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A B S T R A C T

There is an increasing demand for alternative and sustainable protein sources, such as vegetables, insects and
microorganisms, that can meet the nutritional and sensory pleasantness needs of consumers. This emergent
interest for novel protein sources, allied with “green” and cost-effective processing technologies, such as high
hydrostatic pressure, ohmic heating and pulsed electric fields, can be used as strategies to improve the con-
sumption of proteins from sustainable sources without compromising food security. In addition to their nutri-
tional value, these novel proteins present several technological-functional properties that can be used to create
various protein systems in different scales (i.e., macro, micro and nano scale), which can be tailored for a specific
application in innovative food products.

However, in order for these novel protein sources to be broadly used in future food products, their fate in the
human gastrointestinal tract (e.g., digestion and bioavailability) must be assessed, as well as their safety for
consumers must be clearly demonstrated. In particular, these proteins may become novel allergens triggering
adverse reactions and, therefore, a comprehensive allergenicity risk assessment is needed.

This review presents an overview of the most promising alternative protein sources, their application in the
production of innovative food systems, as well as their potential effects on human health. In addition, new
insights on sustainable processing strategies are given.

1. Introduction

Currently, a significant number of trends at planetary scale are
compromising the sustainability of food and agricultural systems, and
the main reason for this can be explained by global population increase.
The world's population is now more than 7.7 billion persons, and this
number is presently growing at a rate of around 1.07% per year, which
is expected to reach the 10 billion mark by 2050 (> 30% of current
population) (Worldometers, 2019). This will inevitably mean agri-
cultural expansion and productivity growth, which in turn will over-
pressure natural resources by increasing deforestation, greenhouse gas
emissions and water consumption, thus contributing to world's ecolo-
gical insufficiency and climate changes (FAO, 2017). For example, from
2010 to 2050 it is projected that meat and dairy products world con-
sumption will increase about 173% and 158%, respectively (FAO,
2011). This continued expansion of food production and increasing
demand for animal protein is causing serious concerns. The resources
needed to convert vegetable matter into animal-derived proteins like

meat or milk proteins are inefficient by 7:1 – i.e. 7 kg of vegetable food
is required to produce 1 kg of milk or meat for human consumption
(Nadathur, Wanasundara, & Scanlin, 2017). Since April 2016, the
United Nations Decade of Action on Nutrition is ongoing with main
objective “to eliminate malnutrition in all its forms”, but also to develop
“sustainable, resilient food systems for healthy diets” following the
framework agreed at Second International Conference on Nutrition in
2014 (FAO, 2014). For this reason, much has been discussed not only
about food alternatives, but also about all the dimensions that integrate
the concept of food safety and sustainability.

It is then necessary to adopt a more sustainable production of the
conventionally used proteins and to start rebalance the contributions
between animal and plant proteins (or other alternatives), thus con-
tributing to the sustainability of food systems, biodiversity and even-
tually, to a more efficient distribution of high quality proteins for the
entire world population (Aiking & de Boer, 2018; Chardigny & Walrand,
2016; Henchion, Hayes, Mullen, Fenelon, & Tiwari, 2017). The global
context, the pressure of government and non-governmental policies,
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along with the current intention of consumers to include more plant-
based proteins in their daily diets (Niva, Vainio, & Jallinoja, 2017), are
bringing to discussion the importance of a greater knowledge about the
use of alternative protein sources and their impact on human health.
Some examples of considered emergent and sustainable protein sources
include grains (e.g., wheat and zein), seeds (e.g., chia), leaves (e.g.,
moringa), pulses (e.g., beans, lentils, peas), microalgae, fungi (e.g.,
mycoproteins), milk (e.g., whey proteins) and insects.

In a context where not only socioeconomic, environmental, but also,
health dimensions are increasingly intertwined with food production
systems and food consumer perception, the impact that these emergent
protein sources bring to health and wellbeing upon consumption should
be thoroughly discussed. The use of encapsulated biomolecules is now
considered as an important innovative trend (De Vries et al., 2018).
Vegetable and animal protein-rich fractions due to their functional and
technological properties – i.e., ability to interact with biomolecules to
form gels, hydrogels or emulsions – can be designed as delivery systems
(at nano or micro-scale) to protect and deliver bioactive compounds
with intended functionalities at specific sites in the human body. An
outstanding example of this versatility is the case of whey serum from
milk, recently considered as dairy waste, it is now used as rich-protein
fraction with interesting properties regarding nutritional value (e.g.,
balanced amino acid profile), functionality (e.g., enhanced digestibility,
gelation, foaming and emulsifying capacities) and bioactivity (e.g.,
antimicrobial, antiviral and anti-carcinogenic) (Ramos et al., 2017).
Among the various unit operations in the food industry, processing such
as heating and enzymatic treatments are probably the ones that most
affect proteins, thus influencing the outcomes of the gastrointestinal
digestion process and consequent sensitization of the immune system.
Fundamental research is still needed to achieve a comprehensive un-
derstanding of the biochemical function of emergent food proteins and
adequacy of sustainable processing strategies for a better maintenance
of nutritional profile and reduced risk of allergenicity.

Today, food production needs to evolve to sustainable exploitation
of natural resources and at the same time, meet the growing demand for
a balanced diet focused on healthier products (van der Goot et al.,
2016; Vos & Bellù, 2019). Recently, De Vries et al. (2018) highlighted
the importance of three main innovation directions for the future food
systems: 1) better efficiency – “mass production at the lowest possible
price”; 2) innovation opportunity driven by consumer trends and the
need to balance the use animal-origin proteins - development of new
perceptions/sensations and niche products with high value at small
scale; and 3) development of functional foods targeting health and
wellbeing upon consumption. The use of alternative protein sources
allied to the use of eco-innovative and cost-effective technologies is
then aligned with this paradigm shift.

This review intends to address the most promising alternative pro-
tein sources, while providing new insights on sustainable processing
strategies that can bring innovation and added value for underrated
protein rich fractions. The potential health-related implications upon
consumption will be also critically discussed.

2. Sustainable aspects of alternative proteins sources

Nutrition is the main function of foods, and good nutrition is a di-
mension of food security and sustainability. However, as summarized in
Fig. 1, assessing social and environmental aspects and economic costs of
emergent foods is important for evaluating their long-term sustain-
ability. According to FAO definition (FAO, 2010), sustainable food
systems are those that deliver food security and nutrition for all in a
way that economic, social and environmental sustainability is not
compromised for future generations. In this way, this section will ad-
dress sustainability aspects of some emerging proteins.

2.1. Vegetable proteins

When thinking about replacing conventional proteins (e.g., meat
and egg proteins), vegetable sources seem to be a natural substitute,
since they are naturally present in people's diets, bring health and en-
vironmental benefits and have lower production associated costs. Plant-
based foods have lower greenhouse gas emissions and tend to be less
resource-intensive and environmentally destructive than animal hus-
bandry. In addition, vegetable proteins reduce the risk of spreading
diseases such as bovine spongiform encephalitis (Elzoghby, Samy, &
Elgindy, 2012; Tarhini, Greige-Gerges, & Elaissari, 2017). For such
reason, encouragement of partial replacement of proteins from animal
husbandry by vegetable-based ones could have a positive impact on
decreasing climate changes and biodiversity loss (Joyce, Dixon,
Comfort, & Hallett, 2012; Stoll-Kleemann & Schmidt, 2017). On the
other hand, agriculture still has a negative impact as a result of de-
creasing soil fertility levels, polluting water resources with agrochem-
icals and contributing to deforestation and desertification due to the
high demand of cropland areas (Gahukar, 2016). However, in a general
way, plant protein utilization can reduce the demand for animal protein
sources and consequently their environmental impact (Tian, Bryksa, &
Yada, 2016).

Concerning nutritional aspects, different foods such as seeds, le-
gumes, nuts, fruits and vegetables can be not only alternative protein
sources but also, provide numerous health promoting nutrients such as
vitamins, minerals, fibers, antioxidants and anti-inflammatory agents
that are important in healthy diets (Kojima et al., 2018; Msambichaka
et al., 2018). Despite of the high protein content of some vegetable
sources (Table 1), it is known that conventional animal proteins have a
high quality, while vegetable proteins are generally deficient in essen-
tial amino acids (Lonnie et al., 2018). However, the essential amino
acids content is not the only factor to classify the nutritional quality of
proteins. Digestibility and bioavailability also affect their utilization
and must be considered (Lynch, Johnston, & Wharton, 2018). Com-
bining plant sources in the right balance is a good solution to achieve
adequate essential amino acid profiles, and such diet is supported and
promoted by the Academy of Nutrition and Dietetics (Melina, Craig, &
Levin, 2016).

Moreover, it has been well documented that a partial exchange of
animal for vegetable protein sources is related to beneficial effects on
gut microbiota, and reduced risk of type 2 diabetes, cardiovascular
diseases and of other mortality causes (Busnelli, Manzini, Sirtori,
Chiesa, & Parolini, 2018; Malik, Li, Tobias, Pan, & Hu, 2016; Song et al.,
2016; Tharrey et al., 2018). For these reasons, in the last decade, the
number of works unraveling the nutritional and technological func-
tionality of vegetable protein increased exponentially.

