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ABSTRACT Acinetobacter baumannii is an important pathogen causative of health
care-associated infections and is able to rapidly develop resistance to all known anti-
biotics, including colistin. As an alternative therapeutic agent, we have isolated a
novel myovirus (vB_AbaM_B9) which specifically infects and makes lysis from with-
out in strains of the K45 and K30 capsule types, respectively. Phage B9 has a ge-
nome of 93,641 bp and encodes 167 predicted proteins, of which 29 were identified
by mass spectrometry. This phage holds a capsule depolymerase (B9gp69) able to
digest extracted exopolysaccharides of both K30 and K45 strains and remains active
in a wide range of pH values (5 to 9), ionic strengths (0 to 500 mM), and tempera-
tures (20 to 80°C). B9gp69 was demonstrated to be nontoxic in a cell line model of
the human lung and to make the K45 strain fully susceptible to serum killing in
vitro. Contrary to the case with phage, no resistance development was observed by
bacteria targeted with the B9gp69. Therefore, capsular depolymerases may represent
attractive antimicrobial agents against A. baumannii infections.

IMPORTANCE Currently, phage therapy has revived interest for controlling hard-to-
treat bacterial infections. Acinetobacter baumannii is an emerging Gram-negative
pathogen able to cause a variety of nosocomial infections. Additionally, this species
is becoming more resistant to several classes of antibiotics. Here we describe the
isolation of a novel lytic myophage B9 and its recombinant depolymerase. While the
phage can be a promising alternative antibacterial agent, its success in the market
will ultimately depend on new regulatory frameworks and general public accep-
tance. We therefore characterized the phage-encoded depolymerase, which is a nat-
ural enzyme that can be more easily managed and used. To our knowledge, the
therapeutic potential of phage depolymerase against A. baumannii is still unknown.
We show for the first time that the K45 capsule type is an important virulence factor
of A. baumannii and that capsule removal via the recombinant depolymerase activity
helps the host immune system to combat the bacterial infection.
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Acinetobacter baumannii is one of the leading nosocomial pathogens, responsible
for 2 to 10% of all Gram-negative bacterial hospital infections worldwide (1). It is

associated with several hospital-acquired infections (e.g., ventilator-associated pneu-
monia and bloodstream, urinary tract, and surgical wound infections) and cases of
community-acquired infections, mostly in immunocompromised individuals. Mortality
rates range from 19 to 54% (1). The treatment of this bacterium is becoming increas-
ingly problematic due to the emergence of multidrug-resistant strains. Many clinical
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isolates are already nonsusceptible to last-resort carbapenem and colistin antibiotics. In
fact, carbepenem-resistant A. baumannii has been recently listed by the World Health
Organization (WHO) as the number one priority pathogen for the development of new
antimicrobials (2, 3).

Several virulence factors have been identified in Gram-negative bacilli, among which
the capsular structures (k-type) are suggested to be involved in the evasion of microbial
defenses and macromolecular antibiotics (4–8). In A. baumannii, the existence of at least
106 capsular types may reflect the sophisticated and diverse protective mechanisms
developed by this pathogen (9–11).

Bacteriophages and derived enzymes can be seen as an appealing alternative
treatment against drug-resistant infections (12). In particular, depolymerases are en-
coded by some phages to degrade the polysaccharides present in the bacterial
capsules, thereby allowing phages to reach the host receptor on the cell surface and
initiate infection (13, 14). An extensive in silico review of phage depolymerases revealed
that most of these enzymes are encoded in phage structural proteins such as tail fibers,
baseplates, and necks and that depolymerases can be divided into two main classes:
hydrolases and lyases (13). Most phages encode only one or two depolymerase motifs
in the same gene, but some can be found encoding multiple depolymerases (15). The
presence of depolymerization activity in phages is usually identified by the formation
of a halo surrounding phage plaques. Previously, several A. baumannii phages encoding
depolymerases that infect specific host capsular types (K-types), K1, K2, K3, K9, K19, K27,
and K44, have been reported (16–20). However, there is only one study that charac-
terized a recombinant depolymerase demonstrating its ability to degrade capsular
polysaccharides extracted from planktonic cells or biofilm matrices (21). Moreover, the
therapeutic potential of phage depolymerases is far less explored than that of endo-
lysins and still remains poorly studied in A. baumannii.

Our group has been studying the interaction of phage-borne depolymerases
with different Acinetobacter species (18). In this study, we have isolated and
characterized a phage depolymerase targeting A. baumannii NIPH 201 which is
assigned to the K45 capsule type (22). We have functionally analyzed the primary
and secondary structure of the enzyme and determined the conditions under which
it is able to degrade the host capsule. The enzyme was demonstrated to have an
antivirulence effect against K45 strains in a human alveolar epithelial model, to
enhance serum-mediated killing, and to be refractory to the development of
resistance under selective pressure.

