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Abstract

Several Web and social media analytics require user geolocation data. Although

Twitter is a powerful source for social media analytics, its user geolocation is

a nontrivial task. This paper presents an purely word distribution method for

Twitter user country geolocation. In particular, we focus on the frequencies of

tweet nouns and their statistical matches with Google Trends world country dis-

tributions (GTN method). Several experiments were conducted, using a recently

created dataset of 744,830 tweets produced by 3,298 users from 54 countries and

written in 48 languages. Overall, the proposed GTN approach is competitive

when compared with a state-of-the-art world distribution geolocation method.

To reduce the number of Google Trends queries, we also tested a machine learn-

ing variant (GTN2) that is capable of matching the GTN responses with an

80% accuracy while being much faster than GTN.

Keywords: Country Geolocation; Google Trends; Machine Learning; Natural

Language Processing; Twitter.

1. Introduction

Due of the expansion of the Internet, Web and social media analytics are

becoming a key element of many decision support systems. Modern Web plat-
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forms, such as Twitter and Google Trends (GT), provide valuable big data that

are easy to collect. Twitter is an important microblogging service with ap-

proximately 330 million active users that generate opinionated texts1. Twitter

sentiment analysis has been used to predict stock markets [1], political elections

[2], movie sales [3], and English Premier League soccer wins [4]. GT is another

relevant Web source, providing Google statistics of search terms across different

world regions. GT data-based analytics were used to predict flu trends [5], un-

employment rates [6], consumer behavior [7], and the status of trending topics

[8].

Several Web and social media analytics systems require user geographic loca-

tion data. Examples include disaster early warning systems [9], property crime

detection [10], event detection, epidemic dispersion, and news recommendations

[11]. However, estimating the current location of a user is a nontrivial task for

several microblogging services. For example, Twitter allows users to add profile

locations and geographically tag their tweets, but the percentage of geotagged

tweets is low [12, 13] and Twitter user profile location data is often unreliable

[14].

In this paper, we present a novel statistical approach for country-level lo-

cation detection of Twitter users. This geolocation is potentially valuable in

several decision support system applications, allowing them to easily filter users

from a specific country. For instance, it can be used in Twitter sentiment anal-

ysis related to country commodity prices, such as steel, silver, or cotton prices.

Our approach assumes that people tend to write about news, events, and so

on, from the country to which they are more related. It follows that, even if a

user lives in country A, she/he might be more interested in news or information

linked to another country B, so the potential information held in the user’s

tweet is likely to refer to country B. Consider the following examples related to

two tweets about steel production:

1. “chinese steel rebar production reach the maximum over a year”; and

1 https://blog.hootsuite.com/twitter-statistics/
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2. “downhill price for steel beams”.

Although it is clear for the first tweet example that the country of interest

is China, for the second one it is not possible to link the information to a spe-

cific country. In contrast with the stock market domain, where easy identifiable

cashtags2 are common (for example, $AAPL for Apple stocks) [1], commodity

country-specific tweets tend to be similar to the second tweet example: unstruc-

tured and without an obvious geographic term, hashtag, or cashtag. Moreover,

these tweets are often written in English, so they could be related to any coun-

try’s market. It follows that our approach aims to associate a tweet with a

highly probable country context when such a geographic context is not explic-

itly known to assist in country-level Twitter analytics.

To identify the unknown country, we analyze the word distribution of past

user tweets. In contrast with previous studies that use specific geographical dic-

tionaries, based on named-entity recognition (NER) modules [15], we consider

generic nouns. As shown in Section 4.2, these nouns can incorporate geographic

terms (like NER) but also non-geographic terms that are specific to a coun-

try. Examples of such nouns include “Brexit” (related to the United Kingdom),

“Trump” (United States of America) and “cricket” (popular in Pakistan). In

addition, because of cultural differences, there are nouns that are used in dis-

tinct countries with different frequencies (for example, “thanks” in Table 9)

and such information can potentially aid in country discrimination. Moreover,

non-English users can tweet in their native languages, and so non-English nouns

(for example, “sono” and “stato” for Italy) can help in determining the country.

To take advantage of this implicit information, we perform matching between

frequent country-level GT and user tweet nouns (GTN). To the best of our

knowledge, this is the first time that GT data has been used to detect geo-

graphical user information.

As a case study, we consider the steel production domain and recent Twitter

2 https://techcrunch.com/2012/07/30/twitter-clickable-ticker-symbols/
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data, which includes 744,830 tweets from 3,298 users. Following an empirical

design science research approach [16], we show that our GTN model is compet-

itive when compared with a state-of-the-art NER [15] (Section 4.1). To reduce

the GT querying time, we also propose a GTN variant that uses machine learn-

ing (for example, deep multilayer perceptron and random forest) to learn the

GT responses (Section 4.3). Finally, we demonstrate the applicability of GTN

to non-steel commodity domains using more recent Twitter data and a different

but smaller sample of users (Section 4.4).

The contributions of the proposed approach include:

1. We perform a Twitter estimation of the most probable user country of

interest when such explicit context is not known.

2. The estimation is based on generic nouns, retrieved from the user’s histor-

ical tweets, which can include geographic words and other country-specific

terms (including news, sports, religion, events, people, and native language

nouns).

3. The proposed Google Trends nouns (GTN) method uses GT to solve a

spatial detection task rather than a temporal task (as proposed in previous

GT studies).

4. To reduce the GT query time, we proposed a second approach, termed

GTN2, that uses machine learning.

5. We created a recent dataset related to the steel domain, which includes

a conservative country estimate for 3,298 users, to empirically compare

GTN with a state-of-the-art NER.

The paper is organized as follows. Section 2 discusses the literature review

related to social network location estimation methods. Section 3 details the

country-level Twitter estimation methods. Section 4 presents and analyzes the

experimental results. Finally, Section 5 summarizes the work, highlighting its

main advantages, limitations, and future directions.
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2. Related work

Several studies have investigated Web and social network user location es-

timation. Before the rise of social networks, the Internet protocol (IP) address

was the main element used for Web geotagging [17]. However, microblogs typi-

cally do not provide IP addresses. Moreover, the increasing use of virtual private

networks (VPNs) reduces the reliability of IP address location.

