
NatServer: A Client-Server Architecture
for building Parallel Corpora applications

Alberto Simões
Dept. Informática – Univ. do Minho

ambs@di.uminho.pt

José João Almeida
Dept. Informática – Univ. do Minho

jj@di.uminho.pt

Resumen: Los corpora paralelos son importantes para la mayoŕıa de las tareas
de procesamiento de Lenguaje Natural. Gran parte de los investigadores utilizan
los corpora paralelos empleando-los en aplicaciones comunes, como la traducción
máquina, y en tareas mono-lingǘısticas, como sean la detección de paráfrasis y la
resolución de problemas de ambigüedad semántica. Este trabajo ha sido orientado
por estas cuestiones y propone una arquitectura cliente-servidor de interrogación
eficiente de corpora paralelos y diccionarios de traducción probabiĺıstica.
Palabras clave: corpora paralelos, indexación de corpora

Abstract: Parallel corpora are important resources for most Natural Language
processing tasks. From the common applications, like machine translation, to the
usually mono-lingual tasks as paraphrase detection and word sense disambiguation,
most researchers are using massive parallel corpora. Thus, the availability of an
efficient way to manage them is very important. This paper presents a Client-
Server architecture to query efficiently parallel corpora and probabilistic translation
dictionaries.
Keywords: parallel corpora, corpora indexing

1 Motivation

Parallel Corpora are being used for a large range
of applications in Natural Language Processing.
Nowadays, most typically monolingual research
area are benefiting from parallel corpora usage.

To help working with big amounts of paral-
lel corpora we propose a client-server approach to
store them, and make it accessible for querying.

When developing NATools we had the following
points in mind:

• be able to query for concordancies, both simple
and parallel: search for a word or pattern, in
the source or target language, or in both at the
same time;

• be able to query Probabilistic Translation Dic-
tionaries1. This way we can relate words from
corpora translation units.

• be able to query more than one corpus at
the same time, and with different languages.
Also, to be able to query for corpora meta-
information like involved languages, number of
translation units and other;

• support big corpus, more than one million
translation unit. Most studies are statistics,
and the results precision highly depends on the
corpus size.

• fast for interactive and batch tasks, which lead
us to a double architecture:

1Next section will detail what PTDs are, and how we
obtain them.

– reduce loading time for indexes and dic-
tionaries when using them interactively,
like in a web-based application (we do not
want the user to wait a long time for the
answer or that the web server timeouts).
With this in mind, there is a server which
loads all the information just once reduc-
ing the load time.

– reduce the overhead time for the commu-
nication. For batch processes which query
repeatedly the same corpus, it is better to
load the corpus indexes and query them
in memory. In these cases, the load time
overhead is too small compared with the
overall time of the process.

• easy to distribute work:

– for big corpora we can split them in
small chunks and make them available for
querying from different servers.

– different applications or users be able to
query the same corpus in the same server,
thus reducing the need for replication.
For instance, for the implementation of
distributed translation memories (Simões,
Guinovart, and Almeida, 2004).

• be an open-source and free tool. While there
are some applications to manage corpora (like
Corpus Query Processor (König, 1999) or
SARA for the BNC corpus (Dodd, 1997)) they
are not freely available. SARA is a commer-
cial software and CQP is just available for re-
search with license limitations. There are some

web-based tools like TransSearch (RALI Lab-
oratory, 2006) and COMPARA (Frankenberg-
Garcia and Santos, 2003) to query corpora.
The first is paid. COMPARA is freely avail-
able but uses as backend CQP. To be an open-
source tool is important for other researchers
be able to enhance the program accordingly
with their needs, to compare times, and other.
For special situations to use a general re-
lational database engine might be sufficient.
For instance, in (Sarmento, 2006) the mySQL
database engine is used with success but for
the specific n-gram based queries.

• prepare a simple API to write server clients
with few lines;

• develop a set of real web-clients to test and
validate the tool, and to test the API;

• develop multilayer support: add levels of in-
formation related to corpora words. The base
layer includes the words or tokens that consti-
tute the corpus. Other layers add information
like lemmatization or part-of-speech.

2 NATools

This section presents a brief overview of how NA-
Tools (Hiemstra, 1996; Hiemstra, 1998; Simões,
2004; Simões and Almeida, 2003) works, namely
the corpus encoder, and the extractor of Proba-
bilistic Translation Dictionaries (PTD).

