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Abstract This survey on stationary and evolutionary problems with gradient con-
straints is based on developments of monotonicity and compactness methods ap-
plied to large classes of scalar and vectorial solutions to variational and quasi-
variational inequalities. Motivated by models for critical state problems and appli-
cations to free boundary problems in Mechanics and in Physics, in this work several
known properties are collected and presented and a few novel results and examples
are found.
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1 Introduction

The mathematical analysis of the unilateral problems were initiated in 1964 simul-
taneously by Fichera, to solve the Signorini problem in elastostatics [35], and by
Stampacchia [86], as an extension of the Lax-Milgram lemma with application to
the obstacle problem for elliptic equations of second order. The evolution version,
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coining the expression variational inequalities and introducing weak solutions, was
first treated in the pioneer paper of 1966 of Lions and Stampacchia [61], immedi-
ately followed by many others, including the extension to pseudo-monotone opera-
tors by Brézis in 1968 [17] (see also [58], [9], [52] or [85]). The importance of the
new concept was soon confirmed by its versatility of their numerical approximations
and in the first applications to optimal control of distributed systems in 1966-1968
by Lions and co-workers [57] and to solve many problems involving inequalities in
Mechanics and Physics, by Duvaut and Lions in their book of 1972 [31], as well as
several free boundary problems which can be formulated as obstacle type problems
(see the books [9], [52], [36] or [74]).

Quasi-variational inequalities are a natural extension of the variational inequali-
ties when the convex sets where the solutions are to be found depend on the solu-
tions themselves. They were introduced by Bensoussan and Lions in 1973 to solve
impulse control problems [16] and were developed, in particular, for certain free
boundary problems, as the dam problem by Baiocchi in 1974 (see, for instance [9]
and its references), as implicit unilateral problems of obstacle type, stationary or
evolutionary [62], in which the constraints are only on the solutions.

While variational inequalities with gradient constraints appeared already to for-
mulate the elastic-plastic torsion problem with an arbitrary cross section in the
works of Lanchon, Duvaut and Ting around 1967 (see [31] or [74], for refer-
ences), the first physical problem with gradient constraints formulated with quasi-
variational inequalities of evolution type were proposed for the sandpile growth in
1986 by Prighozhin, in [69] (see also [70]). However, only ten years later the first
mathematical results appeared, first for variational inequalities, see [71] and the in-
dependent work [5], together with a similar one for the magnetisation of type-II
superconductors [72]. This last model has motivated a first existence result for the
elliptic quasi-variational inequality in [56], which included other applications in
elastoplasticity and in electrostatics, and was extended to the parabolic framework
for the p-Laplacian with an implicit gradient constraint in [77]. This result was later
extended to quasi-variational solutions for first order quasilinear equations in [78],
always in the scalar cases, and extended recently to a more general framework in
[66]. The quasi-variational approach to the sand pile and the superconductors prob-
lems, with extensions to the simulation of lakes and rivers, have been successfully
developed also with numerical approximations (see [73], [10], [11], [13], [14], for
instance).

Although the literature on elliptic variational inequalities with gradient con-
straints is large and rich, including the issue of the regularity of the solution and
their relations with the obstacle problem, it is out of the scope of this work to make
its survey. Recent developments on stationary quasi-variational inequalities can be
found in [47], [64], [50], [40], [6], [34], [55], [4] and the survey [53].

With respect to evolutionary quasi-variational problems with gradient constraint,
on one hand, Kenmochi and co-workers, in [49], [38], [51], [53] and [54], have ob-
tained interesting results by using variational evolution inclusions in Hilbert spaces
with sub-differentials with a non-local dependence on parameters, and on the other
hand, Hintermüller and Rautenberg in [41], using the pseudo-monotonicity and the
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C 0-semigroup approach of Brézis-Lions, in [42], using contractive iteration argu-
ments that yield uniqueness results and numerical approximations in interesting but
special situations, and in [43], by time semi-discretisation of a monotone in time
problem, have developed interesting numerical schemes that show the potential of
the quasi-variational method. Other recent results on evolutionary quasi-variational
inequalities can be also found in [51] and [54], both in more abstract frameworks
and oriented to unilateral type problems and, therefore, with limited interest to con-
straints on the derivatives of the solutions.

This work is divided into two parts on stationary and evolutionary problems,
respectively. The first one, after introducing the general framework of partial differ-
ential operators of p-Laplacian type and the respective functional spaces, exposes
a brief introduction to the well-posedness of elliptic variational inequalities, with
precise estimates and the use of the Mosco convergence of convex sets. Next sec-
tion surveys old and recent results on the Lagrange multiplier problem associated
with the gradient constraint, as well as its relation with the double obstacle problem
and the complementarity problem. The existence of solutions to stationary quasi-
variational inequalities is presented in the two following sections, one by using a
compactness argument and the Leray-Schauder principle, extending [56], and the
other one, for a class of Lipschitz nonlocal nonlinearity, by the Banach fixed point
applied to the contractive property of the variational solution map in the case of
smallness of data, following an idea of [40]. The first part is completed with three
physical problems: a nonlinear Maxwell quasi-variational inequality motivated by
a superconductivity model; a thermo-elastic system for a locking material in equi-
librium and an ionisation problem in electrostatics. The last two problems, although
variants of examples of [56], are new.

The second part treats evolutionary problems, of parabolic, hyperbolic and de-
generate type. The first section treats weak and strong solutions of variational in-
equalities with time dependent convex sets, following [66] and giving explicit es-
timates on the continuous dependence results. The next two sections are, respec-
tively, dedicated to the scalar problems with gradient constraint, relating the orig-
inal works [83] and [84] to the more recent inequality for the transport equation
of [79] for the variational case, and to the scalar quasi-variational strong solutions
presenting a synthesis of [77] with [78] and an extension to the linear first order
problem as a new corollary. The following section, based on [66], briefly describes
the regularisation penalisation method to obtain the existence of weak solutions by
compactness and monotonicity. The next section also develops the method of [42]
in two concrete functional settings with nonlocal Lipschitz nonlinearities to obtain,
under certain explicit conditions, novel results on the existence and uniqueness of
strong (and weak) solutions of evolutionary quasi-variational inequalities. Finally,
the last section presents also three physical problems with old and new observations,
as applications of the previous results, namely on the dynamics of the sandpile of
granular material, where conditions for the finite time stabilisation are described,
on an evolutionary superconductivity model, in which the threshold is temperature
dependent, and a variant of the Stokes flow for a thick fluid, for which it is possible
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to explicit conditions for the existence and uniqueness of a strong quasi-variational
solution.

2 Stationary problems

2.1 A general p-framework

Let Ω be a bounded open subset of Rd , with a Lipschitz boundary, d ≥ 2. We rep-
resent a real vector function by a bold symbol uuu = (u1, . . . ,um) and we denote the
partial derivative of ui with respect to x j by ∂x j ui. Given real numbers a,b, we set
a∨b = max{a,b}.

For 1 < p < ∞, let L be a linear differential operator of order one in the form

L : VVV p→ Lp(Ω)` such that (Luuu)i =
d

∑
j=1

m

∑
k=1

αi jk∂x j uk, (2.1)

where αi jk ∈ L∞(Ω), i = 1, . . . , `, j = 1, . . . ,d, k = 1, . . . ,m, with `,m ∈ N, and

VVV p =
{

uuu ∈ Lp(Ω)m : Luuu ∈ Lp(Ω)`
}

is endowed with the graph norm.
We consider a Banach subspace Xp verifying

D(Ω)m ⊂ Xp ⊂W 1,p(Ω)m ⊂VVV p (2.2)

where
‖www‖Xp = ‖Lwww‖Lp(Ω)` (2.3)

is a norm in Xp equivalent to the one induced from VVV p. In order that (2.3) holds, we
suppose there exists cp > 0 such that

‖www‖Lp(Ω)m ≤ cp‖Lwww‖Lp(Ω)` ∀www ∈VVV p. (2.4)

To fix ideas, here the framework (2.1) for the operator L can be regarded as any
one of the following cases:

Example 2.1
Lu = ∇u (gradient of u), m = 1, `= d;
Luuu = ∇×uuu (curl of uuu), m = `= d = 3;
Luuu = Duuu = 1

2 (∇uuu+∇uuuT ) (symmetrised gradient of uuu), m = d and `= d2.

When Lu = ∇u, we consider

Xp =W 1,p
0 (Ω) and ‖u‖Xp = ‖∇u‖Lp(Ω)d
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is equivalent to the VVV p =W 1,p(Ω) norm, by Poincaré inequality.
In the case Luuu = ∇× uuu, for a simply connected domain Ω , the vector space Xp

may be

Xp =
{

www ∈ Lp(Ω)3 : ∇×www ∈ Lp(Ω)3, ∇ ·www = 0, www ·nnn|∂Ω
= 0
}
, (2.5)

or

Xp =
{

www ∈ Lp(Ω)3 : ∇×www ∈ Lp(Ω)3, ∇ ·www = 0, www×nnn|∂Ω
= 000
}
, (2.6)

corresponding to different boundary conditions, where ∇ ·www means the divergence
of www. Both spaces are closed subspaces of W 1,p(Ω)3 and a Poincaré type inequality
is satisfied in Xp (for details see [2]).

When Luuu = Duuu, we may have

Xp =W 1,p
0 (Ω)d or Xp =W 1,p

0,σ (Ω)d =
{

www ∈W 1,p
0 (Ω)d : ∇ ·www = 0

}
and ‖Dwww‖

Lp(Ω)d2 is equivalent to the norm induced from W 1,p(Ω)d by Poincaré and
Korn’s inequalities.

Given ν > 0, we introduce

L∞
ν (Ω) =

{
w ∈ L∞(Ω) : w≥ ν

}
. (2.7)

For G : Xp→ L∞
ν (Ω), we define the nonempty closed convex set

KG[uuu] =
{

www ∈ Xp : |Lwww| ≤ G[uuu]
}
, (2.8)

where | · | is the Euclidean norm in R` and we denote, for www ∈VVV p,

Łpuuu = |Lwww|p−2Lwww. (2.9)

We may associate with Łp a strongly monotone operator, and there exist positive
constants dp such that for all www1,www2 ∈VVV p∫

Ω

(
Łpwww1−Łpwww2

)
·L(www1−www2)

≥


dp

∫
Ω

|L(www1−www2)|p if p≥ 2,

dp

∫
Ω

(
|Lwww1|+ |Lwww2|

)p−2|L(www1−www2)|2 if 1≤ p < 2.
(2.10)

For 1< p<∞ and fff ∈ L1(Ω)m, we shall consider the quasi-variational inequality

uuu ∈KG[uuu] :
∫

Ω

Łpuuu ·L(www−uuu)≥
∫

Ω

fff · (www−uuu) ∀www ∈KG[uuu]. (2.11)
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2.2 Well-posedness of the variational inequality

For g ∈ L∞
ν (Ω), it is well-know that the variational inequality, which is obtained by

taking G[uuu]≡ g in (2.8) and in (2.11),

uuu ∈Kg :
∫

Ω

Łpuuu ·L(www−uuu)≥
∫

Ω

fff · (www−uuu) ∀www ∈Kg, (2.12)

has a unique solution (see, for instance, [58] or [52]). The solution is, in fact, Hölder
continuous on Ω by recalling the (compact) Sobolev imbeddings

W 1,p(Ω) ↪→


Lq(Ω) for 1≤ q < d p

d−p if p < d,

Lr(Ω) for 1≤ r < ∞ if p = d,

C 0,α(Ω) for 0≤ α < 1− d
p if p > d.

(2.13)

Indeed, in the three examples above we have, for any p > d and 0≤ α < 1− d
p ,

Kg ⊂W 1,p(Ω)m ⊂ C 0,α(Ω)m. (2.14)

We note that, even if Luuu is bounded in Ω , in general, this does not imply that the
solution uuu of (2.12) is Lipschitz continuous. However, this holds, for instance, not
only in the scalar case L= ∇, but, more generally if in (2.1) m = 1 and αi j = ηiδi j
with ηi ∈ L∞

ν (Ω), i = 1, . . . ,d and δi j the Kronecker symbol.
We present now two continuous dependence results on the data. In particular,

when (2.14) holds, any solution to (2.12) or (2.11) is a priori continuously bounded
and therefore we could take not only fff ∈ L1(Ω)m but also fff in the space of Radon
measures.

Theorem 1. Under the framework (2.1), (2.2) and (2.3) let fff 1 and fff 2 belong to
L1(Ω)m and g ∈ L∞

ν (Ω). Denote by uuui, i = 1,2, the solutions of the variational
inequality (2.12) with data ( fff i,g). Then

‖uuu1−uuu2‖Xp ≤C‖ fff 1− fff 2‖
1

p∨2
L1(Ω)m , (2.15)

being C a positive constant depending on p, Ω and ‖g‖L∞(Ω).

Proof. We use uuu2 as test function in the variational inequality (2.12) for uuu1 and
reciprocally, obtaining, after summation,∫

Ω

(
Łpuuu1−Łpuuu2

)
·L(uuu1−uuu2)≤

∫
Ω

( fff 1− fff 2) · (uuu1−uuu2).

For p≥ 2, using (2.10), since uuui ∈ L∞(Ω)m, we have

‖uuu1−uuu2‖Xp ≤C‖ fff 1− fff 2‖
1
p

L1(Ω)m .
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If 1≤ p < 2, using (2.10) and |Luuui| ≤M, where M = ‖g‖L∞(Ω), we have first

dp
(
2M
)p−2

∫
Ω

|L(uuu1−uuu2)|2 ≤
∫

Ω

( fff 1− fff 2) · (uuu1−uuu2)

and then, with ωp = |Ω |
2−p
2p ,

‖uuu1−uuu2‖Xp ≤ ωp‖uuu1−uuu2‖X2 ≤C| fff 1− fff 2‖
1
2
L1(Ω)m ,

concluding the proof.

