
Replace this file with prentcsmacro.sty for your meeting,
or with entcsmacro.sty for your meeting.
Both can be found at the ENTCS Macro Home Page.

A Local Graph-rewriting System for Deciding
Equality in Sum-product Theories

(Extended Abstract)

José Bacelar Almeida, Jorge Sousa Pinto, and Miguel Vilaça 1,2,3

Departamento de Informática
Universidade do Minho

4710-057 Braga, Portugal

1 Introduction

The point-free style of programming [1] has been defended as a good choice
for reasoning about functional programs. However, when one actually tries to
construct a decision procedure for the associated equational theory, one faces
problems, even when small fragments of the theory are considered.

In this paper we outline how a graph-based decision procedure can be given
for the functional calculus with sums and products (but no exponentials – the
expressions we use here can not really be seen as a programming language).
We show in turn how the system covers reflexivity equational laws, fusion
laws, and cancelation laws.

The decision procedure has interest independently of our initial motivation.
The term language (and its theory) can be seen as the internal language of a
category with binary products and coproducts. A standard approach based
on term rewriting would work modulo a set of equations; the present work
proposes a simpler approach, based on graph-rewriting.

2 The Term Language and Theory

Consider the following language TPF for types and terms:

Type ::= A | Type× Type | Type + Type

Term ::= CType,Type | idType | Term · Term | 〈Term, Term〉 | π1
Type,Type |

π2
Type,Type | [Term, Term] | i1Type,Type | i2Type,Type

1 Email:jba@di.uminho.pt
2 Email:jsp@di.uminho.pt
3 Email:jmvilaca@di.uminho.pt

c©2006 Published by Elsevier Science B. V.

http://www.math.tulane.edu/~entcs

Bacelar Almeida and Sousa Pinto and Vilaça

where A is a set of base types and CType,Type is a set of constant functions
(we assume that the sets in this indexed family are pairwise disjunct – thus a
constant symbol uniquely determines its indexing types).

To each term we associate a domain and a codomain type – we denote
A : f : B the assertion that term f has domain A and codomain B. The
typing rules associated to the language are the following

cA,B ∈ CA,B

A : cA,B : B A : idA : A

A : f : B B : g : C

A : g · f : C

A : f : C B : g : C

(A + B) : [f, g] : C (A×B) : π1
A,B : A (A×B) : π2

A,B : B

A : f : B A : g : C

A : 〈f, g〉 : (B × C) A : i1A,B : (A + B) B : i2A,B : (A + B)

In the following, when referring to a term we assume its well-typedness.
We will ommit the type superscripts, which can be inferred from the context.

The type constructors × and + are characterized through their universal
properties. These, in turn, may be captured by the following set of equations:

Composition id · f = f · id = f (f · g) · h = f · (g · h)

Reflexivity laws 〈π1, π2〉 = id [i1, i2] = id

Fusion laws 〈f, g〉 · h = 〈f · h, g · h〉 f · [g, h] = [f · g, f · h]

Cancelation laws π1 ·〈f, g〉 = f [f, g] · i1 = f

π2 ·〈f, g〉 = g [f, g] · i2 = g

Deciding equality under the theory defined by these equations requires
producing a decision procedure. The simplest way to accomplish this is to
orient the equations to obtain a confluent, terminating rewriting system (pos-
sibly by means of a completion process). Unfortunately, in this case it is not
possible to conduct this program. Even considering the multiplicative frag-
ment alone (i.e. ignoring the terms that involve sums), we face problems when
constructing a rewriting system from the corresponding laws.

2.1 Difficulties

In the multiplicative sub-system, the orientation left to right seems sensible
for the equations given above, but creates unsolvable critical pairs induced by
the reflection laws. To illustrate this problem consider the following derived
law (surjective pairing)

f = id · f = 〈π1, π2〉 · f = 〈π1 ·f, π2 ·f〉
2

Bacelar Almeida and Sousa Pinto and Vilaça

Both extremes of the equality chain are in normal form with respect to the
rewrite system obtained, thus it fails to be complete.

A closer look at the reflection law gives us a hint of what the problem
is – it drops from the term structural information that is essential for the
confluence of the system. An approach to overcoming this problem consists
in imposing that all the rewrites preserve the structural information (allowing
for the reconstruction of types), together with the proviso that the starting
term contains all the structural information to reconstruct its type structure.
In practice, we can drop identities from the language, except at base types,
and the reflexivity law can be dropped from the rewriting system – it becomes
a rule for defining identities of structured types. As an example, the identity
of type (A×B)× C is defined as 〈〈π1, π2〉 . π1, π2〉.

Constant functions should also carry their structural information. To avoid
restricting constant functions to base types, we may instead exhibit that in-
formation by composing the functions with appropriate identities (defined as
above). This means that a normal form of a constant function f with codomain
A × B is the normal form of 〈π1, π2〉 · f , that is 〈π1 ·f, π2 ·f〉. Equations like
surjective pairing are then satisfied by construction.

Obviously, restricting our attention to the additive fragment will lead to
dual arguments. However, when both products and sums are considered, a
simple rewriting approach faces irremediable problems: not only does asso-
ciativity of composition become a concern (there no longer exists a sensible
orientation for it), but products and sums interact in such a symmetrical way
that the rewriting system cannot “choose” a certain form to the detriment of
its dual. To exhibit an example that illustrates this last observation, consider
the following equality derivation (known as the exchange law):

〈[f, g], [h, k]〉= 〈[f, g], [h, k]〉 · [i1, i2]
= [〈[f, g], [h, k]〉 · i1, 〈[f, g], [h, k]〉 · i2]
= [〈[f, g] · i1, [h, k] · i1〉, 〈[f, g] · i2, [h, k] · i2〉]
= [〈f, h〉, 〈g, k〉]

In fact, to decide equality of the sum-product theory through a rewriting
system, we must work modulo an appropriate equational theory that handles
these equalities (see for instance [3]).

In this paper we follow a totally different approach: the graph-rewriting
system introduced in the next sections captures associativity of composition
for free, and moreover the interaction between the multiplicative and the addi-
tive fragments is adequately treated (for instance the two sides of the exchange
law have the same normal form). The system includes however the treatment
of reflexivity outlined above.