2.1 NATools Pipeline

NATools is composed of different modules, which
work as a pipeline:

Corpora Encoder:

• a corpus splitter: divides the corpus in smaller
chunks that can be aligned independently in
memory. This is important because it makes
the tools scalable for big corpora2.

• a corpus encoder: maps an integer identifier to
each word. Then, chunks are codified to use
these integer identifiers. This step also creates
indexes used by NatServer to query the cor-
pora efficiently. If the objective is just corpus
query (and not probabilistic translation dic-
tionaries) just these first two steps are really
needed.
This encoding method let us work with cor-
pora layers (used by (Petersen, 2004) and also
discussed in (Graça, 2006)). The described
method creates the first layer containing just
the words (each one has an unique identifier).
Other levels can be added relating information

2The examples we show in this article are from EuroParl
(Koehn, 2002), a corpus with a million translation units.
Its alignment process creates 15 chunks of corpora aligned
independently.

to each word (or set of words) like lemmatiza-
tion or part-of-speech tagging.

PTD Builder:

• a co-occurrence counter: creates a matrix of
co-occurrences, where each cell of the matrix
contains the number of times two words oc-
curred on the same translation unit.

• the EM-Algorithm: the Expectation-
Maximization algorithm iterates over the
matrix of co-occurrences finding maximum
likelihood estimates.

• dictionary creation: interprets the co-
occurrences matrix and dumps a pair of dic-
tionary files.

• join dictionaries: the four previous step run
over each corpus chunk. Thus, when finishing,
we need to join the dictionary files (merge and
weight them accordingly with chunk sizes).

The result of the full process is the encoded cor-
pora and query indexes and a pair of probabilistic
translation dictionaries.

2.2 Probabilistic Translation
Dictionaries

Probabilistic Translation Dictionaries have this
structure:

wα ⇀ (occur × wβ ⇀ P (T (wα) = wβ))

That is, a map from each word on the source lan-
guage (Lα) to a pair: the number of occurrences of
that word in the corpus, and a map from possible
translations words to its respective probability of
being a translation.

Note that PTDs are not traditional dictionaries.
They contain information about strong relationship
between words in two different languages (where
most of them are translations).

The following extract is from EuroParl (Koehn,
2002). Europarl is more than a million translation
units in size, about 30 million words in each lan-
guage. The resulting PTD include about 100 000
entries, each with 1 to 8 possible translations.

1 ** Word: europe
2 ** OccurrenceCount: 42853

3 europa: 94.71 %
4 europeus: 3.39 %
5 europeu: 0.81 %
6 europeia: 0.11 %

7 ** Word: stupid
8 ** OccurrenceCount: 180

9 estúpido: 17.55 %
10 estúpida: 10.99 %
11 estúpidos: 7.41 %

12 avisada: 5.65 %
13 direita: 5.58 %
14 impasse: 4.48 %
15 ocupado: 3.75 %

3 Server Architecture

NATools is a basic socket server. It accepts requests
in a specific port and sends answers.

During the encode and alignment process de-
scribed above, a directory with the encoded cor-
pora, search indexes and dictionaries will be cre-
ated on the hard disk. This directory includes all
files needed by NatServer to query the corpus and
the probabilistic translation dictionary.

The server is configured with a text file with
directory paths. These are (absolute) paths to cor-
pora encoded with NATools. The server will load
the main lexicon tables and the probabilistic trans-
lation dictionaries to memory. The socket is opened
in the system and the server is ready to answer the
clients.

During operation NatServer will load the in-
dexes and cache corpora chunks while they are
needed, but will not keep them in memory.

Given that the server supports more than one
corpus at the same time, and supports both con-
cordance or probabilistic translation dictionaries
querying, it was necessary to build an interface to
obtain information about the meta-data of corpora
currently available.

There follows the description of the server API
for querying meta-information, probabilistic trans-
lation dictionaries and concordances3.

3.1 Meta-Information Query
The first query normally issed by the client asks
for the list of available corpora on the server. It
will return a list of names as well as the repective
identifiers and involved languages:

LIST : ξ −→ (id× name× Lα × Lβ)?

The corpus identifier will be required for all
other queries. For instance, To query meta-
information, you supply the corpus identifier and
the meta-data attribute you are interested on (for
example, name, description, number of translation
units and others):

QUERY ATTR : id× attribute −→ varvalue

This query will return the empty string if the
attribute does not exist. Attributes are not con-
fined to the ones created by NATools, as you can
add your own to each corpus configuration file.