Focusing on Twitter, user geographic estimation is a nontrivial task. Twitter

location data can be directly retrieved by accessing geotagged tweets or user

location field profiles. However, only a small fraction of tweets are geotagged.

For example, the literature mentions low percentage values, varying from 0.42%

[12] to 3.17% [13]. While mobile devices are increasingly used, users often

switch off global positioning system (GPS), for privacy reasons or to save battery

consumption. Moreover, although Twitter users can add a geographic reference

to their profiles, the field is free text and often unreliable locations are used

(for example, “in your heart” or “everywhere”). Hecht et al. [14] estimate that

approximately 34% of Twitter users add nonrealistic text locations.

Table 1 summarizes the state-of-the-art research work on social network user

location estimation, using chronological order and emphasizing the Twitter data

source (data source column). There are three main types of social network

user location estimation methods (type column):

1. Image recognition (IR): digital photos posted on social networks provide a

vast amount of information, including location. For instance, Aulov et al.

[18] studied the Deepwater horizon oil spill disaster in the Gulf of Mexico

using Flickr photos and locating them to the desired area.

2. Friendship network (FN): the assumption is that the user’s location can

be inferred by the locations of her/his friendship network. Examples of

work that followed this assumption are [19, 20, 21].

3. Word distribution (WD): related to our approach, it includes methods

that are based on text analysis and word extraction. Some studies use ex-

isting NER modules, location indicative words (LIW), and gazetteers (ge-
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ographic dictionaries) to extract locations from tweets (e.g., [15]). Other

studies are based on tweet word frequencies, proposing methods to filter

local words [12, 22, 23].

Some studies complement the previous methods with the use of additional

features (AF), such as the location field from the user profile metadata [24, 25]

or the tweeted time zone [11]. Other studies combine the different types, such

as: IR and WD [26]; WD and FN [27, 28, 29, 30, 31]; and WD, FN, and AF

[25].

The related work can also be characterized by the text language, loca-

tion target, discrimination level, search area of interest, computational algo-

rithm, evaluation method (val.), and metric. The type of language is often

associated with the search area. In most cases, the messages are written in

English. Regarding the target, while some studies focus on where the tweet

was written (e.g., [32, 24, 25]), the majority try to detect the user’s home lo-

cation (e.g., [12, 27, 34, 29, 31]). As for the discrimination level, there are two

main approaches: detecting larger regions (e.g., countries or states) or smaller

regions (e.g., cities, landmarks, geographic coordinates, or postal codes). Some

fine-grained level detection methods (e.g., geographic coordinates) are often as-

sociated with a specific geographic area and events, such as natural disasters or

emergency responses [18, 36, 24, 39]. The location level often affects the type

of evaluation metric used. Large region discrimination methods tend to per-

form multiclass tasks, so common classification metrics [41] are often adopted

(e.g., accuracy, precision, or recall). More diverse measures are used by the

small region discrimination methods, including standard classification metrics

(e.g., accuracy and precision), classification accuracy within a tolerance radius

(Acc@R), or even regression metrics (e.g., root mean squared error). A wide

variety of algorithms were adopted, including: approaches based on data fre-

quency and statistics (e.g., information gain), generic machine learning models

(e.g., neural network, support vector machine, or random forest), and specific

geographic/Twitter-dependent methods (e.g., geocontext locator, geoparsing,
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Table 1: Summary of the related work.

Study Typea Lang.b
Datac

Source
Tar.d Levele

Data
Periodf

User
sizef

Data
sizef Val.g Areah Algorithmi Metricj

Crandall et al. [26] IR,WD EN Flickr F SP ND 307K 33M ND W BC,SVM Acc
Backstrom et al. [19] FN EN TW U SP ND 2.9M ND ND USA MLE Acc@25mi
Cheng et al. [12] WD EN TW U CI 2009-10 1M 3M 10CV USA MLE Acc@100ml
Davis et al. [20] FN PT TW T CI ND 25K ND 10CV BR DFS P
Kinsella et al. [32] WD TW T CO,SP 2010 7M ND 5CV,HO W PM,KL,QL Acc
Aulov et al. [18] IR EN Flickr F SP 2010 ND 190 ND MXG GNOME RMSE
Dalvi et al. [22] WD EN TW T CI 2009-11 14M 200M ND USA DM,LM P,R
Li [27] WD,FN EN TW U CI 2011 4.0M ND 5CV USA UDI Acc

Chang et al.[33] WD EN TW U CI 2009-10 136K 9M HO USA
GMM,LM,
MLE

Acc

Compton et al. [34] FN EN TW U CI 2012-14 110M ND 5CV,HO TVM ME (km)