2.2 Local Graph Rewriting

A graphical representation for terms

3

Bacelar Almeida and Sousa Pinto and Vilaça

2.2.1 Fusion Rules

Fusion is accomplished by the interaction with (co-)duplicators. Intuitively,
a duplicator interacting with a net should perform a copy of that net (see
Figure 1). However, this “duplication” should take in account that we intend
it to be performed locally, i.e. the (co-)duplicators interact only with indi-
vidual agents. Moreover, both kinds of fusion (additive and multiplicative)
can occur simultaneously and thus some care must be taken in order to avoid
interferences in the process. For the sake of clarity, we start our presentation
considering the multiplicative fragment of our language. Later, we elaborate
on the adjustments required for dealing with the full language.

∧

f
f f

∧

g h
g h

(,) (,)

Fig. 1. Fusion as Net Duplication

Multiplicative Fusion

∧

(,)

f g

∧

∧

∧ ∧

f f gg

(,) (,)

∧

f g

∧ ∧

(,) (,)

∧

∧ ∧

f f gg

(,) (,)

Fig. 2. Duplication of a Structured Net

When a duplicator meets a structured net (e.g. a split of two terms), it
must split itself in order to duplicate each component of the net. Moreover,
once concluded the duplication of each sub-net, it is still necessary to reorga-
nize the duplicators on the top of the net to get the correct outcome for the
duplication of the structured net (see Figure 2). To control this reorganiza-
tion of duplicators, we introduce indexes. We are lead to the following rules
governing the interaction with duplicators.

∧
n

(,) ∧
Sn

(,)

∧
Sn

(,)

dupM-pair

∧
n

f

f f

∧
ndupM-f

f = π1, π2, ι1, ι2 ∧
Sn

∧
0

∧
Sn

∧
0

∧
n

∧
0

dupM-dupM

The first one is fairly obvious — the interaction with single input/single
output agents simply duplicates them. When a duplicator interacts with a
pair constructor, it not only duplicates it, but also splits itself in two in order

4

Bacelar Almeida and Sousa Pinto and Vilaça

to duplicate each subnet. The last rule is the commutation rule between du-
plicators and is actually the counterpart of the spliting of duplicators referred
in the previous rule — it closes the interaction with structured nets since,
apart from the duplication of the top agent, it also rejoin the “once splited
duplicator”.

Indexes attached to duplicators are simply integers that record “how deep”
they are in the transversal of a structured net 4 . When a duplicator have its
index set to zero, we will call it ground duplicator and often omit its index
from its graphical representation. Notice that the commutation rule actually
restricts its top duplicator to be grounded.

We should also stress the distinction made between “duplication” and
“spliting” — a duplicator get splited to perform duplication of the two sub-
nets, and eventually rejoin by duplicating the ground duplicator that tops
both sub-nets (commutation rule). The following reduction sequence illus-
trates these rules in action:

(,)

∧

∧

(,)

∧
1

∧
1

(,) (,)

∧

∧

(,)

∧
1

∧
1

(,) (,)

(,)

∧
1

∧
1

∧

∧
2

∧
2

∧
2

∧
2

(,) (,) (,) (,)

(,) (,)

(,)

∧ ∧

∧

∧
2

∧
2

∧
2

∧
2

(,) (,) (,) (,)

(,) (,)

(,)

∧

∧ ∧ ∧ ∧

(,) (,) (,) (,)

(,) (,)

(,)

∧
1

∧
1

∧

∧ ∧ ∧ ∧

(,) (,) (,) (,)

(,) (,)

(,)

∧ ∧

Interaction of Sums and Products

What should be the interaction rule when a duplicator meets a co-duplicator?
Structurally, it is fairly obvious that they should pass-through each other. The
question is then whether the agents get duplicated or splited during this pro-
cess. In other words, what is the impact indexes their indexes.

A first solution would be to state that only duplications take place. This
corresponds to keep unaltered both indexes and immediately leads to a rule
that allows duplicators to freely pass through choice agents (i.e. without index
regulation). It corresponds to the following additional interaction rules (and
their duals):

∨
k

∧
n

∧
n

∧
n

∨
k

∨
k

dupM-dupS

∧
n

?

∧
n

∧
n

? ?

dupM-choice

4 In the conference version of this article, we had used a more informative notion of indexes
that record the path taken during the net transversal. These indexes allow a finer control on
the reduction process, but lead to much more complex arguments concerning the properties
of the system.

5

Bacelar Almeida and Sousa Pinto and Vilaça

Let us start by enunciating the virtues of this approach:

• Keeping the multiplicative/additive indexes independent mean that we ac-
tually manage to keep both subsystems independent (or orthogonal). It
certainly contributes to the simplicity and elegance of the system.

• The system automatically exhibits the “full symmetry” reclaimed above for
terms like those appearing in both sides of the exchange law (as shown in
the following simple reduction):

∨

?

∧

(,)

∧
1

∧
1

∨
 1

∨
 1

?

(,)

∧

? ?

∧

? ?

(,) (,)

∨

∨
 1

∨
 1

(,)

These normal forms exhibit that are not direct translations of splits or
eithers. We will call these full normal forms, as they capture the fact that
these nets can be read-back as different terms.

Unfortunately, the indexes no longer constrains appropriately the commu-
tations that might take place in a reduction sequence. To see this, consider
the following reduction sequence:

?

∧ ∧

∧ ∧

(,) (,)

(,)

(,)

∧

(,)

∨

?

∧

∧ ∧

(,) (,)

(,)

(,)

∧

(,)

∨

? ?

∧

∧ ∧

(,) (,)

(,)

(,)

(,)

∨

?

(,)

∧
1

∧
1

Note that the application of rule dupM-choice removes the ground du-
plicator needed to close the fusion started on the left hand-side sub-net. In
fact, this is exactly the pattern of divergence that the restriction in the rule
dupM-dupM avoids by restricting the top duplicator to be ground. This shows
that indexes should also restrict the application of rule dupM-choice.

A second approach would be to let both agents get splited (i.e. both agents
increment their index). These are the corresponding rules:

6

Bacelar Almeida and Sousa Pinto and Vilaça

∨
k

∧
n

∧
Sn

∧
Sn

∨
Sk

∨
Sk

dupM-dupS

∧
Sn

?