Remark 1. Since |Luuui| ≤ M we can always extend (2.15) for any r > d, obtaining
for some positive constants Cα > 0,Cr > 0 and α = 1− d

r > 0,

‖uuu1−uuu2‖C α (Ω)m ≤Cα‖uuu1−uuu2‖Xr ≤Cr‖ fff 1− fff 2‖
1
r
L1(Ω)m .

Indeed, it is sufficient to use the Sobolev imbedding and to observe that, for r > p,∫
Ω

|L(uuu1−uuu2)|r ≤ (2M)r−p
∫

Ω

|L(uuu1−uuu2)|p.

Theorem 2. Under the framework (2.1), (2.2) and (2.3) let fff ∈ L1(Ω)m and g1,g2 ∈
L∞

ν (Ω). Denote by uuui, i = 1,2, the solutions of the variational inequality (2.12) with
data ( fff ,gi). Then

‖uuu1−uuu2‖Xp ≤Cν‖g1−g2‖
1

p∨2
L∞(Ω)

. (2.16)

Proof. Calling β = ‖g1−g2‖L∞(Ω), then for i, j ∈ {1,2}, i 6= j, and

uuui j =
ν

ν +β
uuui ∈Kg j ,

uuui j can be used as test function in the variational inequality (2.12) satisfied by uuu j,
obtaining∫

Ω

(
Łpuuu1−Łpuuu2

)
·L(uuu1−uuu2)≤

∫
Ω

Łpuuu1 ·L(uuu21 −uuu2)

+
∫

Ω

Łpuuu2 ·L(uuu12 −uuu1)+
∫

Ω

f
(
(uuu1−uuu12)+(uuu2−uuu21)

)
.

But

|uuui−uuui j |+ |L(uuui−uuui j)|=
β

ν +β

(
|ui|+Luuui|

)
≤ 2M

ν
β ,

where M = max
i=1,2
{‖gi‖L∞(Ω),‖uuui‖L∞(Ω)m}, since uuui ∈Kgi ⊂ L∞(Ω)m, and the conclu-

sion follows.

We can also consider a degenerate case, by letting δ → 0 in
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uuuδ ∈Kg : δ

∫
Ω

Łpuuuδ ·L(www−uuuδ )≥
∫

Ω

fff · (www−uuuδ ) ∀vvv ∈Kg. (2.17)

Indeed, since ‖Luuuδ‖L∞(Ω) ≤M, where M = ‖g‖L∞(Ω), independently of 0 < δ ≤ 1,
we can extract a subsequence

uuuδ −⇀
δ→0

uuu0 in Xp-weak

for some uuu0 ∈Kg. Then, we can pass to the limit in (2.17) and we may state:

Theorem 3. Under the framework (2.1), (2.2) and (2.3), for any fff ∈ L1(Ω)m, there
exists at least a solution uuu0 to the problem

uuu ∈Kg : 0≥
∫

Ω

fff · (www−uuu) ∀www ∈Kg. (2.18)

In general, the strict positivity condition on the threshold g = g(x), which is
included in (2.7), is necessary in many interesting results, as the continuous depen-
dence result (2.16), which can also be obtained in a weaker form by using the Mosco
convergence and observing that, for gn ≥ ν > 0,

Kgn
M−→
n

Kg is implied by gn −→
n

g in L∞(Ω).

We recall that Kgn
M−→
n

Kg iff i) for any sequences Kgn 3 wn −⇀
n

w in Xp-weak,
then w ∈Kg and ii) for any w ∈Kg there exists wn ∈Kgn such that wn −→

n
w in Xp.

However, the particular structure of the scalar case L=∇ in Xp = W 1,p
0 (Ω), i.e.,

with Łpv = ∇p v = |∇v|p−2∇v and a Mosco convergence result of [7] allows us to
extend the continuous dependence of the solutions of the variational inequality with
nonnegative continuous gradient constraints, as an interesting result of Mosco type
(see [67]). Note that in the following result the gn may vanish in some region, but
the technique of proof in [7] requires a more regular boundary, restriction that would
be interesting to remove.

Theorem 4. Let Ω be an open domain with a C 2 boundary, L= ∇, f ∈ Lp′(Ω) and
g∞,gn ∈ C (Ω), with gn ≥ 0 for n ∈ N and n = ∞. If un denotes the unique solution
to

un ∈Kgn :
∫

Ω

∇p un ·∇(w−un)≥
∫

Ω

f · (w−un) ∀ w ∈Kgn (2.19)

then, as n→ ∞, gn −→
n

g∞ in C (Ω) implies un −→
n

u∞ in W 1,p
0 (Ω).

Proof. By Theorem 3.12 of [7], we have Kgn
M−→
n

Kg∞
. Since |∇un| ≤ gn in Ω , we

have ‖un‖W 1,p
0 (Ω)

≤C|Ω |
1
p ‖gn‖C (Ω)≤M independently of n and, therefore, we may

take a subsequence un −⇀
n

u∗ in W 1,p
0 (Ω). Then u∗ ∈Kg∞

. For any w∞ ∈Kg∞
, take
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wn ∈Kgn with wn −→
n

w∞ in W 1,p
0 (Ω) and, using Minty’s Lemma and letting n→∞

in ∫
Ω

∇p wn ·∇(wn−un)≥
∫

Ω

f (wn−un),

we conclude that u∗ = u∞ is the unique solution of (2.19) for n = ∞. The strong
convergence follows easily, by choosing vn −→

n
u∞ with vn ∈Kgn , from

∫
Ω

|∇(un−u∞)|p≤
∫

Ω

f (un−vn)+
∫

Ω

∇p un ·∇(vn−u∞)−
∫

Ω

∇p u∞ ·∇(un−u∞)→
n

0.

2.3 Lagrange multipliers

In the special case p = 2, Ł2 = L, consider the variational inequality (δ > 0)

uuuδ ∈Kg : δ

∫
Ω

Luuuδ ·L(www−uuuδ )≥
∫

Ω

fff · (www−uuuδ ) ∀www ∈Kg (2.20)

and the related Lagrange multiplier problem, which is equivalent to the problem of
finding (λ δ ,uuuδ ) ∈

(
L∞(QT )

m
)′×X∞ such that

〈λ δ Luuuδ ,Lϕϕϕ〉(L∞(Ω)m)′×L∞(Ω)m =
∫

Ω

fff ·ϕϕϕ ∀ϕϕϕ ∈ X∞, (2.21a)

|Luuuδ | ≤ g a.e. in Ω , λ
δ ≥ δ , (λ δ −δ )(|Luuuδ |−g) = 0 in

(
L∞(Ω)m)′,

(2.21b)
where we set X∞ =

{
ϕϕϕ ∈ L2(Ω)m : Lϕϕϕ ∈ L∞(Ω)`

}
and define

〈λααα,βββ 〉(L∞(Ω)m)′×L∞(Ω)m = 〈λ ,ααα ·βββ 〉L∞(Ω)′×L∞(Ω) ∀λ ∈L∞(Ω)′ ∀ααα,βββ ∈L∞(Ω)m.

In fact, arguing as in [8, Theorem 1.3], which corresponds only to the particular
scalar case L = ∇, we can prove the following theorem:

Theorem 5. Suppose that Ω is a bounded open subset of Rd with Lipschitz bound-
ary and the assumptions (2.1) and (2.2) are satisfied with p = 2. Given fff ∈ L2(Ω)m

and g ∈ L∞
ν (Ω),

1. if δ > 0, problem (2.21) has a solution

(λ δ ,uδ ) ∈ L∞(Ω)′×X∞;

2. at least for a subsequence (λ δ ,uδ ) of solutions of problem (2.21), we have

λ
δ −⇀

δ→0
λ

0 in L∞(Ω)′, uδ −⇀
δ→0

u0 in X∞.

In addition, uuuδ also solves (2.20) for each δ ≥ 0 and (λ 0,u0) solves problem
(2.21) for δ = 0.
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We observe that the last condition in (2.21) on the Lagrange multiplier λ δ corre-
sponds, in the case of integrable functions, to say that a.e. in Ω

λ
δ ∈Kδ (|Luuuδ |−g) (2.22)

where, for δ ≥ 0, K δ is the family of maximal monotone graphs given by Kδ (s) =
δ if s < 0 and Kδ (s) = [δ ,∞[ if s = 0. In general, further properties for λ δ are
unknown except in the scalar case with L = ∇.

The model of the elastic-plastic torsion problem corresponds to the variational
inequality with gradient constraint (2.20) with δ = 1, p = 2 = d, L= ∇, g ≡ 1 and
fff = β , a positive constant. In [18], Brézis proved the equivalence of this variational
inequality with the Lagrange multiplier problem (2.21) with these data and assuming
Ω simply connected, showing also that λ ∈ L∞(Ω) is unique and even continuous
in the case of Ω convex. This result was extended to multiply connected domains
by Gerhardt in [39]. Still for g ≡ 1, Chiadò Piat and Percival extended the result
for more general operators in [26], being f ∈ Lr(Ω),r > d ≥ 2, proving that λ is
a Radon measure but leaving open the uniqueness. Keeping g ≡ 1 but assuming
δ = 0, problem (2.21) is the Monge-Kantorovich mass transfer problem (see [33]
for details) and the convergence δ → 0 in the theorem above links this problem to
the limit of Lagrange multipliers for elastic-plastic torsion problems with coercive
constant δ > 0. In [29], for the case δ = 0, assuming Ω convex and f ∈ Lq(Ω),
2 ≤ q ≤ ∞ with

∫
Ω

f = 0, Pascale, Evans and Pratelli proved the existence of λ 0 ∈
Lq(Ω) solving (2.21). In [6], for Ω any bounded Lipschitz domain, it was proved
the existence of solution (λ ,u) ∈ L∞(Ω)′×W 1,∞

0 (Ω) of the problem (2.21), with
δ = 1, f ∈ L2(Ω), g ∈W 2,∞(Ω) and in [8] this result was extended for δ ≥ 0, with
f ∈ L∞(Ω) and g only in L∞(Ω), as it is stated in the theorem above, but for L= ∇.
Besides, when g ∈ C 2(Ω) and ∆g2 ≤ 0, in [8] it is also shown that λ δ ∈ Lq(Ω), for
any 1≤ q < ∞ and δ ≥ 0.

Problem (2.21) is also related to the equilibrium of the table sandpiles problem
(see [71], [24], [30]) and other problems in the Monge-Kantorovich theory (see [33],
[1], [10], [44]).

In the degenerate case δ = 0, problem (2.21) is also associated with the limit case
p→ ∞ of the p−Laplace equation and related problems to the infinity Laplacian
(see, for instance [15] or [46] and their references), as well as in some variants of
the optimal transport probem, like the obstacle Monge-Kantorovich equation (see
[22], [37] and [45]).

There are other problems with gradient constraint that are related with the scalar
variational inequality (2.20) with L= ∇. To simplify, we assume δ = 1.

When f is constant and g ≡ 1, it is well known that the variational inequality
(2.20) is equivalent to the two obstacles variational inequality

u ∈Kϕ

ϕ :
∫

Ω

∇u ·∇(w−u)≥
∫

Ω

f · (w−u) ∀w ∈Kϕ

ϕ , (2.23)

where
Kϕ

ϕ =
{

v ∈ H1
0 (Ω) : ϕ ≤ v≤ ϕ

}
, (2.24)
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with ϕ(x) = −d(x,∂Ω) and ϕ(x) = d(x,∂Ω), being d the usual distance if Ω is
convex and the geodesic distance otherwise. This result was proved firstly by Brézis
and Sibony in 1971 in [20], developed by Caffarelli and Friedman in [21] in the
framework of elastic-plastic problems, and it was also extended in [87] for certain
perturbations of convex functionals.

In [32], Evans proved the equivalence between (2.23) with the complementary
problem (2.25) below, with g = 1. However, for non constant gradient constraint,
the example below shows that the problem

max
{
−∆u− f , |∇u|−g

}
= 0 (2.25)

for f ,g ∈ L∞(Ω) is not always equivalent to (2.20), as well as the equivalence with
the double obstacle variational inequality (2.24) defined with a general constraing g
is not always true. We give the definition of the obstacles for g nonconstant: given
x, z ∈Ω , let

dg(x,z) = inf
{∫ δ

0
g(ξ (s))ds : δ > 0, ξ : [0,δ ]→Ω , ξ smooth ,

ξ (0) = x, ξ (δ ) = z, |ξ ′| ≤ 1
}
. (2.26)

This function is a pseudometric (see [59]) and the obstacles we consider are

ϕ(x, t) = dg(x,∂Ω) =
∨
{w(x) : w ∈Kg} (2.27)

and
ϕ(x, t) =−dg(x,∂Ω) =

∧
{w(x) : w ∈Kg}. (2.28)

Example 2.2
Let f ,g : (−1,1)→ R be defined by f (x) = 2 and g(x) = 3x2. Notice that g(0) = 0
and so g 6∈ L∞

ν (−1,1). However the solutions of the three problems under consider-
ation exist. The two obstacles (with respect to this function g) are

ϕ(x) =

{
x3 +1 if x ∈ [−1,0[,
1− x3 if x ∈ [0,1],

and ϕ(x, t) =

{
−x3−1 if x ∈ [−1,0[,
x3−1 if x ∈ [0,1].