Han et al. [35] WD
EN

Mixed
TW U SP 2011-12

500K
1.4M

38M
12M

10CV
NA
W

DFS Acc@161km

Mahmud et al.[11] WD,AF EN TW U SP 2011 10K 1M 10CV USA HE Acc@100mi

Middleton et al.[36] WD
EN,TR,
IT,PT

TW T SP 2011-13 ND 1.5M ND USA G F1

Ryoo et al. [23] WD KR TW U SP 2010-11 3.3M 615M 5CV KR PGM Acc@10km

Minot et al. [28] FN,WD TW U CI 2014 29K 7.0M ND AFR
SVM,
CBF

Acc@10km

Lee et al. [15] WD EN TW T ST 2013-14 ND 113K 10CV USA
SVM,
BC,RF

R

Rahimi et al. [21] FN EN
TW
TW

U SP 2011-12
9.5K
450K
1.4M

380K
39M
12M

HO
USA
USA
W

LP Acc@161km

Rahimi et al. [29] FN,WD EN
TW
TW
TW

U SP 2011-12
9.5K
450K
1.4M

380K
39M
12M

HO
USA
USA
W

LP Acc@161km

Rodrigues et al. [30] FN,WD PT TW U CI 2010 12K 2M 10CV BR
MM,BC,
MRW

Acc

Kotzias et al.[37] FN EN TW U CI 2013
43K
40K
55K

1.9M
1.3M
1.5M

10CV
IR
UK
USA

LDA P

Laylavi et al. [24] WD,AF EN TW T SP 2015 2K ND ND AUS MELI Acc@12.2km

Singh et al. [38] WD
EN
HI

TW T SP 2015-16 ND 32K ND IN MM Acc

Williams et al. [25]
WD,

FN,AF
EN TW T SP 2016 15K ND ND W GCL

Acc@5km
Acc@160km

Quian et al. [31] FN,WD
EN,
ZH

TW
TW

Weibo
FB

U CO,CI 2011

1.5M
329K
1.0M
1K

ND HO

W
USA
CH
ND

NN Acc

Avvenuti et al. [39] WD
EN,
IT

TW T SP 2011-15 ND
9K
2K

ND
W
IT

G Acc

Rahimi et al. [40] FN,WD EN
TW
TW
TW

U SP 2011-12
9.5K
450K
1.4M

380K
39M
12M

HO
USA
USA
W

NN
DCCA

Acc@161km

This work WD Mixed TW U CO 2017 49K 21M 10CV W GTN,GTN2 Acc, WF1

a image recognition (IR), friendship network (FN), word distribution (WD), additional features (AF).

b Language: Chinese (ZH), English (EN), Hindi (HI), Italian (IT), Korean (KR), Portuguese (PT), Turkish (TR); mixed: combination

of multiple languages.

c Facebook (FB), Twitter (TW).

d Target: Flickr picture location (F), tweet location (T), user’s home location (U).

e city (CI), country (CO), one of 50 states (ST), specific place (SP) from a region (e.g., coordinates, landmark or ZIP code).

f nondisclosed (ND), thousand (K), million (M); user and data size represent the initial collected values, before filtering.

g Validation: n-fold cross validation (nCV), hold out (HO), nondisclosed (ND).

h Africa (AFR), Australia (AUS), Brazil (BR), China (CH), India (IN), Ireland (IR), Italy (IT), Korea (KR), Mexican Gulf (MXG),

nondisclosed (ND), North America (NA), United Kingdom (UK), United States of America (USA), World (W).

i Bayesian classifier (BC), consensus-based fusion (CBF), data frequency or statistic (DFS)-based, deep canonical correlation analysis

(DCCA), distance model (DM), geoparsing-based (G), geocontext locator (GCL), Gaussian mixture model (GMM), general NOAA

oil modeling environment (GNOME), Google Trends nouns (GTN), Google Trends nouns and machine learning (GTN2), hierarchical

ensemble (HE), Kullback-Leibler (KL) divergence, label propagation (LP), language model (LM), latent Dirichlet allocation (LDA),

Markov model (MM), maximum likelihood (MLE)-based, multi rank walk (MRW), multi-elemental location inference (MELI), neural

network (NN), placemaker (PM) using tweet content, probabilistic generative model (PGM), query likelihood (QL), random forest

(RF), support vector machine (SVM), total variation minimization (TVM), unified discriminative influence (UDI) model.

j accuracy (Acc), accuracy using a radius of R (Acc@R, R in miles (mi) or kilometers (km)), F1-score (F1), mean error (ME), precision

(P), recall (R), root mean square error (RMSE), weight averaging F1-score (WF1).
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or placemaker using tweet content). These algorithms were validated using

either the simpler holdout (train and test split) or the more robust k-fold cross-

validation.

The last row of Table 1 positions our work, which assumes a pure WD

approach, a country-level detection, and multilingual tweets (mixed). The main

novelty is the usage of generic nouns and GT source (the GTN method), as

detailed in Section 3 and compared with a state-of-the-art WD method [15] in

Section 4.

3. Data and methods

3.1. Data

Using automatic computational code (written in Python and R) and tools,

we created a dataset with recent Twitter data to test the country geolocation

methods. As an example in the decision support system application domain,

we have targeted steel alloy. For the initial selection of users, we selected all

tweets that included one of the keywords {“steel price”, “steel industry”, “steel
production”}, from March to November 2017. These queries resulted in 138,484

tweets, related to 49,203 users. Only a tiny fraction of the tweets (192) were

geotagged. In addition, only 33,886 users had a filled location profile field. We

note that, in this work, retweets are treated in the same manner as common

tweets, because retweets might be helpful in identifying the user’s country of

interest (e.g., retweets of a politician).

To set the ground truth, we designed a conservative procedure that discards

a large number of users but is more reliable for comparing geolocation methods.

The procedure is based on a strong double-source verification that considers both

metadata (user profile location field) and LIW from historical user tweets. We

considered the set of 33,886 users with some location profile data and retrieved

up to a maximum of 3,200 past tweets for each user. We then used OpenNLP [42]

and the ggmap R package [43] tools to extract LIW from the historical tweets

(OpenNLP) and obtain the Google Maps country for each LIW (ggmap).The most
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frequent country, computed over the full set of LIW for a given user, was then

compared with the metadata information. After removing country mismatches,

including metadata with slang and nonrealistic locations, the final ground truth

dataset contains 3,298 users and 744,830 tweets, representing an average of 226

tweets per user.

While all selected users have written at least one English term, from the

set {“steel price”, “steel industry”, “steel production”}, the collected historical

tweets were written by users from both native English speaking (e.g., Australia)

and non-native English speaking (e.g., Spain) countries. Table 2 presents the

percentage of tweets written in a specific language (tweets column) and the

percentage of users per country (users column). Figure 1 plots these last values

visually on a world map (the higher the percentage, the darker is the country

color). The language values were obtained by using the textcat R package

[44]. The majority of the tweets were written in English (66.2%), followed by

the German (18.8%) and Catalan (4.4%) languages. As for the countries, most

Figure 1: Percentage of users per country plotted on a world map.

users come from anglophone countries, such as United States of America (USA)

(45.7%), United Kingdom (UK) (12.3%), and Australia (6.4%). As for the non-

anglophone countries, most users are from India (27.1%), while other countries
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Table 2: Dataset tweet languages and users per country.

