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Abstract

We develop a dynamic model of hospital competition where (i) waiting times increase if

demand exceeds supply; (ii) patients differ in their evaluation of health benefits and choose a

hospital based on waiting times; and (iii) there are penalties for providers with long waits. We

show that, if penalties are linear in waiting times, a more competitive dynamic environment

does not affect waiting times. If penalties are instead non-linear, we find that waiting times are

longer under the more competitive environment. The latter result is derived by calibrating the

model with waiting times and elasticities observed in the English NHS for a common treatment

(cataract surgery), which also shows that the difference between waiting times under the two

solution concepts is quantitatively small. Policies that facilitate patient choice, an alternative

measure of competition, also lead to higher steady-state waiting times, and tougher penalties

exacerbate the negative effect of choice policies.
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1 Introduction

Waiting times for non-emergency (elective) treatments are a key health policy concern across OECD

countries, such as Australia, Canada, Ireland, Finland, Norway, Portugal, and the United Kingdom.

Mean waiting times range between 50 and 150 days across countries for common procedures such

as cataract surgery, hip and knee replacement, hernia, hysterectomy, and prostatectomy (Siciliani

et al., 2014). Although some countries like Finland and the UK have had successes in 2000-2005

in reducing waiting times from high levels (e.g., more than 150 days on average for hip and knee

replacement), waiting times have stalled in most countries since the financial crisis and have slowly

started to rise again in some countries. In countries like Chile, Poland, and Estonia, waiting times

for hip and knee procedures are still above one year (OECD, 2017).

Waiting times are a major source of dissatisfaction for patients since they postpone health ben-

efits, may worsen symptoms, deteriorate patients’ conditions, and lead to worse clinical outcomes.

In response to the dissatisfaction that they generate, governments have taken a variety of measures

to reduce waiting times. Many OECD countries have adopted some form of maximum waiting

time guarantees (Siciliani, Moran, and Borowitz, 2013). However, the design and implementation

of these guarantees can differ significantly across countries.

Two common approaches are to link maximum wait guarantees either to penalties or to com-

petition (and patient choice) policies. The first approach was followed by Finland and England,

which combined maximum waiting times with sanctions for failure to fulfil the guarantee. Targets

with penalties were introduced in England in 2000-05 with political oversight from the Prime Min-

isterial Delivery Unit and the Health Care Commission. Senior health administrators risked losing

their jobs if targets were not met. As a result, the proportion of patients waiting over six months

was reduced by 6-9 percentage points (Propper et al., 2010). In 2010, maximum wait guarantees

became a patient entitlement codified into the NHS Constitution, establishing a patient right to a

maximum of 18 weeks from GP referral to treatment. In Finland, waiting time guarantees were

combined with targets as part of the Health Care Guarantee in 2005, subsequently included in

the 2010 Health Care Act. A National Supervisory Agency supervised the implementation of the

guarantee through targets and penalised municipalities failing to comply. The number of patients

waiting over six months was reduced from 12.6 per 1, 000 population in 2002 to 6.6 per 1, 000 in

2005 (Siciliani, Moran, and Borowitz, 2013).

The second approach involves combining maximum waiting time guarantees with patient choice
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and competition policies. For example, in Denmark, if the hospital foresees that the maximum

waiting time guarantee will not be fulfilled, the patient can choose another public or private hospital.

In Portugal, when a patient on the waiting list reaches 75% of the maximum guaranteed time, a

voucher that allows the patient to seek treatment at any other provider, including private sector

providers, is issued. In several countries, like England and Norway, patients are free to choose any

provider within the country (Siciliani et al., 2017).

From an economics perspective, waiting times act as a non-price rationing device to bring into

equilibrium the demand for and the supply of health care in publicly-funded health systems. Many

countries with a National Health Service or public health insurance combine the absence of co-

payments with the presence of capacity constraints. As a result, an excess demand arises, which

translates into a waiting list. One way to bring the demand for and the supply of treatments into

equilibrium is to rely on waiting times. As argued by Lindsay and Feigenbaum (1984), Martin

and Smith (1999), and Iversen (1993, 1997), waiting times tend to discourage demand if patients

give up the treatment or opt for treatment in the private sector. Waiting times may also influence

positively the supply of health services if altruistic providers exert greater effort and treat more

patients when waiting times are higher.

In the present study, we investigate whether competition and patient choice policies play a

useful role in reducing waiting times, and the extent to which such a role is altered in the presence

of penalties for providers with long waits. Our model is dynamic to capture a key feature of the

waiting time phenomenon. Waiting times tend to increase when demand for treatment is higher

than the supply of treatment so that new patients are added to the waiting list. Similarly, waiting

times tend to reduce when more patients are removed from the waiting list than those added. A

second feature of our model is that hospitals compete for patients, with hospitals with lower waiting

times attracting more patients.

The combination of a dynamic approach with strategic interactions across providers calls for

a differential-game approach. As is customary under this approach (Dockner et al., 2000), we

use two solution concepts. First, we derive the open-loop solution, where each hospital commits

to an optimal supply plan of treatments before the game starts. This solution is plausible in

institutional settings where supply is subject to rigidities (such as investment regulations), implying

that hospitals must commit to long-term supply plans. If hospitals are restricted to follow their

plans and cannot adjust supply, this case is equivalent to one wherein hospitals cannot observe and

react to waiting times once the game starts. Second, we derive the feedback (closed-loop) solution,
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where hospitals can observe waiting times at each point in time, not only at the beginning of the

game, and react to such information. In contrast to the open-loop solution, hospitals are allowed

to revise their supply decisions based on the evolution of waiting times. Thus, the key difference

between the two solution concepts is the degree of commitment.

To model the demand for healthcare faced by each provider, we use a Hotelling approach with

two hospitals located at each endpoint of the unit line segment. We adopt a general specification,

which allows for two types of patients who differ in the valuation of their outside option (e.g.,

to seek treatment in the private sector or to forego treatment altogether), which in turn implies

different net benefits, high and low, from hospital treatment. Hospitals compete on the segment

of demand with high benefit, while they are local monopolists on the demand segment with low

benefit.

We look at two aspects of competition. The first relates to the solution concept. The feedback

solution is commonly interpreted as a more competitive solution in the sense that hospitals can, at

each point in time, change their treatment plans in response to the dynamics of the waiting times.