3On (Simões and Almeida, 2003) similar web tools for
concordancies and probabilistic translation dictionary were
presented. They were redesigned to use NatServer and to
support more than one corpus at a time.

3.2 Probabilistic Translation
Dictionary Query

For each parallel corpus there is a pair of proba-
bilistic translation dictionaries: for two languages
Lα and Lβ there are Lα → Lβ and Lα ← Lβ . So,
when querying it, you should supply not only the
corpus identifier and the word you are searching
for, but also the direction (of the dictionary) you
are using.

The answer from the server is the number of
occurrences of that word in the corpus, and a list
of possible translations and their probability:

QUERY PTD : id× wordLα × direction

↓
occurrences× wordLβ 7→ probability

3.3 Concordance Query

There are two distinct concordance queries: you
can search for translation units where a set of words
appear in any order, or for translation units where
a set of word appear sequentially in a specific or-
der. We call the first “Word concordance” and the
second “Pattern concordance”.

Both query methods can be done searching just
one of the languages or both at the same time. The
two methods signatures are the same, as the only
real difference relies on the semantic the server ap-
plies to each method. Also, when asking for “Pat-
tern concordance” you can supply a place-holder
(the special word “asterisk” — *) which represent
a placeholder for any word.

CONC : id×
(
word?

Lα
+×word?

Lβ

)
↓(

sentenceLα × sentenceLβ

)?

4 Clients

In order to make the Natural Language Resources
stored with NatServer useful not just for our re-
search tools, we built a set of web clients being used
for linguists and students to query and navigate
through corpora (section 4.2). Regarding our re-
search, we are using some more complex tools that
use NatServer to obtain information for extraction
of sub-sentence alignments (section 4.3).

All these clients are available in NATools pack-
age, and are easily installable and configurable.

4.1 Command-line Concordance Tool
Example

To illustrate the way the Perl API simplifies the
process of writing clients for NatServer, in this sec-
tion we show a little Perl program to query for
translation units with a set of words.

Figure 1: NatSearch: do corpora concordances.

1 use NAT::Client;
2 $server = NAT::Client->new(
3 PeerAddr=>’eremita.di.uminho.pt’);
4 $concs = $server->conc({crp=>1},
5 join(" ",@ARGV));
6 for my $tu (@$concs) {
7 print "$tu->[0]\n";
8 print "$tu->[1]\n";
9 print "\n"

10 }

The first line imports the NAT::Client module,
which includes the API for querying NatServer.
The second line creates a new client. Here we can
specify the remote host where the queries will be
send, or the local path for a local corpora we want
to query. In this case, we change the client creation
code to:

$server = NAT::Client->new(
local => ’/corpora/EuroParl-PT-EN’);

There follows the line with the query. The first
argument is a configuration hash where we can de-
scribe the corpus to query. Follows the string to be
searched (the arguments to the script). The for
loop iterates over the translation units where the
words occur, and print them.

This sample code can be used from the com-
mand line as:

$ perl example parlamento europeu

and the result will be something like:

Declaro reaberta a sess~ao do Parlamento Europeu ,

que tinha sido interrompida na sexta-feira , 17 de

Dezembro último , e renovo todos os meus votos ,

esperando que tenham tido boas férias .

Declaro reanudado el perı́odo de sesiones del

Parlamento Europeo , interrumpido el viernes 17 de

diciembre pasado, y reitero a Sus se~norı́as mi deseo

de que hayan tenido unas buenas vacaciones .

Uma das pessoas recentemente assassinadas foi o

senhor Kumar Ponnambalam, que ainda há poucos meses

visitara o Parlamento Europeu

Una de las personas que recientemente han

asesinado en Sri Lanka ha sido al Sr . Kumar

Ponnambalam , quien hace pocos meses visitó el

Parlamento Europeo .

Senhora Presidente , coincidindo com a primeira

sess~ao deste ano do Parlamento Europeu, nos Estados

Unidos , no Texas , está marcada , lamentavelmente

para a próxima quinta-feira , a execuç~ao de um

condenado à morte , um jovem de 34 anos a quem

designaremos por X .

Se~nora Presidenta , coincidiendo con el primer

perı́odo parcial de sesiones de este a~no del

Parlamento Europeo , lamentablemente , en los

Estados Unidos , en Texas , se ha fijado para el

próximo jueves la ejecución de un condenado a la

pena capital , un joven de 34 a~nos que llamaremos

con el nombre de Hicks .

Figure 2: NatAbout: query corpora meta-
information.