The function

u(x) =

{
1− x2 if |x| ≥ 2

3 and |x| ≤ 1,
ϕ(x)− 4

27 otherwise

is C 1 and solves (2.20) with L= ∇ and δ = 1.
The function z(x) = 1−x2 belongs to Kϕ

ϕ and, because z′′ =−2, it solves (2.23).
Neither u nor z solve (2.25). In fact, as−u′′(x) =−6x in (− 2

3 ,
2
3 ), then−u′′(x) 6≤

2 a.e. and |z′| 6≤ g.

Sufficient conditions to assure the equivalence among these problems will be
given in Section 3 in the framework of evolution problems.
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Nevertheless, the relations between the gradient constraint problem and the dou-
ble obstacle problem are relevant to study the regularity of the solution, as in the
recent works of [3] and [27], as well as for the regularity of the free boundary in the
elastic-plastic torsion problem (see [36] or [74] and their references). Indeed, in this
case, when g = 1 and f =−τ < 0 are constants, it is well-known that the elastic and
the plastic regions are, respectively, given by the subsets of Ω ⊂ R2{
|∇u|< 1

}
=
{

u > ϕ
}
=
{

λ > 1
}

and
{
|∇u|= 1

}
=
{

u = ϕ
}
=
{

λ = 1
}
.

The free boundary is their common boundary in Ω and, by a result of Caffarelli and
Rivière [23], consists locally of Jordan arcs with the same smoothness as the nearest
portion of ∂Ω . In particular, near reentrant corners of ∂Ω , the free boundary is
locally analytic. As a consequence, it was observed in [74, p.240] that those portions
of the free boundary are stable for perturbations of data near the reentrant corners
and near the connected components of ∂Ω of nonpositive mean curvature.

Also using the equivalence with the double obstacle problem, recently, Safdari
has extended some properties on the regularity and the shape of the free boundary
in the case L= ∇ with the pointwise gradient constraint (∂x1u)q +(∂x2u)q ≤ 1, for
q > 1 (see [82] and its references).

2.4 The quasi-variational solution via compactness

We start with an existence result for the quasi-variational inequality (2.11), follow-
ing the ideas in [56].

Theorem 6. Under the framework (2.1), (2.2) and (2.3), let fff ∈ Lp′(Ω)m and
p′ = p

p−1 . Then there exists at least one solution of the quasi-variational inequality
(2.11), provided one of the following conditions is satisfied:

1. the functional G : Xp→ L∞
ν (Ω) is completely continuous;

2. the functional G : C (Ω)m → L∞
ν (Ω) is continuous, when p > d, or it satisfies

also the growth condition

‖G[uuu]‖Lr(Ω) ≤ c0 + c1‖uuu‖α

Lσ p(Ω)m , (2.29)

for some constants c0, c1 ≥ 0, α ≥ 0, with r > d and σ ≥ 1
p , when p = d, or

1
p ≤ σ ≤ d

d−p , when 1 < p < d.

Proof. Let uuu = S( fff ,g) be the unique solution of the variational inequality (2.12)
with g = G[ϕϕϕ] for ϕϕϕ given in Xp or C (Ω)m. Since Xp ⊂W 1,p(Ω)m, by Sobolev
embeddings, and it is always possible to take www = 000 in (2.12), we have

ks‖uuu‖Ls(Ω)m ≤ ‖uuu‖Xp ≤
(
cp‖ fff‖Lp′(Ω)m

) 1
p−1 ≡ c fff , (2.30)
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independently of g∈ L∞
ν (Ω), with s = d p

d−p if p < d, for any s < ∞ if p = d, or s = ∞

if p > d, for a Sobolev constant ks > 0, being cp the Poincaré constant. By Theorem
2, the solution map S : L∞

ν (Ω) 3 g 7→ uuu ∈ Xp is continuous.
Case 1. The map Tp = S◦G : Xp→Xp is then also completely continuous and such
that Tp(Dc fff ) ⊂ Dc fff = {ϕϕϕ ∈ Xp : ‖ϕϕϕ‖Xp ≤ c fff }. Then, by the Schauder fixed point
theorem, there exists uuu = Tp(uuu), which solves (2.12).
Case 2. Set T = S◦G : C (Ω)m→Xp and S = {www∈C (Ω)m : www= λT www,λ ∈ [0,1]},
which by (2.29) is bounded in C (Ω)m. Indeed, if www∈S , uuu = T www solves (2.12) with
g = G[www] and we have, by the Sobolev inequality, (2.30) and www = λuuu,

‖www‖C (Ω)m ≤Cλ‖|Luuu|‖Lr(Ω) ≤C‖g‖Lr(Ω) ≤C
(
c0 + c1‖www‖α

Lσ p(Ω)m

)
≤C

(
c0 + c1kα

σ p‖uuu‖α
Xp

)
≤C

(
c0 + c1kα

σ pcα

fff
)
.

Therefore T is a completely continuous mapping into some closed ball of C (Ω)m

and it has a fixed point by the Leray-Schauder principle.

Remark 2. The Sobolev’s inequality also yields a version of Theorem 6 for G :
Lq(Ω)m → L∞

ν (Ω) also merely continuous for any q ≥ 1 when p ≥ d and 1 ≤ q <
dq

d−p when 1 < q < d (see [56]).

We present now examples of functionals G satisfying 1. or 2. of the above theo-
rem.

Example 2.3
Consider the functional G : Xp→ L∞

ν (Ω) defined as follows

G[uuu](x) = F(x,
∫

Ω
KKK(x,y) ·Luuu(y)dy),

where F : Ω ×R→ R is a bounded function in x ∈ Ω and continuous in w ∈ R,
uniformly in Ω , satisfying 0 < ν ≤ F, and KKK ∈ C (Ω ;Lp′(Ω)`). This functional is
completely continuous as a consequence of the fact that ϕ : Xp→ C (Ω) defined by

w(x) = ϕ(uuu)(x) =
∫

Ω

KKK(x,y) ·Luuu(y)dy, uuu ∈ Xp, x ∈Ω ,

is also completely continuous. Indeed, if uuun −⇀
n

uuu in Xp-weak, then wn −→
n

w in

C (Ω), because Luuun, being bounded in Lp(Ω)`, implies wn is uniformly bounded in
C (Ω), by

|wn(x)| ≤ ‖Luuun‖Lp(Ω)`‖KKK(x)‖Lp′(Ω)`
≤C‖KKK‖

C (Ω ;Lp′(Ω)`)
∀x ∈Ω

and equicontinuous in Ω by

|wn(x)−wn(z)| ≤C‖KKK(x, ·)−KKK(z, ·)‖Lp′(Ω)`
∀x,z ∈Ω .

Example 2.4



14 José Francisco Rodrigues and Lisa Santos

Let F : Ω ×Rm→ R be a Carathéodory function F = F(x,www), bounded in x for all
www ∈ Rm and continuous in www uniformly in x ∈Ω . If, for a.e. x ∈Ω and all www ∈ Rm,
F satisfies 0 < ν ≤ F(x,www), for p > d and, for p≤ d also

F(x,www)≤ c0 + c1|www|α ,

for some constants c0,c1 ≥ 0, 0≤ α ≤ p
d−p if 1 < p < d or α ≥ 0 if p = d, then the

Nemytskii operator

G[uuu](x) = F(x,uuu(x)), for uuu ∈ C (Ω)m, x ∈Ω ,

yields a continuous functional G : C (Ω)m→ L∞
ν (Ω), which satisfies (2.29).

Example 2.5
Suppose p > d. For fixed g ∈ L∞

ν (Ω), defining

G[uuu](x) = g(x)+ inf
y≥ x
y ∈Ω

|uuu(y)|, uuu ∈ C (Ω)m, x ∈Ω ,

where y ≥ x means yi ≥ xi, 1 ≤ i ≤ d (see [60]), we have an example of case 2. of
Theorem 6 above.

2.5 The quasi-variational solution via contraction

In the special case of “small variations” of the convex sets, it is possible to apply
the Banach fixed point theorem, obtaining also the uniqueness of the solution to
the quasi-variational inequality for 1 < p ≤ 2. Here we simplify and develop the
ideas of [40], by starting with a sharp version of the continuous dependence result
of Theorem 1 for the variational inequality (2.12).

Proposition 1. Under the framework of Theorem 1, let fff 1, fff 2 ∈ Lp′(Ω)m, with p′ =
p

p−1 ≥ 2. Then we have

‖uuu1−uuu2‖Xp ≤Cp‖ fff 1− fff 2‖Lp′(Ω)m , 1 < p≤ 2 (2.31)

with
C2 = c2 and Cp = (2M)2−pcp

ω2
p

dp
, (2.32)

where cp and dp are the constants, respectively, of (2.4) and (2.10), ωp = |Ω |
2−p
2p

and M = ‖g‖L∞(Ω).

Proof. Using (2.10) and Hölder’s and Poincaré’s inequalities, from (2.12) for uuu1
with www = uuu2 and for uuu2 with www = uuu1, we easily obtain, first for p = 2,

‖L(uuu1−uuu2)‖2
L2(Ω)m ≤ ‖ fff 1− fff 2‖L2(Ω)m‖uuu1−uuu2‖L2(Ω)m .
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Hence (2.31) follows immediately for p = 2 since d2 = 1.
Observing that, for 1< p< 2, Hölder inequality yields ‖Lwww‖Lp(Ω)` ≤ωp‖Lwww‖L2(Ω)` ,

using (2.10) and the Hölder inverse inequality, we get

(2M)p−2dp |Ω |
p−2

p ‖L(uuu1−uuu2)‖2
Lp(Ω)`

≤
∫

Ω

|L(uuu1−uuu2)|2
(
|Luuu1|+ |Luuu2|

)p−2

≤ cp‖ fff 1− fff 2‖Lp′(Ω)m‖L(uuu1−uuu2)‖Lp(Ω)` .

and (2.31) follows easily by recalling that ‖www‖Xp = ‖Lwww‖Lp(Ω)` for www ∈ Xp.

We consider now a special case by separation of variables in the global constraint
G. For R > 0, denote

DR = {vvv ∈ Xp : ‖vvv‖Xp ≤ R}.

Theorem 7. Let 1 < p≤ 2, fff ∈ Lp′(Ω)m and

G[uuu](x) = γ(uuu)ϕ(x), x ∈Ω , (2.33)

where γ : Xp→ R+ is a functional satisfying

i) 0 < η(R)≤ γ ≤M(R) ∀uuu ∈ DR,
ii) |γ(uuu1)− γ(uuu2)| ≤ Γ (R)‖uuu1−uuu2‖Xp ∀uuu1,uuu2 ∈ DR,

for a sufficiently large R ∈ R+, being η , M and Γ monotone increasing positive
functions of R, and ϕ ∈ L∞

ν (Ω) is given. Then, the quasi-variational inequality
(2.11) has a unique solution, provided that

Γ (R fff )pCp ‖ fff‖Lp′(Ω)m < η(R fff ), (2.34)

where C2 = c2 and Cp =
(
2M(R fff )‖ϕ‖L∞(Ω)

)2−pcp
ω2

p
dp

are given as in (2.32), with

R fff =
(
cp‖ fff‖Lp′ (Ω)

)
1

p−1 .

Proof. Let
S : DR −→ Xp

vvv 7→ uuu = S( fff ,G[vvv])

where uuu is the unique solution of the variational inequality (2.12) with g = G[vvv].
By (2.30), any solution uuu to the variational inequality (2.12) is such that ‖uuu‖Xp ≤

R fff and therefore S(DR fff )⊂ DR fff .

Given vvvi ∈ DR fff , i = 1,2, let uuui = S( fff ,γ(vvvi)ϕ) and set µ = γ(vvv2)
γ(vvv1)

. We may as-
sume µ > 1 without loss of generality. Setting g = γ(vvv1)ϕ , then µg = γ(vvv2)ϕ and
S(µ p−1 fff ,µg) = µS( fff ,g). Using (2.31) with fff 1 = fff and fff 2 = µ p−1 fff , we have

‖uuu1−uuu2‖Xp ≤ ‖S( fff ,g)−S(µ p−1 fff ,µg)‖Xp +‖S(µ
p−1 fff ,µg)−S( fff ,µg)‖Xp

≤ (µ−1)‖uuu1‖Xp +(µ p−1−1)Cp‖ fff‖Lp′(Ω)m

≤ (µ−1)pCp‖ fff‖Lp′(Ω)m , (2.35)
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since µ p−1− 1 ≤ (p− 1)(µ − 1), because 1 < p ≤ 2, and ‖uuu1‖Xp ≤Cp‖ fff‖Lp′(Ω)m

from the estimate (2.31) with fff 1 = fff and fff 2 = 000, where Cp is given by (2.32) with
M = M(R fff )‖ϕ‖L∞(Ω).

Observing that, from the assumptions i) and ii),

µ−1 =
γ(vvv2)− γ(vvv1)

γ(vvv1)
≤ Γ (R fff )

η(R fff )
‖vvv1− vvv2‖Xp ,

we get from (2.35)

‖S(vvv1)−S(vvv2)‖Xp = ‖uuu1−uuu2‖Xp ≤
Γ (R fff )

η(R fff )
pCp‖ fff‖Lp′(Ω)m‖vvv1− vvv2‖Xp .

Therefore the application S is a contraction provided (2.34) holds and its fixed
point uuu = S( fff ,G[uuu]) solves uniquely (2.11).