We therefore compare waiting times under the two solution concepts. Second, under each solution

concept, we investigate the effect of policies that facilitate patient choice, commonly interpreted as

policies that stimulate competition.

We obtain several findings with policy implications. First, we show that the design of penalties

has a critical role in predicting the effect of competition on waiting times. If the penalties that

providers face are linear in waiting times, then the open-loop and the closed-loop solutions coincide.

Therefore, a more competitive dynamic environment does not affect the equilibrium waiting times.

If penalties are instead non-linear so that the marginal penalty increases with waiting times, we find

that waiting times are longer under the more competitive environment (the closed-loop solution). In

this case, the optimal closed-loop strategies are characterised by dynamic strategic substitutability

in supply. The intuition for this key result is that lower treatment supply by one hospital will be

optimally met by increased supply by the competing hospital, which dampens the initial increase

in waiting time caused by the supply reduction. This strategic substitutability gives each hospital

an incentive to reduce its supply in order to ‘free-ride’ on the subsequent supply increase by the

other hospital.

Our results for the closed-loop solution are numerically derived, since a closed-form solution

cannot be obtained in this scenario. To make our results more salient, we calibrate our model

based on waiting times observed in the English NHS. The calibration is also informed by demand
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elasticities which have been estimated in the empirical literature (Martin and Smith, 1999; Sivey,

2012). Our results suggest that the difference between steady-state waiting times under the two

solution concepts increases with the degree of convexity in the waiting time penalty structure.

The policy implication is that waiting time penalties are likely to be more effective in reducing

waiting times if they are designed with a linear penalty structure. However, another key result

from the calibration is that, although waiting times are higher under the closed-loop solution, the

differences in waiting times between the two solution concepts are very small (less than 1% in all

our calibrations with different demand elasticities).

Regarding the effects of patient choice, we show (in the open-loop solution) that policies to

facilitate patient choice lead to higher steady-state waiting times (regardless of whether penalties

are linear or not) and have an ambiguous effect on steady-state treatment supply (though the

effect is negative if penalties are linear). This is because patient choice, as captured by lower

transportation costs in a Hotelling set-up, makes demand more responsive to changes in waiting

times. In turn, this reduces the effectiveness of treatment supply in reducing waiting times, since

a reduction in waiting attracts more patients from the other hospital, offseting the potential effect

of the initial increase in supply.

Our calibration of the closed-loop equilibrium shows that the above described effects of increased

patient choice are qualitatively and quantitatively very similar across the two solution concepts. In

both cases, more patient choice leads to higher steady-state waiting times, and the magnitude of the

effect depends positively on the convexity of the waiting time penalty. This result has implications

for the optimal choice of policy to achieve an overall reduction in hospital waiting times. Consider

two different policy options: imposing provider penalties or stimulating patient choice. In our

model, not only is the former the only policy that is effective in reducing waiting times, but such

a policy also makes choice policies counterproductive, and more so the tougher the penalties. The

larger the waiting time penalties, the larger the increase in steady-state waiting times as a result

of more patient choice.

The rest of the study is organised as follows. In the next section, we present a brief overview of

the literature and explain how we contribute to this literature. In Section 3, we present the model.

The open-loop and closed-loop solutions of the model are analysed in Sections 4 and 5, respectively.

Section 6 provides concluding remarks.
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2 Related Literature

Our study brings together two different strands of the theoretical literature. The first is the

literature that investigates the role of waiting times in the health sector. As mentioned above,

the idea that waiting times may help bringing the supply and the demand for healthcare into

equilibrium goes back to Lindsay and Feigenbaum (1984) and Iversen (1993). Iversen (1997) also

investigates whether allowing patients to be treated in the private sector will reduce waiting times in

the public sector and shows that the answer depends on the demand elasticity for public treatment

with respect to waiting time. Demand and supply responsiveness to waiting times are estimated

by Martin and Smith (1999) using English data, and they find that demand is generally inelastic

(with an elasticity of about −0.1).

There are also normative analyses in this strand of the literature. Hoel and Sæther (2003)

show that concerns for equity can make it optimal to have a mixed system of public and private

provision with a positive waiting time in the public sector, though March and Schroyen (2005) find,

through a calibration exercise, that the welfare gains of a mixed system might be quite low. Gravelle

and Siciliani (2008a, 2008c) investigate the scope for waiting time prioritisation policies across and

within treatments and find that prioritisation is generally welfare improving even in a setting where

the provider can only observe some dimensions of patient benefit. Gravelle and Siciliani (2008b)

also show that rationing by copay tends to be welfare improving relative to rationing by waiting. All

the above studies use a static approach assuming that demand and supply adjust instantaneously to

reach equilibrium. One exception is Siciliani (2006) who investigates the behaviour of a monopolist

in a dynamic set-up. We model waiting time dynamics in a similar way but critically allow for

strategic interactions across providers to investigate the role of patient choice and competition.

The second strand of the literature relates to hospital competition with fixed prices. Though

most of this literature consists of studies using a static framework, there is a limited but growing

literature that models hospital competition in a dynamic framework. It focus, however, on incen-

tives for quality provision rather than on waiting times.1 Brekke et al. (2010, 2012) find that, if

quality is modelled as a stock variable which increases if quality investments are higher than its

depreciation, or, if demand is sluggish so that an increase in quality only partially translates into an

increase in demand, then quality is higher under the open-loop solution if hospitals face increasing

marginal treatment costs. Equilibrium quality instead coincide under the two solution concepts if

1 See Brekke et al. (2014) for a review of the theoretical literature on hospital competition under regulated prices.
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marginal treatment costs are constant. Siciliani, Straume, and Cellini (2013) suggest that these

results can be overturned in the presence of altruistic preferences so that quality is higher under

the closed-loop solution.

Our modelling of waiting times differs analytically from these previous contributions because

the state variable (i.e., waiting time) of the rival enters the dynamic constraint of the maximisation

problem of each provider. This is not the case when quality is modelled as a stock (as in Brekke

et al. (2010)) because neither the state nor control variable of the rival provider enters the quality

stock function, or when demand is modelled as sluggish (as in Brekke et al. (2012)) because de-

mand depends on the control variable of the rival, not the state variable. Thus, because of these

fundamental differences in the dynamic nature of the problems, the results from models of dynamic

quality competition do not automatically carry over to the case of waiting times. In other words,

if we want to study the effects of patient choice and competition on waiting times in a dynamic

context, we cannot simply interpret waiting time as ‘negative quality’ and apply the results from

the above mentioned studies of dynamic quality competition.

