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Abstract. The efficient control of electrical vehicles may contribute to
sustainable use of energy. In recent studies, a model has been analyzed
and several algorithms based on branch and bound have been presented.
In this work, we discuss a reformulated model on the control of an elec-
tric vehicle based on the minimization of the energy consumption during
an imposed displacement. We will show that similar results can be ob-
tained by applying standard software. Moreover, this paper shows that
the specified control problem can be handled from a dynamic program-
ming perspective.
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1 Introduction

Efficient use of energy for transportation is of utmost importance. Efficient con-
trol of electric vehicles may lead to a more sustainable world. The literature
on control of hybrid and electric vehicles has increased considerably over the
last decade [6, 10, 11, 14]. Literature on control typically focuses on continuous
control using theory on the use of the Hamiltonian and co-states.

A simplified electric vehicle energy consumption model is presented in [7] and
evaluated on standard driving cycles, whereas [15] presents a method to evalu-
ate the real driving energy consumptions of electric vehicles. A simple electric
vehicle energy consumption model that captures instantaneous braking energy
regeneration as a function of the vehicle deceleration level can be found in [3]. A
computationally efficient simulation model for estimating the energy consump-
tion of electric vehicles is developed in [4]. In [13], a general formulation of
energy-efficient driving of electric vehicles is presented, that covers several dis-
tinct scenarios and the most-adopted solution techniques.

In [8, 9], a model for the control of a trajectory of a completely electric
vehicle has been described. The final methodology suggested in those papers
is a branch and bound (B&B) approach. This approach is counter-intuitive, as
it does not make use of the dynamic characteristic of the problem. Similarly, a



Mixed Integer Nonlinear Programming (MINLP) approach has been investigated
in [12]. A more thorough mathematical analysis of the model can be found in [2].
As it does not feel that the problem has a multi-extremal character, the use of
branch and bound does not seem appropriate. Our research question is whether
standard software of implemented nonlinear optimization routines can reach a
similar result.

To investigate the question, we first rewrite the model as an optimization
problem in Section 2. From there we will investigate two possible approaches.
A nonlinear optimization approach on a continuous relaxation of the problem
in Section 3 and a state variable trajectory optimization as suggested in [9] is
investigated in Section 4. Section 5 discusses a dynamic programming approach
of the problem. Section 6 summarizes our findings.

2 Model

In the literature around this topic, the model to be studied is encapsulated in the
convention of technical literature where subscripts are used for as well indices
as indicators and small caps and capitals are mixed with greek letters. From the
context, we first distinguish the technical data from the state and control vari-
ables. Therefore, we apply a notation following the convention of mathematical
programming trying to distinguish between parameters and variables. Moreover,
for the dynamics of the model, we will apply difference equations rather than
differential equations based on a step size of δ seconds.

Indices
t Moment in time with δ second slots, t = 0, . . . , T

Parameters
H Final control horizon in seconds
δ Time discretization slot, e.g. δ = 0.001 s.
T Number of periods (slots) in the horizon T = H

δ
P Target position to be reached in control horizon
R Radius of the wheels, R = 0.33 m.
B Resistance of the battery, B = 0.05 Ohm
S Voltage of power supply, S = 150 volts
Tr Transmission coefficient motor to wheels, Tr = 10
C Resistance depending on air density, surface car and aerodynamics, C = 0.517 Newtons
L Inductance rotor, L = 0.05 Henry
I Inductor resistance, I = 0.03 Ohm
Q Coefficient motor torque, Q = 0.27 Nm/A (Newton-Metres per Ampere)
M Mass vehicle, M = 250 kg
G Gravity constant, G = 9.81 m/s2

F Friction coefficient of the wheels, F = 0.03



Variables
it ∈ [−150, 150] Induction (current) of the engine
ωt Angular velocity in radians per second. So velocity st = R

Trωt meter per second
pt ∈ [0, P ] Position of the vehicle at time t
ut ∈ {−1, 1} Control, switch.