RESULTS
Novel phage B9 infects K45-type A. baumannii. Our initial efforts focused on

isolating a lytic phage infecting a K45 strain using the isolation enrichment procedure
in which NIPH 201 (a K45 strain) was incubated with raw wastewater treatment
samples. Phage B9 was isolated and tested against a panel of A. baumannii reference
strains of 22 distinct capsular types (Table 1). As expected, phage B9 infected the K45
strain but made lysis from without in a K30 strain. This means that phage B9 does not
infect K30. Instead, the phage is capable of lysing K30 by destruction of the cell wall
from the outside due to adsorption of multiple phages to a single cell. In agreement,
the one-step-growth curve of phage B9 shows it can only replicate inside the K45 strain,
with a latent period of 35 min and burst size of 181 phages per infected cell (Fig. 1).
Morphologically, phage B9 plaques are characterized by clear and uniform plaques on
the host strain with small halos (2 mm in diameter) on 0.6% agar plates (Fig. 2A).
Transmission electron microscopy (TEM) images show that B9 features a morphology
typical of the Myoviridae family, with a 70-nm-diameter icosahedral head and a 110-
by 15-nm contractile tail (Fig. 2B).

We further characterized phage B9 using high-throughput sequencing. Phage B9
has a 93,641-bp double-stranded DNA, a GC content of 33.6%, and overall genetic
organization composed of 167 predicted open reading frames (ORFs) (Fig. 2C). BLASTN
analysis showed an overall genome identity lower than 1% to other phages in the
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nonredundant database. BLASTP search predicted the function of 77 of the phage
B9-encoded proteins, most of which resembled proteins of Acinetobacter unclassified
myoviruses (Table S1). Based on OrthoVenn analysis, we found that phage B9 shares a
maximum of 30 genes with phage YMC13/03/R2096 (98,170 bp, 162 ORFs; GenBank

TABLE 1 Activity spectrum on A. baumannii capsular typesa

Strain K type B9 phage infectivity EOP B9gp46 depolymerase

NIPH 501T 3 � � �
NIPH 60 43 � � �
NIPH 67 33 � � �
NIPH 70 44 � � �
NIPH 80 9 � � �
NIPH 146 37 � � �
NIPH 190 30 � LFW �
NIPH 201 45 � High �
NIPH 329 46 � � �
NIPH 335 49 � � �
NIPH 528 9 � � �
NIPH 601 47 � � �
NIPH 615 48 � � �
NIPH 1734 49 � � �
NIPH 2390 NA � � �
NIPH 2778 NA � � �
NIPH 2783 NA � � �
NIPH 290 1 � � �
NIPH 2061 2 � � �
ANC 4097 40 � � �
NIPH 4373 NA � � �
J9 11 � � �
LUH5554 15 � � �
A85 15 � � �
RBH2 19 � � �
LUH5535 35 � � �
BAL_212 57 � � �
SGH0703 73 � � �

aDrop test. Phage and recombinant depolymerase were spotted in bacterial lawns to visualize activity. For the
phage, the relative efficiency of plating (EOP) was calculated as the titer of the phage (PFU/ml) for each isolate
divided by the titer for the propagating host and recorded as high (�0.5) or low (�0.5). EOP was also performed
to distinguish productive infection (lysis) from lysis from without (LFW) by the appearance of cell lysis only in the
first dilution(s) for the latter case. K-type, determined capsule structure; NA, capsule structure is not available.

FIG 1 Acinetobacter baumannii phage B9 one-step growth curve. The curve was performed using K45
host NIPH 201.
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accession no. KM672662), 25 genes with phage AM24 (97,137 bp, 146 ORFs; GenBank
accession no. KY000079), and fewer than 18 genes with all other phages.

Analysis of phage B9 structural proteins. To determine the protein composition
of the phage B9 particle, the structural components were precipitated, separated by
electrophoresis, and trypsinized and the resulting peptides were analyzed by electro-
spray ionization-tandem mass spectrometry (Fig. 3). Mass spectrometry allowed the
identification of 29 proteins, of which 27 had a coverage of over 5% and more than one
unique peptide. Among these proteins, 13 had predicted function (e.g., tail fiber and
minor and major capsid proteins), 8 had unknown function but were located in the
morphogenetic phage module (Fig. 2C), and 6 were unique proteins without homologs
(gp31, gp37, gp44, gp49, gp59, and gp60), generally closely located at the predicted
morphogenetic phage module. The protein carrying the depolymerase domain (gp69)
used in this study was also identified, suggesting that it is also part of the phage virion
structure.

Identification of B9gp69 as a capsular depolymerase. The fact that phage B9
plaques are surrounded by halos on K45 strain lawns is indicative of bacterial cell
decapsulation by depolymerases. We detected a pectate_lyase_3 domain (PF12708) in
the C terminus of B9gp69 (Fig. 4A), although with low homology (E value, 4.9E�7). We
further proved that this is a structural protein that has no attributed function and shares
relatively low identity only to Acinetobacter sp. proteins (�55% amino acid identity). To
assess the activity of this protein, the C-terminal domain of B9gp69 was cloned,
heterologously expressed, and tested using the spot-on-lawn method against Acineto-
bacter strains. Like phage B9, the recombinant depolymerase (B9gp69) is active against
the K30 and K45 strains (Table 1). In the spot test, the enzyme was active down to a
concentration of 0.01 �M on both capsular types (Fig. 4B).