As previously mentioned, in the main bulk of the theoretical literature on hospital competition,

the theoretical framework is a static one. To our knowledge, the only study among these that

deals with waiting times is Brekke et al. (2008). Similarly to the present study, they identify a

potentially positive relationship between patient choice and equilibrium waiting times. However,

the underlying mechanisms are very different. In the static model (Brekke et al., 2008), hospitals

choose waiting times to influence demand and in turn revenues. Increased competition (patient

choice) makes demand more responsive to changes in waiting time, which then becomes a more

effective tool for each hospital to steer demand in the desired direction. If hospitals are semi-

altruistic, the equilibrium is such that price is below marginal cost (for the marginal treatment).

Hospitals might therefore have an incentive to reduce demand, and waiting times become a more

powerful tool to achieve this when patient choice increases, paving the way for a positive relationship

between patient choice and equilibrium waiting times.

In the present dynamic approach, more competition also makes demand more responsive to

waiting times, but then the similarities end. Hospitals choose treatment supply but cannot directly

control waiting times. The supply decision is instead used as an instrument to affect waiting

times, and this instrument becomes less effective with increased patient choice. This is why more

competition leads to higher waiting times in our dynamic setting, and the underlying mechanism is

not related to price being below marginal cost in equilibrium, although this feature is also present
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here. Thus, the present study is not just a dynamic version of Brekke et al. (2008), in the sense

that the results rely on the same mechanisms placed in a dynamic context. Rather, placing the

analysis in a dynamic framework allows us to uncover new mechanisms that are uniquely related

to the dynamic process that generates changes in waiting times. In this sense, the present dynamic

analysis complements and reinforces the previous results based on a static framework.

3 The Model

Consider a duopolistic health care market in which hospitals, indexed by i and j, are located at

each endpoint of the unit line segment [0, 1]. There are N potential patients uniformly distributed

on the line segment. In every period t, each of these patients may benefit from treatment at

either of the two hospitals. In order to consume one unit of treatment, patients bear no out-of-

pocket expenditures at the hospital but face expenses (or disutility) in the form of travelling costs.

Furthermore, patients are required to join a waiting list and therefore suffer a disutility of waiting.

There are two types of patients, differing with respect to the value of their outside option (i.e.,

the utility of not being treated by either of the two hospitals). Whereas a share β of the patients

are assumed to have no valuable outside option, the remaining share (1−β) have a strictly positive

outside option k > 0. For simplicity, we assume that these shares are constant along the line

segment. The difference between these two patient types can be attributed either to a difference

in illness severity, which creates a difference in the utility of being untreated, or to a difference in

the ability to seek treatment elsewhere (e.g., in a private market or abroad), for example, due to

differences in income or wealth.

Both types of patients make utility-maximising treatment consumption decisions, taking into

account travelling costs as well as the length of time between the moment they join the waiting list

and that when treatment is supplied (i.e., the waiting time). The utility in period t of a patient

with no valuable outside option, who is located at x ∈ [0, 1] and chooses Hospital i, located at zi,

is given by

u(x, zi, t) = v − wi(t)− τ |x− zi|, (1)

where v is the gross valuation of treatment, wi(t) is the waiting time at Hospital i in period t, and

τ is the marginal disutility of travelling. The marginal disutility of waiting is normalised to one,

which allows τ to be interpreted as the marginal disutility of travelling relative to waiting. The
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equivalent utility in period t of a patient with a strictly positive outside option is

u(x, zi, t) = v − k − wi(t)− τ |x− zi|. (2)

For patients with a positive outside option, we assume that k is sufficiently high such that some

of these patients will strictly prefer the outside option to being treated by any of the two hospitals

in the market. This implies that the relevant choice for each of these patients is between seeking

treatment at the most preferred hospital or exercising the outside option. We will refer to this as

the monopolistic segment of the market. For all the patients without a valuable outside option,

we assume that utility is maximised by seeking treatment at one of the hospitals. These patients

therefore constitute the competitive segment of the market. By concentrating on cases where the

competitive segment is fully covered, whereas the monopolistic segment is only partially covered,

we ensure that total demand is elastic with respect to waiting times, implying that waiting times

have a rationing effect on demand.

3.1 Demand for Hospital Treatment

In the competitive segment, the patient who is indifferent between seeking treatment at Hospital i

and Hospital j is located at xC(t), implicitly given by

v − wi(t)− τxC = v − wj(t)− τ(1− xC), (3)

yielding

xC(t) =
1

2
+
wj(t)− wi(t)

2τ
. (4)

In the monopolistic segment, the patient who is indifferent between demanding treatment at Hos-

pital i and consuming his or her outside option is located at xiM (t), implicitly given by

v − wi(t)− τxiM = k, (5)

yielding

xiM (t) =
v − k − wi(t)

τ
. (6)

A similar expression can be obtained for Hospital j: xjM (t) = (v − k − wj(t))/τ .
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With a total mass N of patients in the market, demand faced by Hospitals i and j is a weighted

sum of demand from the competitive and the monopolistic segments and is respectively given by

Di(wi(t), wj(t)) = N [βxC(t) + (1− β)xiM (t)] (7)

and

Dj(wi(t), wj(t)) = N [β(1− xC(t)) + (1− β)xjM (t)]. (8)

3.2 Hospital Objectives and Treatment Supply

In each period t, Hospital i treats Si(t) patients. Hospitals are financed by a third-payer (e.g., a

regulator or insurer) that offers a prospective payment p for each unit of treatment supplied and a

lump-sum transfer T . The instantaneous objective function of Hospital i is assumed to be

Πi(t) = T + pSi(t)− C(Si(t))− Φ(wi(t)). (9)

The cost of supplying hospital treatments is given by an increasing and strictly convex cost function

C(Si(t)) = γ
2Si(t)

2, with γ > 0. The convexity of the cost function captures an important feature in

the context of waiting times, namely that hospitals face capacity constraints.2 The function Φ(wi(t))

captures the disutility of having positive waiting times. The disutility of waiting time is monetary

if the hospital faces penalties levied by the regulator or reductions in funding. Alternatively, it

is non-monetary if the hospital takes into the account the reputational damage of reporting long

waiting times, or if the hospital is subject to a more stringent monitoring regime by the regulator.