Remark 3. The assumptions i) and ii) are similar to the conditons in Appendix B
of [40], where the contractiveness of the solution application S was obtained in an
implicit form under the assumptions on the norm of fff to be sufficiently small. Our
expression (2.34) quantifies not only the size of the Lp′ -norm of fff , but also the
constants of the functional γ , the ϕ and the domain Ω , through its measure and the
size of its Poincaré constant.

2.6 Applications

We present three examples of physical applications.

Example 2.6 A nonlinear Maxwell quasi-variational inequality (see [64])
Consider a nonlinear electromagnetic field in equilibrium in a bounded simply con-
nected domain Ω of R3. We consider the stationary Maxwell’s equations

jjj = ∇×hhh, ∇× eee = fff and ∇ ·hhh = 0 in Ω ,

where jjj, eee and hhh denote, respectively, the current density, the electric and the mag-
netic fields. For type-II superconductors we may assume constitutive laws of power
type and an extension of the Bean critical-state model, in which the current den-
sity cannot exceed some given critical value j ≥ ν > 0. When j may vary with the
absolute value |hhh| of the magnetic field (see Prigozhin, [72]) we obtain a quasi-
variational inequality. Here we suppose

eee =

{
δ |∇×hhh|p−2∇×hhh if |∇×hhh|< j(|hhh|),(
δ jp−2 +λ

)
∇×hhh if |∇×hhh|= j(|hhh|),

where δ ≥ 0 is a given constant and λ ≥ 0 is an unknown Lagrange multiplier
associated with the inequality constraint. The region

{
|∇×hhh|= j(|hhh|)

}
corresponds
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to the superconductivity region. We obtain the quasi-variational inequality (2.11)
with Xp defined in (2.5) or (2.6), depending whether we are considering a domain
with perfectly conductive or perfectly permeable walls.

The existence of solution is immediate by Theorem 6. 1., if we assume j : Xp→
R+ continuous, with j ≥ ν > 0, for any p > 3 and, for 1 < p ≤ 3 if j also has the
growth condition of F in Example 2.4. above. Therefore, setting L= ∇×, for any
fff ∈ Lp′(Ω)3 and any δ ≥ 0, we have at least a solution tohhh ∈K j(|hhh|) =

{
www ∈ Xp : |∇×www| ≤ j(|hhh|) in Ω

}
,

δ

∫
Ω

|∇×hhh|p−2
∇×hhh ·∇× (www−hhh)≥

∫
Ω

fff · (www−hhh) ∀www ∈K j(|hhh|).

Example 2.7 Thermo-elastic equilibrium of a locking material
Analogously to perfect plasticity, in 1957 Prager introduced the notion of an ideal
locking material as a linear elastic solid for stresses below a certain threshold,
which cannot be overpassed. When the threshold is attained,“there is locking in
the sense that any further increase in stress will not cause any changes in strain”
[68]. Duvaut and Lions, in 1972 [31], solved the general stationary problem in
the framework of convex analysis. Here we consider a simplified situation for the
displacement field uuu = uuu(x) for x ∈ Ω ⊂ Rd , d = 1,2,3, which linearized strain
tensor Duuu =Luuu is its symmetrized gradient. We shall consider X2 = H1

0 (Ω)d with
norm ‖Duuu‖

L2(Ω)d2 and, for an elastic solid with Lamé constants µ > 0 and λ ≥ 0,
we consider the quasi-variational inequality

uuu ∈Kb(ϑ [uuu]) =
{

www ∈ H1
0 (Ω)d : |Dwww| ≤ b(ϑ [uuu]) in Ω

}∫
Ω

(
µDuuu ·D(www−uuu)+λ

(
∇ ·uuu

)(
∇ · (www−uuu)

))
≥
∫

Ω

fff · (www−uuu) ∀www ∈Kb(ϑ [uuu]).

(2.36)

Here b∈C (R), such that b(ϑ)≥ ν > 0, is a continuous function of the temperature
field ϑ = ϑ [uuu](x), supposed also in equilibrium under a thermal forcing depending
on the deformation Duuu. We suppose that ϑ [uuu] solves

−∆ϑ = h(x,Duuu(x)) in Ω , ϑ = 0 on ∂Ω , (2.37)

where h : Ω ×Rd2 → R is a given Carathéodory function such that

|h(x,D)| ≤ h0(x)+C|D|s, for a.e. x ∈Ω and D ∈ Rd2
, (2.38)

for some function h0 ∈ Lr(Ω), with r > d
2 and 0 < s < 2

r .
First, with www≡ 000 in (2.36), we observe that any solution to (2.36) satisfies the a

priori bound ‖Duuu‖
L2(Ω)d2 ≤ k

µ
‖ fff‖

L2(Ω)d2 , where k is the constant of ‖uuu‖L2(Ω)d ≤
k‖Duuu‖

L2(Ω)d2 from Korn’s inequality.
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Therefore, for each uuu ∈ H1
0 (Ω)d , the unique solution ϑ ∈ H1

0 (Ω) to (2.37) is in
the Hölder space C α(Ω), for some 0 < α < 1, since h = h(x,Duuu(x)) ∈ L

p
2 (Ω) by

(2.38), with the respective continuous dependence in H1
0 (Ω)∩C α(Ω) for the strong

topologies, by De Giorgi-Stamppachia estimates (see, for instance, [74, p. 170] and
its references). By the a priori bound of uuu and the compactness of C α(Ω)⊂ C (Ω),
if we define G : X2→ C (Ω)∩L∞

ν (Ω) by G[uuu] = b(ϑ [uuu]), we easily conclude that G
is a completely continuous operator and we can apply Theorem 6 to conclude that,
for any fff ∈ L2(Ω)d , b ∈ C (R), b ≥ ν > 0 and any h satisfying (2.38), there exists
at least one solution (uuu,ϑ) ∈H1

0 (Ω)d×
(
H1

0 (Ω)∩C α(Ω)
)

to the coupled problem
(2.36)-(2.37).

Example 2.8 An ionization problem in electrostatics (a new variant of [56])
Let Ω be a bounded Lipschitz domain of Rd , d = 2 or 3, being ∂Ω = Γ0 ∪Γ1 ∪Γ#,
with Γ0 ∩Γ# 6= /0, both sets with positive d− 1 Lebesgue measure. Denote by eee the
electric field, which we assume to be given by a potential eee = −∇u. We impose a
potential difference between Γ0 and Γ# and that Γ1 is insulated. So

u = 0 on Γ0, jjj ·nnn = 0 on Γ1 and u = u# on Γ#, (2.39)

with nnn being the outer unit normal vector to ∂Ω . Here the trace u# on Γ# is an
unknown constant to be found as part of the solution, by giving the total current τ

across Γ#,

τ =
∫

Γ#

jjj ·nnn ∈ R. (2.40)

We set L= ∇, V2 = H1(Ω) and, as in [75], we define

X2 = H1
# =

{
w ∈ H1(Ω) : w = 0 on Γ0 and w = w# = constant on Γ#

}
, (2.41)

where the Poincaré inequality (2.4) holds, as well as the trace property for w# =
w|Γ#

, for some c# > 0:

|w#| ≤ c#‖∇w‖L2(Ω)d ∀w ∈ X2.

We assume, as in [31, p.333] that

jjj =

{
σeee if |eee|< γ,

(σ +λ )eee if |eee|= γ,
(2.42)

where σ is a positive constant, λ ≥ 0 is a Lagrange multiplier and γ a positive
ionization threshold. However, this is only an approximation of the true ionization
law. In [56], it was proposed to let γ vary locally with |eee|2 in a neighbourhood of
each point of the boundary, but here we shall consider instead that the ionization
threshold depends on the difference of the potential on the opposite boundaries Γ0
and Γ#, i.e.

γ = γ(u#) with γ ∈ C (R) and γ ≥ ν > 0. (2.43)
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Therefore we are led to search the electric potential u as the solution of the
following quasi-variational inequality:

u ∈Kγ(u#) =
{

w ∈ H1
# (Ω) : |∇w| ≤ γ(u#) in Ω

}
, (2.44)

σ

∫
Ω

∇u ·∇(w−u)≥
∫

Ω

f (w−u)− τ(w#−u#) ∀w ∈Kγ(u#), (2.45)

by incorporating the ionization law (2.42) with the conservation law of the electric
charge ∇ · jjj = f in Ω and the boundary conditions (2.39) and (2.40) (see [75], for
details).

From (2.45) with w = 0, we also have the a priori bound

‖∇u‖L2(Ω)d = ‖u‖X2 ≤
c2
σ
‖ f‖L2(Ω)+

c#
σ
≡ R#. (2.46)

Then, setting G[u] = γ(u#) for u ∈ X2 = H1
# , by the continuity of the trace on Γ#

and the assumption (2.43), we easily conclude that G : X2→ [ν ,γ#] is a completely
continuous operator, where γ# = max

|r|≤c# R#
γ(r), with R# from (2.46). Consequently, by

Theorem 6, there exists at least a solution to the ionization problem (2.44)-(2.45),
for any f ∈ L2(Ω) and any τ ∈ R.

From (2.45), if we denote by w1 and w2 the solutions of the variational inequality
for ( f1,τ1) and ( f2,τ2) corresponding to the same convex Kg defined in (2.44), we
easily obtain the following version of Proposition 1:

‖w1−w2‖H1
# (Ω) ≤

c2
σ
‖ f1− f2‖L2(Ω)+

c#
σ
|τ1− τ2|.

If, in addition, γ ∈ C 0,1(R) and we set γ ′# = sup
|r|≤c# R#

|γ ′(r)| we have

|γ(w1#)− γ(w2#)| ≤ γ
′
#|w1#−w2#| ≤ γ

′
# c#‖w1−w2‖H1

# (Ω)

and the argument of Theorem 7 yields that the solution u of (2.44)-(2.45) is unique
provided that

2γ
′
# c#
( c2

σ
‖ f‖L2(Ω)+

c#
σ
|τ|
)
< ν .

3 Evolutionary problems

3.1 The variational inequality

For T > 0 and t ∈ (0,T ), we set Qt = Ω × (0, t) and, for ν > 0, we define

L∞
ν (QT ) = {w ∈ L∞(QT ) : w≥ ν}.

Given g ∈ L∞
ν (QT ), for a.e. t ∈ (0,T ) we set
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www ∈Kg iff www(t) ∈Kg(t) =
{

www ∈ Xp : |Lwww| ≤ g(t)
}
.

We define, for 1 < p < ∞ and p′ = p
p−1 ,

Vp = Lp(0,T ;Xp
)
, V ′p = Lp′(0,T ;X′p

)
, Yp =

{
www ∈ Vp : ∂twww ∈ V ′p

}
and we assume that there exists an Hilbert space H such that

H⊆ L2(Ω)m, (Xp,H,X′p) is a Gelfand triple, Xp ↪→H is compact. (3.47)

As a consequence, by the embedding results of Sobolev-Bochner spaces (see, for
instance [81]), we have then

Yp ⊂ C
(
[0,T ];H)⊂H ≡ Lp(0,T ;H

)
and the embedding of Yp ⊂H is also compact for 1 < p < ∞.

For δ ≥ 0, given fff : QT → R and uuu0 : Ω → R, uuu0 ∈Kg(0), we consider the weak
formulation of the variational inequality, following [61],

uuuδ ∈Kg,∫ T

0
〈∂twww,www−uuuδ 〉p +δ

∫
QT

Łpuuuδ ·L(www−uuuδ )≥
∫

QT

fff · (www−uuuδ )

−1
2

∫
Ω

|www(0)−uuu0|2, ∀www ∈Kg∩Yp

(3.48)

and we observe that the solution uuuδ ∈ Vp is not required to have the time derivative
∂tuuuδ in the dual space V ′p and satisfies the initial condition in a very weak sense. In
(3.48), 〈 · , · 〉p denotes the duality pairing between X′p and Xp, which reduces to the
inner product in L2(Ω)m if both functions belong to this space.

When ∂tuuuδ ∈ L2
(
0,T ;L2(Ω)m

)
(or more generally when uuuδ ∈ Yp), the strong

formulation reads
uuuδ (t) ∈Kg(t), t ∈ [0,T ], uuu(0) = uuu0,∫

Ω

∂tuuuδ (t) · (www−uuuδ (t))+δ

∫
Ω

Łpuuuδ (t) ·L(www−uuuδ (t))

≥
∫

Ω

fff (t) · (www−uuuδ (t)), ∀www ∈Kg(t) for a.e. t ∈ (0,T ).

(3.49)

Integrating (3.49) in t ∈ (0,T ) with www ∈Kg∩Yp ⊂ C
(
[0,T ];L2(Ω)m

)
and using

∫ t

0
〈∂tuuuδ −∂twww,www−uuuδ 〉p =

1
2

∫
Ω

|www(0)−uuu0|2−
1
2

∫
Ω

|www(t)−uuuδ (t)|2

≤ 1
2

∫
Ω

|www(0)−uuu0|2
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we immediately conclude that a strong solution is also a weak solution, i.e., it satis-
fies (3.48). Reciprocally, if uuuδ ∈Kg with ∂tuuuδ ∈ L2(QT )

m (or if uuuδ ∈ Yp) is a weak
solution with uuuδ (0) = uuu0, replacing in (3.48) www by uuuδ +θ(zzz−uuuδ ) for θ ∈ (0,1] and
zzz ∈Kg∩Yp, and letting θ → 0, we conclude that uuuδ also satisfies∫

QT

∂tuuuδ · (zzz−uuuδ )+δ

∫
QT

Łpuuuδ ·L(zzz−uuuδ )≥
∫

QT

fff · (zzz−uuuδ )

and, by approximation, when g ∈ C
(
[0,T ];L∞

ν (Ω)
)

(see [66, Lemma 5.2]), also for
all zzz ∈Kg.