The control is of interest. One can switch very frequently, so one of the
approaches is to consider a relaxation where ut ∈ [−1, 1]. However, the most
important in our approach is that we limit the real value of the current in
simulating the dynamic system such that we keep the current it ∈ [−150, 150].

The objective is given by the energy consumption E in Joules

E = δ

T−1∑
t=0

(S · ut · it +B · u2t · i2t ). (1)

The dynamics is given by difference equations taking the time step size δ into
account.The position of the vehicle at time t is given by

pt = pt−1 + δst (2)

and the induction of the engine at time t is modelled as

it = it−1 + δ
Sut − Iit−1 −Qωt−1

L
. (3)

The dynamics of the angular velocity at time t is given by

ωt = ωt−1 + δ
Tr

R

(
QTr

RM
it−1 −GF −

C

M
v2t−1

)
. (4)

Based on this model, we can build a simulation program, which evaluates the
energy consumption of a certain control rule to determine ut. To keep the induc-
tion into boundaries, one can limit the actual control using bounds. Rewriting
(3) and limiting it ∈ [−150, 150] one can determine the limit parameter

∆t =
150L+ (δI − L)it−1 + δQωt−1

δS

and limit the values of the control to

ut ∈ min{−1, sgn(∆t) min{|∆t|, 1},max{1, sgn(∆t) min{|∆t|, 1}

with sgn(x) being the sign of real number x. This means we can send a larger
control to the engine, but the reaction is limited such that the induction is not
too high in absolute value preventing the engine to be destroyed.



3 Nonlinear Optimization on Continuous Control

Our first approach discretizes the horizon H in a finite number of n < T control
slots with a global control continuous variable vk, k = 1, . . . , n such that ut = vk
if moment t falls into control slot k. In this way, we can apply simulation based
optimization, where the optimizing routine sends trials of vector v = (v1, . . . , vn)
and the simulation program returns the energy E(v) and the deviation from the
target g(v) = P − pT . Following the convention of mathematical programming,
the constraint is written as g(v) ≤ 0, so the function g tells us how far we are
off target.
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Fig. 1. Energy contours of E(v1, v2) and the location constraint g(v1, v2) ≤ 0 in red
when optimizing over two slots. Using less energy in the left-down direction and feasible
area in the right upper corner; the star gives the optimum found by NLP.

Figure 1 provides a picture of the optimization problem considering only n =
2 slots. The contours of the total energy used E(v) are given and the restric-
tion on reaching the target position of P = 100 meters is depicted in red. The
functions expose a smooth behavior despite the evaluation is based on a finite
step size simulation model. The value of the time step (time discretization slot)
used in the simulation is δ = 0.001 and the time horizon is H = 10 seconds. The
optimum is determined running the fmincon routine in Matlab version 2016b.
The best point found is indicated for the two dimensional example. Of course,
using only two slots is not energy friendly although the final target is reached.



In the end the energy consumption reaches 31,589 Joules and the final speed is
more than 10 meters per second.

  

  

  
 

  

Fig. 2. Simulation result after optimizing v (result in bar graph) over 10 slots. The
graphs give the development in time up to the horizon of the control u, speed s, position
p, energy use and actual current i.

The optimum solution can be used as starting value for finding the optimum
trajectory when using more slots. Actually, we run the optimization for n =
5, 10, 20 control slots which reduces the energy use E(v) to 24,094, 19,476 and
19,322 Joules respectively.

Figure 2 shows the result for n = 10 control slots. The optimum trajectory
is found within 13 seconds using as starting value the optimum from the n = 2



case and the resulting control vector v can be observed in the bar-graph at the
right down corner. As said, the energy consumption went down to 19,476 Joules.
One can observe that the internal control u follows the external control v most
of the time apart from the first slot where the accelerator is pressed completely.
The vehicle after first accelerating regenerates energy by using the engine brake
with a negative induction reaching a final speed of 3 meters per second.

4 Optimizing the Reference Current as State Variable

  

  
 

 

  
Fig. 3. Simulating current reference vector r = (145, 90, 34,−10,−115) of 5 control
slots during 10 seconds with time steps of δ = 0.0001 second.