We assume that the disutility of waiting time takes the linear-quadratic form

Φ(wi(t)) = α1wi(t) +
α2

2
wi(t)

2, (10)

with α1 ≥ 0 and α2 ≥ 0. Whether waiting times penalties have a linear or non-linear effect on

hospital utility depends on the institutional context. In settings where hospital managers can lose

their jobs when waiting times become very long, penalties are arguably non-linear. This may also

be the case in health systems where health regulators have mechanisms that escalate from warning

messages to agreeing and monitoring action plans with the providers. Other health systems may

instead gradually penalise hospitals with longer wait through a proportionate reduction in revenues.

2 A strictly convex treatment cost function captures the case of smooth capacity constraints, where capacity can

be increased, but only at an increasing marginal cost.

10



Waiting times evolve dynamically over time according to

dwi(t)

dt
= ẇi(t) = θ[Di(wi(t), wj(t))− Si(t)] (11)

and

dwj(t)

dt
= ẇj(t) = θ[Dj(wi(t), wj(t))− Sj(t)], (12)

where θ > 0 relates changes in waiting times to the difference between the demand faced by each

hospital and its activity (i.e., changes in the waiting list). Under this formulation, waiting times

increase when current demand exceeds current supply and vice versa, and the speed at which

waiting times respond to changes in demand or supply is given by θ.

We are implicitly assuming that the waiting time at each hospital is positive in every period.

The hospital objective function depends on the hospital’s supply decision, which is given by the

number of treatments performed by Hospital i in period t, Si(t). The objective function does not

instead depend directly on demand, which is given by the number of patients added to Hospital

i’s waiting list in period t, Di(wi(t), wj(t)). If Si(t) < Di(wi(t), wj(t)), there is a net increase

in the waiting list and the (expected or average) waiting time increases. On the other hand, if

Si(t) > Di(wi(t), wj(t)), there is a net reduction in the waiting list and the waiting time therefore

falls. In either case, as long as the waiting list is not emptied, the number of treatments performed

in period t is given by the hospital’s supply of treatments. Demand for treatments only affects the

actual number of treatments indirectly through waiting times, which in turn affect each hospital’s

optimal supply decisions, as we will show later.

We assume that the hospitals maximise their payoffs over an infinite time horizon and have a

common constant discount rate, ρ. Formally, the maximisation problem of Hospital i is given by

max
Si(t)∈R+

0

∫ ∞
0

e−ρtΠi(t)dt

subject to ẇi(t) = θ[Di(wi(t), wj(t))− Si(t)],

ẇj(t) = θ[Dj(wi(t), wj(t))− Sj(t)],

wi(0) = wi0 > 0,

wj(0) = wj0 > 0.

Although, in reality, hospitals do not plan their activity over an infinite time horizon, we argue

that this is a reasonable approximation if hospitals are regarded as lasting institutions. Managerial
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and medical structures are periodically replaced, but the hospital’s mission—to provide care given

its production technology and the regulatory scheme it faces—is likely to remain the same over

long periods of time. This is likely if hierarchies are substituted by others with similar objective

functions.

3.3 Solution Concepts

We follow Dockner et al. (2000) and use two different solution concepts to solve the differential

game describing hospital interaction. Under the open-loop solution, hospitals either compute their

optimal supply paths at the beginning of the game and are restricted to follow such plans thereafter,

or they may observe the state of the world (i.e., waiting times) only at t = 0 and cannot therefore

condition their actions (i.e., supply) on these observations thereafter. In both cases, strategies are

time-profiles that specify the supply to be provided at each point in time.

If, besides current time, hospitals observe waiting times in every period and factor them in their

decision making, a closed-loop solution arises. Under this solution concept, Hospital i’s supply is

a function of the contemporaneous waiting times in each t. While the closed-loop solution is

informationally more demanding, it involves weaker commitment since hospitals are allowed to

adjust supply as waiting times evolve.

The appropriateness of each solution concept depends on the assumptions regarding the players’

information set as well as commitment requirements. The open-loop solution implies that hospitals

have no information concerning waiting times once the game starts or are committed to the supply

plans computed at the beginning of the game, which might be considered an excessively stringent

assumption. Due to regulatory requirements, hospitals periodically collect and report data on

waiting times, upon which their activity may be conditioned.3 Moreover, a setting in which hos-

pitals adjust activity according to waiting times is more realistic and relevant for policy-making.4

Although the closed-loop is arguably the more appropriate concept to solve the game presented

above, its full analytical derivation is possible only if waiting time penalties are linear. If penalties

3 See Siciliani, Moran, and Borowitz (2013) for a description of waiting times regulatory arrangements and policies

across OECD countries.
4 This need not be the case of other analyses of hospital behaviour. The case of quality competition as analysed in,

for example, Brekke et al. (2010) provide a setting in which the open-loop solution might be, at least, as appropriate.

If hospitals devise investment plans that ought to be followed for long periods of time, meaning that their discretion

is strongly restricted, their actions (investment decisions) are as if they are not conditional on the state of the world

(the stock of quality).
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are quadratic in waiting times, only a numerical solution can be derived from a calibrated model.

We therefore start by computing the open-loop solution (Section 4) and use it as a benchmark to

compare with the closed-loop solutions under constant (Section 5.1) and increasing (Sections 5.2

and 5.3) marginal disutility of waiting.

4 Open-Loop Solution

Let µi(t) and λi(t) denote, respectively, the costate variables associated with the dynamic equations

of wi(t) and wj(t) for Hospital i. That is, µi(t) is associated with Hospital i’s waiting time and

λi(t) with that of the rival. The current-value Hamiltonian is

Hi = T + pSi(t)−
γ

2
Si(t)

2 − α1wi(t)−
α2

2
wi(t)

2

+ µi(t)θ[Di(wi(t), wj(t))− Si(t)] + λi(t)θ[Dj(wi(t), wj(t))− Sj(t)]. (13)

Candidates for optimal supply path Si(t) and costate trajectories µi(t) and λi(t) must satisfy

∂Hi/∂Si(t) = 0, µ̇i(t) = ρµi(t)− ∂Hi/∂wi(t), and λ̇i(t) = ρλi(t)− ∂Hi/∂wj(t). More extensively:

p− γSi(t) = θµi(t), (14)

µ̇i(t) =

[
ρ+

θ(2− β)N

2τ

]
µi(t)−

θβN

2τ
λi(t) + α1 + α2wi(t), (15)

and

λ̇i(t) =

[
ρ+

θ(2− β)N

2τ

]
λi(t)−

θβN

2τ
µi(t). (16)

The solution must also satisfy the transversality conditions

lim
t→∞

e−ρtµi(t)wi(t) = 0 and lim
t→∞

e−ρtλi(t)wj(t) = 0. (17)

Optimality is established by concavity of the current-value Hamiltonian with respect to Si(t) and

wi(t).
5 Inserting the definition of demand (7) and the optimality condition for supply using (14)

into the dynamic constraint (11) yields

ẇi(t) = θN

[
β

(
1

2
+
wj(t)− wi(t)

2τ

)
+ (1− β)

(
v − k − wi(t)

τ

)]
− θ

(
p− θµi(t)

γ

)
. (18)

We focus on the symmetric open-loop equilibrium with non-negative waiting times and a partially

covered monopolistic segment.