Language Tweets Country Users

English 66.2% United States of America (USA) 45.7%

German 18.8% India 27.1%

Catalan 4.4% United Kingdom (UK) 12.3%

Danish 1.9% Australia 6.4%

Nepali 1.3% Canada 3.1%

Indonesian 1.1% Germany 0.5%

Latin 0.9% Pakistan 0.5%

Rumantsch 0.8% South Africa 0.4%

Slovak 0.9% China 0.3%

French 0.4% France 0.3%

Esperanto 0.3% Nigeria 0.3%

Swahili 0.3% Spain 0.3%

Sanskrit 0.3% Kenya 0.2%

Spanish 0.2% Italy 0.2%

Romanian 0.2% Mexico 0.2%

Swedish 0.2% Finland 0.1%

Czech 0.2% Ireland 0.1%

Malay 0.1% Japan 0.1%

Hungarian 0.1% Argentina 0.1%

Afrikaans 0.1% Belgium 0.1%

Slovenian 0.1% Brazil 0.1%

Dutch 0.1% Colombia 0.1%

Tagalog 0.1% Indonesia 0.1%

Basque 0.1% Malaysia 0.1%

Others 0.6% Others 1.2%

are much less prevalent (e.g., Germany with 0.5%). In total, the dataset contains

tweets written in 48 languages and users from 54 countries.

Only one state-of-the-art study performed a mixed-language tweet geoloca-

tion [35], as shown in Table 1. Our work does not separately consider datasets
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of tweets written in a specific language, because it is more trivial to identify the

country when the language is distinctive of a nation (e.g., Japanese).

Following the work of [35], we adopted a mixed language approach, which is

more natural for the geolocation of countries, because Twitter is a multilingual

platform. Nevertheless, the values in Table 2 reflect the steel domain scenario.

Therefore, most of the tweets are written in English, which is a geographically

widespread language that is more difficult to geolocate [35], making this dataset

challenging and interesting for comparing purely WD methods.

3.2. Google Trends nouns

As explained above, the proposed GTN WD approach uses only tweet nouns,

because we assume they are the most representative part of speech able to

identify different countries.

For user u, the GTN approach works by first identifying the sequence of the

most frequent nouns nu = 〈n1, n2, ..., nlu〉, in descending order and with a length

of lu elements. To obtain nu, the tweets are first preprocessed by transforming

the text to lowercase and removing English stopwords. The TextBlob Python

module is then used to extract noun phrases and then the nouns. We note that

the TextBlob module is faster than other tools [45].

For each noun ni ∈ nu, a GT query is executed by using the Pytrends

Python module. To limit the number of queries, a fixed pruning threshold (p)

is used, such that lu ≤ p for all u users. The GT query result for noun ni is

a sequence with integer confidence scores for an alphabetic list of countries C

with a length of lc = 250. The scores range from 0 (lowest confidence) to 100

(highest confidence). Let Gu denote the GT confidence score matrix for user u

with a size of lc × lu, where each score is represented as gc,i for country c ∈ C

and the i-th most frequent noun. We test three strategies to weight the GT

scores, resulting in the weighted confidence score matrix Su (lc × lu) with the

elements sc,i (country, noun):

• equal weights (EQ): no weights are used, and so sc,i = gc,i.

11



• Internet usage (IU): weighted according to the fraction of Internet users

for a specific country c (wc) according to the World Bank statistics3:

∀c ∈ C, ∀i ∈ {1, ..., lu} : sc,i = wcgc,i (1)

• nouns frequency (NF): weighted according to the order of the nouns (more

frequent nouns have stronger weights):

∀c ∈ C, ∀i ∈ {1, ..., lu} : sc,i = wigc,i (2)

where wi = (lu − i+ 1)/lu.

Once the confidence score is computed, we explore two statistical approaches

to estimate the most probable country cu for user u:

• join frequency (JF) – based on the highest score country when summing

all noun scores:

cu = argmax
c

(

lu∑

i=1

sc,i) (3)

• absolute frequency (AF) – selects the most common country (mode) when

considering the highest score countries for all nouns:

cu = Mode(argmaxc(sc,i)∀i ∈ {1, ..., lu}) (4)

where Mode denotes the mode of a set.

3.3. Machine learning

In this paper, we use machine learning for three different goals: to obtain the

benchmark geolocation method outputs (for comparison purposes with GTN); to

access the quality of the proposed GTN; and to mimic the GTN responses. For

all three goals, the input features consist of the classical bag-of-words (BoW)

[46], in a total of 24,269 unique nouns for the 3,298 users considered. The

classifier output is the geolocation country but the target values depend on the

3 https://data.worldbank.org/indicator/IT.NET.USER.ZS
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machine learning goal. The first goal is detailed in Section 3.4. The second

goal is applied during the error analysis procedure [47], to verify whether the

GTN errors are solvable by machine learning. The third goal, termed the GTN2

method here, is used to reduce the number of GT queries. Similarly to other

Web query geolocation methods (for example, based on Google Maps), GTN

requires a substantial computational effort because of the large number of GT

requests. To solve this problem, we use GTN as an oracle, providing the target

classification responses for the machine learning methods.

We explore four classification algorithms with powerful learning capabilities

[48, 49]: bagging (BG), random forest (RF), support vector machine (SVM),

and a deep learning multilayer perceptron (MLP).

Breiman’s bagging or bootstrap aggregation algorithm (BG) trains t inde-

pendent classifiers on a given training set by sampling, with replacement, in-

stances from the training set. The essential idea is to average noise and avoid

overfitting by using unbiased models that reduce the variance [48]. Bagging

is normally applied using decision trees as the individual weak learners, which

corresponds to the BG model used in this work.