Depolymerase functional analysis. The B9gp69 activity was also tested toward
extracted exopolysaccharides (EPS) from the K30 and K45 sensitive strains and one K3
nonsensitive strain. In agreement with the above-described spot-on-lawn results, the
enzyme was able to degrade polysaccharides only from the K30 and K45 strains and not

FIG 2 Morphological and genomic analysis of phage B9. (A) Plaques of phage B9 on K45 A. baumannii strain NIPH 201. (B) TEM micrographs of phage B9
negatively stained with 2% uranyl acetate. Scale bar indicates 100 nm. (C) Genome map of phage B9 with 167 predicted proteins colored according to their
predicted function. Proteins identified by liquid chromatography-electrospray ionization-tandem mass spectrometry (nanoESI-MS/MS) are indicated. The
hypothetical protein with the predicted depolymerase domain (pectate_lyase_3) used in this study is also highlighted.
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from the K3 strain (Fig. 5). Using EPS from the K45 strain, the enzyme activity was
further characterized under different environmental conditions (pH, ionic strength, and
temperature) (Fig. 6). The enzyme remained active in all pH values tested (pH 5 to 9),
with an optimum around pH 5 to 7 (Fig. 6A). Interestingly, the enzyme was not affected
by the presence of salt up to 500 mM (Fig. 6B). The enzyme was also shown to be
mesophilic, exhibiting optimal activity between temperatures of 20°C and 60°C
(Fig. 6C). At 70°C and 80°C, the enzyme displayed a slight or substantial reduction to
73% and 53% of activity.

To gain further insight into the structure of the depolymerase, we resorted to
circular dichroism (CD) spectroscopy to assess the secondary structure content. The CD
spectrum demonstrated two negative dichroic minimums, one between 218 and
220 nm and another less pronounced at 212 nm, with a positive dichroic maximum at
193 nm, which are signature peaks of an �-sheet content (Fig. 7A). In agreement,
deconvolution analysis of the CD spectra using DichroWeb server demonstrated that

FIG 3 Analysis of phage B9 virion proteins. Structural proteins were separated on a 12% SDS-PAGE separation gel, alongside with a PageRuler prestained protein
ladder. The entire lane was cut into 13 slices and trypsinized, and the resulting peptides were analyzed using liquid chromatography-electrospray
ionization-tandem mass spectrometry. The resolved proteins are listed.

FIG 4 In silico and in vitro analysis of the depolymerase of phage B9. (A) Bioinformatics analysis using BLASTP and HHpred output. The
depolymerase domain identified and cloned in this study corresponds to the phage genetic region from bp 775 to 2592 of ORF69. (B) Spot
test of different micromolar concentrations of the B9gp69 on Acinetobacter baumannii K45 strain NIPH 210.
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B9gp69 folds 100% as �-helices. The CD was also employed to measure the secondary
structure stability by monitoring transitions as a function of temperature, which indi-
cated that B9gp69 unfolds at 51°C (Fig. 7B).

Role of depolymerase in phage adsorption. To clarify the role of the depoly-
merase in phage B9 infection, we performed adsorption experiments with phage B9
and hosts of different capsular types, with and without pretreatments with B9gp69 and
in presence or absence of free EPS (Fig. 8). The phage adsorbed more than 93.8% to
nontreated K45 cells, whereas it adsorbed only 25.3% to depolymerase-treated K45
cells (P � 0.01). Similarly, phage adsorbed 85.5% to K30 cells versus 17.8% to
depolymerase-treated K30 cells. In both cases, additions of free EPS did not interfere
with phage adsorption. For nonhost K3 (insensitive to both phage and enzyme), no
phage adsorption to either wild-type or pretreated strain was observed.

Depolymerase cytotoxicity on human epithelium. To assess the safety of B9gp69,
the cytotoxicity of the depolymerase toward human epithelial cells was tested. The
epithelial cell line A549 was used, as the human respiratory tract is one of the main

FIG 5 Depolymerase activity toward extracted exopolysaccharides (EPS). Purified EPS from de-
polymerase-sensitive strains K45 NIPH 201 and K30 NIPH 190 and nonsensitive strain K3 NIPH 501 were
incubated with HEPES (untreated) or B9gp69 (treated) for 1 h at 37°C. EPS cleavage was quantified by the
amount of sugar ends present using the DNS method. Significance was determined by a Student t test
for comparison between the treated and the untreated groups. *, statistically different (P � 0.01).

FIG 6 Depolymerase activity under different environmental conditions. The enzyme was incubated with EPS extracted from Acinetobacter strains at different
pH values (5 to 9; 0 mM NaCl and 37°C) (A), ionic strengths (0 to 500 mM NaCl; pH 6 and 37°C) (B), and temperatures (37 to 80°C; pH 6 and 0 mM NaCl) (C).
The results are expressed as relative activity, comparing with the best activity value obtained, pH 6, 0 mM, 37°C. *, statistically significant (P � 0.05).
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targets of this pathogen (23). B9gp69 demonstrated a nontoxic effect toward the cells,
as similar quantities of soluble formazan were detected in A549 cells after 24 h of
exposure to the depolymerase (Fig. 9) as in cells under control conditions. Additionally,
the numbers of treated and untreated bacterial cells colonizing A549 cells were similar,
demonstrating a lack of antibacterial effect of B9gp69 (data not shown).