A second way to consider the control problem in [9] is to include an internal
regulator that tries to keep the value of the induction i close to a reference
value r. This means if we follow a similar procedure of defining a number of
n control slots, the procedure sets reference values r1, . . . , rn and the regulator
tries to stay close to that. In [9] they suggest apply a threshold value ε and use



as regulator

ut =

1 if it−1 < rt − ε
−1 if it−1 > rt + ε
ut−1 else

 . (5)

For the illustration, we built a simulator including regulator (5). We were not able
to obtain exactly the same values as [9], but feeding the program with the n = 5
slot reference value r = (145, 90, 34,−10,−115) reaches the 100 meter with an
energy consumption of 22,039 Joules. The resulting speed, energy consumption
and position are sketched in Figure 3. One can observe the current fluctuating
around the reference values r1, . . . , rn due to regulator (5).

100 105 110 115 120 125 130 135 140 145 150

r
1

-80

-75

-70

-65

-60

-55

-50

-45

-40

-35

-30

r 2

Fig. 4. Energy contours of E(r1, r2) and location constraint g(r1, r2) ≤ 0 in red op-
timizing over two slots. The star gives the “optimum” found by a genetic algorithm.
Less energy use in the left-down direction and feasible area in the right upper corner.

Optimizing the reference values for a finite number of slots becomes a chal-
lenge. Considering a continuous optimization approach for n = 2 slots pro-
vides us the energy contours in Figure 4. At the left of the figure, the contours
seem smooth, but at the right we observe strange behaviour. This phenomenon
has been described in [5] and is due to simulation based optimization where
if..then..else structures are included. This means that changing one coordi-
nate of a coordinate rk of reference value vector r a small step, does not change
the control behaviour and the simulation returns more or less the same value for



the energy used and position, i.e. the simulation does not change. We focus on
this phenomenon by changing in the n = 5 dimensional reference vector r only
the value of r3 observing the development of the energy consumption E(r) and
the deviation g(r) = P − pT from the target of P = 100 meters in Figure 5.
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Fig. 5. Simulated energy use E(r) in blue and deviation g(r) = P −pT in orange using
regulator (5) as function of reference current r3 of slot 3 keeping the other reference
values constant.

One can observe that the objective E(r) and constraint function g(r) are
typically non-continuous. This means that software on nonlinear optimization
including pattern search methods have a difficulty to find the optimum. [5] also
provide a smoothing method to make the function continuous, although compu-
tationally this may lead to bad conditioned problems with high and low deriva-
tives. [9] discretized the n dimensional search space and looked for methods to
reduce (bound) the feasible area. Such a method is highly non-attractive, as the
number of combinations to consider increases exponentially with the number of
slots n.

Although the problem from a smoothed view does not have local non-global
optima, one can run population based algorithms. The optimization toolbox of
Matlab has several variants of genetic algorithms and particle swarm algorithms
available. As the optimum is also relatively flat in terms of objective and con-
straint (see Figure 4), in our experience, the algorithms take a lot of time (hours)



to get close to the optimum. For dimension n = 2 both standard algorithms take
minutes. Moreover, the best point found as depicted in Figure 4, seems far off
of the optimum in the space of the reference value.

We have seen so far, that a continuous relaxation of the control can be han-
dled by standard software even when the number of control slots grows. For
the second method, where one optimizes reference values of the induction, the
discrete control rule for u turns the problem in a non-continuous optimization
problem creating a hard to optimize problem. However, if we are able to create
a method that is linear in the slots, perhaps the optimization can be handled in
reasonable time.

5 A DP Procedure to Derive an Optimal Control Rule

In their findings, [9] report that for this system, the change in reference value
rk−rk−1 does not influence the search for the best solution. This finding creates
the possibility to consider dynamic programming with only two state variables,
i.e. the speed sk and position pk at the beginning of a control slot. Enumerating
the possibilities for the induction reference value rk over a discrete grid leads
to a procedure which is linear in the number of control slots. We will illustrate
that.