∧
Sn

∧
n

? ?

dupM-choice

Here the problem became a lot more subtle. Let us first exhibit its man-
ifestation a later refer why it is actually a problem. Consider the following
reduction sequence:

?

∧ ∧

∧

(,)

(,)(,)

∨

∧

(,)

∧ ∧

∧

(,)

(,)(,)

∧

(,)

∨

∨

? ?

? ?

∨ ∨
1 1 ∧

(,)

∧

(,)

∧

(,)

∧

(,)

∧

(,)

∧

(,)

∧

(,)

∧

(,)

?

? ?

1 111

1 1 1 1

∨ ∨
1 1

∨

∧

(,)

∧

(,)

∧

(,)

∧

(,)

∧

(,)

∧

(,)

∧

(,)

∧

(,)

?

? ?

1 111

1 1 1 1

∨ ∨
1

∨

Notice that the transversal of the net by the coduplicator on the top actu-
ally lifts the indexes for all the duplicators in the lower sub-nets. This is not
in accordance with the information description given above, but can actually
appear as an interesting feature that can be exploited by the system. In fact,
if we continue the reduction process, we get:

∧

(,)

∧

(,)

∧

(,)

∧

(,)

∧

(,)

∧

(,)

∧

(,)

∧

(,)

?

? ?

1 111

1 1 1 1

∨ ∨

∨

(,)

∧

(,)

(,)

∧

(,)

(,)

∧

(,)

(,)

∧

(,)

∨ ∨

∨

∧

? ???

∧

?

1 1 1 1

(,)

(,)

(,)

(,)

∨ ∨

∨

∧

?

?

?

∧ ∧

(,)

(,)

(,)

(,)

∧

? ?

∧ ∧

This example suggests that, in order to reach full normal forms, it is suf-
ficient to promote enough fusions (something that might be accomplished by
pre or post-composition with identities). The problem is that we do the addi-
tional reductions relying strongly on the symmetry of the net (more precisely,
on the number and the tree shape of duplicators in both sides of the choice
agent). It is true that the nets that come from well-typed point-free terms do
exhibit an high degree of symmetry. However, we are not able to assure that
all nets, under all reductions strategies, do possess the symmetry required by

7

Bacelar Almeida and Sousa Pinto and Vilaça

this set of rules (a counterexample will be presented below).

A final approach for the interaction of both fragments would be to take a
sort of a mixed version of the previous solutions: informally, we take one of
the agents to be the “dominator” of the interaction. This agent would split
itself (increases the index), and the other is simply duplicated (indexes remain
unaltered). The rules became:

∨
n

∧
n

∧
Sn

∧
Sn

∨
Sn

∨
Sn

dupM-dupS ∨
k

∧
n

∧
n

∧
n

∨
Sk

∨
Sk

dupM-dupS ∨
k

∧
n

∧
Sn

∧
Sn

∨
k

∨
k

dupM-dupS

k > n k < n

When both agents share the same index, we will treat them with equal
status (as in the previous solution). When an agent has an higher index we
consider it as the dominator, as it higher index reveals that it is deeper in the
transversal of the net – as such, the other agent is part of a subnet.

It can be easily seen that this set of rules only lifts the index of the top
duplicator in a net such as the one presented above. As such, it no longer
depends on the symmetry of the sub-nets to proceed the reduction. On the
down-side, we can also note that simple trick of identity composition to reach
full normal forms is no longer enough. We will return to this theme later
(Section 2.2.3).

2.2.2 Cancelation Rules

Cancelation is, by its own nature, related with erasure. Consider the structure
of a cancelation rule:

∧

(,)

f g

π1

*
f

The interaction of the bottom agents should trigger the erasure of the net
g and the top duplicator.

(,)

π1

εcancelM-1

0

(,)

n

Sn Sn

(,)
cancelM-pair

?
 n n

n

?
cancelM-choice

f
n f

cancelM-f
n

f = π1, π2, ι1, ι2

ε

ε

eraser-coeraser

n

k

cancelM-cancelS

n

k

k

∨
 n

k k

cancelM-dupS-1
∨

 X

∧
0

Sn Sn ∧
0

n
cancelM-dupM

ε

epsilon-dupM-2∧
0

0

Where:
X = n-1, if n>k
X = n, if n≤k

Fig. 3. Cancelation Rules

8

Bacelar Almeida and Sousa Pinto and Vilaça

For the erasure of net g, we will take the standard approach of introducing
special erasing agents ε / ε(denoted eraser and coeraser) that annihilate any
other agent that interact with them. The main difficulty is thus the removal
of the top agent, that also acts as delimiter for the erasure process. For that,
we introduce another pair of agents (denoted cancel and cocancel, depicted
respectively as small black and white filled boxes respectively) whose function
is to transverse the net f and remove the top duplicator as soon as the erasure
of the net g take place. Once again, we should take in account indexes that
will assure that this process do not interfere with other cancelations/fusions
that might take place on the net.

A representative subset of the rules for cancelation is given in figure 7.
Here are some example reductions:

Reduções de exemplo (slides do jsp)

As a final example, let us show an example where both fusion and cance-
lation take place simultaneously.

FIGURA COM REDE ASSIMETRICA... e respectiva redução

The relevance of this example is that it is an instance of an asymmetri-
cal net (and thus constitutes a counterexample for the second approach for
the interaction of multiplicative and additive fusion). In a sense, this is a con-
trived example — it avoids the “natural” symmetry imposed by well-typedness
through cancelation. If we reduce the net on the left hand-side of the choice
agent, we recover a fully symmetric net.

2.2.3 Full normal forms

We already notice that the adopted solution for the interaction of multiplica-
tive and additive fusion does not lead directly to full normal forms (such as
the ones that would equalize both sides of the exchange law).

Let us note that this, in itself, does not turn the system unsound or of no
use — we can still have a sound system, that simplifies point-free expressions.
But it does mean that this system will fail to be “out of the box” complete
(in the sense that, we cannot rely on simple syntactic comparison of normal
forms to assert equality of the original terms). The question is thus if it is
possible to augment the system in order to guaranty that full normal forms
are reached.

