

Ocular optical quality dynamics during accommodation in subjects with accommodative dysfunctions

Sandra Franco, Jessica Gomes Centre of Physics, University of Minho Braga, Portugal

Image from http://biology-igcse.weebly.com/-accommodation.html

- What are (the) accommodative dysfunctions?
 - Accommodative Insuficiency
 - Accommodative Excess
 - Accommodative Infacility

• Prevalence of accommodative dysfunctions

Franco et al. 2018 unpublished data

• How to diagnose?

- There are several different criteria to diagnose the accommodative dysfunctions.
- There are symptomatic subjects that "pass" all the criteria.

Visual Optics and Ophthalmic Instrumentation Lab

- There are several different criteria to diagnose the accommodative dysfunctions.
- There are symptomatic subjects that "pass" all the criteria.

Visual Optics and Ophthalmic Instrumentation Lab

Can we use the ocular optical quality data to study/diagnose accommodative dysfunctions?

Do people with these dysfunctions have a different behavior? If so, what is it like?

- Visual Optics and Ophthalmic Instrumentation Lab
- To evaluate ocular accommodation from ocular wavefront aberrations data continuously measured during the response to different accommodative demands.
- To compare the results of symptomatic and non-symptomatic subjects.

Ocular optical quality dynamics during accommodation in subjects with accommodative dysfunctions.

• Hartmann-Shack aberrometer

• resolution of 1280×1024 , 39×31 lenslets, working with a frequency of 15 Hz

- The operator can see in real time the time-course of the aberrations.
- The data acquisition is synchronized with the lens system.

Visual Optics and Ophthalmic Instrumentation Lab

****Zemik	es****			
Zemike O	7,0109			
Tilt 1	-1,6255			
Tilt 2	-3,2893			
Astigmatis	-0,2074			
Defocus	-1,4604			
Astigmatis	-0,2277			
Trefold 1	-0,1035			
Coma 1	0,0094			
Coma 2	-0,025			
Trefold 2	-0,0283			
Quadrifold	-0,0661			
Astigmatis	-0,0003			
Sphere	0,0146			
Astigmatis	0,0216			
Quadrifold	0,0041			
Zernike 15	-0,0168			
Zemike 16	0,0065			
Zemike 17	0,0048			
Zemike 18	0,006			
Zernike 19	-0,0043			
Zemike 20	-0,0029			
Zemike 21	-0,0023			
Zemike 22	0,0039			
Zernike 23	0,0055			
Zernike 24	-0,0063			
Zemike 25	-0,0113			
Zemike 26	0,001			
Zemike 27	-0,0109			
Wave Se	ettings			
PV	14,9448			
RMS	3,931			
*******	····****			
E	CC CC A	r		
Exp Dural M	66.5594 ar	2		
Pupil_X	Z.5 and Pu	د, <i>د</i>		
Center Pup Concol tilt	u anu ceni n	U		
Cancer un	0			
CHARLES	U 			
SELECT DOCINE	U 			
niter rosto	U			
****Acouis	ition time**	**		
Time	7	52	27	468
Ott	1 and Devi	0		

Visual Optics and Ophthalmic Instrumentation Lab

- In addition to the optical quality parameters, several accommodative parameters were computed from the collected data:
 - accommodative response,
 - lag of accommodation,
 - response time.
- These parameters were computed for all the accommodation stimulus.

	Age (years)	Am (D)	M.E.M. retinoscopy (D)	AF (cpm)	Observations
Subject A	22	9.00	+0.50	19	Far blurred vision after performing a near vision task
Subject B	28	8.50	+0.50	12	No symptoms

Ocular optical quality dynamics during accommodation in subjects with accommodative dysfunctions

portugal P2020

C®MPETE 2020

• RMS vs Accommodative stimulus

GOVERNO DE PORTUGAL 2020 C[®]MPETE 2020

• Accommodative response

• Subject A • Subject B

COMPETE 2020 COVERNO DE PORTUGAL

$$y = y_0 + a\left(1 - e^{t/\tau}\right)$$

a represents the amplitude of the response, *t* represents time in seconds, and τ represents the time constant.

Stimulus: 0,45 D

Subject A took 1.41 s to achieve a stable accommodation response of 0.66 D.

Subject B took 0.05 s to achieve a stable accommodation response of 0,19 D a = 0.17; r=0.4147; t=0.009

Conclusions

Ocular optical quality dynamics during accommodation in subjects with accommodative dysfunctions

Conclusions

- Visual Optics and Ophthalmic Instrumentation Lab
- The patient with symptoms after a near vision task, presented several alterations in his accommodative performance that were not found in the optometric exam.
- This method shows the presence of anomalies even before they can be detectable in a optometric exam.
- The measurement of wavefront ocular aberrations can be a tool to diagnose accommodative disorders.
- It might also be useful to analyse the effects of visual therapy as a treatment option.

Acknowledgements

This work was supported by the Portuguese Foundation for Science and Technology (FCT) in the framework of the Strategic Funding UID/FIS/04650/2019 and by the project PTDC/FIS-OTI/31486/2017.

sfranco@física.uminho.pt