RF is a successful model that was proposed in 2001: it combines t decision

trees based on bagging and random selection of input features [50]. RF tends

to obtain good classification results even when using its default parameters and

when no feature selection method is adopted [48]. In a recent large comparison

study, the RF classifier was ranked as the best classifier among 17 of the main

machine learning types of algorithms [51].

SVM are widely used in text classification [52]. The model is based on a

maximized margin criterion [53]. For binary classification, the SVM algorithm

can compute the best separating hyperplane in a feature space, which is defined

by a kernel transformation. In this work, we adopt the linear kernel, because it

is very fast and works well with high-dimensional input features, which is the

case with our nouns dataset. The model contains one hyperparameter (C) that

controls the tradeoff between fitting the errors and obtaining a smooth decision

boundary. Because we have 54 class labels, we used the one-vs-rest multiclass
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classification, which involves training a single classifier per class [54].

Moreover, recent remarkable developments were proposed in the field of deep

learning, leading to neural network architectures that obtained the best results

in diverse competitions (for example, computer vision and natural language

processing) [55]. Such success revived the popularity of the MLP neural model.

In this work, we assume a modern MLP representation, also known as deep

feedforward neural network [49], with three hidden layers (with h1, h2, and h3

hidden nodes) that uses [55]: the ReLU activation function on all hidden units,

the Softmax function on the output layer, a dropout regularization, and early

stopping (to reduce overfitting).

All classifiers are evaluated by using an external 10-fold cross-validation

scheme, as explained in Section 3.5. For each of the 10 cross-validation itera-

tions, the available data is divided into training data (90% of the instances) and

test data (10%). The test data is used to measure the classification performance

of the selected models. The training data is used to fit the machine learning

models and to perform the hyperparameter selection. To reduce the bias towards

a particular model [56], we apply the same hyperparameter selection procedure

for BG, RF, SVM, and MLP. Using standard practice [48, 47], the training data

is further split into training and validation sets (internal holdout validation).

The training set, with 80% of the training instances (0.8 × 0.9 =0.72% of all

available data), is used to fit the classifier. The validation set, with the other

20% of the training data examples (0.18% of all data), is used to monitor the

best generalization capability, in terms of global classification accuracy, associ-

ated with a hyperparameter or set of hyperparameter values. After selecting

the hyperparameters, the machine learning model is retrained with all training

data. To provide a fair comparison, we applied a grid search with 10 different

hyperparameter combinations for each machine learning algorithm. For BG and

RF, the number of trees ranged through t ∈ {50, 100, 150, 200, 250, 300, 500,
1000, 1500, 3000}. For SVM the C parameter was searched using C ∈ {0.01,
0.05, 0.1, 0.2, 0.5, 1, 5, 10, 50, 100}. For MLP, we tested ten different MLP

models, which correspond to different combinations of numbers of hidden nodes
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and dropout values, as detailed in Table 3. The number of MLP inputs is large,

because it includes all unique dataset nouns. Therefore, to reduce computa-

tional effort, and following what is suggested in [57], the MLP combinations

assume a decreasing hidden layer size structure, where h1 > h2 > h3. The other

parameters were set to their default values, as implemented using the keras

and sklearn Python modules.

Table 3: Different MLP models tested during the hyperparameter selection stage.

Model Hidden layer Hidden layer Hidden layer
DropoutNumber size 1 (h1) size 2 (h2) size 3 (h3)

1 200 100 70 0.4
2 200 100 70 0.3
3 300 150 50 0.4
4 300 100 50 0.4
5 500 200 100 0.4
6 500 200 50 0.4
7 200 150 50 0.4
8 200 150 50 0.3
9 500 150 70 0.4
10 500 100 50 0.4

Because the country classes are unbalanced (for example, 45.7% of users are

from the USA, while only 0.1% are from Brazil; see Table 2), we applied an

oversampling procedure [58] to all training sets of the machine learning algo-

rithms. The goal is to improve classifier performance for the minority classes

by performing random sampling, with repetition, such that the training set be-

comes balanced. We note that we did not consider undersampling because some

classes are very rare, and so undersampling would lead to very small training

sets. In addition, the test sets retain the original unbalanced class distribution.

3.4. Benchmark methods

For comparison purposes, we selected a recent WD geolocation benchmark

method (BM) [15] that can be simulated using similar procedures and tools

already used in this research. The BM method first uses an NER tool (Stanford

CoreNLP4) to extract geolocation terms. The terms are fed to Google Maps to

4 https://stanfordnlp.github.io/CoreNLP/
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obtain the geographic coordinates. When Google Maps does not return a single

country, this is considered an ambiguous case, which is then estimated by using

a machine learning algorithm: naive Bayes, SVM, or RF. Using only training

data (the BoW approach), the algorithm is fitted to the subset of unambiguous

cases and then used to predict all ambiguous cases, including those from the

test data. Because RF achieved the best results in [15], we adopt this learning

classifier for BM. We also test a hybrid benchmark method (BM2), which works

similarly to BM except that the ambiguous cases are estimated using GTN

instead of the learning classifier (RF).

3.5. Evaluation

The created Twitter dataset is described in Section 3.1; it includes 3,298

users (instances) related to 54 countries. The input features consist of 24,269

unique nouns. The countries were identified by the ground truth procedure that

is based on a conservative double-source verification, which considers both meta-

data (user profile location field) and LIW, given all historical tweets (744,830

messages). The Twitter user country geolocation is modeled as a multiclass

task (with 54 output labels), and so common classification performance met-

rics are adopted. The confusion matrix maps predicted values to actual values.

From this matrix, several multiclass performance measures can be computed.

For a particular class c, we use [41]: accuracyc (Accc), precisionc, recallc, and

F1-scorec.

To obtain a single performance measure from the multiclass results, we adopt

global accuracy (Acc), which is widely used in classification tasks. The F1-score

is a more reliable measure when the data are unbalanced, which is true in our

case (as shown in Table 2). Therefore, we also compute a single global F1-score

by performing a weight averaging operation (WF1), in which each F1-score

is weighted proportionally to the class frequency in the data. The evaluation

metrics were computed using the sklearn module.