4.2 Basic Web Clients

As a first set of clients we created three web appli-
cations to access encoded corpora. Figure 2 shows
the meta-information CGI where the user can select
a corpus and see the respective languages, name,
description and measures.

The concordance web interface is similar to
other parallel corpora tools. Figure 1 shows a query
and the result. Note the second column with a
quality measure of the translation unit, which was
pre-calculated using information from the PTDs.

The probabilistic translation dictionary web in-
terface is shown in figure 3. It shows two levels of
the dictionary in a compact table. It is possible to
change the view format to an expanded version, as
well as to follow word links and check translation
units where a specific pair of words occur.

4.3 Tool Clients

While it is interesting to query the server using a
CGI that is not one of the most important factors
of using it. In fact, the server is very useful for
batch processes where corpora and/or the dictio-
naries need to be queried.
4.3.1 Combinatory examples extraction
One of the purposes for the server is the develop-
ment of a example based machine translation sys-
tem prototype. As the example extraction algo-
rithm(Simões and Almeida, 2006) does not run fast
enough to be used on-the-fly, we are caching exam-
ples using a batch processor.

To extract these examples, we query the server
for translation units. For each word in this trans-
lation unit we query the server for its probabilistic
translation dictionary. This means that a single
translation unit with ten words in each language
does twenty-two connections to the Nat-Server.

This is a task where one might argue that the
socket connection is an overhead in the process, and
that if we load the corpus information just once, the
loading time will be insignificant compared to the
time the full task will take. With that in mind,

Figure 3: NatDict: search probabilistic translation
dictionaries.

our client API lets the user load the full corpus to
memory and use it directly, instead of connecting
to a server.

Figure 4: Examples extraction based on probabilis-
tic translation dictionaries.

4.3.2 Web example extraction tool
The algorithm for the example extraction uses a
matrix of probability values, and tries to find cells
corresponding to true word translations. While
tuning and debuging the algorithm we needed to
see how it was evolving. For that purpose we de-
veloped a CGI to show graphically the compued
matrix. Figure 4 shows an example of that CGI in
action.

5 Measures

Our test environment is not the most favorable:
we are running both the server and the client in
the same machine, which leads to overheads during

process switching.
Although the server does not have a fixed limit

for number of corpora and its size, it all depends
on the server hardware being used.

We normally work with about four to five cor-
pora loaded at the same time. For instance, the
tests related before were done with four corpora
loaded (EuroParl PT/ES, PT/EN and PT/FR,
each with more than one million translation units
and a small four thousand translation unit test cor-
pus PT/LA). Each EuroParl corpora takes about
300MB of ASCII text. The server uses about 600
MegaBytes of RAM memory with these four cor-
pora loaded, included respective PTDs. The hard-
ware used for our tests is an Intel Pentium 4, 3GHz
with 2MB of RAM running Linux.

We did a set of 100 000 requests to the server
for the first 20 concordancies (both word and pat-
tern concordancies) to calculate the medium time
needed to answer a request, and the number of re-
quests answered per second. Table 1 resumes these
tests times.

sec/req req/sec occs
1 cão 0.038 26.027 40
2 europa 0.010 98.090 36532
3 parlamento europeu 0.036 27.131 23841
4 “parlamento europeu” 0.036 27.485 23841
5 “europeu parlamento” 1.474 0.68 23841
6 PTD(parlamento) 0.001 1676.45 –

Table 1: NatServer timings — 1, 2 and 3 are times
for word concordancies, 4 and 5 are times for pat-
tern concordancies and 6 is the timing for PTD
query.

Tests 1 and 2 are basically the same, just chang-
ing the word being searched. Because“cão”appears
just 40 times in the corpus, it should be distributed
in the different encoded chunks of the corpus. Thus,
a lot more files will be opened to retrieve the occur-
rencies. As “europa” appears a lot more, the first
20 occurrences are probably in the first encoded
chunk.

Tests 3 and 4 show that the pattern matching
algorithm is not adding time to the results. Ba-
sically, everytime “parlamento” and “europeu” ap-
pear in the same sentence they normally appear as
“parlamento europeu”, so, the work to get the first
20 occurrences in word or pattern matching is ba-
sically the same.

Finally, test 5 is a unfavorable test. There are
no occurrences of “europeu parlamento” in the cor-
pus but there are a 23841 sentences where these
two words occur. This means that the server will
retrieve those 23841 sentences. This result shows
that work is needed in bigrams indexing.