For any www ∈ Kg(t), for fixed t ∈ (0,T ) and arbitrary s, 0 < s < t < T − s, we
can use as test function in (3.49) zzz ∈ Kg such that zzz(τ) = 0 if τ 6∈ (t− s, t + s) and
zzz(τ) = ν

ν+εs
www if τ ∈ (t − s, t + s), with εs = sup

t−s<τ<t+s
‖g(t)− g(τ)‖L∞(Ω). Hence,

dividing by 2s and letting s→ 0, we can conclude the equivalence between (3.49)
and (3.48).

We have the following existence and uniqueness result whose proof, under more
general assumptions for monotone operators, can be found in [66].

Theorem 8. Suppose that δ ≥ 0 and (2.1), (2.2), (2.3) and (3.47) are satisfied. As-
sume that

fff ∈ L2(QT )
m, g ∈ C

(
[0,T ];L∞

ν (Ω)
)
, uuu0 ∈Kg(0). (3.50)

Then, for any δ ≥ 0, the variational inequality (3.48) has a unique weak solution

uuuδ ∈ Vp∩C
(
[0,T ];L2(Ω)m).

If, in addition,
g ∈W 1,∞(0,T ;L∞(Ω)

)
, g≥ ν > 0 (3.51)

then the variational inequality (3.49) has a unique strong solution

uuuδ ∈ Vp∩H1(0,T ;L2(Ω)m).
Remark 4. For the scalar case L= ∇, with p = 2, a previous result for strong so-
lutions was obtained in [84] with g ∈ C (QT )∩W 1,∞

(
0,T ;L∞(Ω)

)
, g ≥ ν > 0 for

the coercive case δ > 0. More recently, a similar result was obtained with the time-
dependent subdifferential operator techniques by Kenmochi in [49], also for δ > 0
and for the scalar case L=∇, getting weak solutions for 1 < p < ∞ with g ∈ C (QT )
and strong solutions with g ∈ C (QT )∩H1

(
0,T ;C (Ω)

)
.

The next theorem gives a quantitative result on the continuous dependence on
the data, which essentially establishes the Lipschitz continuity of the solutions with
respect to fff and uuu0 and the Hölder continuity (up to 1

2 only) with respect to the
threshold g. This estimate in Vp was obtained first in [84] with L= ∇ and p = 2 and
developed later in several other works, including [65], [49] and [66]. Here we give
an explicit dependence of the constants with respect to the data.



22 José Francisco Rodrigues and Lisa Santos

Theorem 9. Suppose that δ ≥ 0 and (2.1), (2.2), (2.3) and (3.47) are satisfied. Let
i = 1,2, and suppose that fff i ∈ L2(Ω)m, gi ∈ C

(
[0,T ];L∞

ν (Ω)
)

and uuu0i ∈ Kgi(0). If
uuuδ

i are the solutions of the variational inequality (3.48) with data ( fff i,uuu0i,gi) then
there exists a constant B, which depends only in a monotone increasing way on T ,
‖uuu0i‖2

L2(Ω)m and ‖ fff i‖2
L2(Ω)m , such that

‖uuuδ
1 −uuuδ

2‖2
L∞(0,T ;L2(Ω)m) ≤ (1+TeT )

(
‖ fff 1− fff 2‖2

L2(QT )m

+‖uuu01−uuu02‖2
L2(Ω)m + B

ν
‖g1−g2‖L∞(QT )

)
. (3.52)

Besides, if δ > 0,

‖uuuδ
1 −uuuδ

2‖
p∨2
Vp
≤ ap

δ

(
‖ fff 1− fff 2‖2

L2(QT )m

+‖uuu01−uuu02‖2
L2(Ω)m + B

ν
‖g1−g2‖L∞(QT )

)
, (3.53)

where
ap =

(1+T+T 2eT )
2dp

(
cg |QT |

1
p
)(2−p)+ 1 < p < ∞, (3.54)

being dp given by (2.10) and cg = ‖g1‖L∞(QT )+‖g2‖L∞(QT ).

Proof. We prove first the result for strong solutions, approximating the function gi
in C

(
[0,T ];L∞

ν (Ω)
)

by a sequence {gn
i }n belonging to W 1,∞

(
0,T ;L∞(Ω)

)
.

Given two strong solutions uuuδ
i , i = 1,2, setting β = ‖g1− g2‖L∞(QT ), denoting

uuu = uuuδ
1 −uuuδ

2 , uuu0 = uuu01−uuu02, fff = fff 1− fff 2, g = g1−g2 and α = ν

ν+β
and using the

test functions wwwi j =
νuuuδ

i
ν+β
∈K j, for i, j = 1,2, i 6= j, we obtain the inequality∫

Ω

∂tuuu(t) ·uuu(t)+δ

∫
Ω

(
Łpuuuδ

1 (t)−Łpuuuδ
2 (t)

)
·Luuu(t)≤

∫
Ω

fff (t) ·uuu(t)+Θ(t), (3.55)

where

Θ(t) = (α−1)
∫

Ω

(
∂t(uuuδ

1 ·uuuδ
2 )

+δŁpuuuδ
1 ·Luuuδ

2 +δŁpuuuδ
2 ·Luuuδ

1 − fff 1 ·uuuδ
2 − fff 2 ·uuuδ

1
)
(t) (3.56)

and, because 1−α = β

β+ν
≤ 1

ν
‖g1−g2‖L∞(QT ), then for any t ∈ (0,T )

∫ t

0
Θ ≤ B

2ν
‖g1−g2‖L∞(QT ), (3.57)

where the constant B depends on ‖ fff i‖L2(QT )m and ‖uuu0i‖L2(Ω). From (3.55), we have

∫
Ω

|uuu(t)|2 ≤
∫ t

0

∫
Ω

|uuu|2 +
∫

Ω

|uuu0|2 +
∫

QT

| fff |2 +2
∫ T

0
Θ ,
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proving (3.52) by applying the integral Gronwall inequality.
If δ > 0 and p≥ 2, using the monotonicity of Łp, then∫

Ω

|uuu(t)|2 +2δ dp

∫
Qt

|Luuu|p
Lp(Qt )`

≤
∫

Qt

| fff |2 +
∫

Qt

|uuu|2 +
∫

Ω

|uuu0|2 +2
∫ t

0
Θ

and, by the estimates (3.52) and (3.57), by integrating in t we easily obtain (3.53).
For δ > 0 and 1 < p < 2 set cg = ‖g1‖L∞(QT )+‖g2‖L∞(QT ). So, using the mono-

tonicity (2.10) of Łp and the Hölder inverse inequality,

∫
Ω

|uuu(t)|2 +2δ dp cp−2
g |QT |

p−2
p
(∫

QT

|Luuu(t)|p
) 2

p

≤
∫

Qt

| fff |2 +
∫

Qt

|uuu|2 +
∫

Ω

|uuu0|2 + B
ν
‖g1−g2‖L∞(QT )

and using the estimate (3.52) to control ‖uuu‖2
L2(QT )m as above, we conclude the proof

for strong solutions.
To prove the results for weak solutions, it is enough to recall that they can be

approximated by strong solutions in C ([0,T ];L2(Ω)m)∩Vp.

Using the same proof for the case ∇× of [65], which was a development of the
scalar case with p = 2 of [84], we can prove the asymptotic behaviour of the strong
solution of the variational inequality when t→∞. Consider the stationary variational
inequality (2.12) with data fff ∞ and g∞ and denoting its solution by uuu∞, we have the
following result.

Theorem 10. Suppose that the assumptions (2.1), (2.2), (2.3) and (3.47) are satis-
fied and

fff ∈ L∞
(
0,∞;L2(Ω)m), g ∈W 1,∞(0,∞;L∞(Ω)

)
, g≥ ν > 0,

fff ∞ ∈ L2(Ω)m, g∞ ∈ L∞
ν (Ω),∫ t

t
2

ξ
p′(τ)dτ −→

t→∞
0, if p > 2 and

∫ t+1

t
ξ

2(τ)dτ −→
t→∞

0 if 1 < p≤ 2,

where
ξ (t) = ‖ fff (t)− fff ∞‖L2(Ω)m . (3.58)

Assume, in addition, that there exist D and γ positive such that

‖g(t)−g∞‖L∞(Ω) ≤
D
tγ
, where γ >

{
3
2 if p > 2
1
2 if 1 < p≤ 2.

(3.59)

Then, for δ > 0 and uuuδ the solution of the variational inequality (3.49), with
t ∈ [0,∞),

‖uuuδ (t)−uuuδ
∞‖L2(Ω)m −→

t→∞
0.
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In the special case of (3.49) with δ = 0 and g(t) = g for al t ≥ T ∗, observing that
we can apply a result of Brézis [19, Theorem 3.11] to extend the Theorem 3.4 of
[30]), in which g≡ 1, and obtain the following asymptotic behaviour of the solution
uuu(t) ∈Kg with uuu(0) = uuu0 of∫

Ω

∂tuuu(t) · (vvv−uuu(t))≥
∫

Ω

fff (t) · (vvv−uuu(t)) ∀vvv ∈Kg, (3.60)

which corresponds, in the scalar case, to the sandpile problem with space variable
slope.

Theorem 11. Suppose that the assumptions (2.1), (2.2), (2.3) and (3.47) are sat-
isfied, fff ∈ L1

loc

(
0,∞;L2(Ω)m), g ∈ L∞

ν (Ω), uuu0 ∈ Kg and let uuu be the solution of
the variational inequality (3.60). If there exists a function fff ∞ such that fff − fff ∞ ∈
L1
(
0,∞;L2(Ω)m

)
then

uuu(t)−→
t→∞

uuu∞ in L2(Ω)m,

where uuu∞ solves the variational inequality (2.18) with fff ∞.

3.2 Equivalent formulations when L=∇

In this section, we summarize the main results of [84], assuming ∂Ω is of class
C 2, p = 2 and L = ∇ and considering the strong variational inequality (2.12) in this
special case,

u(t) ∈Kg(t), u(0) = u0,∫
Ω

∂tu(t) · (v−u(t))+
∫

Ω

∇u(t) ·∇(v−u(t))≥
∫

Ω

f (t) · (v−u(t)),

∀v ∈Kg(t) for a.e. t ∈ (0,T ),

(3.61)

where
Kg(t) =

{
v ∈ H1

0 (Ω) : |∇v| ≤ g(t)
}
.

As in the stationary case, we can consider three related problems. The first one is
the Lagrange multiplier problem∫

QT

∂tuϕ + 〈λ∇u,∇ϕ〉(L∞(QT )′×L∞(QT ) =
∫

QT

f ϕ, ∀ϕ ∈ L∞
(
0,T ;W 1,∞

0 (Ω)
)
,

λ ≥ 1, (λ −1)(|∇u|−g) = 0 in
(
L∞(QT )

)′
, (3.62)

u(0) = u0, a.e. in Ω |∇u| ≤ g a.e. in QT ,

which is equivalent to the variational inequality (3.61). This was first proved in
[83] in the case g ≡ 1, where it was shown the existence of λ ∈ L∞(QT ) satisfying
(3.62), in the case of a compatible and smooth nonhomogeneous boundary condition
for u. When u|∂Ω×(0,T ) is independent of x ∈ ∂Ω then, by Theorem 3.11 of [83],
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λ is unique. In this framework, it was also shown in [83] that the solution u ∈
Lp
(
0,T ;W 2,p

loc (Ω)
)
∩C 1+α,α/2(QT ) for all 1≤ p < ∞ and 0≤ α < 1.

Secondly, we define two obstacles as in (2.27) and (2.28) using the pseudometric
dg(t) introduced in (2.26),

ϕ(x, t) = dg(t)(x,∂Ω) =
∨
{w(x) : w ∈Kg(t)} (3.63)

and

ϕ(x, t) = dg(t)(x,∂Ω) =
∧
{w(x) : w ∈Kg(t)}, (3.64)

where the variable Kϕ(t)
ϕ(t) is defined by (2.23) for each t ∈ [0,T ] and we consider the

double obstacle variational inequality
u(t) ∈Kϕ(t)

ϕ(t), u(0) = u0,∫
Ω

∂tu(t) · (v−u(t))+
∫

Ω

∇u(t) ·∇(v−u(t))≥
∫

Ω

f (t) · (v−u(t)),

∀v ∈Kϕ(t)
ϕ(t) for a.e. t ∈ (0,T ).

(3.65)

The third and last problem is the following complementary problem

(∂tu−∆u− f )∨ (|∇u|−g) = 0 in QT ,

u(0) = u0 in Ω , u = 0 on ∂Ω × (0,T ). (3.66)

In [88], Zhu studied a more general problem in unbounded domains, for large times,
with a zero condition at a fixed instant T , motivated by stochastic control.

These different formulations of gradient constraint problems are not always
equivalent and were studied in [84], where sufficient conditions were given for the
equivalence of each one with (3.61).

Assume that

g ∈W 1,∞(0,T ;L∞(Ω)
)
∩L∞

(
0,T ;C 2(Ω)

)
, g≥ ν > 0,

|∇w0| ≤ g(0), f ∈ L∞(QT ). (3.67)

The first result holds with an additional assumption on the gradient constraint g,
which is, of course, satisfied in the case of g≡constant> 0, by combining Theorem
3.9 of [84] and Theorem 3.11 of [83].