The solution for this problem is guided by the observation that our system
actually performs a first step towards full normal forms. In fact, we see that
one of the duplicators actually crosses the choice agent since it starts with
equal index relative to its associated closing coduplicator of the choice. The
problem is that the inner duplicators are simply copied and do not see their
indexes increased to a level that allow the commutation with the choice agent
(in fact, we saw that such an increase would lead to confluence problems).
What we would like is some manner to trigger these commutations. We will
try to achieve this by composition with an appropriate net.

Consider the effect of composing the normal form obtained in the example

9

Bacelar Almeida and Sousa Pinto and Vilaça

given by a net that “looks like” identity (denoted as identity nets).

Figura com a composição da rede com a ID

We saw that the obtained normal form is now in its full form, but several
comments are certainly appropriate:

(i) Attached nets contain nonzero indexes — this is certainly non-standard
from what we have presented earlier, where indexes appear during re-
duction. This is actually the “trick” that allow the activation of the
intermediate duplicators that do not have enough height in their indexes
to pass through the choice agent.

(ii) The normal form contain duplicators with non-empty indexes. In fact,
this is hardly a surprise, since we start the reduction process with those
duplicators. The situation should not be confused with the apparition of
spurious indexes that we made reference above.

(iii) In general, we should attach two identity nets — one on the top and
one on the bottom (according to the domain and codomain type of the
corresponding net).

(iv) We must avoid the commutation between (co)duplicators inside identity
nets. This is why we give them a special status (and color). The com-
mutation rule for duplicators (and dually, for coduplicators) is restricted
accordingly.

3 Sum-product Nets

Sum-product Nets will be built from instances of symbols ; each symbol has
an associated number of input ports (or arity) and number of output ports
(or co-arity). We organize these symbols in dual pairs where the arity and
co-arity are exchanged. These symbols are:

• a duplicator symbol with arity 1 and co-arity 2, depicted ∧; its dual is the
co-duplicator, depicted ∨;

• a makepair symbol with arity 2 and co-arity 1, depicted (,); its dual is
choice and depicted ?;

• two pair projection symbols with arity 1 and co-arity 1, depicted π1 and π2;
their duals are the choice injections depicted i1 and i2;

• an eraser symbol with arity 1 and co-arity 0, depicted ε; the dual co-eraser
is depicted ε.

• a cancel symbol with arity and co-arity 1, depicted �; its dual co-cancel is
depicted �.

A Net is a tuple (S, E, I, O) where S is a set of occurrences of symbols,
E is a set of edges, and I, O are two sets of input ports and output ports
of the net. Input and output ports of the net do not belong to any symbol
occurrence. Let SI , SO denote respectively the sets of input and output ports

10

Bacelar Almeida and Sousa Pinto and Vilaça

of the symbol occurrences in S. Then each edge in E connects a port in SO∪I
(the output port of some symbol occurrence or an input of the net) to a port
in SI ∪O (the input port of some symbol occurrence or an output of the net).
Every port in SI ∪ SO ∪ I ∪O belongs to exactly one edge. In the rest of the
paper we refer to occurrences of symbols as nodes.

In what follows, ∧, ∨, � and � nodes in a net will be labelled with non-
negative integer indexes (we usually omit them when they are zero). These
will be used to control the duplication and mutual annihilation of nodes in
the reduction system presented in section 4.

A net is well-typed is there exists a labelling of the input and output ports
of each of its nodes with a type, such that every edge connects equally labelled
ports, and the constraints shown in Figure 4 hold for every node (type variables
are depicted as capital letters).

A position is a pair of non-negative integers (a, b), depicted as a·b. A net
is well-formed if there exists a labelling of the input and output ports of each
of its nodes with a position, such that every edge connects equally labelled
ports, and the constraints also shown in Figure 4 hold for every node (S n
denotes the successor of n). Well-formedness imposes a structural invariant
on nets.

(,) π1 π2 ∧
α·β

ε

A B

A×B

A×B

A

A×B

B

A

A A

A

ε

A? ι1 ι2 ∨ α·β

A B

A+B

A

AABA

A+B A+B

a·ba·b

a·b

a·Sb

a·b

Sa·bSa·b
a·b

a·b

a·Sba·Sb

a·b

Sa·bSa·b

a·b a·b

a·ba·b

a·b a·b

a·ba·b

n

n

A

A

A

A

a·Sb

a·b

a·b

Sa·b

Fig. 4. Typing and Positioning Constraints

Definition 3.1 A sum-product net is an acyclic, well-typed and well-formed
net with a single input and output, both labelled with empty positions. A
sum-product net without � and � nodes and with all indexes set to zero is
called an elementary net.

Figure 5 contains examples of nets that are not sum-product nets: the first
net is not well-typed; the second is not well-formed; the third net has a cycle.

4 Sum-product Net Rewriting

A local graph-rewriting system will now be given for sum-product nets. We
first need to establish an appropriate notion of graph-rewriting rule: both the
left-hand side (LHS) and the right-hand side (RHS) of the rule are finite nets,
such that the sets of input and output ports are the same in both nets (in

11

Bacelar Almeida and Sousa Pinto and Vilaça

(,)

∧
·

∧
·

(,)

(,)
∧
·

(,)

∧
·

∧
·

π1 π2 ι1 ι2

?

(,) ∨
·

π1

(,)

∧
·

Fig. 5. Examples of Nets

∧
n

(,) ∧
Sn

(,)

∧
Sn

(,)

dupM-pair

∧
Sn

?

∧
Sn

∧
n

? ?

dupM-choice∨
k

∧
n

∧
X

∧
X

∨
 Y

∨
 Y

dupM-dupS

∧
n

f

f f

∧
n

dupM-f

f = π1, π2, ι1, ι2 ∧
Sn

∧
0

∧
Sn

∧
0

∧
Sn

∧
0

dupM-dupM

Where:
X = Sn, if n>k
X = n, if n≤k
Y = Sk, if k>n
Y = k, if k<n

Fig. 6. Fusion Rules

other words the rule preserves the interface of the net). Moreover both the
LHS and RHS nets are well-typed and well-formed, the rule preserves type and
position labellings of the inputs and outputs, and does not introduce cycles.