Vegetable proteins can be divided into albumins, globulins, prola-
mins and glutelins that possess different technological properties (Day,
2013). Rapeseed shows great foam and emulsion-stabilizing properties
due to the presence of cruciferin and napin. Proteins from legumes (e.g.,
lupin, chickpea, lentil and pea) and nuts (e.g., cashew nut) possess
strong potential for stabilization of emulsions and foams, and/or gel
formation (Berghout, Boom, & van der Goot, 2015; Burgos-Díaz et al.,
2018; Djoullah, Husson, & Saurel, 2018; Ladjal Ettoumi, Chibane, &
Romero, 2016; Liu et al., 2018; Tabilo-Munizaga et al., 2019). Soybean
protein presents gelling properties but also phenolic compounds that
may reduce the nutritional and functional quality. However, soy pro-
tein gels' elasticity increases when phenolic compounds are removed
(Alu'datt, Rababah, & Alli, 2014). Furthermore, food industrial vege-
table-based by-products have been used for protein isolation, such as
apple pomace, oat bran, sugar beet leaves and orange pulp (Huc-
Mathis, Journet, Fayolle, & Bosc, 2019; Tamayo Tenorio, Gieteling,
Nikiforidis, Boom, & van der Goot, 2017; Wallecan, McCrae, Debon,
Dong, & Mazoyer, 2015).
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2.2. Insect proteins

Insects are probably one of the most controversial alternative to
animal protein source because it conflicts with cultural habits in some
populations Although their consumption is widespread in Eastern,
African and some Latin American countries, with over 2000 species
classified as edible (Jongema, 2017), their introduction on Western
eating habits is not well accepted and there are some issues that must be
overcome (Hartmann & Siegrist, 2016; Piha, Pohjanheimo,
Lähteenmäki-Uutela, Křečková, & Otterbring, 2018). Most consumers
still not associate insects to food, instead they relate potential con-
sumption as a primitive and disgusting behavior (Lensvelt &
Steenbekkers, 2014; Woolf, Zhu, Emory, Zhao, & Liu, 2019). On the
other hand, the use of processed insects as powder ingredient has been
an alternative that could enhance consumers' acceptance (Hartmann &
Siegrist, 2016; Piha et al., 2018). Their use in pastas, tortilla chips and

breads has been assessed in terms of nutritional value and structural
and sensory features (Duda, Adamczak, Chełmińska, Juszkiewicz, &
Kowalczewski, 2019; Hartmann & Siegrist, 2016; Osimani et al., 2018;
Roncolini et al., 2019). Nevertheless, insects are considered a sustain-
able food system, once besides their nutritional value, insect breeding
has also positive ecological, environmental and economic impacts (de
Castro, Ohara, dos Santos Aguilar, & Domingues, 2018; Sun-
Waterhouse et al., 2016). Among the groups generally consumed there
are Coleoptera (31%), Lepidoptera (18%), Hymenoptera (14%), Or-
thoptera (13%) and Hemiptera (10%) (Sun-Waterhouse et al., 2016).

There are several advantages when comparing insect farming with
traditional agriculture and animal husbandry. For example, it has less
impact on deforestation and soil fertility reduction since they have a
smaller land-use footprint with low environmental contamination
(Oonincx, 2017). Cultivating them also requires less water consump-
tion, using up to 50% less in some cases (Miglietta, De Leo, Ruberti, &

Fig. 1. Schematic framework of food safety and sustainable food systems dimensions.

Table 1
Examples of alternative protein sources and their protein content.

Source Name Protein content (%, w/w) Reference

Vegetable Amaranth (Amaranthus spp.) 12.5–17.6 Caselato-Sousa & Amaya-Farfán, 2012
Lupin (Lupinus spp.) 38–55 Bähr, Fechner, Hasenkopf, Mittermaier, & Jahreis, 2014
Navy bean (Phaseolus vulgaris) 26.0 Tabtabaei, Konakbayeva, Rajabzadeh, & Legge, 2019
Quinoa (Chenopodium quinoa Willd) 12–23 Ruiz, Xiao, van Boekel, Minor, & Stieger, 2016

Algae Aphanothece microscopica 42 Zepka, Jacob-Lopes, Goldbeck, Souza-Soares, & Queiroz, 2010
Arthrospira platensis (Spirulina platensis) 53.5 Benelhadj et al., 2016; Chronakis, Galatanu, Nylander, & Lindman, 2000; Safi et al., 2014
Chlorella vulgaris 12.7–53.0 Laurens et al., 2017; Ursu et al., 2014
Dunaliella salina 51.2–82.2 Sui, Muys, Vermeir, D'Adamo, & Vlaeminck, 2019
Haematococcus pluvialis 30–51.7 Ba et al., 2016; Safi et al., 2014
Tetraselmis sp 36 Schwenzfeier, Wierenga, & Gruppen, 2011

Fungi Aspergillus niger 10.3–61.2 Kamal et al., 2019
Fusarium venenatum 41.8–46.4 Hosseini & Khosravi-Darani, 2011
Saccharomyces cerevisiae 15.3–49.3 Bacha et al., 2011; Gervasi et al., 2018
Torula utilis (Candida utilis) 28.4–48.9 Kurcz et al., 2018
Yarrowia lipolytica 45–55 Turck et al., 2019
Methylococcus capsulatus 53 Rasouli, Valverde-Pérez, D'Este, De Francisci, & Angelidaki, 2018

Bacteria Rhodopseudomonas sp. 54–92 Yang et al., 2017
Rhodopseudomonas faecalis 50–51.5 Saejung & Salasook, 2018

Insect Cricket (Gryllodes sigillatus) 56.8a Hall et al., 2017
Grasshopper (Schistocerca gregaria) 76.0 Mishyna, Martinez, Chen, & Benjamin, 2019
Honey bee brood (Apis mellifera) 22.1 Mishyna, Martinez, Chen, Davidovich-Pinhas, & Benjamin, 2019
Mealworm (Tenebrio molitor) 51.0a Zhao et al., 2016

a Protein conversion factor of 6.25.
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Massari, 2015). Also, they are responsible for relatively low emissions
of greenhouse gases and ammonia compared to traditionally farmed
cattle, poultry, fish and seafood (Poma et al., 2017). In fact, one of the
main reasons to be considered as potentially sustainable alternative
protein source is their high feed conversion efficiency (van Huis, 2013),
short life-cycles and high reproduction rates (Sun-Waterhouse et al.,
2016). Moreover, insects can grow with a wide range of foods, in-
cluding by-products from food processing and high-impacting waste
streams (Smetana, Palanisamy, Mathys, & Heinz, 2016). These aspects
make insects as one of the most environmentally beneficial and eco-
nomical viable crops.

Regarding their nutritional aspects, great differences can be found
mainly because there is a large quantity of species. However, insects are
rich in protein and fat, and can provide a certain amount of minerals
and vitamins (de Castro et al., 2018). Iron, zinc, potassium, sodium,
calcium, phosphorus, magnesium, manganese, copper, riboflavin,
pantothenic acid, biotin and folic acid can be found in insects (de Castro
et al., 2018; van Huis, 2013). Indeed, in some species, zinc and iron
concentrations can be similar to beef and higher than chicken and pork
(Mwangi et al., 2018). Fat represents the second largest fraction of the
nutrient composition, typically between 5% and 40% of dry matter.
However, its content is dependent on life stage and can reach over 70%
(Roos, 2018). In addition, (Stull et al., 2018) showed evidences that
cricket supplementation improved gut health and reduced systemic
inflammation.

Protein content of most insects is around 60% and this value can
vary between 7% and 91% (dry weight) (van Huis, 2016) and some
examples are shown in Table 1. Besides the differences among the
species, other factors as development stage (Mishyna, Martinez, Chen,
& Benjamin, 2019; Roos, 2018) and sex (Kulma et al., 2019) can exert
effect on protein content. In general, protein values make some insect
protein content comparable to meat and also plant sources (Yi et al.,
2013). However, it is worth mentioning that information regarding
protein may be dubious. Most of papers use Kjeldahl standard protocol
to quantify protein content, considering that all the nitrogen present is
in the form of protein, using the conversion factor of 6.25 (well ac-
cepted for foods). But arthropods have an exoskeleton built primarily of
chitin fibers and polysaccharides containing nitrogen atoms (Jonas-Levi
& Martinez, 2017). This exoskeleton and some fraction of insect pro-
teins are not digestible by humans. Thus, the use of Kjeldahl method
with conversion factor of 6.25 overestimates the protein content (Jonas-
Levi & Martinez, 2017; Mishyna, Martinez, Chen, & Benjamin, 2019).
Indeed, Janssen, Vincken, van den Broek, Fogliano, and Lakemond
(2017) estimated lower values for Tenebrio molitor, Alphitobius diaper-
inus, and Hermetia illucens. In addition, Mishyna, Martinez, Chen, and
Benjamin (2019) showed that the development stages also exert influ-
ence, estimating a nitrogen-to-protein conversion factors of 4.5 for
adult grasshopper, and 4.9 and 5.6 for pupae and larvae of honey bee,
respectively. Nevertheless, insect protein is better in terms of nutri-
tional properties than other sources, since they contain all the essential
amino acids (Zielińska, Baraniak, Karaś, Rybczyńska, & Jakubczyk,
2015). Recent works have exploited the solubility, foamability, gelling
ability and emulsifying properties of insect proteins, unrevealing their
technological potential (Gould & Wolf, 2018; Hall, Jones, O'Haire, &
Liceaga, 2017; Mishyna, Martinez, Chen, & Benjamin, 2019; Mishyna,
Martinez, Chen, Davidovich-Pinhas, & Benjamin, 2019; Zielińska,
Karaś, & Baraniak, 2018). Regarding food applications, insect proteins
are being used mainly as dry powder or meals, but more knowledge
about technological feasibility and functionality of these proteins are
still needed (Lamsal, Wang, Pinsirodom, & Dossey, 2019; Sosa &
Fogliano, 2017).