Serum sensitivity of depolymerase-treated bacteria. The capacity of the depoly-
merase to enhance bacterial susceptibility to serum killing was tested on the K45 strain
(Fig. 10). When intact cells were added to serum, the bacterial load increased 2-fold. In
contrast, B9gp69-pretreated cells incubated with serum were reduced below the
detection limit (�10 CFU/ml). As expected, B9gp69 could not complement the serum
killing activity against the K3 strain. This is a clear indication of the enhancing effect of
B9gp69 on the bacterial susceptibility to human serum killing.

FIG 7 Circular dichroism analysis of the depolymerase. (A) CD spectrum measured in the far-UV (190 to 260 nm); (B) melting curve
acquired at 218 nm with the protein (4 �M) dialyzed in potassium phosphate buffer at pH 7.

FIG 8 Phage adsorption. Phage B9 was adsorbed in K3, K30, and K40 using (i) wild-type cells, (ii)
depolymerase-treated cells, and (iii) depolymerase-treated cells in the presence of free EPS (5 mg/ml).
Results are expressed as residual PFU percentages in comparison with adsorption assays with untreated
cells, as indicated on the x axis. Error bars represent SDs from three repeated experiments. Significance
was determined by a Student t test for comparison between the treated and the untreated groups. *,
statistically significant (P � 0.01).
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Frequency of phage- and depolymerase-insensitive mutants. As the emergence
of resistance is a key factor when considering phage therapy, the K45 strain was
challenged with phage or B9gp69 for 24 h and evaluated for the appearance of
insensitive phenotypes (Table 2). While the phage- and enzyme-free cultures displayed
a steep growth curve, cultures infected with the phage demonstrated an initial de-
crease of cell density followed by regrowth after 8 to 9 h, a consequence of the
development of phage-insensitive variants. For the culture incubated with the B9gp69,
no antibacterial effect was observed.

Ten bacterial colonies of each culture were selected to assess sensitivity toward the
phage or B9gp69. As expected, all 10 colonies grown free of phage and enzyme
remained sensitive to both. For phage-challenged cultures, three colonies were insen-
sitive to both phage and enzyme, and seven remained sensitive to both. Of these, three
had a diminished efficiency of plating (EOP), while B9gp69 remained active at the

FIG 9 Cytotoxicity effect of the depolymerase on human epithelium. The cytotoxicity effect of the enzyme
was measured by assessing the viability of human lung carcinoma cell line A549 (ATCC CCL-185) when
incubated with B9gp69 for 24 h, measuring the soluble formazan produced by cellular reduction by MTS at
490 mn, after addition of the CellTiter 96 Aqueous One solution reagent. The results are expressed as
percentage by comparing with HEPES as a control (�100% cell viability). *, statistically significant (P � 0.05).

FIG 10 Effect of the depolymerase of phage B9 on bacterial susceptibility to serum killing. Host K45 and
nonhost K3 susceptibility to killing by human serum was evaluated by adding only bacteria or bacteria
pretreated with B9gp69. The enzyme was used at 0.1 �M. Significance was determined by Student t test. *,
P � 0.001.
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lowest concentration, 0.01 �M. For B9gp69-challenged cultures, all 10 colonies re-
mained sensitive to both phage and enzyme, indicating a lack of resistance develop-
ment. Of note, the enzyme was found to be active after overnight incubation with K45
cells using drop tests (data not shown).

DISCUSSION

A. baumannii has become one of the priority human pathogens for the development
of new antimicrobials due to its prevalence in hospital care units and increased
multidrug resistance. Capsular polysaccharide represents an important virulence factor for
most clinical isolates of Gram-negative and Gram-positive species (24) and presumably also
for A. baumannii (11). To date, of 106 capsular types found in A. baumannii, only K1 from
the A. baumannii strain AB307-0294 was recently shown to be a virulence factor (11).
Furthermore, the prevalence of the 106 capsular types in clinical settings remains unknown
due to the absence of implemented typing schemes (9). Studies on phage-encoded
depolymerases and their use for recognition and removal of specific capsules of A. bau-
mannii are necessary to develop novel typing and treatment schemes, as has been done for
pathogens like Klebsiella, Escherichia coli, and Pseudomonas (15, 25–28). Here we demon-
strate that the K45 capsular type is an important virulence factor and a protective barrier
against the human immune system. We also demonstrate for the first time that capsular
depolymerases have antivirulence properties against A. baumannii.

We isolated B9 myovirus from sewage samples, and this virus was able to infect only
K45 strains and cause lysis from without on the K30 strain. We hypothesized the narrow
host range to be a consequence of the phage using depolymerases to recognize
specific host capsule, as recently demonstrated for several A. baumannii podoviruses
(17, 18). Aiming to characterize this capsular depolymerase, we sequenced the genome
of phage B9. Based on bioinformatics analysis, we demonstrated that phage B9 is a
novel A. baumannii-infecting phage. It lacks relatedness at the genomic level (�1%)
and shares limited gene content (�31 out of 167 genes) only with A. baumannii
myoviruses YMC13/03/R2096 and AM24, which were recently proposed to form a new
genus named “R2096virus” (both share 117 genes) (29). Additionally, novel virion
structural proteins were identified by mass spectrometry. Therefore, phage B9 is eligible
to create a new genus within the subfamily Tevenvirinae.

