - -
F∗ 2.38 7057.274 - - - - 7198.433

[10] (d) Nit/N f e 139/ - 1963/ - 302/ - 225/ - 75/ - 53/ - -
F∗ 2.0182 7288.8 3007.8 1.2650e-2 2.6507 (+) 25.5316 -

[11] (e) Nit/N f e 5000/ - - - 5000/ - - - 5000/ -
F∗ 1.76558 - - 1.2816e-2 - - 6154.70

[12] (f) Nit/N f e 1000/33095 - 1000/54456 1000/25167 1000/17610 - -
F∗ 2.38543 - 2994.74 1.2669e-2 263.8958 - -

[13] (g) Nit/N f e - /30000 - - /40000 - /24000 -/15000 - -
F∗ 2.380957 - 2994.499 1.26652e-2 263.8958 - -

(h) F∗ 2.386 7049 2985.2 1.2833e-2 2.6335 (+) 26.5323 6154.70

CONCLUSIONS AND FUTURE WORK

We presented an efficient interior point 3-D filter line search method for solving practical engineering design problems.
Each entry in the filter has three components measuring feasibility, centrality and optimality, being the latter based on
the barrier function value. Comparing with other deterministic and stochastic algorithms, our proposal is by far the
most efficient and effective. Other interesting and complex engineering problems, such as larger truss sizing and
configuration optimization problems will be addressed in the future.
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