The application of a rule in a typed net replaces any subnet matching its
LHS by its RHS; the conditions above guarantee that there will be no edges
left dangling. The system introduced below enjoys additionally the following:

• There are no two rules in the system with the same LHS, or such that the
LHS of a rule is a subnet of the LHS of the other;

• The RHS of each rule does not contain as a subnet the LHS of another rule;

• The set of rules is dual-complete: the dual of each rule is also in the system.

This has some of the defining properties of an interaction net system [2];
further requirements of such a system are that each node should have a distin-
guished principal port, and the LHS of every rule should consist of two nodes
with an edge connecting both principal ports. This requirement is sufficient
to guarantee strong local confluence, which is not a property of our system.

The rules are introduced in two sets: a first set allows to decide the theory
minus the cancelation laws; a second set of rules addresses these laws.

Fusion Rules.

Fusion rules are given in Figure 6 (we omit those rules that can be obtained
by duality). These rules promote the upward movement of duplicators (dually,

12

Bacelar Almeida and Sousa Pinto and Vilaça

(,)

π1

εcancelM-1

0

(,)

n

Sn Sn

(,)
cancelM-pair

?
 n n

n

?
cancelM-choice

f
n f

cancelM-f
n

f = π1, π2, ι1, ι2

ε

ε

eraser-coeraser

n

k

cancelM-cancelS

n

k

k

∨
 n

k k

cancelM-dupS-1
∨

 X

∧
0

Sn Sn ∧
0

n
cancelM-dupM

ε

epsilon-dupM-2∧
0

0

Where:
X = n-1, if n>k
X = n, if n≤k

Fig. 7. Cancelation Rules

downward for co-duplicators). During XXXXXXXXX

Some remarks are in order:

(i) The comparison of indexes in the dupM-dupS rule guaranties that the
index of a duplicator (or co-duplicator) is incremented only if it could
reach the corresponding pair-constructor (or choice) agent.

Cancelation Rules.

The set of rules for cancelation is given in Figure 7. We omit the rules
that can be obtained by duality and the garbage-collection rules for ε and ε.
The full set of rules is given on Appendix A. In these rules, cancelation is
trigger by the interaction of the pair-constructor and a projection agent (rule
cancelM-1. After that, two new agents will perform the work: the ε agent
will discard the portion of the net that correspond to the canceled sub-term;
the � agent will transverse the preserved sub-term and synchronize with the
ε agent on the top duplicator. In a sense, � agents behave like duplicators.
However, we should note the following differences: we should emphasize the
following differences:

• They do not duplicate the transversed net (in fact, they could not, since
they are single output agents);

• During the transversal, they perform a correction on the indexes of co-
duplicators. This is because co-duplicators might have crossed the top du-
plicator (and thus, splited themselves), and thus requiring the corresponding
index to be decreased to preserve the well-formedness of the net.

• Like duplicators, an index is attached to � agents. However, there is not
commutation rule for � agents — they simply vanish when the top dupli-
cator is reached.

• The indexes attached to � agents are not affected by the additive constructs
— this simplification is possible due to the absence of a commutation rule

13

Bacelar Almeida and Sousa Pinto and Vilaça

for � agents.

Two example reductions are shown below. The fundamental role taken by
indexes in controlling commutations is evident (rules dupM-dupS and dupM-dupM).

This reduction system thus induces the following definition of equivalence
of sum-product nets. Let ≡ denote structural equality of nets.

Definition 4.1 Two sum-product nets G1, G2 are equivalent, written G1 =
G2, if there exist G′

1, G′
2 such that G1 −→∗ G′

1 and G2 −→∗ G′
2, and G′

1 ≡ G′
2.

4.1 Termination

It is straightforward to see that the system is strongly normalizing (in general
∧ and � nodes go up; ∨ and � nodes go down; commutations between three
∧ or ∨ nodes impose unique configurations).

Do we really need (want) to prove this?

4.2 Confluence

The rewriting system exhibit a considerable number of critical pairs. Most
of these do have a purely local resolution. For some, however, we must rely
on the well-formedness assumption of sum-product nets. A nice example is
given by the critical pair formed by the rules dupM-dupM and dupM-dupS — it
is necessary to consider two cases, each of which fall in one of the categories
referred above.

Consider the case where the co-duplicator has a non-zero index. The fol-
lowing two reduction sequences establish the confluence of this critical pair.

FIGURA COM PAR CRÍTICO...

∨

?

∧
α0

∧
α1

∧
α

∨

? ?

∨
0

?

∨
1

?

∧
α0

∧
α1

∧
α0

∧
α1

∨
0

∨
1

? ?

∨
00

∧
α00
∧
α10

∨
10

? ?

∧
α01
∧
α11

∨
01
∨
11

∨
00
∨
01
∨
10
∨
11

? ? ? ?

∧
α0

∧
α1

On the other hand, when the index of the co-duplicator is zero, we need
to invoke the well-formedness of the net:

Figura com par cŕıtico e TWIN EQUIV.

The equivalence XXXXXXXXX

14

Bacelar Almeida and Sousa Pinto and Vilaça

Twin equivalence!!!

5 Term nets

As mentioned in the introduction, reflection laws are handled by the transla-
tion to sum-product nets. More precisely, identities are restricted to atomic
types XXXXXX

T < − > E

5.1 Term Translation

We now give a type-directed translation T(·) from terms of TPF into sum-
product nets. When a smaller net is used to construct some other net, we
assume that the input and output in the initial net are removed. We also
assume that a new pair of input/output ports and corresponding edges are
introduced in the new net. The indexes of new nodes are initially empty.

Identity
• T(idA→A), where A is a base type, is defined as the sum-product net

consisting of a single edge connecting the input to the output;
• T(idA×B→A×B) is the sum-product net I obtained by introducing 4 new

nodes, ∧, π1, π2, and (,), and new edges connecting the first (resp. second)
output of ∧ to the input of π1 (resp. π2), the output of π1 (resp. π2) to
the input of IA (resp. IB), and the output of IA (resp. IB) to the first
(resp. second) input of (,), where IA = T(idA→A) and IB = T(idB→B);
and finally setting the input of I to be the input of ∧ and the output of
I to be the output of (,).