5 The sufficient conditions are satisfied since ∂2Hi

∂S2
i

= −γ < 0, ∂2Hi

∂w2
i

= −α2 < 0, ∂2Hi

∂S2
i

∂2Hi

∂w2
i
− ∂2Hi

∂Si∂wi
= γα2 > 0.
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4.1 The Steady-State

Let the superscript OL denote the open-loop steady-state in which wi(t) = wj(t) = wOL, µi(t) =

µj(t) = µOL, and Si(t) = Sj(t) = SOL. Setting ẇ(t) = µ̇(t) = λ̇(t) = 0 in equations (15), (16), and

(18) and solving for the steady-state waiting time and costate variable gives

wOL =
γφτ

(1− β)γφN + 2θτ2α2

{
N

[
β

2
+ (1− β)

(
v − k
τ

)]
− p

γ
− 2θτα1

γφ

}
(19)

and

µOL = −2τ

φ
(α1 + α2w

OL), (20)

where

φ = θ(2− β)N + 2τρ− (θβN)2

θ(2− β)N + 2τρ
∈ (0, 1). (21)

Inserting (20) into (14) yields

p+
2θτ

φ
(α1 + α2w

OL) = γSOL. (22)

On the one hand, a marginal increase in supply (i) generates more revenues and (ii) reduces the

waiting time and its associated disutility (left-hand side of (22)). On the other hand, increasing sup-

ply is costly (right-hand side of (22)). In the steady-state, each hospital offers a per-period supply

of treatments such that the marginal benefit is exactly offset by the marginal cost. This trade-off

is key to understanding the main intuition behind most of our subsequently derived results.6

The steady-state supply is SOL = p/γ + 2θτ(α1 +α2w
OL)/γφ. In Appendix A.1, we show that

a sufficiently large γ ensures that the steady-state is indeed characterised by non-negative waiting

times and a partially covered monopolistic segment. In Appendix A.2, we show that the symmetric

equilibrium is stable in the saddle sense.

It follows immediately from equation (20) that a positive steady-state waiting time implies a

negative µOL. This is consistent with the interpretation of µOL as the shadow price of waiting time.

Given the disutility of waiting time, a hospital would have to be compensated—hence, a negative

6 The condition in (22) holds in the steady-state, but it can be shown that a qualitatively similar condition holds

at every point in time along the equilibrium path in the open-loop solution. Moreover, an analogous condition holds

for all waiting times in the closed-loop solution as well. In other words, hospitals always balance production costs

against revenues and waiting time reductions in equilibrium, not only in the steady-state, and regardless of whether

strategies are time- or state-profiles. Details are available upon request.
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shadow price—in order to accept a marginal increase in its waiting time.7 Moreover, a negative

µOL implies, together with (14), that the payment-cost margin is negative in the steady-state. The

marginal patient is hence unprofitable to treat in the open-loop steady-state.8

As expected, a higher price p makes the marginal patient more profitable (or less unprofitable)

to treat, which increases supply and reduces the waiting time. An increase in waiting time penalties,

as proxied by an increase in α1 or α2, increases the disutility of waiting time therefore inducing the

hospital to increase supply and reduce waiting times.

4.2 Patient Choice and Waiting Times

How does the degree of patient choice affect steady-state supply and waiting times? Our model

includes two parameters that are related to patient choice, namely τ and β. A reduction in τ

makes demand more responsive to changes in waiting times, thus reflecting a higher degree of

patient choice. Similarly, an increase in β implies directly that a larger share of the patients make

choices between the two hospitals in the market.

Consider first a reduction in τ , which is a standard way to measure increased patient choice, or

increased intensity of competition, in the hospital competition literature that is based on models

of spatial competition. The effect of a marginal change in τ on the steady-state waiting time can

be expressed as

∂wOL

∂τ
= −

(1− β)xOLM + τ
N
∂SOL

∂τ

1− β + 2θτ2α2
γφN

< 0, (23)

where

∂SOL

∂τ
= Nθ2(α1 + α2w

OL)
(1− β)[Nθ(2− β) + 4τρ]θN + (2− β)(τρ)2

2γ(Nθ + τρ)2[N(1− β)θ + τρ]2
> 0 (24)

is the marginal effect of τ on steady-state supply for a given waiting time.

There are two effects that work in the same direction. First, there is a direct demand effect. A

reduction in τ increases total demand (and therefore demand for each hospital) since a larger number

of patients in the monopolistic segment chooses to opt for treatment (at the nearest hospital). A

higher demand directly increases the waiting time at each hospital. This effect is given by the

first term in the numerator of (23), and the size of this effect depends on the relative size of the

7 From equation (16) we see that this result applies to wj(t) as well, even though the associated shadow price is

lower in absolute value.
8 Notice that, when treatment costs are strictly convex, a negative payment-cost margin for the marginal patient

does not imply that the payment-cost margin is negative for the average patient.
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monopolistic segment. If β → 1, which implies that total demand is completely inelastic, this effect

vanishes.

Second, there is an indirect effect through changes in each hospital’s incentive to affect waiting

times through its treatment supply decision. Each hospital can lower its waiting time by increasing

the supply of treatments, and the effect of a unilateral increase in treatment supply on the waiting

time is given by a direct and an indirect (feedback) effect. For a given demand, an increase

in treatment supply will reduce the waiting time. However, a lower waiting time will increase

demand and therefore dampen the initial reduction in the waiting time. Crucially, the strength of

this feedback effect depends on how strongly demand responds to waiting time changes. A lower τ

makes demand more responsive to changes in waiting times, which increases the feedback effect and

therefore makes treatment supply a less effective instrument to reduce waiting times. Consequently,

this reduces the marginal benefit of treatment supply and gives each hospital an incentive to reduce

the supply of treatments. This effect is captured by the second term in the numerator of (23).