The dynamic programming procedure determines in fact the optimal trajec-
tories for a complete grid of state values (k, s, p), i.e. the slot number, speed and
current position. In fact, the procedure also provides an answer to the control
when we deviate from the optimal trajectory. Following the DP principle of Bell-
man [1] for a finite horizon dynamic system we can build a valuation of the state
space according to the relation

Vk−1(s, p) = minr[E(r, s, p,
H

n
) + Vk(Φ(r, s, p,

H

n
))], (6)

where in our system we should define E(r, s, p, τ) as the energy use when using
reference value r from starting position s and p during a period of τ seconds.
Similarly, function Φ(r, s, p, τ) : R4 → R2 describes the transition function pro-
viding the state (speed and position) we arrive at using the same arguments
(r, s, p) during τ seconds.

If one is able to compute the so-called value function V for all possible state
values, one can also retrieve the optimal control value for the reference induction
rk(s, p) from any state according to

rk(s, p) = argminr[E(r, s, p,
H

n
) + Vk(Φ(r, s, p,

H

n
))]. (7)

In theory, starting from r1(0, 0) we can find the optimal trajectory for the refer-
ence control r following (7). For a practical implementation, we have to define a
grid in the state space (s, p) for each control slot k and follow the recursion (6).
One of the challenges to get this working is that the transformation (motion)
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In march we get the following dp result using n=10 control slots 

energy =   26,841 

position = 107.17 
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Fig. 6. Simulation result from DP reference induction values.

function Φ will not take us to another grid point, such that interpolation or ex-
trapolation is required. Another challenge is that in fact, we are only interested
in those state values where we can still reach the target distance P . This can be
formalised by identifying those values (s, p) at the beginning of control slot k for
which

Φ2(150, s, p,
n− k
n

H) ≥ P, (8)

i.e. a maximum reference current r = 150 from the current speed s and position
p can still lead us to the target P (second element of Φ) given the rest of the time
left. The state space can be bound on that providing lower and upper bounds
[sk, sk] and [p

k
, pk]. Basically, we cannot avoid infeasible combinations, as (8)

is in fact a two-dimensional surface. However, maximum values (sk, pk) can be
generated by providing the maximum reference induction r = 150 from the start,
i.e.

(sk, pk) = Φ(150, 0, 0,
k

n
H). (9)

In the implementation we used a grid of 15 equally distributed points over
the ranges [sk, sk] and [p

k
, pk] for each control slot k. For the control variable rk

we used a grid of 151 points within [−150, 150], such that the mesh size between
two trials is 1, as suggested in [9], i.e. rk has an integer value. Notice that for



the evaluation of values for r, we can also find lower bounds rk(s, p) using the
monotonicity in the reference value r of the transition function Φ. For this, we
run the possibilities from high to low and create a while construction such that
as soon as a reference value provides infeasible positions, we reached a minimum
reference value rk(s, p) for the corresponding grid point.

We implemented the procedure in Matlab 2016b and run the dynamic pro-
gramming recursion for n = 20 control slots. The computational time was 4
minutes and 11 seconds to reach a grid rk(s, p) of 20× 152 control values. Start-
ing from initial state (s, p) = (0, 0), a simulation was run for the 20 control slots
using small time steps of δ = 0.0001. The result can be observed in Figure 6
in terms of energy use, speed, induction and position. The final energy use is
estimated on 26,299 Joules and strange enough the reference trajectory reaches
a position of 105.7 meter.

It may be clear that in contrast to the suggested enumeration and bounding
method in [9], the computation is not exponential but linear in the number of
time slots n. However, the final implementation requires further fine-tuning to
reach a more exact target value.

6 Conclusions

This paper reformulated a model in literature on the control of an electric vehicle
as and optimization problem. Relaxing the integrality of the control, provides an
optimization problem which can be handled by standard nonlinear optimization
software following an optimization-simulation approach. The optimization of ref-
erence values for one of the state variables (induction) provides a non-continuous
optimization problem where bounding can be used to reduce the effect of the
exponential enumeration in number of control slots. We have shown that the
same control vision can be handled by a dynamic programming approach. The
challenge for that method is to deal with the feasibility of candidate solutions.
However, the computational time is linear in the number of time slots.
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