Regarding loading time the server takes about 4
seconds to load the indexes for these four corpora.

Table 2 summarizes the number of PTD queries

req/sec
Server queries 1 737.92
Local queries 45 454.55
Local queries with load 0.70

Table 2: Number of requests answered by second.

NatServer can answer by second. the server can
answer more than 1700 PTDs queries per second.
In case we need batch processes like the example
extraction we referred before, we can load the cor-
pus directly in the main program and we get 45455
queries answered by second. While this seems a lot
better than the client/server architecture we need
to stress that if we load the corpus data for every
request (what a CGI would do), the system would
be able to answer 0.7 requests per second!

6 Conclusions

While the server is not yet as powerful and efficient
as other tools, namely CQP, it is very flexive and
performance is evolving each day. Our first objec-
tive is to use the server for example based machine
translation (Somers, 1999) tools. Thus, exatracted
examples will be served as if they were normal cor-
pora. Also, more types of information will be added
to the server:

• a shared probabilistic translation dictionary,
result of adding up all available PTDs (not just
the ones being served). This dictionary, be-
ing the result of analyzing much more corpora
should be more accurate than the separated
ones;

• some of the tools being developed for ex-
ample extraction use morphological analyz-
ers(Almeida and Pinto, 1994) for the involved
languages. Work is done on analyzing how the
performance would increase if this information
is added to the server;

As referred before, NATools corpora can have
more than one layer of information. At the moment
the server is just querying the base level (words
and sentences). More work is being done to make
NatServer aware of the available layers.

The server can be tested on http://eremita.
di.uminho.pt/albin/nat and the source code can
be downloaded from http://natools.sf.net/.

References

Almeida, J. João and Ulisses Pinto. 1994. Jspell
— um módulo para análise léxica genérica de
linguagem natural. In Actas do Congresso da
Associação Portuguesa de Lingúıstica.

Dodd, Tony. 1997. Sara: Technical manual-
release 930. http://www.natcorp.ox.ac.uk/
sara/TechMan/index.htm, November.

Frankenberg-Garcia, Ana and Diana Santos,
2003. Introducing COMPARA, the Portuguese-
English parallel translation corpus, pages 71–87.
St. Jerome Publishing, Manchester.

Graça, João de Almeida Varelas. 2006. A frame-
work for integrating natural language tools.
Master’s thesis, Universidade Técnica de Lisboa,
Instituto Superior Técnico, Lisboa, February.

Hiemstra, Djoerd. 1996. Using statistical methods
to create a bilingual dictionary. Master’s thesis,
Department of Computer Science, University of
Twente, August.

Hiemstra, Djoerd. 1998. Multilingual domain
modeling in twenty-one: automatic creation of
a bi-directional lexicon from a parallel corpus.
Technical report, University of Twente, Par-
levink Group.

Koehn, Philipp. 2002. Europarl: A multilingual
corpus for evaluation of machine translation.
Draft, Unpublished, http://people.csail.
mit.edu/~koehn/publications/europarl.ps.

König, Oliver Christ & Bruno M. Schulze & Anja
Hofmann & Esther. 1999. The IMS Corpus
Workbench: Corpus Query Processor (CQP):
User’s Manual. Institute for Natural Language
Processing, University of Stutgart.

Petersen, Ulrik. 2004. Emdros — a text database
engine for analyzed or annotated text. In Coling
2004, Geneva.

RALI Laboratory. 2006. TransSearch. http://
www.tsrali.com.

Sarmento, Lúıs. 2006. BACO — a large database
of text and co-occurrences. In 5th International
Conference on Language Resources and Evalua-
tion (LREC’2006), Genova, May.

Simões, Alberto and J. João Almeida. 2006. Com-
binatory examples extraction for machine trans-
lation. In EAMT 11th Annual Conference, Oslo,
Norway, June.

Simões, Alberto, Xavier Gómez Guinovart, and
José João Almeida. 2004. Distributed trans-
lation memories implementation using webser-
vices. pages 89–94. Sociedade Española para el
Procesamiento del Lenguaje Natural, Jul.

Simões, Alberto M. and J. João Almeida. 2003.
Natools – a statistical word aligner workbench.
SEPLN, Sep.

Simões, Alberto Manuel Brandão. 2004. Parallel
corpora word alignment and applications. Mas-
ter’s thesis, Escola de Engenharia - Universidade
do Minho.

Somers, Harold. 1999. Review article: Example
based machine translation. Machine Transla-
tion, 14(2):113–157.