Through screening of phage-encoding proteins and mass spectrometry, we found
that B9gp69 is a structural protein with a conserved C-terminal pectate_lyase_3 domain
of weak homology, a domain that has been previously shown to be responsible for
decapsulation of bacterial cells (18). According to comparison with other Acinetobacter
phages, this protein is likely a new tail spike (18). The recombinant depolymerase
(B9gp69) harboring the pectate_lyase_3 domain was active on K30 and K45 strains. The
K loci of the tested strains are flanked by fkpA and lldP genes, several conserved genes

TABLE 2 Activity spectrum of depolymerase B9gp69 on A. baumannii isolated in this studya

Isolate no.

Incubation with SM buffer Incubation with phage Incubation with depolymerase

Phage (EOP) Depolymerase Phage (EOP) Depolymerase Phage (EOP) Depolymerase

1 � (high) � � (high) � � (high) �
2 � (high) � � (high) � � (high) �
3 � (high) � � � � (high) �
4 � (high) � � � � (high) �
5 � (high) � � (low) � � (high) �
6 � (high) � � (high) � � (high) �
7 � (high) � � (low) � � (high) �
8 � (high) � � (low) � � (high) �
9 � (high) � � (high) � � (high) �
10 � (high) � � � � (high) �

aK45 NIPH 201 cells were incubated with SM buffer, phage, or B9gp69 and afterwards tested for their sensitivity against the phage or B9gp69 using drop tests. For
the phage, the relative efficiency of plating (EOP) was calculated as the titer of the phage (PFU per milliliter) for each isolate divided by the titer for the propagating
host and recorded as high (�0.5) or low (�0.5). EOP was also performed to distinguish productive infection (lysis) from lysis from without by the appearance of cell
lysis only in the first dilution(s) for the latter case.
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involved in the capsule export and repeat unit processing, and nonconserved genes
responsible for nucleotide sugar and glycosyltransferase biosynthesis are present (Fig. 11).
Specially, several include genes for uncommon sugars, such as pseudaminic acid (psa) and
legionaminic acid (lag), which are absent in K30 and K35 locus. At the structure level, we
noticed that glucose-1-6-N-acetyl-D-glucosamine and N-acetyl-D-glucosamine-1-4-N-
acetylgalactosamine are bonds shared only by K30 and K45 and are therefore possible
cutting sites of B9gp69 (22). Other depolymerases encoded by Klebsiella pneumoniae- and
E. coli-infecting phages were also found to degrade specific capsule types matching the
host range of their parental phages (25). Even in the few examples in which phages encode
multiple depolymerases for multiple capsule types, the phage host range matched to the
sum of sensitive capsule types of the individual encoded depolymerases (15, 30).

After testing B9gp69 under several conditions, we demonstrated that it is highly
active at various pH (5 to 9), ionic strengths (0 to 500 mM), and temperatures (20 to
80°C). This impressive tolerance to extreme conditions is probably related to the
structural nature of phage depolymerases, which have been designed during evolution
to endure harsh external environments in order to maintain phage infectivity. Inter-
estingly, although B9gp69 remained active up to 80°C, its secondary structure unfolded
at a much lower temperature (51°C). It is possible that the active center of B9gp69
remains available at high temperatures to cleave the capsular polymers, being inde-
pendent of its secondary structure. We also noticed that the secondary content of
B9gp69 made of �-helices is different from the typical beta-sheet-rich structures
observed so far on other K. pneumoniae and E. coli phage depolymerases, which melt
at higher temperatures (�65°C) (25, 31). Another important difference is that we used
only the C-terminal region of the tail fiber gene, which contains the depolymerase
activity, while all mentioned studies used the whole tail fiber gene.

FIG 11 K locus variation of Acinetobacter baumannii strains. The capsular synthesis loci were represented with EasyFig drawn at scale (left) or using a table
(right). Capsular polysaccharide clusters were annotated following the Hall-Kenyon nomenclature (22, 66, 67). The K locus genes are colored according to
function. The K locus is flanked by fkpA and lldP genes marked in black. Loci are accessible by the GenBank entries listed in Table 3. Unk, gene with unknown
function; Trsp, transposase.
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We have also assessed the role of B9gp69 in phage adsorption. Phages typically use
tail spikes or tail fiber proteins to recognize various bacterial receptors, from cell wall
components (e.g., lipopolysaccharide and outer membrane proteins) to pili, flagella,
and capsules (30, 32, 33). It is also common for phages to have a primary reversible and
a secondary irreversible receptors (34–36). For phage B9, our results indicate that the
capsule surrounding the cells is essential for adsorption, since the phage could no
longer efficiently bind to B9gp69-pretreated K45 cells. The fact that the addiction of
crude EPS did not compromise phage adsorption indicates a strong therapeutic
potential of the phage in the presence of free carbohydrates. Also, because phage B9
infects K45 but only makes lysis from without in K30, it is possible that these two
capsules act as a primary phage receptor, with a distinct secondary and more internal
receptor. Similar findings were previously reported for E. coli K1 phage, which infected
only the wild-type strain with an intact polysialic acid capsule and not the capsule-
deprived cells (32). More recently, similar results were also reported for a phage-borne
depolymerase infecting K. pneumoniae and Acinetobacter pittii species (18, 30). There-
fore, depolymerases recognize bacterial capsules as receptor for phage adsorption and
are essential to initiate infection.