• T(idA + B→A + B) is the sum-product net I obtained by introducing 4 new
nodes, ?, i1, i2, and ∨, and new edges connecting the first (resp. second)
output of ? to the input of IA (resp. IB), the output of IA (resp. IB) to
the input of i1 (resp. i2), and the output of i1 (resp. i2) to the first (resp.
second) input of ∨, where IA = T(idA→A) and IB = T(idB→B); and finally
setting the input of I to be the input of ? and the output of I to be the
output of ∨.

Composition
• T(u . tA→C) is the sum-product net V obtained by connecting an edge from

the output of T to the input of U , where T = T(tA→B) and U = T(uB→C).
Naturally, the input of T becomes the input of V , and the output of U
becomes the output of V .

Constant Function
• T(π1

A×B→A) is the net P1 obtained by introducing a new node π1 and a
new edge connecting its output to the input of IA, where IA = T(idA→A),
and setting the input of P1 to be the input of π1 and the output of P1 to
be the output of IA.

15

Bacelar Almeida and Sousa Pinto and Vilaça

• T(π2
A×B→B) is the net P2 obtained by introducing a new node π2 and a

new edge connecting its output to the input of IB, where IB = T(idB→B),
and setting the input of P2 to be the input of π2 and the output of P2 to
be the output of IB.

• T(i1
A→A + B) is the net I1 obtained by introducing a new node i1 and a new

edge connecting the output of IA to the input of i1, where IA = T(idA→A),
and setting the input of I1 to be the input of IA and the output of I1 to
be the output of i1.

• T(i1
B→A + B) is the net I2 obtained by introducing a new node i2 and a new

edge connecting the output of IB to the input of i2, where IB = T(idB→B),
and setting the input of I2 to be the input of IB and the output of I2 to
be the output of i2.

Split
Let G be the sum-product net obtained by introducing two new ∧ and (,)
nodes, and 4 new edges connecting the outputs of ∧ to the inputs of T and
U , and the outputs of T and U to the inputs of (,), where T = T(tE→A)
and U = T(uE→B); the input of ∧ becomes the input of G and the output
of (,) becomes the output of G. Then:
• T(〈t, u〉E→A×B), with E = C + D, is the sum-product net G′ obtained

by constructing the net I = T(idC + D→C + D), and an edge connecting its
output to the input of G, setting the input of G′ to be the input of I, and
the output of G′ to be the output of G.

• T(〈t, u〉E→A×B), where E is not of the form C + D, is just G.

Either
Let G be the sum-product net obtained by introducing two new ? and ∨
nodes, and 4 new edges connecting the outputs of ? to the inputs of T and
U , and the outputs of T and U to the inputs of ∨, where T = T(tA→E) and
U = T(uB→E); then the input of ? becomes the input of G and the output
of ∨ becomes the output of G. We have: cancela
• T([t, u]A + B→E), where E = C ×D, is the sum-product net G′ obtained

by constructing the net I = T(idC ×D→C ×D), and an edge connecting the
output of G to the input of I; the input of G′ is the input of G, and the
output of G′ is the output of I.

• T([t, u]A + B→E), where E is not of the form C ×D, is just G.

Definition 5.1 The class of sum-product nets constructed by the translation
T(·) are designated term nets.

The term nets T(id(A×B)×(C ×D)→(A×B)×(C ×D)) and T(π1
(A + B)×C→A + B)

are shown below as examples.

16

Bacelar Almeida and Sousa Pinto and Vilaça

A+B

π1

A B

(A+B)×C∧

π1
A×B

π2

(,)

(A×B) ×(C×D)

∧ ∧

π1
A

π2

(,)

π1 π2

(,)
CB D

 C×D

A×B C×D

(A×B) ×(C×D)

?

∨

ι1 ι2

A+B

It is straightforward to see that T(tA→B) is indeed a term net with input
of type A and output of type B. A distinctive feature of the translation
is that two differently-typed, syntactically equal terms may be translated as
different term nets. The translation introduces in the nets sufficient structural
information to allow for the typing information to be discarded. The principal
type of the term represented by a net can always be uniquely determined.

5.2 Soundness

The reduction system thus induces the following definition of equivalence of
sum-product nets. Let ≡ denote structural equality of nets.

Definition 5.2 Two term nets G1, G2 are equivalent, written G1 = G2, if
there exist G′

1, G′
2 such that G1 −→∗ G′

1 and G2 −→∗ G′
2, and G′

1 ≡ G′
2.

We may now establish the main results relating the equational theory and
the graphical system.

Proposition 5.3 (Soundness) Let t, u be TPF terms. Then

t = u =⇒ T(t) = T(u)

This can be proved by induction on the definition of equality in TPF. Together,
the translation T(·) and the graph-rewriting system solve three problems:

• The translation directly captures the reflexivity laws, because it expands
identities according to their types. For instance, the second example in
Apendix C represents the term net T(π1

(A + B)×C→A + B).

• To ensure that the fusion laws are effectively captured, commutations be-
tween configurations involving 3 nodes must be allowed, as exemplified in
appendix D. These commutations (rules dupM-dupM, dupM-choice, dupS-
dupS and pair-dupS) are regulated by a bit string indexing scheme.

• Finally, this indexing scheme must be capable of handling fusions in terms
such as 〈a, b〉 .[c, d], which may happen in two directions. In our system,
such a fusion results in a (unique) graph which is no longer a term net.

17

Bacelar Almeida and Sousa Pinto and Vilaça

5.3 Completeness

The reader is invited to verify that reduction of a term net does not necessarily
produce another term net. As such, in the following completeness result, the
common reduct of T(t) and T(u) may no longer be a term net.

Proposition 5.4 (Completeness) Let t, u be TPF terms. Then

T(t) = T(u) =⇒ t = u

This can be proved using a path semantics for graphs, that will be introduced
in the long version of this paper.

6 Further Work

An adequate treatment of the exponential fragment of the calculus is the next
obvious step. This introduces new problems, related to the work on encodings
of the λ-calculus into interaction nets. The initial and terminal objects and
their associated morphisms can easily be incorporated in our system.

We also intend to use this graph-rewriting system in the context of a visual
language for functional programming.

References

[1] Bird, R., de Moor, O.: Algebra of Programming, Prentice Hall, 1997.