2.3. Microbial protein

Microbial protein, or “single” cell protein (SCP), is the designation
of protein derived from unicellular or even multicellular

microorganisms, mainly fungi (yeasts and filamentous fungi), micro-
algae (cyanobacteria and unicellular eukaryotes) and bacteria. The use
of microbial protein for protein supplementation in human diets and
animal feeding is not a novel concept, once yeasts have been reported to
be employed to supply protein requirements since World War I.
However, some drawbacks, such as costs limitation, product quality,
protein recovery, high level of nucleic acid and other technical pro-
blems, have delayed microbial protein large-scale successful production
as we know currently (Goldberg, 1985; Otero, Wagner, Vasallo, &
Garcıá, & Añón, 2000; Reihani & Khosravi-Darani, 2019).

Microorganism cultivation does not require a large amount of lands
as in crops and animal husbandry since microorganisms are usually
grown in tanks or reactors, despite the existence of some open ponds
systems that are used for microalgae production (Laurens et al., 2017).
Another great advantage of microbial protein production is the eco-
friendly approach when it is associated with waste treatment. Utiliza-
tion of agro-industrial by-products, which are low-cost and abundant
substrate sources, is a way to produce microbial protein while these
wastes are treated by reducing the chemical oxygen demand (Kurcz,
Błażejak, Kot, Bzducha-Wróbel, & Kieliszek, 2018; Reihani & Khosravi-
Darani, 2019; Ukaegbu-obi, 2016). A high content of protein (up to
92%) was reported to photosynthetic bacteria Rhodopseudomonas sp.
during biogas slurry treatment under high salinity and high ammonia
conditions (A. Yang et al., 2017). Microbial protein may also be a co-
product to be recovered after industrial processes, such spent yeast
(Patent No. US 9,963,671 B2, 2018) or algae (Chandra, Iqbal, Vishal,
Lee, & Nagra, 2019; Laurens et al., 2017) from biorefineries and
brewery industries (Pietrzak & Kawa-Rygielska, 2013; Vieira, Cunha, &
Ferreira, 2018). Additionally, molecular biology techniques have been
employed to improve or add value to the processes, such as improve-
ment of metabolic routes for the use of agro-industrial wastes in si-
multaneous production of SCP and lipase by Yarrowia lipolytica (Yan
et al., 2018). Although, the use of genetically modified organisms
(GMO) lacks public acceptance and stills an issue of discussion (Ritala,
Häkkinen, Toivari, & Wiebe, 2017).

Microbial protein content (Table 1) and quality, in terms of essential
amino acids, are variable and depend not only on microorganism spe-
cies and type of substrate, but also on cell growth stage, nutrient
sources and environmental growth conditions (Laurens et al., 2017;
Reihani & Khosravi-Darani, 2019). In general, microbes are considered
sources of high-quality protein since they are able to produce essential
amino acids in amounts close to FAO/WHO reference value of 40%
(FAO/WHO, 2007; Matassa, Boon, Pikaar, & Verstraete, 2016). Up to
38% of Chlorella vulgaris protein is composed of essential amino acids,
mainly by leucine (8.2%) and valine (6.7%) (Ursu et al., 2014). Similar
amounts of essential amino acids were observed in protein from Sac-
charomyces pastorianus brewery spent yeast (Vieira et al., 2018). Slight
lower levels (33%) of essential amino acids were described for Fusarium
venenatum ATCC 20334 which were mainly lysine, valine and pheny-
lalanine (Hosseini & Khosravi-Darani, 2011).

Protein extracted from microalgae showed emulsifying, foaming
and gelling properties (Ba, Ursu, Laroche, & Djelveh, 2016; Benelhadj,
Gharsallaoui, Degraeve, Attia, & Ghorbel, 2016; Schwenzfeier, Helbig,
Wierenga, & Gruppen, 2013) and may be further explored as a func-
tional agent in foods. In addition to protein content and quality, mi-
crobial proteins are sources of nucleic acids, lipids and fats, carbohy-
drates, vitamins, minerals and, in some cases, pigments (Becker, 2007;
Kurcz et al., 2018; Ukaegbu-obi, 2016). Then, microbial protein may be
classified as food/feed (regarding nutrition) or additives (as pre-
servatives, colorants, texture modifiers, among others) when aiming at
improving or adding functionalities to food/feed preparations (Ritala
et al., 2017). In a recent review, Ritala et al. (2017) approached the
commercial exploitation of microbial protein and the advances in mi-
crobial protein patents for the last two decades. According to these
authors, bacteria have been used mainly in animal feed, whereas mi-
croalgae and fungi have been used for human consumption as food
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ingredients or supplements, being Arthrospira (Spirulina), Chlorella,
Dunaliella, Aphanizomenon, Saccharomyces, Torula, Fusarium and Tor-
ulopsis, the main commercially available genera.

3. Green processing

Measures to a more efficient and sustainable agri-food industry
should not be limited to primary food production and reduced use of
products from animal origin, but also be applied to all stages of food
supply chain, such as processing set-up, distribution and food by-pro-
ducts management (van der Goot et al., 2016). The disruption of food
chain due to spoilage is a key driver for the increase of food waste and
an inefficient food distribution, particularly for sub-developed coun-
tries, thus contributing to one of the main food paradoxes in the world:
obesity versus malnutrition. The development of more efficient and
sustainable food processes is then of utmost importance and should
guarantee enhanced quality and safety, but also increased energy effi-
ciency, reduced water consumption and mitigation of gas and effluent
emissions. Over the last decade, the so-called “green” processing tech-
nologies – such as the case of High Hydrostatic Pressure (HHP), Ohmic
Heating (OH), Pulsed electric Fields (PEF) – bring new opportunities to
re-design food processing, while reducing the environmental footprint
and improving nutritional quality of food products without compro-
mising preservation (López-Pedrouso et al., 2019; Pereira & Vicente,
2010). Fig. 2 shows an example about how OH, PEF and HHP tech-
nologies can introduce new variables on food processing (e.g. pressure
and electric fields) and contribute to a greener processing by reducing
the number of processing operations thus avoiding the excessive use of
water, gas emissions and energy. In this section, these technologies will
be briefly overviewed, addressing potential contributions and implica-
tions on functionality of proteins.

3.1. HHP

Technologies such as HHP and PEF are in the frontline of non-
thermal processing and they have recently been the subject of major
interest for the preservation of foods with minimal degradation of its
sensorial and nutritional quality. In case of HHP, food materials are
subjected to isostatic pressures roughly ranging from 100 to 1000MPa.
Application of these high pressures typically can occur at room tem-
perature but can also be combined with adiabatic heating depending on
the intended level of microbial inactivation. In accordance with Le
Chatelier–Braun principle, the applied pressure level induces molecular
counter reactions, despite being irrelevant for small molecules (e.g.,
vitamins, amino acids and pigmented flavor compounds), that foster
non-thermal denaturation of microorganisms and enzymes affecting
also the structure and functionality of bio-macromolecules such as
proteins (De Maria, Ferrari, & Maresca, 2016; Pereira & Vicente, 2010;
Rastogi, Raghavarao, Balasubramaniam, Niranjan, & Knorr, 2007; Shi
et al., 2019). Depending on treatment conditions – i.e., pressure, tem-
perature and treatment time – HHP processing can affect from qua-
ternary to secondary structure of proteins, thus influence their un-
folding process and protein-protein interactions in a similarly way to
that of thermal processing (De Maria et al., 2016). Recent research
suggests that HHP can promote conformational changes in globular
proteins such as β-lactoglobulin contributing to its altered allergenicity
(Meng, Bai, Gao, Li, & Chen, 2017).