To assess the cytotoxicity and antivirulence effect of capsular B9gp69, we tested the
enzyme in mammalian cells and human serum models. In the mammalian cell assay, the
enzyme was found to be nontoxic. In the human serum assay, we observed that the K45
strain was resistant to killing by serum complement and that it could proliferate. Treatment
with B9gp69 had a strong effect on the K45 strain, making it fully susceptible to serum
killing. The lipopolysaccharide of Acinetobacter strains has been previously linked to the
bacterium’s increased resistance to the host immune system (37). Here we show that
specific capsule polymers have also an important role in the immune system evasion. These
results agree with previous studies with K. pneumoniae in which several capsular types (e.g.,
K1, K5, K8, K30, K64, and K69) were shown to be resistant to serum killing (26, 30, 38).

Considering the antivirulence and antiserum resistance properties of B9gp69, this
enzyme is a potential antimicrobial for the control of A. baumannii infections. One of
the major concerns about the development of novel antimicrobial strategies, among
which phage therapy is included, is the repetition of the mistakes made with antibi-
otics, which resulted in the fast emergence of resistance. So in this study, we addressed
this issue with both phage B9 and B9gp69. Bacteria were able to develop resistance to
phage B9 but not to B9gp69, probably because the enzyme does not kill the cells and
instead only degrades the extracellular capsule. It is also possible that the relatively low
concentration of enzyme we used (0.1 �M), due to expression limitations, was not
enough to induce resistance. Nonetheless, this study showed the in vitro and ex vivo
efficacy of a phage-derived capsular depolymerase from a new phage infecting A.
baumannii able to reduce the bacterial virulence and sensitize the bacterium to serum
killing. Here we provided further evidence that support the therapeutic potential of
phage-derived depolymerases against A. baumannii, a major threat for human health.

MATERIALS AND METHODS
Bacterial strains. A panel of 21 A. baumannii strains were used covering a range of 22 different

bacterial capsule types (K1 to K3, K9, K11, K15, K30, K33, K35, K37, K40, K43 to K49, K57, K73, and K83)
(Table 3). They mostly belong to the collections of Alexandr Nemec (NIPH and ANC strains) and of the
Institut Pasteur (CIP strains) (39–47). All strains were routinely grown at 37°C in Trypticase soy broth (TSB)
or in Trypticase soy agar (TSA; 1.5% [wt/vol] agar).

Phage isolation. Phage vB_AbM_B9 was isolated from a raw sewage wastewater treatment plant
(Braga, Portugal) using an enrichment procedure as previously described (18), using K45 strain NIPH 201.
Purified phage plaques were propagated in solid media, collected with SM buffer, filtered, purified with
polyethylene glycol 8000 (PEG 8000)-NaCl and titrated following standard procedures (48).

Transmission electron microscopy. Phage particles were centrifuged (20,000 � g, 1 h, and 4°C),
washed, and suspended in tap water. A drop of phage solution was added onto copper grids provided
with carbon-coated Formvar films, stained with 2% (wt/vol) uranyl acetate (pH 4.0), and observed with
a Jeol JEM 1400 transmission electron microscope (TEM).

Phage sequencing and annotation. Phage B9 genomic DNA was extracted by phenol-chloroform
as previously described (48). A DNA library was constructed using the KAPA DNA library preparation kit
for Illumina and sequenced (100 bp in paired-end mode) using Illumina HiSeq platform (StabVida). Reads
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were demultiplexed and de novo assembled into a single contig with an average coverage above 100�
using Geneious R9 and were manually inspected. MyRAST (49) and tRNAscan-SE (50) were used to
determine the ORFs and tRNAs, respectively. Encoded proteins were queried against protein sequences
in BLASTP and HHpred (51) and for homology search and structured prediction. TMHMM (52) and
HMMTOP (53) servers were used to predict transmembrane domains and SignalP (54) to identify possible
signal peptide cleavage sites. Comparative genomic and proteomic analyses were performed with
BLASTN or OrthoVenn (55), respectively, and visualized using Easyfig (56).

Mass spectrometry. Virion proteins were isolated by chloroform-methanol extraction (1:1:0.75
[vol/vol/vol]) on a PEG-purified phage stock (�1010 PFU/ml). The extracted protein pellet was resus-
pended in loading buffer (40% [vol/vol] glycerol, 4% [wt/vol] SDS, 200 mM Tris-HCl [pH 6.8], 8 mM EDTA,
0.4% [wt/vol] bromophenol blue) and heated for 5 min at 95°C. The protein extract was then loaded and
separated on a 12% SDS-PAGE gel. After visualization by staining the gel with Gelcode blue safe protein
stain (Thermo Scientific), gel fragments covering the entire lane of the gel were excised and subjected
to trypsin digestion according to the method of Shevchenko et al. (57). The samples were subsequently
analyzed using nano-liquid chromatography-electrospray ionization-tandem mass spectrometry
(nanoLC-ESI-MS/MS), and peptides were identified using SEQUEST (version 1.4.0.288; Thermo Finnigan)
and Mascot (version 2.5; Matrix Science), based on a database containing all predicted phage proteins
from a six-frame translation of the genome.