[2] Y. Lafont. Interaction nets. In Proceedings of the 17th ACM Symposium on
Principles of Programming Languages (POPL’90), pages 95–108. ACM Press,
Jan. 1990.

[3] J. R. B. Cockett and R. A. G. Seely Finite sum - product logic. In Theory and
Applications of Categories, Vol. 8, 2001, No. 5, pp 63-99.

18

Bacelar Almeida and Sousa Pinto and Vilaça

A Full set of rewriting rules

ε

(,)

ε ε

ε

?

ε ε

eraser-pair
choice-coeraser

∧
n

(,) ∧
Sn

(,)

∧
Sn

(,)

dupM-pair ∨
n

?

choice-dupS ? ?

∨
Sn

∨
Sn

(,)

π1

(,)

π2

ε

ε

cancelM-1

cancelM-2

0

0

ι1

?
ε

ι2

?

ε

cancelS-1

cancelS-2

0

0

(,)

n

Sn Sn

(,)

cancelM-pair n

?
?

 Sn Sn

choice-cancelS

(,)

ε ε ε ?

ε ε ε
pair-coepsilon

epsilon-choice

?
 n n

n

?

cancelM-choice

(,)
(,)pair-cancelS

n n

n

∧
Sn

?

∧
Sn

∨
Sn

∨
Sn

(,)

∧
n

? ?∨
Sn

(,) (,) dupM-choice

pair-dupS

19

Bacelar Almeida and Sousa Pinto and Vilaça

n

ε

ε

nε

εeraser-cancelS cancelM-coeraser

f

ε
ε

f = π1, π2, ι1, ι2

eraser-f

f

n f

cancelM-f

n

f = π1, π2, ι1, ι2
f

ff-cancelS

n

n

f

ε ε

f = π1, π2, ι1, ι2

f-coepsilon

n ε

ε

n

ε

ε

eraser-cancelM
cancelS-coeraser

ε
ε

eraser-coeraser

n

k

cancelM-cancelS

n

k

∨
k

∧
n

∧
X

∧
X

∨
 Y

∨
 Y

dupM-dupS Where:
X = Sn, if n>k
X = n, if n≤k
Y = Sk, if k>n
Y = k, if k<n

20

Bacelar Almeida and Sousa Pinto and Vilaça

ε

∧
n

∨
n

ε

ε ε

ε ε

eraser-dupS
dupM-coeraser

∧
n

f

f f

∧
n

dupM-f

f = π1, π2, ι1, ι2

∨
 n

f

ff

∨
 n

f = π1, π2, ι1, ι2

f-dupS

k

∨
 n

k k

cancelM-dupS-2 ∨
 n

k

∨
 Sn

k k

cancelM-dupS-1
∨

 n

k

∧
n

∧
n

 k k

dupM-cancelS-2

k

∧
Sn

∧
n

 k k

dupM-cancelS-1

k ≤ n

k ≥ n

n ≤ k

k ≥ n

∧
n

εε
ε ε

εε

∨
n

eraser-dupM dupS-coeraser

ε

ε

dupS-coepsilon-1

dupS-coepsilon-2

ε

ε

epsilon-dupM-1

epsilon-dupM-2

∨
0

∧
0

∧
0

∨
0

0

0

0

0

∧
0

Sn Sn ∧
0

n
cancelM-dupM

∨
 0

Sn Sn

n

∨
 0dupS-cancelS

∧
Sn

∧
0

∧
Sn

∧
0

∧
Sn

∧
0

dupM-dupM

∨
 0

∨
 Sn

∨
 Sn

dupS-dupS

∨
 Sn

∨
 0

∨
 0

21

Bacelar Almeida and Sousa Pinto and Vilaça

B Critical Pairs

B.1 Among Common and Commutation

B.2 Among ISA and CR

B.3 Among ISB and CR

B.4 Among two rules of the commutation group

C Example Term nets

The following depict T(id(A×B)×(C ×D)→(A×B)×(C ×D)) and T(π1
(A + B)×C→A + B).

A+B

π1

A B

(A+B)×C∧

π1
A×B

π2

(,)

(A×B) ×(C×D)

∧ ∧

π1
A

π2

(,)

π1 π2

(,)
CB D

 C×D

A×B C×D

(A×B) ×(C×D)

?

∨

ι1 ι2

A+B

D Example Reductions

T(〈id, id〉.〈id, id〉.〈id, id〉).

(,)

∧

∧

(,)

∧
1

∧
1

(,) (,)

∧

∧

(,)

∧
1

∧
1

(,) (,)

(,)

∧
1

∧
1

∧

∧
2

∧
2

∧
2

∧
2

(,) (,) (,) (,)

(,) (,)

(,)

∧ ∧

∧

∧
2

∧
2

∧
2

∧
2

(,) (,) (,) (,)

(,) (,)

(,)

∧

∧ ∧ ∧ ∧

(,) (,) (,) (,)

(,) (,)

(,)

∧
1

∧
1

∧

∧ ∧ ∧ ∧

(,) (,) (,) (,)

(,) (,)

(,)

∧ ∧

T(〈id, id〉.[id, id]).

22

Bacelar Almeida and Sousa Pinto and Vilaça

∨

?

∧

(,)

∧
1

∧
1

∨
 1

∨
 1

?

(,)

∧

? ?

∧

? ?

(,) (,)

∨

∨
 1

∨
 1

(,)

E Proofs

Soundness

Lemma E.1 Let t be a TPF term, and G∧(t) the net obtained by connecting a
∧ node indexed with n > 0 to the output of the term net T(t). Then G∧(t) −→∗

G∧(t), where G∧(t) consists of a ∧ node indexed with n, whose outputs are
connected to the inputs of two nets Gl, Gr such that Gl = Gr = T(t).

Proof. By induction on the structure of t. Note that the lemma is not valid
for n = 0, in the particular case that t is of the form (or a composition of
terms ending with) [f, g], in which case a ∨ node with index 1 will appear,
which is not introduced by the translation in Gl and Gr. 2

Lemma E.2 Let t be a TPF term, and Gε(t) the net obtained by connecting
an ε node to the output of the term net T(t). Then Gε(t) −→∗ Gε, where Gε

consists of a single ε node.