3.2. PEF

Regarding PEF, high voltage electrical pulses (usually between
20 kV/cm and 80 kV/cm) are delivered through a food material in
microseconds treatment time scale with the objective of inducing
electro-permeabilization of biological membranes – a phenomenon
known as electroporation (Raso et al., 2016; Rocha et al., 2018). De-
pending on the electrical protocol applied (number of pulses, pulse

Fig. 2. Reduction of the number of processing operations and environmental footprint through the use of emergent thermal and non-thermal technologies.
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width and intensity, and treatment time) it can be used as an alternative
to thermal microbial inactivation of cell suspensions or to permeabilize
plant tissues enhancing mass transfer operations (e.g., extraction of
biocomponents and nutrients, juice pressing, drying and osmotic de-
hydration). Combination of PEF treatments with mild heating can be a
necessary condition to the inactivation of resistant forms of micro-
organisms (such as spores and enzymes), but can also be an interesting
strategy to increase higher efficiency in the extraction of valuable
proteins from vegetables sources (Barba et al., 2015; Puértolas, Luengo,
Álvarez, & Raso, 2012; Timmermans et al., 2019).

3.3. OH and moderate electric fields

OH is in the origin of electric food processing and supported the
appearance of electric field-based technologies such as PEF (Sastry,
2014). Similarly to PEF, its working principle is based on the applica-
tion of an external electric field through a semi-conductive food ma-
terial. In the case of OH, the electric fields are of moderate to low in-
tensity (< 1000 V/cm) with an assigned frequency (i.e. typical from
50 Hz up to 20 kHz) (Pataro et al., 2014), being continuously applied in
time, allowing internal heat dissipation in a very fast and volumetric
way. This technology is bringing a new paradigm to thermal food
processing by both reducing excessive thermal load (not dependent on
conduction and convection heat transport mechanisms) while bene-
fiting from non-thermal effects of electric fields. Much in part because
of these electric effects, another common designation for OH is mod-
erate electric fields (MEF) processing. Over the last decade it has been
highlighted the importance of these MEF on enhancing inactivation of
certain type of microorganism and foods enzymes (Cappato et al., 2017;
Jaeger et al., 2016; Knirsch, Alves dos Santos, Vicente, & Penna, 2010;
Machado, Pereira, Martins, Teixeira, & Vicente, 2010). More recently,
research studies using β-lactoglobulin rich fractions as a model system
have been pointing out the potential implications that these electrical
effects exert on the dynamic behavior and conformational state of
protein structure during denaturation and aggregation processes
(Pereira et al., 2016; Pereira, Teixeira, & Vicente, 2011). It was shown
that the fast internal heating combined with electrical effects has the
ability to reduce size of protein aggregates, as well as to change its
morphology and physicochemical aspects during thermal denaturation.
These biophysical changes are suggested to be linked with molecular
motion imposed by the oscillating electric field particularly when
protein structure is more susceptible to thermal structural changes
(Rodrigues, Vicente, Petersen, & Pereira, 2019). These outcomes bring
novel perspectives on how OH can be used to design protein structured
systems - such as complexes, emulsions, acidified gels, hydrogels or
nanohydrogels - seeking intended functionalities (e.g., development of
carrier systems of bioactive compounds, food textural enhancers and
improved intestinal absorption). However, because of the effects out-
lined before, OH can also change immunoreactivity of produced protein
aggregates and the pathways of gastrointestinal digestion which can
bring relevant consequence on protein allergenicity (Pereira et al.,
2018).

3.4. Processing and protein functionality

Overall, the use of the processing technologies aforementioned can
enhance preservation, extraction and transformation of important
(bio)-macromolecules. Depending on the applied pressure or electric
fields intensity, it is possible to induce changes within a given protein
structure, thus altering its functional and technological aspects. Novel
processing approaches can also be established by a combination of
methods such as the case of pulsed ohmic heating (combination of PEF
and OH), or even fermentation and enzymatic hydrolysis under the
influence of MEF. Recently it has been shown that electric fields asso-
ciated to an electrical frequency and treatment temperature can be used
to modulate enzymatic activity of important food enzymes

(Samaranayake & Sastry, 2016a, 2016b, 2018). These combined ap-
proaches may bring synergistic effects and contribute to a larger extent
to change biophysical properties of proteins such aggregation, aller-
genic potential and also digestibility. It is also important to highlight
that the effects on protein function of other emergent non-thermal
processing methods such as ultrasounds, gamma irradiation, ultraviolet
pulsed light and high voltage electrical discharge, as well as thermal
ones (such as the case of microwave heating and radiofrequency) are
also being discussed but available information on protein function is
still limited. The majority of conducted research about the impact of
novel food processing have been using preferentially whey and milk
proteins (e.g., β-lactoglobulin and bovine serum albumin) as model
systems due to their well-known physicochemical and structural prop-
erties. Knowing that these green technologies are increasingly taking a
leadership position towards innovation, quality and sustainability in
the actual context of food processing, to our understanding is then
important to establish more fundamental knowledge about their impact
on the safety, quality and functionality aspects of emergent protein
sources previously highlighted (Section 2).

4. Innovative protein systems

In addition to nutritional factors, several technological-functional
properties of proteins in food have been reviewed. Also, the develop-
ment of protein structures as protective and delivery systems for
bioactives have been extensively reported mostly for conventional
protein sources. In the past few years, there have been advances in
assessing alternative protein sources but there is still much to explore
regarding the technological functional properties of emerging proteins.
Moreover, with the exception of vegetable proteins, decreasing the
working scale to micro and nanosystems using alternative proteins
(e.g., insect and microbial protein) still represents a challenge and is a
relatively unexplored research field. In this section, the properties of
some innovative protein systems in different structure scales are ad-
dressed according to the recent findings.

4.1. Macrosystems and bulky behavior

During the last decade, many exploratory studies are bringing novel
insights about the rheological behavior of these polymers, as well as
their behavior in the presence of salts, ions, pH, among others (van
Huis, 2013; Yi et al., 2013; Zhao, Vázquez-Gutiérrez, Johansson,
Landberg, & Langton, 2016). Also, solubility/hydrophobicity, thermal
behavior, water and oil holding capacity, emulsifying and foamability
properties have been characterized for proteins isolated from some
vegetables, insects and microbes as shown in Table 2.

The functionalities of vegetable proteins have been explored for
longer, thus there are more studies evaluating and comparing their
aggregation ability on edible coatings, films and gel formation. Wheat
and soybean proteins are probably the most studied vegetable sources.
For instance, active films based on glycerol-plasticized wheat gluten
protein with thyme essential oil addition were prepared by a thermo-
plastic process. At the same time, the increase in essential oil content
allowed to prepare biodegradable edible films with antioxidant and
antimicrobial properties; it also led to more deformable films with
lower storage modulus (Ansorena, Zubeldía, & Marcovich, 2016). In
turn, gelling properties of soybean protein from different raw materials
(whole and laminate soybean seeds, soy meal obtained of oil extraction
residue and dried residue) were recently evaluated (Monteiro & Lopes-
da-Silva, 2019). The authors showed that some extent of pre-dena-
turation decreased the gelation temperature and produced elastic and
stiff gels. However, extensive protein denaturation originated water
insoluble macro-aggregates that were less available to form a stable
three-dimensional network. Due to its known properties and wide ap-
plicability in semi-solid foods, gels from soy protein also have been
compared to other vegetable proteins. Berghout et al. (2015) showed
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that lupin protein isolate behaved differently from soy protein isolate,
being unable to form gels with similar consistency and deformability,
which has been attributed to the different concentration of free sulf-
hydryl groups. Lam, Can Karaca, Tyler, and Nickerson (2018) published
a review about pea protein isolates, where they included results about
cold-set gelation and effect of pH, salts, structural changes on its
heating-set gelling behavior. On the other hand, López et al. (2018)
evaluated the effects of extraction pH on the functional properties of
chia protein isolates. They showed that the heat-induced gelation of
proteins extracted at pH 10 and 12 resulted in weak gels. Besides wheat
and soybean proteins, lupin, chickpea, zein, moringa, amaranth, quinoa
and rapeseed are examples of the numerous vegetables that had their
technological-functional properties unraveled recently. There are in-
teresting recent works and reviews about these proteins, addressing
their functionality besides their structure and extraction procedures.
Jones (2016) published recent advances about the functional properties
of some oilseed and pulse proteins and prolamins. The author con-
cluded that soybean, rapeseed, pea and chickpea proteins have best
functional properties.