Theorem 12. Under the assumptions (3.67), with f ∈ L∞(0,T ) and

∂t(g2)≥ 0, −∆(g2)≥ 0, (3.68)

problem (3.62) has a solution (λ ,u)∈ L∞(QT )×L∞
(
0,T ;W 1,∞

0 (Ω)∩H2
loc(Ω)

)
. Be-

sides, u is the unique solution of (3.61) and if g is constant then λ is unique.
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The equivalence with the double obstacle problem holds with a slightly weaker
assumption on g.

Theorem 13. Assuming (3.67), problem (3.65) has a unique solution. If f ∈L∞(0,T )
and

∂t(g2)−∆(g2)≥ 0, (3.69)

then problem (3.65) is equivalent to problem (3.61).

Finally, the sufficient conditions for the equivalence of the complementary prob-
lem (3.66) and the gradient constraint scalar problem (3.61) require stronger as-
sumptions on the data.

Theorem 14. Suppose that f ∈W 1,∞
(
0,T ;L∞(Ω)

)
, w0 ∈ H1

0 (Ω), and

∆u0 ∈ L∞(Ω), −∆u0 ≤ f a.e. in QT ,

g ∈W 1,∞(0,T ;L∞(Ω)
)

g≥ ν > 0 and ∂t(g2)≤ 0.

Then problem (3.66) has a unique solution. If, in addition, g = g(x) and ∆g2 ≤ 0
then this problem is equivalent to problem (3.61).

The counterexample given at the end Section 2.3, concerning the non-equivalence
among these problems, can be generalized easily for the evolutionary case, as we
have stabilization in time to the stationary solution (see [84]).

3.3 The scalar quasi-variational inequality with gradient constraint

In [78], Rodrigues and Santos proved existence of solution for a quasi-variational
inequality with gradient constraint for first order quasilinear equations (δ = 0), ex-
tending the previous results for parabolic equations of [77].

For ΦΦΦ = ΦΦΦ(x, t,u) : QT ×R→ Rd , F = F(x, t,u) : QT ×R→ R assume that

ΦΦΦ ∈W 2,∞(QT × (−R,R)
)d
, F ∈W 1,∞(QT × (−R,R)

)
. (3.70)

In addition, ∇ ·ΦΦΦ and F satisfy the growth condition in the variable u

|
(
∇ ·ΦΦΦ

)
(x, t,u)+F(x, t,u)| ≤ c1|u|+ c2, (3.71)

uniformly in (x, t), for all u ∈ R and a.e. (x, t), being c1 and c2 positive constants.
The gradient constraint G = G(x,u) : Ω ×R→R is bounded in x and continuous in
u and the initial condition u0 : Ω → R are such that

G ∈ C
(
R;L∞

ν (Ω)
)
, u0 ∈KG(u0)∩C (Ω), δ∆pu0 ∈M(Ω), (3.72)

being
KG(u(t)) =

{
w ∈ H1

0 (Ω) : |∇w| ≤ G(u(t))
}
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and M(Ω) denotes the space of bounded measures in Ω .

Theorem 15. Assuming (3.70), (3.71) and (3.72), for each δ ≥ 0 and any 1< p<∞,
the quasi-variational inequality

u(t) ∈KG(u(t)) for a.e. t ∈ (0,T ),u(0) = u0,

〈∂tu(t),w−u〉M(Ω)×C (Ω)+
∫

Ω

(
δ∇pu(t)+ΦΦΦ(u(t))

)
·∇(w(t)−u(t))

≥
∫

Ω

F(u(t))(w−u(t)) ∀w ∈KG(u(t)), for a.e. t ∈ (0,T ),

(3.73)

has a solution u ∈ L∞
(
0,T ;W 1,∞

0 (Ω)
)
∩C (QT ) such that ∂tu ∈ L∞

(
0,T ;M(Ω)

)
.

Although this result was proved in [78] for δ = 0 and only in the case p = 2
for δ > 0, it can be proved for p 6= 2 exactly in the same way as in the previous
framework of [77], which corresponds to (3.73) when ΦΦΦ ≡ 000, with G(x,u) = G(u)
and F(x, t,u) = f (x, t), with only f ∈ L∞(QT ) and ∂t f ∈M(Ω).

We may consider the corresponding stationary quasi-variational inequality for
u∞ ∈KG[u∞], such that∫

Ω

(
δ∇pu∞+ΦΦΦ∞(u∞)

)
·∇(w−u∞)≥

∫
Ω

F∞(u∞)(w−u∞) ∀w∈KG[u∞] (3.74)

for given functions F∞ = F∞(x,u) : Ω ×R and ΦΦΦ∞ = ΦΦΦ∞(x,u) : Ω ×R→ Rd , con-
tinuous in u and bounded in x for all |u| ≤ R. In order to extend the asymptotic
stabilization in time (for subsequences tn→ ∞) obtained in [77] and [78], we shall
assume that (3.70) holds for T = ∞,

ΦΦΦ(t) = ΦΦΦ∞, and ∂uF ≤−µ < 0 for all t > 0, (3.75)

and
0 < ν ≤ G(x,u)≤ N, for a.e. x ∈Ω and all u ∈ R, (3.76)

or there exists M > 0 such that, for all R≥M

∇ ·ΦΦΦ(x,R)+F(x, t,R)≤ 0, ∇ ·ΦΦΦ(x,−R)+F(x, t,−R)≥ 0. (3.77)

Setting ξR(t) =
∫

Ω

sup
|u|≤R

∣∣∂tF(x, t,u)
∣∣dx and supposing that, for R≥ R0 and some

constant CR > 0, we have

sup
0<t<∞

∫ t+1

t
ξR(τ)dτ ≤CR, and

∫ t+1

t
ξR(τ)dτ −→

t→∞
0, (3.78)

and
F(x, t,u)−→

t→∞
F∞(x,u) for all |u| ≤ R and a.e. x ∈Ω , (3.79)

we may prove the following result
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Theorem 16. For any δ ≥ 0 and 1 < p < ∞, under the assumptions (3.70)-(3.72)
and (3.75)-(3.79), problem (3.74) has a solution u∞ ∈ KG[u∞] which is the weak-∗
limit in W 1,∞

0 (Ω) and strong limit in C α(Ω), 0 ≤ α < 1, for some tn → ∞ of a
sequence {u(tn)}n with u being a global solution of (3.73).

We observe that the degenerate case δ = 0 corresponds to a nonlinear conserva-
tion law for which we could also consider formally the Lagrange multiplier problem
of finding λ = λ (x, t) associated with the constraint |∇u| ≤ G[u] and such that

λ ≥ 0, λ (G[u]−|∇u|) = 0

and
∂tu−∇ ·Φ(u)−∇ · (λu) = F(u), in QT ,

which is an open problem. However, in contrast with conservation laws without the
gradient restriction, this problem has no spatial shock fronts nor boundary layers
for the vanishing viscosity limit, since Dirichlet data may be prescribed for u on the
whole boundary ∂Ω .

It is clear that both results of Theorems 15 and 16 apply, in particular, to the
linear transport equation

∂tu+bbb ·∇u+ cu = f

for a given vector field bbb∈W 2,∞(QT )
d and given functions c= c(x, t) and f = f (x, t)

in W 1,∞(QT ), corresponding to set

ΦΦΦ(u) =−bbbu and F(u) = f − (c+∇ ·bbb)u. (3.80)

Nevertheless, in this case, if we analyse the a priori estimates for the approximat-
ing problem in the proof of Theorem 15 as in Section 3.1 of [78], the assumptions
on the coefficients of the linear transport operator can be significantly weakened and
it is possible to prove the following result

Corollary 1. If ΦΦΦ and F are given by (3.80) with bbb∈ L∞(QT )
d , ∇ ·bbb, c, f ∈ L∞(QT ),

∂tbbb ∈ Lr(QT )
d , r > 1 and ∂tc, ∂t f ∈ L1(QT ), assuming (3.72) for δ ≥ 0 and 1 <

p < ∞, the quasi-variational inequality (3.73) with linear lower order terms has a
strong solution uuu ∈ L∞

(
0,T ;W 1,∞

0 (Ω)
)
∩C (QT ) such that ∂tu ∈ L1

(
0,T ;M(Ω)

)
.

However, in this case, for the corresponding variational inequality, i.e. when G≡
g(x, t), in [79] it was shown that the problem is well-posed and has similar stability
properties, as in Section 3.1, with coefficients only in L2.

Suppose that, for some l ∈ R,

bbb ∈ L2(QT )
d , c ∈ L2(QT ) and c− 1

2
∇ ·bbb≥ l in QT , (3.81)

and

f ∈ L2(QT ), g ∈W 1,∞(0,T ;L∞(Ω)
)
, g≥ ν > 0 and u0 ∈Kg(0). (3.82)
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Theorem 17. [79] With the assumptions (3.81) and (3.82), there exists a unique
strong solution

w ∈ L∞
(
0,T ;W 1,∞

0 (Ω)
)
∩C (QT ), ∂tw ∈ L2(QT ),

to the variational inequality
w(t) ∈Kg(t), t ∈ (0,T ), w(0) = u0,∫

Ω

(
∂tw(t)+bbb(t) ·∇w(t)+ c(t)w(t)

)
(v−w(t))

≥
∫

Ω

f (t)(v−w(t)), ∀v ∈Kg(t), for a.e. t ∈ (0,T ).

(3.83)

The corresponding stationary problem for

w∞ ∈Kg∞
:

∫
Ω

(
bbb∞ ·∇u∞+c∞w∞

)
(v−w∞)≥

∫
Ω

f∞(v−w∞) ∀v ∈Kg∞
(3.84)

can be solved uniquely for L1 data

bbb∞ ∈ L1(Ω)d , c∞ ∈ L1(Ω) and c∞−
1
2

∇ ·bbb∞ ≥ µ in Ω , (3.85)

with
fff ∞ ∈ L1(Ω), g∞ ∈ L∞(Ω), g∞ ≥ ν > 0. (3.86)

and is the asymptotic limit of the solution of (3.83).

Theorem 18. [79] Under the assumptions (3.85) and (3.86), if∫ t+1

t

∫
Ω

(
| f (τ)− f∞|+ |bbb(τ)−bbb∞|+ |c(τ)− c∞|

)
dxdτ −→

t→∞
0

and there exists γ > 1
2 such that, for some constant C > 0,

‖g(t)−g∞‖L∞(Ω) ≤
C
tγ
, t > 0,

then
w(t)−→

t→∞
w∞ n L2(Ω)

where w and w∞ are, respectively, the solutions of the variational inequality (3.83)
and (3.84).
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3.4 The quasi-variational inequality via compactness and
monotonicity

The results in Section 3.3 are for scalar functions and L = ∇. As the arguments in
the proof that ∂tu is a Radon measure do not apply to the vector cases, we consider
the weak quasi-variational inequality for a given δ ≥ 0, for uuu = uuuδ ,

uuu ∈KG[uuu],∫ T

0
〈∂tvvv,vvv−uuu〉p +δ

∫
QT

Łpuuu · L(vvv−uuu)≥
∫

QT

fff · (vvv−uuu)

−1
2

∫
Ω

|vvv(0)−uuu0|2,∀vvv ∈ Yp such that vvv ∈KG[uuu],

(3.87)

where 〈 · , · 〉p denotes the duality pairing between X′p×Xp.

Theorem 19. Suppose that assumptions (2.1), (2.2), (2.3), (3.47) are satisfied and
fff ∈ L2(QT )

m, uuu0 ∈ KG(uuu0). Assume, in addition that G : H → L1(QT ) is a non-
linear continuous functional whose restriction to Vp is compact with values in
C
(
[0,T ];L∞(Ω)

)
and G(H )⊂ L∞

ν (QT ) for some ν > 0.
Then the quasi-variational inequality (3.87) has a weak solution

uuu ∈ Vp∩L∞
(
0,T ;L2(Ω)m).

Proof. We give a brief idea of the proof. The details can be found, in a more general
setting, in [66].

Assuming first δ > 0, we consider the following family of approximating prob-
lems, defined for fixed ϕϕϕ ∈ H , such that uuu0 ∈ KG[ϕϕϕ(0)]: to find uuuε,ϕϕϕ such that
uuuε,ϕϕϕ(0) = uuu0 and

〈∂tuuuε,ϕϕϕ(t),ψψψ〉p +
∫

Ω

(
δ + kε

(
|Luuuε,ϕϕϕ(t)|−G[ϕϕϕ](t)

))
Łpuuuε,ϕϕϕ(t) ·Lψψψ

=
∫

Ω

fff (t) ·ψψψ, ∀ψψψ ∈ Xp, for a.e. t ∈ (0,T ), (3.88)

where kε : R→ R is an increasing continuous function such that

kε(s) = 0 if s≤ 0, kε(s) = e
s
ε −1 if 0≤ s≤ 1

ε
, kε(s) = e

1
ε2 −1 if s≥ 1

ε
.