Depolymerase cloning and expression. The C-terminal part of the ORF69 coding for a depoly-
merase domain (genetic region from bp 775 to 2592 of ORF69) was amplified using Kapa HiFi (Kapa
Biosystems) and forward (GGATCCAACCCTAACTTAATTGCAACAAT [with BamHI restriction site]) and
reverse (CTCGAGTTATGTGATAGTTAATAAGTTAGCAGTTG [with XhoI restriction site]) primers. The ampli-
fied gene was cloned in a pTSL vector previously constructed with a SlyD leader protein and tobacco etch
virus (TEV) recognition site in between the SlyD protein and the polylinker (58). Escherichia coli BL21
cells harboring the recombinant plasmid expressed the protein with 1 �M isopropyl-�-D-
thiogalactopyranoside (IPTG) at 37°C overnight. Cells were pelleted and suspended in lysis buffer (50 mM
Tris-HCl [pH 8.0], 300 mM NaCl) and disrupted by three freeze-thaw cycles and sonication (8 to 10 cycles
with 30-s pulses and 30-s pauses). The protein was purified by immobilized-metal affinity chromatog-
raphy (Thermo Scientific) and incubated with a TEV protease overnight at 4°C in a protease/protein ratio
of 1/100 (vol/vol) to cleave the SlyD leader protein. The protein was repurified using nickel magnetic
beads for His 6 tag protein purification (Bimake) and dialyzed in 10 mM HEPES.

Phage and depolymerase activity spectrum. The spot-on-lawn method was used to screen the
host range of activity of phage B9 and its recombinant depolymerase (B9gp69) toward a panel of A.
baumannii strains of different capsular types (Table 3). Mid-log-phase bacteria were poured in TSA soft
agar overlay plates (TSB with 0.6% [wt/vol] agar) to form lawns. After drying, 5 �l of phage (108 PFU/ml)
or of purified enzyme (1 �M) was spotted onto the petri dishes and incubated at 37°C overnight. The
visualization of clear spots or opaque zones (halos) on the bacterial lawn determined the presence of
antibacterial activity for phage and B9gp69, respectively. For the phage, the relative efficiency of plating
(EOP) was calculated by dividing the titer of the phage (PFU per milliliter) obtained in each isolate by the
titer determined in the propagating host. EOP was recorded as high (�0.5) or low (�0.5).

Phage one-step-growth curve. One-step growth curve experiments were performed on K45 strain
NIPH 201 exactly as previously described (59). Briefly, mid-exponential-phase cells were adjusted to an
optical density at 620 nm (OD620) of 1.0 and infected with phage using a multiplicity of infection (MOI)
of 0.001. Phage was allowed to adsorb for 5 min at 37°C and 120 rpm (ES-20/60). The mixture was then
pelleted (7,000 � g, 5 min, and 4°C) and suspended in fresh TSB. Samples were repeatedly taken every
5 or 10 min for a total period of 1 h of infection to determine PFU.

Depolymerase degradation of extracted exopolysaccharides. Exopolysaccharides (EPS) were
extracted from K30 strain NIPH 190, K45 strain NIPH 201, and K3 strain NIPH 501, using an adapted
protocol (60). Briefly, A. baumannii strains were grown on 20 TSA plates supplemented with 0.5% glucose
at 37°C for 5 days. Cells were then harvested by scraping with 2.5 ml of 0.9% (wt/vol) NaCl per plate. The
suspension was incubated with 5% phenol and agitated with a stir bar for 6 h. Afterwards, cells were
pelleted (10,000 � g for 10 min) and the supernatant containing the EPS was precipitated with 5 volumes
of 95% ethanol overnight at �20°C. The precipitate was spun (6,000 � g for 10 min), suspended in
distilled deionized water, and treated with DNase I (20 �g/ml) and RNase (40 �g/ml) at 37°C for 1 h. The
digestion was quenched by heating at 65°C for 10 min, and samples were lyophilized.

The activity of the B9gp69 on extracted EPS was determined using the 3,5-dinitrosalicylic acid (DNS)
test to quantify sugar reducing ends. EPS were dissolved into 20 mM concentrations of different buffer
systems (sodium citrate [pH 5 to 6], HEPES [pH 7 to 8], and boric acid [pH 9]) to a final concentration of
5 mg/ml and incubated with the B9gp69 at 0.1 �M or with buffer (control) at 37°C for 1 h. At optimal pH,
B9gp69 activity was also screened in different ionic strengths (0 to 500 mM NaCl concentration) and
temperatures (20°C to 80°C) for 1 h. The reaction was stopped by heat inactivation (100°C for 15 min), and
centrifugation was carried out (8,000 � g for 2 min) to remove the denatured enzyme. Afterwards, 100
�l of the DNS reagent at 10 mg/ml (Sigma-Aldrich) was added to an equal volume of the digested
products and heated to 100°C for 5 min, and the absorbance was measured at 535 nm. Results were
expressed as percent relative activity.