Insect proteins as gelling agents are still poorly investigated, while
to the best of our knowledge there are no works using these proteins to
produce edible films and coatings. For this reason, the aggregation and
gelation mechanisms of proteins from insects are still not well under-
stood. For example, yellow mealworm (Tenebrio molitor), lesser

mealworm (Alphitobius diaperinus), house cricket (Acheta domesticus),
superworm (Zophobas morio), and Dubia cockroach (Blaptica dubia)
proteins gelled only at neutral and alkaline pH at a concentration of
30% (w/v) (Yi et al., 2013). They evaluated the gelling behavior at pH 7
through changes in rheology and found that gelation occurred from
about 51 °C to 63 °C for all these species. On the other hand, Mishyna,
Martinez, Chen, and Benjamin (2019) evaluated the heat-induced ag-
gregation of proteins from honey bee brood (Apis mellifera) and grass-
hopper (Schistocerca gregaria). Honey bee brood showed significantly
higher coagulation than grasshopper (Mishyna, Martinez, Chen,
Davidovich-Pinhas, & Benjamin, 2019). Moreover, proteins from honey
bee brood showed maximum aggregation at 85 °C (for pH 5 and 7). The
authors attributed the mechanism of aggregates formation to covalent
and non-covalent intermolecular interaction. Moreover, hydrophobic
domains were more exposed under heating at pH 5 and 7, contributing
to higher protein aggregation (Mishyna, Martinez, Chen, Davidovich-
Pinhas, & Benjamin, 2019).

Most studies regarding microbial protein have focused on char-
acterization of protein extracts according to nutritional quality in terms
of essential amino acids composition (Gerde et al., 2013; Vieira, da
Silva, Carmo, & Ferreira, 2017), while protein functionalities were in-
vestigated in a lower extent (Table 2). Minimum critical gelling con-
centration for protein isolate from Arthrospira platensis (Spirulina pla-
tensis) was 12% (w/w) after boiling and cooling (Benelhadj et al.,

Table 2
Properties and functionalities of emergent proteins reported in literature.

Group Source of protein Behavior S/I Functionality studied Reference

RB MB TB Sol. WHC OHC Gel. Film Emul. Foam.

Insect Alphitobius diaperinus X X X Yi et al., 2013
Apis mellifera X X X X Mishyna, Martinez, Chen, Davidovich-Pinhas, &

Benjamin, 2019
Apis mellifera X X X X X Mishyna, Martinez, Chen, & Benjamin, 2019
Blaptica dubia X X X Yi et al., 2013
Grillodes sigillatus X X X X X Zielińska et al., 2018
Grillodes sigillatus X X X Hall et al., 2017
Schistocerca gregaria X X X X X Zielińska et al., 2018
Schistocerca gregaria X X X X X Mishyna, Martinez, Chen, & Benjamin, 2019
Teneborio molitor X X X X X Zielińska et al., 2018
Teneborio molitor X X X Yi et al., 2013
Teneborio molitor X X Gould & Wolf, 2018
Teneborio molitor X X X X Zhao et al., 2016

Algae Arthrospira platensis X X X X X X X X X Benelhadj et al., 2016
Arthrospira platensis X X Chronakis et al., 2000
Arthrospira platensis X X X X Chronakis, 2001
Chlorella vulgaris X X X Ursu et al., 2014
Chlorella pyrenoidosa X X X X X Waghmare, Salve, LeBlanc, & Arya, 2016
Haematococcus pluvialis X X X Ba et al., 2016
Tetraselmis sp. X X X Schwenzfeier et al., 2013, 2011

Fungi Kluyveromyces fragilis X X X Otero et al., 2000
Kluyveromyces fragilis (CWP) X X X X del Carmen Vasallo et al., 2006
Saccharomyces cerevisiae (WC) X X X X Bacha et al., 2011
Saccharomyces cerevisiae X X X Sceni et al., 2009
Saccharomyces cerevisiae X X X Otero et al., 2000
Saccharomyces cerevisiae (CWP) X X X Li & Karboune, 2019

Vegetable Beans (common, speckled sugar bean and
Great northern)

X X X Rahmati, Koocheki, Varidi, & Kadkhodaee, 2018

Bitter vetch X X X Arabestani, Kadivar, Shahedi, Goli, & Porta, 2016
Chia X X X X X López et al., 2018
Chickpea X X X Mokni Ghribi et al., 2015
Lupin X X X Berghout et al., 2015
Lupin X X X Burgos-Díaz et al., 2016
Oat X X X X Nieto-Nieto, Wang, Ozimek, & Chen, 2014
Pea X X X X X Stone, Karalash, Tyler, Warkentin, & Nickerson,

2015
Soy X X X Berghout et al., 2015
Soy X X X X Denavi et al., 2009
Wheat gluten X X X Ansorena et al., 2016

Abbreviations: WC: whole cell, CWP: cell wall protein; RB: rheological behavior; MB: mechanical behavior; TB: thermal behavior; Sol.: solubility; WHC: water
holding capacity; OHC: oil holding capacity; Gel.: Gelling ability; Emul.: Emulsifying; Foam.: Foamability; S/I: Surface/ interfacial properties.
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2016). Lower values for other strains of the same species were reported
by Chronakis (2001). In this case, the protein isolate was described as a
protein-pigment complex and its least gelling concentration was 1.5%
(w/w) in pH 7 buffer solution, or 2.5% (w/w) with salt addition (0.02M
CaCl2). Authors suggested that hydrophobic interactions showed a
significant role in protein gelation, contributing to molecular associa-
tion, initial aggregation, and stability of the gels (Chronakis, 2001). The
yeast Saccharomyces cerevisiae also showed complete gelation at low
concentration (3.5% w/v) (Bacha, Nasir, Khalique, Anjum, & Jabbar,
2011). However, in this case, proteins were not previously extracted,
and gelation properties may be substantially enhanced by interaction
with other cellular components. Indeed, it is shown that proteins
properties and functionalities are dependent on extraction conditions
(Ursu et al., 2014), purity degree of extracts and microbial source
(Otero et al., 2000). Moreover, according to (Otero et al., 2011; Sceni
et al., 2009), membrane and cell wall lipoproteins and mannoproteins
show best surface properties while hydration and gelling properties are
driven mainly by cytoplasm and nuclear proteins. These properties may
be correlated to the lower water solubility of yeast cell wall films when
compared to other biopolymer films (Peltzer, Salvay, Delgado, de la
Osa, & Wagner, 2018). Or with the emulsifying properties of manno-
proteins isolated from Saccharomyces cerevisiae cell wall that were close
to commercial lecithin (Li & Karboune, 2019).

4.2. Microsystems

Proteins obtained from vegetable sources can be designed as effec-
tive wall materials for microencapsulation of different bioactive com-
pounds. Pea protein has been successfully used to microencapsulate
conjugated linoleic acid (Costa et al., 2015), α-tocopherol (Pierucci,
Andrade, Farina, Pedrosa, & Rocha-Leão, 2007), ascorbic acid (Pierucci,
Andrade, Baptista, Volpato, & Rocha-Leão, 2006) and Propolis extract
(Jansen-Alves et al., 2019). Also, chick pea protein has been used to
encapsulate folate, conferring greater stability to folate relative to un-
encapsulated folate (Ariyarathna & Nedra Karunaratne, 2015). In this
case, values of 62.19 ± 2.05% and 10.18 ± 0.89% have been ob-
tained for encapsulation efficiency and loading capacity, respectively
and a gradual release of folate was observed in the pH range of 2–8.

Vegetable proteins such as lentil (Can Karaca, Nickerson, & Low,
2011; Wang, Ghosh, & Nickerson, 2019), chickpea (Can Karaca et al.,
2011; Felix, Cermeño, Romero, & FitzGerald, 2019), lupin (Burgos-Díaz
et al., 2018) and soy (Zang et al., 2019) have been also used as emul-
sifiers to facilitate the formation, improve the stability and provide
specific physicochemical properties to emulsions (Burgos-Díaz,
Wandersleben, Marqués, & Rubilar, 2016). However, the pH sensitivity
of vegetable-based proteins could not be neglected, being frequently
necessary to find strategies to further increase emulsions' stability.
Combination of vegetable proteins with polysaccharides may improve
their emulsifying properties and stability against extreme conditions. In
fact, it has been shown that multilayer emulsions (with droplet dia-
meter< 80 μm) can be prepared by the layer-by-layer technique using
a protein isolate from the novel high yielding protein lupin crop (Alu-
Prot-CGNA) combined with chitosan and xanthan gum (Burgos-Díaz
et al., 2016). Although, lupin protein-stabilized emulsions showed to be
highly unstable to aggregation at pH values around their isoelectric
point (pH∼4.6) and temperatures of 30–90 °C, their stability to ag-
gregation over a wide range of pH values, temperature, and salt con-
centrations have been improved by the addition of chitosan and xan-
than gum layers. In the same way, other authors used unmodified
protein isolates from lupin, pea and broad beans as emulsifiers and
showed that all emulsions precipitated at their isoelectric point,
whereas emulsion stability increased by the presence of a poly-
saccharide (Makri, Papalamprou, & Doxastakis, 2005). Also, it has been
shown that structural changes in pea proteins, as a result of alkaline pH
treatment, improved the physical and oxidative stability of emulsions
(Jiang, Zhu, Liu, & Xiong, 2014).