Proof. By induction on the structure of t, using the rules where ε appears in
the left-hand side. 2

Lemma E.3 Let t be a TPF term, G�(t) the net obtained by connecting the
input of a � node indexed with n to the output of the term net T(t), and
G�(t) obtained connecting the output of a � node (again indexed with n) to
the input of T(t). Then G�(t) −→∗ G�(t).

Proof. By induction on the structure of t, using rules where � appears in the
left-hand side. 2

Proposition E.4 (Soundness) Let t, u be TPF terms with t = u. Then
T(t) = T(u).

Proof. By cases of the definition of equality of terms. We show here the
multiplicative fragment; the remaining cases are dual (and in particular dual
lemmas to E.1, E.2 and E.3 apply).

• T(id · f) ≡ T(f · id) ≡ T(f)
(straightforward)

• T((f · g) · h) ≡ T(f · (g · h))
(straightforward)

23

Bacelar Almeida and Sousa Pinto and Vilaça

• T(〈π1, π2〉) ≡ T(id)
Guaranteed by construction. Observe that the term 〈π1, π2〉 necessarily

has type A×B → A×B for some types A, B, and

T(〈π1, π2〉A×B→A×B) ≡ T(idA×B→A×B)

• T(〈f, g〉 · h) = T(〈f · h, g · h〉)
(i) h = [a, b]

In the net T(〈f, g〉 · [a, b]) the rule dupM-dupS can be applied with k =
n = 0. Lemma E.1 can then be used since the duplicators now have index
1; rule duoM-choice follows. The net thus obtained . . .CONTINUE

(ii) The remaining cases are straightforward using Lemma E.1 (mention in-
ductive argument for composition???).

• T(π1 ·〈f, g〉) = T(f) and symmetrically T(π2 ·〈f, g〉) = T(g)
There are two cases to consider:

(i) The domain of 〈f, g〉 is not a sum type. Then T(π1 ·〈f, g〉) −→∗ T(f) by
rule cancelM-1, Lemmas E.2 and E.3, and finally rule epsilon-dupM-2.

(ii) The domain of 〈f, g〉 is of the form C + D. This case is similar to the
previous but note that the translation introduces an additional net on
top, corresponding to the encoding af an identity of type C + D. We have
T(π1 ·〈f, g〉) −→∗ T(f · id) = T(f).

2

Completeness

The proof of completeness uses a path-based interpretation of terms, in the
style of the Geometry of Interaction.

Definition E.5 We define a labelling of sum-product nets from top to bottom
as follows, where the labels are TPF terms extended with the constants L, R,
and ε.

• If the input of a ∧ node is labelled α then both its outputs are labelled α.

• For ∨ nodes there are two cases:
· If its inputs are labelled β ·α ·L ·γ and β ·α′ ·R ·γ (where β is the longest

common prefix and γ is necessarily a common suffix) then its output is
labelled β ·[α, α′]·γ. Note that if β extends until L and R then α = α′ = id.

· If its inputs are labelled α and β · ε(in any order) then its output is
labelled α.

• If the inputs of a (,) node are labelled α ·β and α′ ·β (where β is the longest
common suffix) then its output is labelled 〈α, α′〉 ·β. Note that if the labels
are equal then α = α′ = id.

• If the input of a pair projection node π1 (resp. π2) is labelled α then its
output is labelled π1 ·α (resp. π2 ·α).

• If the input of a choice injection node i1 (resp. i2) is labelled α then its

24

Bacelar Almeida and Sousa Pinto and Vilaça

output is labelled i1 ·α (resp. i2 ·α).

• The output of a εnode is labelled ε.

• If the input of a � node is labelled α then its output is also labelled α.

• If the input of a � node is labelled α then its output is also labelled α.

Given a sum-product net G with a single input and a single output, we define
its read-back Rx(G) as the label of its output, given uniquely from the above
rules after labelling the input of G with x. We remark that this is necessarily
a term of TPF if x is. We will write simply R(G) for Rid(G).

For nets in general the read-back can be generalized as taking a vector of n
inputs and producing a vector of m outputs (both indexed from left to right),
Rx(G) = l1, . . . , lm where x = x1, . . . , xn.

Finally, we extend the equational theory of terms with the following equa-
tions relating the new constants introduced in the labels (ranged over by l):

L · i1 = id L · i2 = ε

R · i1 = ε R · i2 = id

l · ε= ε

Lemma E.6 Let G1, G2 be sum-product nets; if G1 −→ G2 then Rx(G1) =
Rx(G2).

Proof. All the net reduction rules preserve the read-back. We give two exam-
ples: in rule choice-dupS the inputs must have labels respectively of the form
β ·α1 ·L · γ and β ·α2 ·R · γ, or else α and β · ε; in the first case, in both sides
of the rule the outputs will be labelled L · β · [α1, α2] · γ and R · β · [α1, α2] · γ;
in the second case the outputs are labelled L · α and R · α in both sides.

In rule cancel-S1, for input α we have output L · i1 ·α in the left-hand side
and α in the right-hand side, which are equal under the augmented equational
theory. 2

Lemma E.7 For any t ∈ TPF, R(T(t)) = t.

Proof. The stronger result Rx(T(t)) = t · x can be proved by induction on
the structure of t. 2

Proposition E.8 (Completeness) Let t, u be TPF terms such that T(t) =
T(u). Then t = u.

Proof. For T(t) = T(u) to hold there must exist sum-product nets Gt, Gu

such that T(t) −→∗ Gt, T(u) −→∗ Gu, and Gt ≡ Gu. By lemma E.6 we
have that R(T(t)) = R(Gt) and R(T(u)) = R(Gu). Now by lemma E.7 and
because structurally equal nets have the same read-back, we have t = u. 2

25

	Introduction
	The Term Language and Theory
	Difficulties
	Local Graph Rewriting

	Sum-product Nets
	Sum-product Net Rewriting
	Termination
	Confluence

	Term nets
	Term Translation
	Soundness
	Completeness

	Further Work
	References
	Full set of rewriting rules
	Critical Pairs
	Among Common and Commutation
	Among ISA and CR
	Among ISB and CR
	Among two rules of the commutation group

	Example Term nets
	Example Reductions
	Proofs