Circular dichroism spectroscopy. The secondary structure and the thermostability of the B9gp69
were analyzed by circular dichroism in the far-UV region, using a Jasco J-1500 CD spectrometer equipped
with a water-cooled Peltier unit. The spectrum was obtained using proteins dialyzed in 10 mM potassium
phosphate buffer (pH 7) to a concentration of 10 �M, from 190 to 250 nm, with 1-nm steps, a scanning
speed of 20 nm/min, high sensitivity, and a 16-s response time. Three consecutive scans were recorded
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from each sample and potassium phosphate buffer was used as blank for baseline correction. The
secondary structures were estimated from spectra using the CDSSTR (61) and CONTINLL (62) routine of
the DICHROWEB (63, 64) server run on the Set 4 set for a wavelength of 190 to 240 nm.

Thermal denaturation data were obtained by incrementation at 1°C/min and monitoring the change
in ellipticity of the protein secondary structure at 215 nm, 218 nm, or 222 nm from 25°C to 90°C. The
melting curves were plotted as a function of temperature and fitted to the Boltzmann sigmoidal function.

Phage adsorption onto depolymerase-treated cells. Mid-exponential-phase (OD620 of 0.4) grow-
ing cells of K30 strain NIPH 190, K45 strain NIPH 201, and K3 strain NIPH 501 were incubated with an
equal volume of B9gp69 (0.1 �M final concentration) or HEPES (for negative control) for 2 h at room
temperature (RT). After, cells were spun (8,000 � g for 2 min) and washed twice with TSB. Phage was
added at a multiplicity of infection of 0.001 with and without the presence of extracted EPS (5 mg/ml)
and incubated at 37°C and 120 rpm for 5 min to allow adsorption to the cell surface. Samples were taken
before and after centrifugation of the sample to determine total phage titer and the titer of nonadsorbed
phage, respectively. Phage adsorption was calculated by subtracting the amount of nonadsorbed phage
from the total amount of phage. The effect of B9gp69 on the phage capacity to adsorb to cells was
analyzed and expressed as percent. Significance was determined by a Student t test for comparison
between the treated and untreated groups.

Cytotoxicity assays. For toxicity and cell viability assays, the human lung carcinoma cell line A549
(ATCC CCL-185) was used. Cells were maintained in Dulbecco’s modified Eagle’s medium (DMEM;
Biochrom) supplemented with 10% fetal bovine serum (FBS; Biochrom) and 1� ZellShield (Biochrom) at
37°C in a humidified atmosphere at 5% CO2 (HERAcell 150). A549 cells were subcultured every 2 days at
80% confluence in T-flasks (Starstedt). For the assays, cells were seeded into 96-well microtiter plates at
5 � 105 cells/ml and incubated at 37°C and 5% CO2 for 24 h. Cells were washed once with 10 mM
phosphate-buffered saline (PBS) and exposed to (i) HEPES or (ii) B9gp69 (final concentration of 0.1 �M).
After incubation for 24 h, the cell culture medium was removed and the cells were washed once with
10 mM HEPES and then detached with trypsin-EDTA (Biochrom). The bacterial concentration was
determined by CFU quantification, and mammalian cells were stained with trypan blue and counted
using a Neubauer chamber (Marienfeld, Germany) and a microscope (Leica ATC 2000). The toxicity of
B9gp69 was assessed by (i) determining the concentration of viable mammalian cells and (ii) quantifying
the amount of soluble formazan produced by cellular reduction of 3-(4,5-dimethylthiazol-2-yl)-5-(3-
carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) for 1.5 h measured at 490 nm, after cell
contact with the depolymerase and comparing it to that obtained for the negative control.

Human serum assay. The ability of the depolymerase to enhance bacterial susceptibility to serum
killing was tested as previously described (65). Host K45 strain NIPH 201 and nonhost K3 strain NIPH 501
were grown to mid-exponential phase, diluted in TSB to 104 CFU/ml, and treated with HEPES, B9gp69,
or heat-inactivated (100°C for 30 min) B9gp69 for 1 h at 37°C. Afterwards, human serum from healthy
volunteers was added at a volume ratio of 1:3 and the culture was incubated for 1 h at 37°C. Survival of
bacterial cells was determined by CFU counts.

Resistance development assay. The frequency of bacterial variants emerging with resistance to
phage or B9gp69 was determined by incubating phage (MOI of 10) or B9gp69 (0.1 �M end concentra-
tion) with �106 CFU/ml of K45 strain NIPH 201 in TSB for 16 h (37°C, 120 rpm, ES-20/60). The cultures
were plated to obtain isolated bacterial colonies. These were subcultured three times in TSA plates to
guarantee that the colonies were free of phage and B9gp69. Then 10 colonies were picked to test the
sensitivity toward both phage and B9gp69 using the spot-on-lawn method. Challenged bacteria were
considered resistant when no inhibition halo was observed.

Accession number(s). The complete genome sequences of the A. baumannii phage vB_AbaM_B9
have been deposited in GenBank under accession number MH133207.
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