Although much less explored, proteins extracted from insects and
microalgae can be used as emulsifiers in oil-in-water emulsions. For
example, protein extracted from mealworm (Tenebrio molitor) have
shown interfacial activity and fast adsorption kinetics at the oil/water
interface. Also, the mealworm protein stabilized oil-in-water emulsions
showed to be stable to changes in pH, salt and temperature, except for
flocculation after heating at 90 °C and pH close to proteins' isoelectric
point (Gould & Wolf, 2018). Similarly, a soluble protein fraction iso-
lated from the green microalgae Tetraselmis sp. allowed the formation of
stable emulsions in the pH range of 5–7 at low protein concentrations
(Schwenzfeier et al., 2013).

4.3. Nanosystems

Nanotechnology is an emerging field in the food industry due to its
great potential to improve food productivity by enhancing food pro-
cessing conditions, as well as to allow obtaining high quality, safer and
healthier food products (Cerqueira et al., 2017; de Souza Simões et al.,
2017). Hence, the use of materials at nano scale (10−9m) may display
distinct physical-chemical and biological properties that can lead to
novel material functionalities, in comparison to those in the bulk form,
due to the higher surface area-volume ratio obtained at this scale
(Madalena, Pereira, Vicente, & Ramos, 2019). In food industry, the use
of nanomaterials can be particularly useful for the encapsulation and
delivery of bioactive compounds (e.g., vitamins, nutrients, minerals,
antioxidants, antimicrobials, prebiotics and probiotics) intended for the
development of novel and more efficient functional food products. Due
to the reduced size of nanosystems, they can enhance the solubility and
sensorial features (e.g., mask unpleasant flavors), preserve the activity,
prevent oxidative reactions, or even improve the bioaccessibility and
bioavailability of bioactive compounds (Durán & Marcato, 2013;
Pisoschi et al., 2018; Rehman et al., 2019; R. Yang et al., 2018).

The development of functional foods enriched with nanosystems has
been an emerging focus of food industry as a novel approach either to
1) fight the rising world malnutrition, particularly relevant in under-
developed countries; 2) address the micronutrient deficiency that fre-
quently result in severe health-related problem in developing countries
due to modern eating habits and inadequate diets; or 3) face the
growing consumer demands for healthy foods with additional proper-
ties (e.g., antioxidant, anti-cancer and anti-inflammatory) in addition to
their nutritional value (Bao et al., 2019; da Silva Santos, Badan Ribeiro,
& Andrade Santana, 2019; Guiné, Ramalhosa, & Paula Valente, 2016;
Kasaai, 2018; Ramos et al., 2017)

However, the successful use of nanosystems in food applications
dependents on the full replacement of non-food-grade materials by
food-grade and generally recognized as safe (GRAS) alternatives
(Cerqueira et al., 2014; Ramos et al., 2019), and on the consumers'
acceptance of nanotechnology-based products (Cerqueira et al., 2017).
For food industry applications, nanosystems can be produced from a
wide range of food-grade materials such as proteins, polysaccharides
and lipids, or their combination, to form complex delivery systems (e.g.
capsules, hydrogels and emulsions) (Cerqueira et al., 2014; de Souza
Simões et al., 2017; Madalena et al., 2019; Ramos et al., 2019). Among
the distinct food-grade materials, protein-based nanosystems have
particular interest because they are biodegradable, metabolizable, ea-
sily manipulated and functionalized (e.g. surface alteration and/or
modification) for covalent binding with bioactive compounds
(Madalena et al., 2016; Monteiro et al., 2016; Ramos et al., 2017;
Tarhini et al., 2017).

Vegetable proteins such as zein and gliadin are GRAS materials that
have shown a great potential to be used in the design of nano delivery
systems. These proteins may not need the use of chemical agents or
physical treatment for the development of nanosystems due to their
high hydrophobicity. Moreover, they are less expensive than animal
proteins and also have important functional groups able to adsorb or to
covalently bind agents capable of altering the targeting properties of
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nanoparticles. Motivated by this, Li et al. (2019) developed nano-
particles from zein as base material and soybean as stabilizer for
quercetin encapsulation. These systems exhibited a particle size of ca.
200 nm and encapsulation efficiency of 82.5%, showing to be relatively
stable at high ionic strength and temperature (Li et al., 2019). Patel, Hu,
Tiwari, and Velikov (2010) synthesized polymeric colloidal nano-
particles from zein for curcumin encapsulation. These nanoparticles
displayed particle sizes between 100 and 150 nm, and curcumin loading
and encapsulation efficiency from 1.6 to 4.1% and 71.1 to 86.8%, re-
spectively, and exhibited a good colloidal stability at an extensive range
of physiologically relevant pH (1.2, 4.5, 6.7 and 7.4) and in simulated
gastrointestinal conditions (Patel et al., 2010). Wu, Luo, and Wang
(2012) designed nano delivery systems from zein using the liquid–li-
quid dispersion method for encapsulation of thymol and carvacrol es-
sential oils to improve their solubility without affecting their intrinsic
antimicrobial and antioxidant properties. These nanosystems showing
particle sizes below 320 nm and an encapsulation efficiency higher than
50% for both essential oils, were able to improve the solubility of
thymol and carvacrol up to 14-fold without hindering their ability to
scavenge free radicals or to control Escherichia coli growth, for example
(Wu et al., 2012).

Hu and McClements (2015) developed promising nano-delivery
systems from zein (as core matrix) and alginate (as shell) exhibiting a
high stability (at pH ranging from 3 to 8 and at ambient and re-
frigeration temperatures) for encapsulation and controlled release of
bioactive molecules. In another work, Wu, Kong, Zhang, Hua, and Chen
(2018) produced nanoparticle with wheat gliadin proteins (as base
material) and gum arabic (as stabilizing agent), exhibiting good stabi-
lity (at pH comprised from 4.0 to 7.0 and at 80 °C), which are important
properties for successful delivering bioactive compounds. Wang et al.
(2015) developed innovative nanofibrous membranes from poly (vinyl
alcohol) and wheat gluten as base matrix that showed improved release
rates of nisin, and thus better antimicrobial activity against Staphylo-
coccus aureus. These are very promising characteristics that can be
highly explored in drug delivery, wound dressing and active food
packaging. In another study, Verdugo, Lim, and Rubilar (2014) used
protein concentrate from microalgae Botryococcus braunii residual bio-
mass as base material to develop nano and microfibers by electrospin-
ning. The work presented by these authors revealed a great potential of
these fibers for many end-use applications, including in the food and
biomedical industries.

The use of nanosystems for food applications, although promising
and prepared from renewable and sustainable sources (mainly from
vegetable proteins), may present risks for human health that should not
be overlooked. Therefore, potential risks should be clearly identified
regarding the unknown effects of such nanosystems in the human body
and within the ecosystem (Cerqueira et al., 2014; de Souza Simões
et al., 2017).

5. Health considerations

When introducing proteins from novel sources into the human diet,
it is essential to take in consideration their behavior and bioavailability
throughout the gastrointestinal tract and also assess their possible cy-
totoxic effects or other negative impacts on human health (e.g. allergic
reactions).

5.1. Digestibility

Protein or protein fractions, able to resist human digestion and to be
directly absorbed by the intestinal epithelium, have the potential to
affect consumers' health by either exerting positive (e.g., nutraceutical)
or negative (e.g., antinutritional and allergenic) effects (Ribeiro et al.,
2017). In fact, stability to gastrointestinal digestion is one of the major
characteristics shared by allergenic proteins (Astwood, Leach, & Fuchs,
1996) being, therefore, in vitro digestion experiments (i.e., testing

proteins for their resistance to gastric fluids) frequently used to assess
the allergenic potential of novel food proteins. The digestion suscept-
ibility of lupin seed globulins has been evaluated and it was shown that
globulins are completely hydrolyzed by pepsin, pepsin followed pan-
creatin or chymotrypsin, whereas, pancreatin and trypsin did not hy-
drolyze all globulins. The protein fraction resistant to the action of
these enzymes was γ-conglutin, which retained its antigenic properties
after digestion. Its insensitivity to hydrolysis by pancreatin and trypsin
was attributed to the formation of complexes with the flavonoids re-
leased from other protein connections during digestion, as well as to the
low number of cleavage sites for trypsin (Czubiński, Siger, & Lampart-
Szczapa, 2016). Other authors identified and characterized chickpea
seed proteins as being able to resist to in vitro simulated human di-
gestion. It was found that the majority of these proteins were members
of the 7S vicilin and 11S legumin seed storage protein classes, which are
reported to exhibit bioactive functions (Ribeiro et al., 2017). However,
the results of proteins' digestibility should be analyzed with care once,
contrary to what would be expected, it was found that some potent
allergens are not stable in gastric fluids, being rapidly digested (Fu,
Abbott, & Hatzos, 2002). This indicates that using digestion stability as
criteria provides important, but not sufficient, information to predict
the allergenic potential of proteins (Untersmayr & Jensen-Jarolim,
2008).