The magnitude of the second effect, which is present for any value of β ∈ [0, 1], is increasing in

the waiting time disutility parameters α1 and α2 and vanishes if α1 = α2 = 0. This property has

potentially interesting policy implications. Suppose that policy makers aim at reducing hospital

waiting times. Two commonly suggested policy options is to either directly target the perceived

problem by introducing (or increasing) waiting time penalties, or to stimulate patient choice (e.g., by

public reporting of waiting times) with the aim of achieving lower waiting times through increased

intensity of competition between the hospitals. In our model, only the former policy works, whereas

the latter policy is counterproductive. Moreover, the former policy makes the latter policy more

counterproductive. All else equal, the larger the waiting time penalties, the larger is the increase

in steady-state waiting times as a result of more patient choice.

Although a reduction in τ unambiguously leads to higher waiting times, the effect on steady-

state treatment supply turns out to be ambiguous. From (22), this effect is given by

dSOL

dτ
=
∂SOL

∂τ
+

2θτα2

γφ

∂wOL

∂τ
, (25)

which, using (23), can be expressed as

dSOL

dτ
=

(1− β)N

(1− β)γφN + 2θτ2α2

[
γφ
∂SOL

∂τ
− 2θτα2x

OL
M

]
≶ 0. (26)

A marginal reduction in τ has two counteracting effects on steady-state supply. On the one hand,

a lower τ makes treatment supply a less effective instrument to reduce waiting times, as explained
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above, which gives each hospital an incentive to reduce their supply. This effect is captured by

the first term in the square brackets of (26). On the other hand, a lower τ also increases demand,

which—all else equal—leads to higher waiting times. If the disutility of waiting time is strictly

convex (i.e., if α2 > 0), such increase in waiting time increases the marginal disutility of waiting

time and therefore increases the marginal benefit of supply. This effect is captured by the second

term in the square brackets of (26).

Consider next an increase in the relative size of the competitive segment, β. The effect on

steady-state waiting times is given by

∂wOL

∂β
=
N
(

1
2 − x

OL
M

)
− ∂SOL

∂β

(1−β)N
τ + 2θτα2

γφ

≶ 0, (27)

where

∂SOL

∂β
=

Nθ2τ(α1 + α2w
OL)

2γ[Nθ(1− β) + τρ]2
> 0 (28)

is the marginal effect of β on steady-state treatment supply for a given waiting time. Once more,

there are two effects that now go in opposite directions. First, there is a direct and positive demand

effect, since a larger competitive segment implies that a larger proportion of the potential patients

demand treatment at one of the two hospitals. All else equal, this effect leads to higher waiting times

and is captured by the first term in the numerator of (27). Notice that it is qualitatively similar to

the demand effect of lower travelling costs. However, the second effect, which is captured by the

second term in the numerator, goes in the opposite direction. An increase in β also makes overall

demand facing each hospital less responsive to waiting times, since demand is less responsive to

waiting times in the competitive segment.9 As previously explained, lower demand responsiveness

makes treatment supply a more effective instrument for each hospital to reduce waiting times. In

turn, this leads to higher supply and lower waiting times in the steady-state.

From (22), the effect of a larger competitive segment on steady-state supply is given by

dSOL

dβ
=
∂SOL

∂β
+

2θτα2

γφ

∂wOL

∂β
, (29)

and consists of two effects, given by the two terms in (29). While the first term is positive, the sign

9 From (7), the elasticity of demand with respect to waiting time in the competitive and monopolistic segment is

respectively given by ∂(NβxC)
∂wi

wi
NβxC

= − wi
2τxC

and ∂[N(1−β)xM ]
∂wi

wi
N(1−β)xM

= − wi
τxM

. Since xM < xC , it follows that∣∣∣− wi
2τxC

∣∣∣ < ∣∣∣− wi
2τxM

∣∣∣.
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of the second term depends on the sign of ∂wOL/∂β. However, using (27), we can re-write (29) as

dSOL

dβ
=

(1− β)γφ∂S
OL

∂β + θτ2α2(1− 2xOLM )

(1− β)γφN + 2θτ2α2
N > 0. (30)

Therefore, even if a larger competitive segment reduces waiting times, which weakens provider

incentives to increase supply, the direct demand effect always dominates. Thus, an increase in the

size of the competitive segment unambiguously increases steady-state supply.

The above analysis is summarised by the following proposition:

Proposition 1. In the open-loop solution, (i) a reduction in patients’ travelling costs leads to higher

steady-state waiting times but has an ambiguous effect on steady-state treatment supply, whereas

(ii) an increase in the relative size of the competitive segment leads to higher steady-state treatment

supply but has an ambiguous effect on steady-state waiting times.

5 Closed-Loop Solution

We now turn to the case in which hospitals are able to observe the evolution of waiting times. In

this section, we derive the closed-loop solution, in which supply decisions depend on current waiting

times. Although strongly time-consistent, closed-loop solutions are computationally more involved.

We distinguish two cases: (i) constant marginal disutility of waiting time and (ii) increasing

marginal disutility of waiting time. As mentioned above, which case is more plausible depends on

the institutional context and this may differ across countries or even within a country at different

points in time. For example, one could argue that in England in 2000-05 the marginal disutility

was increasing in waiting times when senior health administrators risked losing their jobs if targets

were not met. This would be the case if small deviations from the target would only lead to

additional monitoring from the regulator, but a large deviation from the target would culminate

into the hospital CEO being dismissed. In contrast, the marginal disutility of waiting time could be

linear if deviations from a target lead to a proportionate reduction in hospital income, which was

implemented later in England. Therefore, both scenarios are important from a policy perspective.

We discuss them in turn.

5.1 Constant Disutility of Waiting Time

This scenario is obtained by setting α2 = 0. In this case, the differential game belongs to the class

of the so-called linear-state games, which is characterised by the coincidence between the time path
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of controls and states under the open- and closed-loop solution concepts. We obtain the following

result:10

Proposition 2. If the marginal disutility of waiting time is constant, the open-loop and closed-loop

solutions coincide, and the equilibrium is characterised by constant supply of treatment over time.