GTN is a statistical approach that does not require training data. Neverthe-

less, for comparison with the machine learning approaches (Table 12), we adopt
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the popular 10-fold cross-validation scheme (Section 2) in all comparison tests.

The data are randomly split into ten equal-sized folds; then, using a rotation

scheme, one fold is selected for testing and all of the others are used for training

(if needed by the method). This results in 10 sets of predictions and desired

values for each method. To aggregate the results, we average the k = 10 distinct

classification performance results, and the statistical significance is obtained by

applying the nonparametric Mann-Whitney test [59].

4. Results

4.1. Google Trends nouns results

We conducted preliminary experiments with GTN, to tune the method. The

preliminary experiments considered a random subset of our data related to 267

users (8%). Adopting the EQ and JF methods, we first tested distinct pruning

threshold values, which were based on some noun distribution statistics (median,

sixth percentile, third quartile, mean): p ∈ {112, 156, 298, 770}. The best results
(with an accuracy of 76.0%) were achieved for p = 298, which was fixed. Using

the same preliminary sample, we then compared different weighting methods

for the country confidence scores and country classification, in a total of six

GTN models (Table 4). The best classification results were achieved by the first

model, which uses EQ and JF, becoming the selected configuration for the GTN

method.

The average 10-fold country geolocation results for GTN and benchmark

methods are presented in Table 5. When analyzing both classification metrics,

global accuracy (Acc) and weight-averaging F1-score (WF1), the comparison

clearly favors GTN with respect to the state-of-the-art WD method (BM), show-

ing a substantial difference (15.7 percentage points for Acc and 8.5 percentage

points for WF1) that has statistical significance. The hybrid NER GTN method

(BM2) provides better performance than BM, indicating that GTN handles the

ambiguous cases better than RF. Nevertheless, GTN achieves the best overall

17



Table 4: Comparison of different GTN weighting and country classification strategies (bold

denotes best value).

Model
Score Classification

Acc
Weighting Strategy

1 EQ JF 76.0

2 EQ AF 73.0

3 IU JF 56.6

4 IU AF 40.1

5 NF JF 75.3

6 NF AF 45.3

results, with an improvement of 2.3 percentage points for Acc and 1.8 for WF1,

although these are not statistically significant.

Table 5: Country geolocation results (in %, best dataset values in bold).

Metric BM BM2 GTN

Acc 64.9 78.3 80.6�

WF1 72.8 79.5 81.3�

� – Statistically significant under a pairwise comparison when compared with BM

(p-value < 0.05).

4.2. Error analysis

To better understand the errors produced by GTN, we performed an error

analysis [47], in which we manually inspected a total of 638 Twitter user ac-

counts related to GTN country misclassification examples. Table 6 details the

errors in terms of four main categories (error type column). There are 76

cases (11.9%) for which GTN provided the correct classification (error type A)

when the conservative ground truth method (Section 3.1) was wrong. These

cases are mostly related to user metadata with ambiguous geolocation terms

that can refer to more than one anglophone country (for example, “Newport”

city can refer to USA or UK; see Table 7). We have recomputed the classifi-

cation performance for GTN, BM, and BM2 by using the manually adjusted
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76 “true” cases. The results obtained are presented in Table 8, which confirms

that the “true” classification performance for GTN is actually higher than the

results shown in Table 5. In fact, in Table 8 the GTN achieves an Acc of 83.0%

and a WF1 of 83.4%. We particularly note that GTN statistically outperforms

both benchmark methods (BM and BM2) when adjusted to the “true” values.

A common GTN error (type B) is an anglophone country mismatch (32.0%,

e.g., UK or Canada instead of USA). There are also some errors (type C, 3.1%)

related to proximate countries when considering the location (e.g., Belgium and

Netherlands) or language (e.g., Portugal and Brazil). Most GTN mismatches

(type D, 53.0%) are related to other mismatches not included in the previous

error types. Table 7 reports some examples of the A, B, C, and D error types.

In the Table 7, the user name is omitted for privacy reasons.

Table 6: Error analysis for GTN.

Error type Number Percentage

Correct classification (A) 76 11.9

Anglophone mismatch (B) 204 32.0

Close country by language or location (C) 20 3.1

Other mismatches (D) 338 53.0

Total 638 100.0

To better exemplify how the nouns can be associated with countries, we

present the distribution of the ten most frequent nouns used by the GTN method

to identify the country. Table 9 is related to a sample of four anglophone

countries (Australia, Canada, UK, and USA), while Table 10 shows the most

frequent nouns for four examples of non-anglophone countries (Finland, Italy,

Pakistan, and Singapore). To create the tables, we considered all nouns from all

users that were correctly classified by the adjusted GTN model of Table 8. The

respective classification accuracy (Acc) values for the selected country examples

are: Australia – 80%, Canada – 32%, UK – 81%, USA – 94%, Finland – 75%,

Italy – 100%, Pakistan – 74%, and Singapore – 100%.
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Table 7: Examples of misclassified locations.

Error Lang.a Metadata Ground GTN Manual

type location truth assessment

A EN Newport USA UK UK

A EN North East USA UK UK

B EN Scotland UK USA UK

C NL Mechelen Belgium Netherlands Belgium

C ES Barcelona Spain Guatemala Spain

C EN Suri India Bangladesh India

C PT Portugal Portugal Brazil Portugal

D ES Philadelphia USA Colombia USA

Language: English (EN), Dutch (NL), Portuguese (PT), Spanish (ES).

Table 8: Country geolocation results for the adjusted ground truth (in %, best dataset values

in bold).

Metric BM BM2 GTN

Acc 63.6 79.1 83.0�

WF1 71.6 80.1 83.4�

� – Statistically significant under a pairwise comparison when compared with BM

and BM2 (p-value < 0.05).