It is known that proteins' digestion kinetics may be influenced by
different factors including processing conditions, pH during processing
and interactions with other components present in the food matrix.
Recently, the influence of pH and processing conditions on the digest-
ibility of pea protein isolate have been investigated (Laguna, Picouet,
Guàrdia, Renard, & Sarkar, 2017). These authors found that HHP pro-
cessing enhanced the degree and rate of proteolysis, which can be at-
tributed to globular pea protein subunits unfolding. Also, the initial pH
showed a strong effect on extent and degree of digestibility, being pea
protein at pH 6.2 more digestible owing to their higher solubility at this
pH. Other authors showed the influence of different processing treat-
ments and the use of enzymes (isolated or in combination) on lentil
protein digestion (Aryee & Boye, 2016). It was evidenced that mild
processing methods (e.g., pre-hydrolysis using enzymes) could be used
to render peptide bonds more accessible to digestive proteases.

Protein quality and postprandial protein gain are not only influ-
enced by the amino acid content but also by the bioavailability of the
protein, which in part depends on their digestibility. Different species of
edible insects have been analyzed in terms of their protein digestibility
(Ramos-Elorduy et al., 1997) and values from 76% to 96% have been
obtained, which are comparable to the ones found for egg proteins
(95%) or beef (98%) and higher than the ones found for many vegetable
proteins (Kouřimská & Adámková, 2016). Also, digestibility of globulin
proteins isolated from fava bean and lupin (using a rat small intestine)
has been demonstrated to be well over 90% (Rubio, Grant, Caballé,
Martinez-Aragón, & Pusztai, 1994). In turn, protein from microalgae
appear to have similar digestibility to that of seaweed, with Scene-
desmus obliquus, Spirulina sp. and Chlorella sp. having digestibility
coefficient values of 88.0%, 83.9% and 89.0%, respectively (Becker,
2007). However, there is a major obstacle for microalgae utilization as
protein source that is the presence of a cellulosic cell wall, representing
about 10% of their dry weight, which is not digested by humans.
Therefore, in order to make microalgae protein accessible for digestive
enzymes, effective processing treatments are typically necessary to
disrupt the cell wall.

The effect of microbial protein produced by Corynebacterium am-
moniagenes on ileal amino acid digestibility in pigs has been also eval-
uated and compared with soybean proteins (Wang, Kim, Kim, & Kim,
2013). A lower digestibility of microbial protein by pigs has been ob-
served, which has been attributed to its higher non-protein nitrogen
content (e.g., nucleotide) as compared with soybean.

Also, it is important to mention that the resistance of specific pro-
tein domains to digestion is not the only condition for exerting an
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immunological response. Protein allergenicity during/after gastro-
intestinal digestion could increase due to the creation of neoepitopes
resulting from native state protein digestion, or due to the increase in
epitope concentration and their affinity to immune system cells (e.g., B
cells) (Groell, Jordan, & Borchard, 2018). Moreover, digestion induced
conformational changes (e.g. unfolding or aggregation) of the linear
(sequential) or conformational (discontinuous) epitopes which could
influence the allergenicity (Matsuo, Yokooji, & Taogoshi, 2015;
Picariello et al., 2010; Kitty Verhoeckx et al., 2019). For instance, Ara h
1 (a major peanut allergen) can form a stable trimer complex that offer
protection from protease digestion and denaturation, which could allow
Ara h 1 (with intact IgE-binding epitopes) to pass through the small
intestine, leading to allergenicity (Sen et al., 2002).

5.2. Cytotoxicity

Many novel proteins and peptides present a great prospective as
functional food ingredients or supplements, but not only their re-
sistance to human digestion but also their quality and availability must
be evaluated. Complementary safety information may be mandatory to
investigate whether proteins or peptides from different sources such as
seaweed, microalgae and insects, could be considered safe for con-
sumption (Loveday, 2019; van der Spiegel, Noordam, & van der Fels-
Klerx, 2013).

Proteins and peptides toxicity take a central part in the regulation of
body functions. Protein chemical or non-chemical modifications could
result in nutritional value changes, possible toxic peptides or amino
acid derivatives formation, and contamination by toxic chemicals
harmful for health (Hurley et al., 2016; Zimmermann et al., 2018).
Analyses intending to establish the proteins' cytotoxicity properties
have to consider a range of factors (e.g., proteins' effect on the gas-
trointestinal tract and susceptibility to digestion – see section 5.1).
Therefore, the application of in vitro assays as screening tools can assist
in estimating the potential proteins toxicity prior to their test in animal
models and clinical studies. The cytotoxic effects of proteins usually are
evaluated using in vitro assays such as 3-(4,5 dimethylthiazol-2-yl)- 2,5-
diphenyltetrazolium bromide (MTT) test based on mitochondrial de-
hydrogenase activity detection in living cells and lactate dehydrogenase
(LDH) released from dead cells (Hurley et al., 2016). Additionally,
necrosis, apoptosis and/or cell cycle disturbances activities are assessed
in many research works with the purpose to clarify about cell death
mechanism stimulated by protein or peptides (Chalamaiah, Yu, & Wu,
2018). Recently, it has been shown that protein derived from the fungus
Cordyceps militaris increased cell cytotoxicity (measured using MTT and
LDH assays) in murine primary cell line possibly through mitochon-
drion-dependent apoptosis (Bai & Sheu, 2018). Zimmermann et al.
(2018) evaluated the cell viability by LDH release, MTT conversion and
barrier integrity of human intestinal epithelial cell monolayers (Caco-2
and T84 IEC) exposed to hazardous (e.g., wheat germ agglutinin) and
non-hazardous (e.g., bovine serum albumin (BSA)) proteins for 24 h,
48 h and 72 h. The authors demonstrated that non-hazardous proteins
did not have influence on Caco-2 and T84 IEC cells after 24 h of ex-
posure. On the other hand, barrier integrity or cell viability decreased
after exposure to hazardous proteins for 24 h, being this result more
evident after 48 h and 72 h for both intestinal epithelial cells. Also, the
safety of insect-derived protein hydrolysates has been evaluated using
in vitro cytotoxicity assays. Zielińska et al. (2015) studied the cyto-
toxicity effect of raw, cooked and baked protein hydrolysates from
Tenebrio molitor, Schistocerca gregaria and Gryllodes sigillatus to human
skin fibroblasts CRL-2522. Authors indicated that hydrolysates from T.
molitor and G. sigillatus had no cytotoxic effects (before and after heat
treatment). On the other hand, S. gregaria hydrolysate (particularly, raw
samples) showed cytotoxic effects (up to 40% cell death) towards fi-
broblast CRL-2522.

Moreover, cytotoxicity studies have provided evidence that proteins
derived from non-animal and animal sources could exhibit anticancer

and antioxidant activities (Beltrán-Barrientos et al., 2017; Premkumar
& Vasudevan, 2018). For example, Rayaprolu et al. (2017) character-
ized protein hydrolysate fractions from a high oleic acid soybean. The
factions obtained (10–50 kDa fraction peptides) were tested on blood
(CCRF-CEM), colon (Caco-2 and HCT-116), and liver (HepG-2) cancer
cell lines for their inhibitory effects on cancer cell proliferation. Pep-
tides were found to exhibit anti-proliferation activity on the three types
of cancer cells. In another study, Chalamaiah, Hemalatha et al. (2015)
assessed the anticancer properties of protein hydrolysates derived from
rohu (Labeo rohita) roes (eggs) by enzymatic hydrolysis (using pepsin or
trypsin) against human colon cancer cell line (Caco-2). The results
showed that pepsin protein hydrolysate exhibited 65% antiproliferative
activity on Caco-2 cells. Furthermore, antioxidant activity and cyto-
toxicity properties of peptides derived from microalgae Navicula incerta
(by enzymatic hydrolysis) in HepG2/CYP2E1 cells have been studied
(Kang, Qian, Ryu, Kim, & Kim, 2012). Results showed that N. incerta
peptides attenuated the ethanol-induced cytotoxicity of HepG2 cells.
Other study showed that Chlorella pyrenoidosa-derived peptide provides
protective effects against UVC-induced cytotoxicity in human skin fi-
broblasts (Shih & Cherng, 2012). Lastly, the capacity of germinated
soybean peptides to affect the viability of three human colon cancer cell
lines (Caco-2, HT-29, and HCT-116) was evaluated (González-Montoya,
Hernández-Ledesma, Silván, Mora-Escobedo, & Martínez-Villaluenga,
2018). Peptides fractions< 5, 5–10, and > 10 kDa caused cytotoxicity
to Caco-2, HT-29, HCT-116 cells. The authors suggested that the anti-
proliferative effect of germinated soybean peptides in human colon cell
lines may be due to induction of apoptosis.

Also, experimental animal models for human risk assessment were
used to determine protein cytotoxicity. For instance, Canistro et al.
(2017) studied rapeseed and sunflower protein hydrolysates toxicity
and metabolic effects in a murine animal model. This study showed no
toxicity effect of the protein hydrolysates diet on mice, since no changes
were detected on growth, organ weight, blood biochemical and food
intake parameters.