The coincidence of the two solution concepts is explained by the lack of strategic interaction

between the hospitals. A unilateral increase in supply by Hospital i leads to an initial reduction

in waiting times at this hospital. This will shift demand from the rival hospital and therefore will

also reduce the waiting time at Hospital j. However, if α2 = 0, the reduction in waiting time at

Hospital j does not affect the hospital’s marginal disutility of waiting time, so that the hospital will

not respond by changing its supply. Thus, when the marginal disutility of waiting time is constant,

the optimal supply rule is independent of waiting times, which implies that hospital activity is

constant over time at its steady-state level.

Proposition 2 implies that, for constant marginal disutility of waiting time, the results of in-

creased patient choice, given by Proposition 1, also apply to the closed-loop solution, with one

exception. With constant marginal disutility of waiting time, a reduction in patients’ travelling

costs leads unambiguously to lower steady-state supply.

5.2 Increasing Marginal Disutility of Waiting Time

In this scenario, a closed-form solution of supply and waiting times cannot be obtained. Our

game belongs to the class of linear-quadratic differential games, wherein the state variables enter

the objective function quadratically, while they enter the dynamic constraints linearly. Although

the closed-loop solution of linear-quadratic games may generally be computed analytically, this is

not always assured. This is the case of our model whose particular structure features both state

variables entering the dynamic constraints and has algebraic properties that limit the tractability

of its closed-loop solution. We are, however, able to solve for the solution numerically. To make

the analysis more salient and policy relevant, we take this constraint as an opportunity to calibrate

the model based on real data and available empirical evidence.

The rest of this subsection characterises some general features of the solution, and the next one

provides the calibration of the closed-loop solution.

10 The closed-loop solution is derived in Appendix B.1, and the proof of Proposition 2 is given in Appendix B.2.
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Proposition 3. If the marginal disutility of waiting time is increasing, the optimal closed-loop

supply rule for Hospital i is given by:

Si(wi, wj , t) =
p− θ(ω1 + ω3wi(t) + ω5wj(t))

γ
, (31)

where ω3 < 0 is required by the concavity of the value function and ω5 ∈ Ω.

See Appendix B.1 for the definition Ω and proof of Proposition 3. ω3 < 0 implies that an

increase in the waiting time of Hospital i increases the hospital’s optimal treatment supply. The

reason is that a longer waiting time increases the hospital’s marginal disutility of waiting time

and therefore increases the marginal benefit of supply. In Appendix B.1, we also show that ω5 is

generally different from zero. This suggests that, unlike the case with constant marginal disutility

of waiting time, a dynamic strategic interaction is present when the marginal disutility is increasing.

The optimal supply rule for Hospital i now depends, at each point in time, on the waiting time of

Hospital j. Although we show in Appendix B.1 that ω5 can in principle be positive or negative,

our calibration results provided in the next section show that ω5 is negative for all the parameter

configurations considered.

If ω5 is negative, then hospitals’ supply decisions are characterised by strategic substitutability,

∂Si(wi, wj)/∂wj > 0, for which we provide the following intuition. Consider a unilateral increase in

supply by Hospital i. This leads to lower waiting times at Hospital i, which in turn shifts demand

from Hospital j to Hospital i, causing a reduction in waiting times also at Hospital j. A lower

waiting time at Hospital j reduces its marginal disutility of waiting time, and thus its marginal

benefit of supply. Hospital j will therefore optimally respond by reducing its supply of treatments.

In other words, a supply increase by Hospital i triggers a supply decrease by Hospital j.

The above described strategic interaction has important implications for the supply incentives

of each hospital. Consider once more a unilateral increase in supply by Hospital i, which leads to an

immediate reduction in waiting time at this hospital. However, because of strategic substitutability,

Hospital j will respond by reducing its supply, as explained above. The subsequent increase in

waiting time at Hospital j shifts some demand towards Hospital i, thereby dampening the initial

reduction in the waiting time caused by the supply increase of Hospital i. Thus, dynamic strategic

substitutability lowers the marginal benefit of treatment supply, giving each hospital an incentive to

reduce its own supply in order to ‘free ride’ on the subsequent supply increase of the rival hospital.

In Appendix B.3, we also show that, if the initial waiting times are the same in both hospitals

or if the average initial waiting time equals the steady-state waiting time, waiting times, supply,
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and demand in both segments of the market converge monotonically to the steady-state. In this

case, if the condition |ω3| > |ω5| holds, the equilibrium path to the steady-state is characterised by

periods of increasing (decreasing) hospital activity and increasing (decreasing) waiting time, which

is in line with Siciliani (2006) in a monopoly setting. Notice that |ω3| > |ω5| implies that the own

waiting time effect on hospital activity is larger than the effect of the waiting time of the competing

hospital, which is both intuitive and confirmed by our calibration exercise below.11

However, non-monotonic convergence may also arise. In Appendix B.4, we show that, if the

average initial waiting time is above (below) the steady-state waiting time, the hospital with the

shortest (longest) initial waiting time might experience a non-monotonic convergence along the

equilibrium path, with the waiting time first increasing (decreasing) before decreasing (increasing)

towards the steady-state. One policy implication is that short-run provider performance on waiting

times may not be representative of its long-run one.

5.3 Calibration

We calibrate the model using data from the English NHS on cataract surgery, which is a common

non-emergency procedure across OECD countries (Siciliani et al., 2014). Our two key variables in

the model are the steady-state waiting time and supply.

Waiting time data for cataract surgery is obtained from the Hospital Episode Statistics published

by NHS Digital. In the financial year 2016-17, the mean waiting time for a cataract procedure

provided either by NHS hospitals or the independent sector (private hospitals treating publicly-

funded patients) was 70 days.12 According to the National Schedule of Reference Costs from NHS

Improvement, 234 NHS providers performed 286, 596 cataract procedures in the same year.13 This

gives a monthly average of approximately 100 procedures per provider.