Tables 9 and 10 show specific geographic terms that can be used to iden-

tify the country, working similarly to an NER tool. These include geographic

nouns such as: “australia”, “sydney”, “canada”, “scotland” (Table 9); and

“finland”, “oulu”, “pakistan” (Table 10). GTN also benefits from language dif-

ferences, as shown by the Italian examples of Table 10. However, even when

considering the English language, there are also non-geographic terms (not used

by NER) that do seem country specific and so can contribute added discrim-

ination capability to GTN. For instance, “brexit” is associated with the UK,

while “trump” is related to the USA. For Pakistan there are several other ex-

amples of country-specific terms, such as “maryamnsharif” (popular Pakistani

politician), “cricket” (highly popular in the country), and “allah” (religion). A
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different interesting example is provided by the term “thanks”, which is used in

three anglophone countries (Canada, UK, USA) but with different frequencies

(e.g., 0.46% in Canada vs 0.22% in USA). This might be because of cultural

differences between countries. In contrast, there are other nouns that are often

used with similar frequencies, such as “time” (0.39% for Canada and USA) and

“year” (0.29% for Canada and 0.33% for USA). These generic nouns limit the

GTN capability to discriminate between countries that use the same language,

as shown by the anglophone errors of Table 6.

Table 9: Most frequent nouns for four examples of anglophone countries.

Australia Canada UK USA
Word FrequencyWord FrequencyWord FrequencyWord Frequency
year 0.35% canada 0.51% time 0.46% time 0.39%
time 0.31% thanks 0.41% people 0.42% people 0.34%
people 0.30% time 0.39% news 0.34% year 0.33%
australia 0.28% year 0.29% thanks 0.33% news 0.26%
world 0.28% business 0.29% year 0.32% trump 0.25%
news 0.26% project 0.27% work 0.29% work 0.24%
work 0.24% industry 0.27% brexit 0.28% world 0.23%
business 0.24% news 0.24% christmas 0.27% life 0.22%
industry 0.22% work 0.24% scotland 0.26% years 0.22%
sydney 0.21% check 0.24% government 0.24% thanks 0.22%

Table 10: Most frequent nouns for four examples of non-anglophone countries.

Finland Italy Pakistan Singapore
Word FrequencyWord FrequencyWord FrequencyWord Frequency
congratulations 0.34% sono 0.50% pakistan 1.16% china 0.62%
camp 0.22% perch 0.40% maryamnsharif 0.73% steel 0.62%
finland 0.22% anche 0.40% people 0.58% price 0.47%
business 0.22% stato 0.30% allah 0.58% prices 0.47%
thesis 0.22% grande 0.30% world 0.44% time 0.47%
time 0.22% posso 0.30% cricket 0.44% year 0.47%
seminar 0.22% prima 0.30% pakistani 0.44% data 0.47%
technology 0.22% bella 0.30% morning 0.44% report 0.47%
oulun 0.22% bello 0.30% imran 0.44% conference 0.47%
oulu 0.22% alla 0.30% army 0.44% trade 0.47%

Following Table 6, we performed another error analysis step in which ma-

chine learning was used. We considered two machine learning error analysis

setups:

• I – The 204 misclassified user examples who live in anglophone coun-
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tries (Table 6) are removed from the dataset and are always used as the

same test set in the 10 iterations of the 10-fold procedure. The remaining

dataset examples pass through a 10-fold validation, to generate 10 training

sets and learning models that are tested on the same 204 test set cases.

• II – Similar to the previous setup, except that the fixed test set is com-

posed of all 638− 76 = 562 “true” misclassified users (Table 6).

The machine learning models require a substantial computational effort be-

cause the nouns dataset is high-dimensional, with 24,269 features and 3,298

instances. To reduce the computational effort, the hyperparameter selection is

first applied to the dataset, from Section 3.1. The best hyperparameters for

each classifier are then fixed and used in the 10-fold evaluation of all machine

learning comparisons (setups I and II and experiments of Section 4.3). The

hyperparameter selection procedure uses a 10-fold validation. During each 10-

fold iteration, the training data is split using an internal holdout (80%/20%).

For each learning algorithm, ten different models (described in Section 3.3) are

trained. The best hyperparameter values are selected as the best 10-fold mean

global accuracy (Acc) and this resulted in: BG – t = 300 trees, RF – t = 150

trees, SVM – C = 0.01, and MLP – model 7 of Table 3 (h1 = 200, h2 = 150,

h3 = 50, dropout=0.4).

The machine learning error analysis results are presented in Table 11. The

obtained classification measure values (WF1 and Acc) range from 21% (setup I,

Acc, and RF) to 50.8% (setup I, WF1, and SVM). The best results were obtained

by BG (setup I) and SVM (setup II). Globally, low performances were achieved,

in particular, if compared with the machine learning results of Section 4.3. The

machine learning difficulties in classifying both the anglophone misclassified

users (setup I) and the GTN uncorrected responses (setup II) reinforce the

competitiveness of the GTN approach.
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Table 11: Machine learning error analysis results (in %, best values in bold).

Classification metric

Acc WF1

Setup BG RF SVM MLP BG RF SVM MLP

I 41.7� 21.3 38.8 23.7 50.8� 29.7 45.5 28.8

II 40.2 31.2 43.1� 34.3 42.2 32.4 44.4� 30.0

� - Statistically significant under a pairwise comparison when compared

with other models (p-value < 0.05).

4.3. Machine learning classification results

While the proposed GTN approach provides competitive country geolocation

results (Table 5), it requires a substantial computational effort in terms of GT

requests. During the experiments performed in this work, a total of 24,269

GT queries were executed: one for each distinct noun, requiring an average of

1.4 s for each GT query. Because there are 3,298 users, the average user GTN

response time is 10.3 s.