5.3. Allergenicity

Food allergies are growing considerably among the world popula-
tion, particularly in infants. Very severe allergic reactions against in-
gested foods, mainly to dairy proteins, lead to anaphylaxis. Food al-
lergic reactions are described as adverse reactions to health (from local
and transient effects to systemic anaphylaxis) that induce specific im-
mune response in susceptible subjects following dietary exposure to
relevant allergens in food (Verhoeckx et al., 2015). In a broad sense,
allergic food reactions can include immunoglobulins (IgE) and non-IgE-
mediated primary immunological sensitivities, non-immunological food
intolerances, and secondary sensitivities (Taylor & Hefle, 2001). The
main form of immune-mediated allergic reactions to foods is linked to
IgE formation against food allergens (Type I reactions). Some frequent
food inducers of IgE-associated allergy are egg, milk, fish, wheat, nuts,
vegetables and fruits (Valenta, Hochwallner, Linhart, & Pahr, 2015).
Normally, an allergic reaction occurs when IgE antibodies are produced
and bind to the ingested proteins. Consequently, IgE is bound to the
surface of effectors' cells (basophils or mast cells), leading them to re-
lease mediators such as histamine, leukotrienes and cytokines, resulting
in allergic response directly at the sites of allergen contact (e.g., mouth
and intestine) or in other organs, when allergens are able to pass
through the mucosa barrier into the blood circulation (Valenta et al.,
2015).

Peptides derived from diverse sources (e.g., milk, egg, soybean, fish
and nuts) have been shown to strongly influence the immune system.
Vegetable proteins have attracted significant interest compared to an-
imal proteins, due to their potential non-allergenicity. Thus, in addition
to cytotoxicity, the incidence of allergic reactions following novel
protein consumption (e.g., from insect origin) has been assessed
(Parenti, Santoro, Del Rio, & Franceschi, 2019). The majority of studies
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explored the proteins' immunomodulatory properties and their influ-
ence on inflammatory cytokine production, antibodies production, and
lymphocyte activity and proliferation (Parenti et al., 2019). One study
reported that oral administration of carp egg protein hydrolysates
(CEPHs) (pepsin hydrolyzed) to female BALB/c mice significantly en-
hanced humoral immune response because immunoglobulin A (IgA)
antibody production increase in serum. Moreover, the splenic natural
killer (NK) cells cytotoxicity increased in the gut, which indicates a host
capacity improvement to fight against tumor cells and virus-infected
cells (Chalamaiah, Jyothirmayi et al., 2015).

In this framework, many technological novel and emergent food
process applications (e.g., OH, PEF, HHP and enzymatic treatment)
could contribute to avoid or limit proteins' allergenicity, at least for
some classes of allergic groups, by changing the allergen appearance or
cleaving the allergenic protein epitopes. Some reviews (Chizoba Ekezie,
Cheng, & Sun, 2018; Rahaman, Vasiljevic, & Ramchandran, 2016;
Verhoeckx et al., 2015) have gathered information about the potential
effect of food processing technologies on the reduction of various pro-
teins' allergenicity. For instance, ovalbumin (one of the most important
sensitizing ingredients in allergens of egg albumin) was submitted to a
pre-heating treatment integrated with glycation, and allergenicity was
estimated by indirect competitive ELISA. The results showed that al-
lergenicity decreased because IgG/IgE-binding capability of ovalbumin
was dramatically reduced due to IgG and IgE epitopes cover and
ovalbumin structural changes (Liao et al., 2018). It should be also
highlighted that protein allergenicity could increase, as well the for-
mation of neoallergenic species, due to food processing. For example,
allergenicity of soy protein isolate (SPI) treated by enzymatic hydrolysis
with alcalase, trypsin, chymotrypsin, bromelain, or papain was eval-
uated by in vitro IgE binding. Results showed that SPI enzymatic hy-
drolysis did not reduce the allergenicity, and chymotrypsin or brome-
lain hydrolysis could increase SPI allergenicity (Panda, Tetteh, Pramod,
& Goodman, 2015). Moreover, research works showed that non-thermal
treatments, like ultrasonication, microwave and HHP could possibly
change food allergenicity (Pojić, Mišan, & Tiwari, 2018). For example,
SPI allergenicity for infant formulae decreased 24.7% due to a micro-
wave treatment that changed proteins' secondary structure (Li, Zhu,
Zhou, Peng, & Guo, 2016). The same authors also decreased SPI aller-
genicity by 18.9%, 29.8% and 46.6% using high-intensity ultrasound,
high-pressure homogenization and HHP, respectively (Li et al., 2016).
In another study, Li, Zhu, Zhou, and Peng (2012) demonstrated the
reduction of SPI allergenicity (48.6%) as compared to non-treated SPI
due to HHP at 300MPa for 15min.

Another way to reduce the potential protein allergenicity is to use
capsules (e.g., nanocapsules) as protein carriers to avoid the activation
of immune cells through antibodies identification (Pohlit et al., 2015).
Gamazo, Gastaminza, Ferrer, Sanz, and Irache3, J. M. (2014) reviewed
the use of nanoparticles as delivery systems to carry protein allergens.

Furthermore, a complete allergenicity risk assessment is needed (ac-
cording to the European Food Safety Authority (EFSA) legislation) to ap-
prove novel protein sources as potential food ingredients taking into
consideration various aspects such as route (e.g., oral) and dose of protein
exposure, protein properties (e.g., physicochemical properties) and how
protein is perceived by each person's immune system (Parenti et al., 2019).
Different strategies can be used to assess allergenicity risks (Crevel et al.,
2014; Fernandez, Mills, Koning, & Moreno, 2019). One of these strategies
is a “weight-of-evidence approach” used for food derived from genetically
modified plants (Verhoeckx, Broekman, Knulst, & Houben, 2016). The
allergenicity risk assessment conclusion is the probability of a protein
being an allergen. This strategy focuses on cross-reactivity; however, the
novel (or modified) proteins can also cause a risk of de novo sensitization,
which could lead to novel food allergies (Pali-Schöll et al., 2019). Some
relevant methods for protein allergenic risk assessment were described by
other authors (Mazzucchelli et al., 2018). The assessment of protein
transport across the intestinal barrier, as well as its implication on epi-
thelial permeability are important factors in allergenicity risk assessment

(Reitsma, Westerhout, Wichers, Wortelboer, & Verhoeckx, 2014). The
application of diverse epithelial cell models to study these characteristics
has been reviewed (Cubells-Baeza et al., 2015). For instance, Hurley et al.
(2016) used an in vitro human intestinal model system with epithelial cell
lines (T84, Caco-2, and HCT-8) to evaluate potential protein hazards. In-
dicators of cytotoxicity (LDH release, MTT conversion), monolayer barrier
integrity ([3H]-inulin flux, horseradish peroxidase flux and transepithelial
electrical resistance (TEER), and inflammation (IL-8, IL-6 release) were
monitored. These authors reported that this model system effectively
distinguished between hazardous and non-hazardous proteins through
combined analysis of multiple cell lines and assays.

6. Conclusions

Alternative protein sources such as vegetables, insects and microbial
proteins, can address different pillars and the goals of food security and
sustainability. Their cultivation and use can contribute to preserve
natural resources and biodiversity, reducing environmental damage
and climate changes. Moreover, they are a source of macro and mi-
cronutrients, including high quality proteins that can be related to
healthy diets and also to the prevention of diverse diseases.

As previously mentioned, HHP and electrotechnologies are re-
cognized as environmentally friendly processes due to their high energy
efficiencies and possibility to reduce the use of non-renewable resources
(e.g., water and fossil energy). From the processing point of view, they
bring electrical and pressure effects that can be combined with heat (if
needed), offering a great versatility of processing strategies towards
preservation, extraction and functional aspects of food proteins.
However, the implications of these effects on the biological value of
emergent food protein fractions, such as the ones related with nutri-
tional composition, digestibility and allergenicity is far from being
understood. Fundamental research is still necessary to unravel many of
the potential benefits of these technologies and to develop innovative
products based on alternative protein-rich fractions.

Regarding emergent proteins used as ingredients, their functional-
technological properties are still at an exploratory level in most of the
cases. While vegetable proteins were well described in the last decade,
insects and microbial proteins were less explored. The effect of ex-
traction procedures on proteins' final properties and on their aggrega-
tion and gelling mechanisms have been reported. Therefore, studies are
unraveling such proteins as promising ingredients to replace conven-
tional proteins in the food industry.

Furthermore, proteins from novel sources can be used to prepare a
wide range of structures at different scales (e.g., micro and nanos-
tructures) for bioactive compounds' delivery, which can be tailored for
a specific application in innovative products, following the current
“green” trend in the food industry.

Future evaluation regarding emergent proteins' fate in human gas-
trointestinal tract (e.g., digestion and bioavailability) is of utmost im-
portance since reduced protein digestibility may play a role in food
allergenicity. Moreover, numerous proteins have been reported to have
cytotoxic or allergenic effects against human cells. Thus, more studies
are needed to determine if the use of proteins from novel sources will
result in more benefits than risks. Particularly, the information on na-
notechnology safety exploring the use of alternative proteins remains
limited or less explored and requires further risk assessment, particu-
larly for long-term toxicity and allergenicity.
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