This problem has a unique solution uuuε,ϕϕϕ ∈ Vp, with ∂tuuuε,ϕϕϕ ∈ V ′p . Let S : H →Yp be
the mapping that assigns to each ϕϕϕ ∈H the unique solution uuuε,ϕϕϕ of problem (3.88).
Considering the embedding i : Yp→H , then i ◦ S is continuous, compact and we
have a priori estimates which assures that there exists a positive R, independent of
ε , such that i ◦ S(H ) ⊂ DR, where DR =

{
www ∈H : ‖www‖H ≤ R

}
. By Schauder’s

fixed point theorem, i◦S has a fixed point uuuε , which solves problem (3.88) with ϕϕϕ

replaced by uuuε .
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The sequence {uuuε}ε
satisfies a priori estimates which allow us to obtain the limit

uuu for subsequences in Vp∩L∞
(
0,T ;L2(Ω)m

)
. Another main estimate

‖kε(|Luuuε |−G[uuuε ])‖L1(QT )
≤C,

with C a constant independent of ε , yields uuu ∈ KG[uuu].
Using uuuε − vvv as test function in (3.88) corresponding to a fixed point ϕϕϕ = uuuε ,

with an arbitrary vvv∈ Vp∩KG[uuu], we obtain, after integration in t ∈ (0,T ) and setting
kε = kε

(
|Luuuε |−G[uuuε ]

)
:

δ

∫
QT

Łpuuuε ·L(uuuε − vvv)≤ 1
2

∫
Ω

|uuu0− vvv(0)|2 +
∫ T

0
〈∂tvvv,vvv−uuuε〉p

+
∫

QT

kε Łpuuuε ·L(uuuε − vvv)−
∫

QT

fff · (vvv−uuuε). (3.89)

The passage to the limit uuuε −⇀
ε→0

uuu in order to conclude that (3.87) holds for uuu is

delicate and requires a new lemma, which proof can be found in [66]: given www ∈ Vp
such that www ∈ KG[www] and zzz ∈ KG[www(0)], we may construct a regularizing sequence
{wwwn}n and a sequence of scalar functions {Gn}n satisfying i) wwwn ∈ L∞(0,T ;Xp)

and ∂twwwn ∈ L∞(0,T ;Xp), ii) wwwn −→
n

www in Vp strongly, iii) limn
∫ T

0 〈∂twwwn,wwwn −
www〉p ≤ 0 and iv) |Lwwwn| ≤ Gn, where Gn ∈ C

(
[0,T ];L∞(Ω)

)
and Gn −→

n
G[www] in

C
(
[0,T ];L∞(Ω)

)
.

If {uuun}n is a regularizing sequence associated to uuu and G[uuu] then there exists a
constant C independent of ε and n such that∫

QT

kε Łpuuuε ·L(uuun−uuuε)

≤
∫

QT

kε |Luuuε |p−1(|Luuun|− |Luuuε |
)
≤C‖Gn−G[uuuε ]‖L∞(QT ) −→n 0,

by the compactness of the operator G. For all n ∈ N we have, setting vvv = uuuε ,

∫
QT

δŁpuuuε ·L(uuuε −uuun)≤
∫ T

0
〈∂tuuun,uuun−uuu〉p

+
∫

QT

δŁpuuuε ·L(uuun−uuu)+
∫

QT

kε Łpuuuε ·L(uuun−uuuε)−
∫

QT

fff · (uuun−uuu),

concluding that

lim
ε→0

∫
QT

δŁpuuuε ·L(uuuε −uuu)≤ 0.

This operator is bounded, monotone and hemicontinuous and so it is pseudo-
monotone and we get, using (3.89),
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QT

δŁpuuu ·L(uuu− vvv)≤ lim
ε→0

∫
QT

δŁpuuuε ·L(uuuε − vvv), ∀vvv ∈KG[uuu]

and the proof that uuu solves the quasi-variational inequality (3.87) is now easy, by
using the well-known monotonicity methods (see [17] or [58]).

The proof for the case δ = 0 is more delicate and requires taking the limit of
diagonal subsequences of solutions {(ε,δ )}

ε,δ
of (3.88) as ε → 0 and as δ → 0, in

order to use the monotonicity methods to obtain a solution of (3.89) in the degener-
ate case.

Remark 5. Two general examples for the compact operator G : Vp→C
(
[0,T ];L∞

ν (Ω)
)

in the form G[vvv] = g(x, t,ζ (vvv(x, t))), with g ∈ C (QT ×Rm), g≥ ν > 0, were given
in [66], namely with

ζ (vvv)(x, t) =
∫ t

0
vvv(x,s)K(t,s)ds, (x, t) ∈ QT ,

with K, ∂tK ∈ L∞
(
(0,T )× (0,T )

)
, or with ζ = ζ (vvv) given by the unique solution

of the Cauchy-Dirichlet problem of a quasilinear parabolic scalar equation ∂tζ −
∇ · a

(
x, t,∇ζ )

)
= ϕ0 +ψψψ · vvv+ηηη ·Lvvv ∈ Lp(QT ), which has solutions in the Hölder

space C λ (QT ), for some 0< λ < 1, provided that vvv∈Vp, p> d+2
d and ϕ0 ∈ Lp(QT ),

ψψψ ∈ L∞(QT )
m, ηηη ∈ L∞(QT )

` are given.

Remark 6. Using the sub-differential analysis in Hilbert spaces, Kenmochi and co-
workers have also obtained existence results in [49] and [51] for evolutionary quasi-
variational inequalities with gradient constraints under different assumptions.

3.5 The quasi-variational solution via contraction

For the evolutionary quasi-variational inequalities and for nonlocal Lipschitz non-
linearities we can apply the Banach fixed point theorem in two different functional
settings obtaining weak and strong solutions under certain conditions.

Let E be L2(QT )
m or Vp and

DR = {vvv ∈ E : ‖vvv‖E ≤ R}.

For η ,M,Γ : R→R+ increasing functions, let γ : E→R+ be a functional satis-
fying

0 < η(R∗)≤ γ(uuu)≤M(R∗) ∀uuu ∈ DR∗ ,

|γ(uuu1)− γ(uuu2)| ≤ Γ (R∗)‖u1−u2‖E ∀uuu1,uuu2 ∈ DR∗ , (3.90)

for a sufficiently large R∗ ∈ R+.

Theorem 20. For p > 1 and δ ≥ 0, suppose that the assumptions (2.1), (2.2), (2.3)
and (3.47) are satisfied, fff ∈ L2(QT )

m,
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G[uuu](x, t) = γ(uuu)ϕ(x, t), (x, t) ∈ QT ,

where E = L2(QT )
m and γ is a functional satisfying (3.90), ϕ ∈ C

(
[0,T ];L∞

ν (Ω)
)
,

uuu0 ∈KG[uuu0] and

R∗ =
√

T +T 2eT
(
‖ fff‖L2(QT )m +‖uuu0‖L2(Ω)m

)
. (3.91)

If
2R∗Γ (R∗)< η(R∗)

then the quasi-variational inequality (3.87) has a unique weak solution uuu ∈ Vp ∩
C
(
[0,T ];L2(Ω)m

)
, which is also a strong solution uuu∈ Vp∩H1

(
0,T ;L2(Ω)m

)
, pro-

vided ϕ ∈W 1,∞(0,T ;L∞(Ω)) with ϕ ≥ ν > 0.

Proof. For any R > 0 let S : DR → L2(QT )
m be the mapping that, by Theorem 8,

assigns to each vvv ∈ DR the unique solution of the variational inequality (3.48) (re-
spectively (3.49)) with data fff , G[vvv] and uuu0. Denoting uuu = S(vvv) = S( fff ,G[vvv],uuu0),
using the stability result (3.52) with uuu1 = uuu and uuu2 = 0 we have the estimate

‖uuu‖L2(QT )m ≤
√

T‖uuu‖L∞(0,T ;L2(Ω))

≤
√

T +T 2eT
(
‖ fff‖L2(QT )m +‖uuu0‖L2(Ω)m

)
= R∗, (3.92)

being R∗ fixed from now on. For this choice of R∗ we have S(DR∗)⊆ DR∗ .
For vvvi ∈DR∗ , i= 1,2 and uuui = S( fff ,G[vvvi],uuu0), set µ = γ(vvv2)

γ(vvv1)
which we may assume

to be greater than 1. Denoting g = G[vvv1] = γ(vvv1)ϕ , then µu1 = S(µ fff ,µg,µuuu0),
uuu2 = S( fff ,µg,uuu0) and, using (3.52), we have

‖S(vvv1)−S(vvv2)‖L2(QT )m ≤ ‖uuu1−µuuu1‖L2(QT )m +‖µuuu1−uuu2‖L2(QT )m

≤ (µ−1)‖uuu1‖L2(QT )m +(µ−1)R∗ ≤ 2(µ−1)R∗.

But

µ−1 =
γ(vvv2)− γ(vvv1)

γ(vvv1)
≤ Γ (R∗)

η(R∗)
‖vvv1− vvv2‖L2(QT )m

and consequently S is a contraction as long as

2R∗Γ (R∗)
η(R∗)

< 1.

Remark 7. These results are new. In particular, the one with ϕ more regular gives
the existence and uniqueness of the strong solution uuu ∈ Vp ∩H1

(
0,T ;L2(Ω)m

)
to

the quasi-variational inequality (3.87) and therefore also satisfies uuu(t)∈KG[uuu(t)] and
(3.49) with g = G[uuu(t)],∫

Ω

∂tuuu(t) · (www−uuu(t))+δ

∫
Ω

Łpuuu(t) ·L(www−uuu(t))≥
∫

Ω

fff (t) · (www−uuu(t)),
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for all www ∈KG[uuu](t), a.e. t ∈ (0,T ).

Theorem 21. For 1 < p ≤ 2 and δ > 0, suppose that the assumptions (2.1), (2.2),
(2.3) and (3.47) are satisfied, fff ∈ L2(QT )

m,

G[uuu](x, t) = γ(uuu)ϕ(x, t), (x, t) ∈ QT ,

where E = Vp, γ is a functional satisfying (3.90), ϕ ∈ C
(
[0,T ];L∞

ν (Ω)
)

and uuu0 ∈
KG[uuu0]. Then, the quasi-variational inequality (3.87) has a unique weak solution
uuu ∈ Vp∩C

(
[0,T ];L2(Ω)m

)
, provided that

ρ Γ (Rp)< η(Rp), (3.93)

where
ρ = 2Rp +(2− p)

(
2M(Rp)‖ϕ‖L∞(QT )

)2−p|QT |
2−p

p (Rp)
p−1

and

Rp =
(

1+T+T 2eT

2δ

(
‖ fff‖2

L2(QT )m +‖uuu0‖2
L2(Ω)m

)) 1
p
,

which is also a strong solution in Vp ∩H1
(
0,T ;L2(Ω)m

)
if, instead, we have ϕ ∈

W 1,∞(0,T ;L∞(Ω)) with ϕ ≥ ν > 0.

Proof. For R > 0 let S : DR → Vp be defined by uuu = S(vvv) = S(Łp, fff ,g,uuu0), the
unique strong solution of the variational inequality (3.49), with the operator Łp and
data ( fff ,g,uuu0), where g = G[vvv]. Taking www = 000 in (3.49) and using the estimate (3.92)
we have the a priori estimate

2δ‖uuu‖p
Vp
≤
(
‖ fff‖2

L2(Qt )m +‖uuu‖2
L2(QT )m +‖uuu0‖2

L2(Ω)m

)
≤ (1+T +T 2eT )

(
‖ fff‖2

L2(Qt )
+‖uuu0‖2

L2(Ω)

)
and therefore

‖uuu‖Vp ≤
(

1+T+T 2eT

2δ

(
‖ fff‖2

L2(QT )m +‖uuu0‖2
L2(Ω)m

)) 1
p
= Rp. (3.94)

Given vvvi ∈DRp , i = 1,2, let uuui = S(Łp, fff ,γ(vvvi)ϕ,uuu0) and set µ = γ(vvv2)
γ(vvv1)

, assuming
µ > 1 .

Setting g = G[vvv1] = γ(vvv1)ϕ , observe that µuuu1 = S(µ2−pŁp,µ fff ,µg,µuuu0) = zzz1
and zzz2 = S(Łp,µ fff ,µg,µuuu0), we get

‖uuu1−uuu2‖Vp ≤ ‖uuu1− zzz1‖Vp +‖zzz1− zzz2‖Vp +‖zzz2−uuu2‖Vp .

By (3.94) and the continuous dependence result (3.53),

‖uuu1−zzz1‖Vp = (µ−1)‖uuu1‖Vp ≤ (µ−1)Rp and ‖zzz2−uuu2‖Vp = (µ−1)Rp. (3.95)

Since zzz1,zzz2 ∈Kµg, we can use them as test functions in the variational inequality
(3.49) satisfied by the other one. Then
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1
2

∫
Ω

|zzz1(t)− zzz2(t)|2 +
∫

QT

|L(zzz1− zzz2)|2
(
|Lzzz1|+ |Lzzz2|

)p−2

≤ (µ2−p−1)
∫

QT

Lpzzz1 ·L(zzz1− zzz2)

and, by the Hölder inverse inequality,

1
2

∫
Ω

|zzz1(t)− zzz2(t)|2 +‖L(zzz1− zzz2)‖2
Lp(QT )`

(∫
QT

(
|Lzzz1|+ |Lzzz1|

)p
) p−2

p

≤ (µ2−p−1)‖Lzzz1‖p−1
Lp(QT )`

‖L(zzz1− zzz2)‖Lp(QT )`
.