To reduce the GTN request effort, we tested whether the GTN classification

responses could be directly modeled as targets by the machine learning methods

(the GTN2 method). The 10-fold average test results for GTN2 are shown in

Table 12. The best values were achieved by the deep learning method (MLP),

which outperforms other machine learning models for both classification met-

rics, presenting a statistical significance when compared with BG, RF, and SVM

(for Acc), and BG and RF (for WF1). MLP obtained a high-quality predictive

performance (Acc of 80% and WF1 of 77%). Using an Intel Xeon E5 2.30-GHz

computational server, the whole MLP training (for one 10-fold iteration) re-

quired approximately 1,200 s and the MLP testing time is much faster, requiring

approximately 3 ms per user. These results confirm that GTN2 is a valuable and

computationally fast alternative to GTN. For future multiclass machine learn-

ing comparisons, the data used in this section has been made publicly available
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at https://github.com/paolazola/Twitter-country-geolocation.

Table 12: Country geolocation results for GTN2 (in %, best values in bold).

Metrics BG RF SVM MLP

Acc 61.3 69.6 73.8 80.3�

WF1 64.2 66.2 76.2 77.4∗

� – Statistically significant under a pairwise

comparison when compared with RF, BG,

and SVM (p-value < 0.05).

∗ – Statistically significant under a pairwise

comparison when compared with RF and

BG (p-value < 0.05).

4.4. Demonstration application

To further demonstrate the applicability of GTN, we assume a decision sce-

nario in which an analyst wants to distinguish the country of interest of Twitter

users that tweet about commodity prices. New data was fetched during the first

week of January 2019: this comprised the last 10 days of public tweets of users

that typed at least one of the keywords {“copper commodity”, “sugar commod-

ity”, “cotton commodity”, and “silver commodity” }. The original user sample

was composed of 100 unique accounts. The Twitter profiles of these users were

manually inspected, analyzing both the metadata and historical tweets, to de-

tect the country of interest. This resulted in a set of 71 users with a clear country

label. Although the sample is small, we note that a larger sample (concerning

3,298 steel production-related users) and more robust validation (10-fold) was

already tested in Section 4.1. Therefore, the goal of this demonstration is just

to show, as a proof of concept, the potential applicability of GTN to other

non-steel commodity domains (with other users and more recent Twitter data).

The GTN method was then applied (as detailed in Section 4.1) to estimate

the country for the set of 71 users. Because the number of users is relatively

small, the results are shown in terms of a three-class task that includes the
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two top countries of Table 2: “USA”, “India”, and “other”. The prediction

results are shown in Table 13, in terms of the confusion matrix and individ-

ual class measures (the last three rows show Accc, predictionc, and recallc).

The obtained results show a very good classification performance for India (17

users, AccIndia=90.1%, precisionIndia=100.0%, recallIndia=70.8% ) and a rea-

sonable classification for USA (39 users, AccUSA=67.6%, precisionUSA=53.8%,

recallUSA=80.8%).

Table 13: Confusion matrix and classification measures for the GTN demonstration example.

Target country

USA India other Total

GTN USA 21 0 5 26

predictions India 6 17 1 24

other 12 0 9 21

Total 39 17 15 71

Accc= 67.6% 90.1% 74.6%

precisionc= 53.8% 100.0% 60.0%

recallc= 80.8% 70.8% 42.9%

5. Discussion and conclusions

With the expansion of the Internet, Web and social media analytics are a key

tool of diverse decision support systems. Several of these social media analytic

systems require user geographic location data. In this work, we propose a novel

GTN approach to detect the most probable Twitter user country of interest

when such context is not explicitly known. GTN is a purely word distribution

method that does not require training data. It is based on the frequency of users’

tweet nouns and GT country word distribution data. The main advantage of

the GTN method, with respect to existing geographic dictionary models, is its

ability to obtain information from generic and adaptable nouns, dynamically

provided by GT, such as “Brexit”, “Trump”, or “cricket”. Moreover, using GT
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as source, the GTN method is able to benefit from country term frequency or

language differences. Conversely, the GTN has some limitations. For example,

as shown in Table 7, there are popular generic nouns (e.g., “time” and “year”)

that show a similar frequency of use in different countries. In addition, GTN

assumes just one implicit country of interest, whereas some users might travel

or tweet implicitly about more than one country.

Following a design science research methodology [16], we validated GTN em-

pirically. Using a conservative procedure, we created a recent dataset with 3,298

Twitter users from 54 countries with 744,830 tweets written in 48 languages.

The obtained GTN results are of high quality (83% accuracy and weighted F1-

score) and competitive when compared with a state-of-the-art word distribution

method [15]. An error analysis was also performed on the GTN misclassifica-

tions, revealing different types of errors, such as mismatches between different

anglophone countries (32% of the errors) and between countries that are simi-

lar or share a language or location (3%). Several experiments were conducted,

using four machine learning classifiers: bagging (BG), random forest (RF), sup-

port vector machines (SVM), and a deep learning inspired multilayer perceptron

(MLP). The experiments have shown that the GTN errors are difficult to out-

perform, confirming the value of the GTN responses. One limitation of GTN

is its dependency on GT and the required GT request time. As an alternative,

we tested the GTN2 approach, in which a machine learning method models

the GTN responses. The best results were achieved by the GTN2 MLP model

(80% accuracy and 78% weighted F1-score when modeling GTN), which is a

much faster method than GTN. Finally, we have demonstrated the applicability

of GTN to non-steel commodities (such as cotton), using more recent Twitter

data and a different but smaller sample of users.

Because the percentage of geotagged tweets is small and Twitter user pro-

file location data is frequently unreliable [12, 14], as also shown in this study,

the proposed GTN and GTN2 approaches can be valuable to support Web and

social media analytic systems. In future work, we intend to apply GTN in real-

world applications, such as for filtering country tweets related to a particular
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commodity price (for example, gold or wheat prices from Germany). In ad-

dition, we wish to complement GTN with extra geolocation features, such as

friendship networks or user profile metadata, and investigate more fine-grained

location levels. Finally, we plan to research whether feature selection filtering

methods, such as pointwise mutual information [1], can be used to discard the

GTN generic nouns that are used equally by different countries, thereby poten-

tially improving the GTN performance. However, we note that such a filtering

approach would require a GTN adaptation that involves a training set.
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