But (∫
QT

(
|Lzzz1|+ |Lzzz1|

)p
) p−2

p ≥ (2M(Rp)‖ϕ‖L∞(QT ))
p−2|QT |

p−2
p

and µ2−p−1≤ (2− p)(µ−1), so

‖zzz1− zzz2‖Vp ≤ (µ−1)(2− p)
(
2M(Rp)‖ϕ‖L∞(QT )

)2−p|QT |
2−p

p (Rp)
p−1. (3.96)

From (3.95) and (3.96), we obtain

‖S(vvv1)−S(vvv2)‖Vp ≤ (µ−1)
(

2Rp

+(2− p)
(
2M(Rp)‖ϕ‖L∞(QT )

)2−p|QT |
2−p

p (Rp)
p−1
)
. (3.97)

Defining

ρ = 2Rp +(2− p)
(
2M(Rp)‖ϕ‖L∞(QT )

)2−p|QT |
2−p

p (Rp)
p−1

we get, with Γ = Γ (Rp) and η = η(Rp),

‖S(vvv1)−S(vvv2)‖Vp ≤
ρ Γ

η
‖vvv1− vvv2‖Vp

and S is a contraction if ρ Γ < η , which fixed point uuu ∈ Vp ∩H1
(
0,T ;L2(Ω)m

)
is

the strong solution of the quasi-variational inequality.
In the case of ϕ ∈ C

(
[0,T ];L∞

ν (Ω)
)
, the solution map S of Theorem 8 only gives

a weak solution uuu∈Vp∩
(
[0,T ];L2(Ω)m

)
, which is a contraction exactly in the same

case as (3.94). The proof is the same, since the continuous dependence estimate
(3.96) still holds for weak solutions of the variational inequality as in Theorem 9.

Remark 8. These results apply to nonlocal dependences on the derivatives of uuu as
well, since ϕ is Lipschitz continuous on Vp. The part corresponding to weak so-
lutions is new, while the one for strong solutions extends [42, Theorem 3.2]. This
work considers strong solutions in the abstract framework of [58], which also in-
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clude obstacle problems, it is aimed to numerical applications, but requires stronger
restrictions on ϕ .

3.6 Applications

Example 3.1 The dynamics of the sandpile
Among the continuum models for granular motion, the one proposed by Prigozhin
(see [69], [70] and [71]) for the pile surface u = u(x, t), x ∈ Ω ⊂ R2, growing on
a rigid support u0 = u0(x), satisfying the repose angle α condition, i.e., the surface
slope |∇u| cannot exceed k = tanα > 0 nor the support slope |∇u0|. This leads to
the implicit gradient constraint

|∇u(x, t)≤ G0[u](x, t)≡

{
k if u(x, t)> u0(x)
k∨|∇u0(x)| if u(x, t)≤ u0(x).

(3.98)

Following [73], the pile surface dynamics is related to the thickness v = v(x, t) of
a thin surface layer of rolling particles and may be described by

∂tu+ v
(
1− |∇u|2

k

)
and ε∂tv−η∇ · (v∇u) = f − v

(
1− |∇u|2

k

)
, (3.99)

where ε ∼ 0 is the ratio of the thickness of the rolling grain layer and the pile size,
η > 0, is a ratio characterizing the competition between rolling and trapping of
the granular material, and f the source intensity, which is positive for the growing
pile, but may be zero or negative for taking erosion effects into account. Assuming
v(x, t) = v > 0, from (3.99) we obtain

∂tu−δ∆u = f if |∇u|< G0,

where δ = ηv > 0 may account for a small rolling of sand and hence some surface
diffusion below the critical slope, or no surface flow if δ = 0.

Assuming an homogeneous boundary condition, which means the sand may fall
out of ∂Ω , and the initial condition below the critical slope, i.e., |∇u0| ≤ k, the pile
surface u= uδ (x, t), δ ≥ 0, is the unique solution of the scalar variational inequality
(3.49) with L = ∇, p = 2 and g(t) ≡ k, provided we prescribe f ∈ L2(QT ). We
observe that, by comparison of u1 = uδ with δ > 0 and u2 = u0 with δ = 0, as in
Theorem 9, we have the estimate∫

Ω

|uδ −u0|2(t)≤ 2δ

∫ t

0

∫
Ω

|∇uδ ||∇(uδ −u0)| ≤ 4δk2|Qt |, 0 < t < T.

We can also immediately apply for t → ∞ the asymptotic results of Theorem 10
for δ > 0 and Theorem 11 for δ = 0.

Moreover, if δ = 0 in the case of the growing pile with f (x, t) = f (x)≥ 0 it was
observed in [25] not only that, if t > s > 0
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u0(x)≤ u(x,s)≤ u(x, t)≤ u∞(x) = lim
t→∞

u(x, t)≤ kd(x), x ∈Ω , (3.100)

where d(x) = d(x,∂Ω) is the distance function to the boundary, but the limit sta-
tionary solution is given by

u∞(x) = u0(x)∨u f (x), x ∈Ω ,

where u f (x) = max
y∈suporte f

(
d(y)− |x− y|

)+, x ∈ Ω . This model has also a very in-

teresting property of the finite time stabilization of the sandpile, provided that f is
positive in a neighborhood of the ridge Σ of Ω , i.e. the set of points x ∈ Ω where
d is not differentiable (see [25, Theorem 3.3]): there exists a time T < ∞ such that,
for any u0 ∈Kk = {v ∈ H1

0 (Ω) : |∇v| ≤ k},

u(x, t) = kd(x), ∀t ≥ T, (3.101)

provided ∃r > 0 : f (x)≥ r a.e. x ∈ Br(y), for all y ∈ Σ .
Similar results were obtained in [79] for the transported sandpile problem, for

u(t) ∈Kk, such that∫
Ω

(
∂tu(t)+bbb ·∇u(t)− f (t)

)
(v−u(t))≥ 0, a.e. t ∈ (0,T ), (3.102)

for all v∈Kk, with bbb∈R2, ∂Ω ∈C 2, f = f (t)≥ 0 nondecreasing and f ∈ L∞(0,∞),
which also satisfies (3.100). Moreover, it was also shown in [79] that u(t) equiva-
lently solves (3.102) for the double obstacle problem, i.e. with K∧∨ = {v ∈ H1

0 (Ω) :
−kd(x) ≤ v(x) ≤ kd(x), x ∈ Ω} and, moreover, has also the finite time stabiliza-
tion property (3.101) under the additional assumptions bbb ·∇u0 ≤ f (t) in {x ∈ Ω :
−kd(x)< u0(x)} for t > 0 and liminf

t→∞
f (t)> |bbb|+2k‖d‖L∞(Ω).

It should be noted that if we replace Kk by the solution dependent convex set
KG0[u], with G0 defined in (3.98), to solve the corresponding quasi-variational in-
equality (3.102), even with bbb≡ 000 or with an additional δ -diffusion term is an open
problem since the operator G0 is not continuous in u. Recently, in [12], Barrett and
Prigozhin succeeded to construct, by numerical analysis methods, approximate so-
lutions, including numerical examples, that converge to a quasi-variational solution
of (3.102) without transport (bbb ≡ 000), for fixed ε > 0, with the continuous operator
Gε : C (Ω)→ C (Ω) given by

Gε [u](x, t) =


k if u(x)≥ uε(x)+ ε,

kε(x)+(k− kε(x))
u(x)−uε (x)

ε
if uε(x)≤ u(x)< uε(x)+ ε,

kε(x)≡ k∨|∇uε(x)| if u(x)< uε(x),

where uε ∈ C 1(Ω)∩W 1,∞
0 (Ω) is an approximation of the initial condition u0 ∈

W 1,∞
0 (Ω). We observe that the existence of a quasi-variational solution of (3.102)

with this Gε is also guaranteed by Theorem 15 or Corollary 1.
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Example 3.2 An evolutionary electromagnetic heating problem [65]
We consider now an evolutionary case of the Example 6 for the magnetic field
hhh = hhh(x, t) of a superconductor, which threshold may depend of a temperature field
ϑ = ϑ(x, t), (x, t) ∈ QT , subjected to a magnetic heating. This leads to the quasi-
variational weak formulation

hhh ∈K j(ϑ(hhh)) ⊂ Vp,∫ T

0
〈∂twww,www−hhh〉p +δ

∫
QT

|∇×hhh|p−2
∇× (www−hhh)≥

∫
QT

fff · (www−hhh)

−1
2

∫
Ω

|www(0)−hhh0|2 ∀www ∈ Yp such that www ∈K j(ϑ(hhh))

(3.103)

coupled with a Cauchy-Dirichlet problem for the heat equation

∂tϑ −∆ϑ = η +ζζζ ·hhh+ξξξ ·∇×hhh in QT ,

ϑ = 0 on ∂Ω × (0,T ), ϑ(0) = ϑ0 in Ω . (3.104)

Here, for a.e. t ∈ (0,T ), the convex set depends on hhh trough ϑ and is given, for
some j = j(x, t,ϑ) ∈ C (QT ×R), j ≥ ν > 0 by

K j(ϑ(t)) =
{

www ∈ Xp : |∇×www| ≤ j(θ(t)) in Ω
}

(3.105)

where Xp is given by (2.5) or (2.6).
If we give ϑ0 ∈ H1

0 (Ω)∩C α(Ω), η ∈ Lp(QT ) and ζζζ , ξξξ ∈ L∞(QT )
3, the so-

lution map that, for p ≥ 5
2 , associates to each hhh ∈ Vp, the unique solution ϑ ∈

L2
(
0,T ;H1

0 (Ω)
)
∩C λ (QT ), for some 0 < λ < 1, is continuous and compact as

a linear operator from Vp in C (QT ). Therefore, with fff ∈ L2(QT )
3 and ϑ0 ∈

K j(ϑ0), Theorem 19 guarantees the existence of a weak solution (hhh,ϑ) ∈
(
Vp ∩

L∞
(
0,T ;L2(Ω)3)

)
×
(
L2
(
0,T ;H1

0 (Ω)
)
∩C λ (QT )

)
to the coupled problem (3.103)-

(3.104).
We observe that, if the threshold j is independent of ϑ , the problem becomes

variational and admits not only weak but also strong solutions, by Theorem 8.
However, if we set a direct local dependence of the type j = j(|hhh|), as in Example

2.6, the problem is open in vectorial case.
Nevertheless, if the domain Ω = ω × (−R,R), with ω ⊂ R2, ∂ω ∈ C 0,1 and

the magnetic field has the form hhh = (0,0,u(y, t)), y ∈ ω , 0 < t < T , the critical-
state superconductor model has a longitudinal geometry, where u satisfies the scalar
quasi-variational inequality (3.73) with ΦΦΦ ≡ 000 and Theorem 15 provides in this case
the existence of a strong solution u ∈ C (ω × [0,T ])∩K j(|hhh|) ∩W 1,∞

(
0,T ;M(Ω)

)
,

with j ∈ C
(
R;L∞

ν (ω)
)
, for δ ≥ 0. The case δ > 0 was first given in [77] and δ = 0

in [78].

Example 3.3 Stokes flow for a thick fluid
The case where uuu = uuu(x, t) represents the velocity field of an incompressible fluid in
a limit case of a shear-thickening viscosity has been considered in [28], [76] and
[63] by using variational inequalities. Those works consider a constant or variable
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positive threshold on the symmetric part of the velocity field L = D. Here we con-
sider the more general situation of a nonlocal dependence on the total energy of
displacement

|Duuu(x, t)| ≤ G[uuu(x, t)] = ϕ(x, t)
(

η +δ

∫
QT

|Duuu|2
)
, x ∈Ω ⊂ Rd , t ∈ (0,T ),

(3.106)
for given δ ,η > 0, ϕ ∈W 1,∞

(
0,T ;L∞(Ω)

)
, ϕ ≥ ν > 0.

We set X2 =
{

www ∈ H1
0 (Ω)d : ∇ ·www = 0

}
, d = 2,3, which is an Hilbert space

for ‖Dwww‖
L2(Ω)d2 compactly embedded in H =

{
www ∈ L2(Ω)d : ∇ ·www = 0

}
. Defining

KG[uuu](t) for each t ∈ (0,T ) by (2.8) and giving fff ∈ L2(QT )
d and uuu0 ∈ X2 satisfying

(3.106) at t = 0, i.e. uuu0 ∈KG[uuu0], in order to apply Theorem 21, we set

R2 =
1+T+T 2eT

2δ

(
‖ fff‖L2(QT )d +‖uuu0‖L2(Ω)d

)
= ρ

2 .

The nonlocal functional satisfies (3.90) with E = L2
(
0,T ;X2)

)
=V2 and T = δρ ,

since we have

|γ(uuu1)− γ(uuu2)|= δ

∣∣∣∫
QT

|Duuu1|2−|Duuu2|2
∣∣∣= δ

∣∣∣∫
QT

(Duuu1−Duuu2) · (Duuu1 +Duuu2)
∣∣∣

≤ δρ

(∫
QT

|Duuu1−Duuu2|2
) 1

2
, for uuu1,uuu2 ∈ DR2 .

Hence, by Theorem 21, if δρ2 < η , i.e. if

(1+T +T 2eT )2(‖ fff‖L2(QT )d +‖uuu0‖L2(Ω)d
)
< η

δ
,

there exists a unique strong solution uuu∈V2∩H1
(
0,T ;L2(Ω)d

)
∩KG[uuu], with uuu(0) =

uuu0, satisfying the quasi-variational inequality∫
Ω

∂tuuu(t) · (www−uuu(t)))+δ

∫
Ω

Duuu(t) ·D(www−uuu(t))≥
∫

Ω

fff (t) · (www−uuu(t)),

for all www ∈KG[uuu](t) and a.e. t ∈ (0,T ).
This result can be generalized to the Navier-Stokes flows, i.e. with convection

(see [80]).
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42 José Francisco Rodrigues and Lisa Santos

49. Kenmochi, N.: Parabolic quasi-variational diffusion problems with gradient constraints. Dis-
crete Contin. Dyn. Syst Ser. S 6, 423–438 (2013)

50. Murase, Y., Kano, R., Kenmochi, N.: Elliptic quasi-variational inequalities and applications.
Discrete Contin. Dyn. Syst., Dynamical systems, differential equations and applications. 7th
AIMS Conference, suppl., 583–591 (2009)
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