In recent years, the government mandate to the main health regulator (NHS England) does not

specify performance standards for non-emergency care (The King’s Fund, 2017). We interpret this

as a regime where no significant penalties are imposed on providers with longer waits. Within our

11 Additionally, it follows from equations (B.15) and (B.16) in Appendix B.1 that |ω3| > |ω5| is a sufficient (but

not necessary) condition for convergence to be verified.
12 Healthcare Resource Group (HRG) code BZ02Z, Phacoemulsification Cataract Extraction and Lens Implant, in

the HRG4 classification system.
13 The National Schedule of Reference Costs is detailed according to the HRG4+ classification system, which

presents a more thorough description of cataract episodes than the HRG4. Focusing on Phacoemulsification Cataract

Extraction and Lens Implant, the HRGs considered are BZ34A, BZ34B, and BZ34C in HRG4+.
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model this corresponds to the special case when there is no waiting time disutility (α1 = α2 = 0),

and the open-loop and closed-loop solutions coincide. We denote this scenario by superscript s.

We express waiting times in months giving ws = 2.3. The figures provided above also imply that

monthly supply in the steady-state is about 100 cataract procedures, so that Ss = Ds = 100.

On the supply side, two key parameters are the tariff for a cataract surgery (the DRG-type

price) and the marginal cost of treatment. From the National Schedule of Reference Costs, the

national tariff in 2016-17 for a cataract procedure was 731£. We therefore set p = 731. Given

that the first-order condition Ss = p/γ has to hold (when α1 = α2 = 0), we recover the parameter

related to the marginal cost of treatment, γ = 7.31.

On the demand side, the key parameters are the potential demand, the size of the competitive

segment, the demand responsiveness, the gross valuation of treatment, and the value of the outside

option. These parameters are less easy to obtain but we infer them in the following way. According

to OECD (2018), 10.5% of the UK population was covered by private health insurance in 2015.

We assume that patients with private insurance opt for private treatment and that publicly-funded

cataract procedures account for about 90% of the market.14 Given that the steady-state supply in

each hospital is Ss = 100, potential demand across the two hospitals is then given by N = 222.

Sivey (2012) estimates a demand elasticity for cataract surgery across NHS providers that is

approximately −0.1. The waiting time elasticity of demand evaluated at the steady-state values

and N = 222 gives

∂Di(wi(t), wj(t))

∂wi(t)

ws

Ds
= −N(2− β)

2τ

ws

Ds
= −222(2− β)

2τ

2.3

100
= −0.1. (32)

We do not know how large is the competitive segment β. We therefore conduct the analysis for

three different values, β = {0.2, 0.5, 0.8}. We start by assuming β = 0.2, so that the competitive

segment accounts for 20% of potential demand and is therefore relatively small, and then check

how the results differ when it is 50% and 80% (relatively large).

If β = 0.2, then, from (32), the demand elasticity implies that τ = 45.954. Moreover, from the

demand equation evaluated at the steady-state,

Ds = N

[
β

2
+ (1− β)

(
v − k − ws

τ

)]
, (33)

we can recover the difference between the gross valuation of treatment and the value of the outside

option: v − k = 22.4308. If β = 0.5, then, from (32), we obtain τ = 38.295 and, from (33), we

14 This is an approximation since some patients without private insurance may also obtain private care if they pay

out of pocket and some with private insurance may not seek private care if they face co-payments.
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obtain v− k = 17.653. If β = 0.8, then, from (32), we obtain τ = 30.636 and, from (33), we obtain

v − k = 10.028. We have thus recovered the demand-side parameters for β = {0.2, 0.5, 0.8}.

We adopt a discount factor of 0.95 per year and take each period t as one month. The monthly

discount rate is therefore ρ = 0.004 (computed from e−12ρ = 0.95).

In the steady-state, it takes one month for Hospital i to treat 100 patients. This implies

that, if 10 additional patients are added to the list, the waiting time will increase by 0.1 months

(about 3 days). More formally, from the dynamic constraint, ∆ws ≈ θ∆(Ds − Ss), which gives

θ = ∆ws

∆(Ds−Ss) = 0.1
10 = 0.01 in the neighbourhood of the steady-state.

We are interested in understanding provider behaviour in the presence of penalties. We therefore

need to identify plausible values for α1 and α2 under a penalty regime. Propper et al. (2008) find

that the introduction of waiting time penalties in the English NHS in 2000-05 reduced the mean

waiting time by 13 days (i.e., 0.43 months). Although this estimate refers to an earlier period, it

provides us with a plausible order of magnitude if such penalties were re-introduced in 2016-17. We

then use this figure to compute the difference between the steady-state waiting time in the model

with no disutility of waiting time and the open-loop steady-state waiting time, which is given by

ws−wOL = 2.3− γφτ

(1− β)γφN + 2θτ2α2

{
N

[
β

2
+ (1− β)

(
v − k
τ

)]
− p

γ
− 2θτα1

γφ

}
= 0.43. (34)

Inserting the above described parameter values when β = 0.2, the solution to (34) has one degree

of freedom and is given by

α2 = 30.5274− 0.53486α1. (35)

All α1 and α2 that satisfy (35) yield a reduction of 0.43 months in the open-loop steady-state

waiting time compared to the case with no disutility of waiting time. We consider three disutility

structures: (i) linear disutility (α2 = 0), yielding α1 = 57.0826; (ii) quadratic disutility (α1 = 0),

yielding α2 = 30.5274; and (iii) an intermediate case in which α1 = 57.0826
2 and α2 = 30.5274

2 .

Inserting all parameter values into equations (19) and (22) gives the open-loop steady-state

waiting time and supply. For the closed-loop solution we insert all parameter values and solve

the system (B.6)-(B.8) in Appendix B.1 to yield ω1, ω3, and ω5, which are plugged into (B.26) in

Appendix B.3 to obtain the closed-loop steady-state waiting time. With ω1, ω3, ω5, and wCL, we

use (31) to retrieve the closed-loop steady-state supply.

The same steps were then repeated for β = 0.5 and β = 0.8. The results are summarised in

Table 1.
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Table 1: Calibration results for a waiting time elasticity of demand of −0.1

β α1 α2 wOL wCL SOL SCL ω3 ω5

0 0 2.3 2.3 100 100 0 0

0.2 57.0862 0 1.8700 1.8700 101.6620 101.6620 0 0

0.2 28.5431 15.2637 1.8700 1.8703 101.6620 101.6609 −164.6061 −8.3753

0.2 0 30.5274 1.8700 1.8705 101.6620 101.6600 −321.6537 −15.3715

0.5 39.2269 0 1.8700 1.8700 101.2464 101.2464 0 0

0.5 19.6143 10.4885 1.8700 1.8720 101.2464 101.2402 −119.1899 −19.2189

0.5 0 20.9769 1.8700 1.8734 101.2464 101.2353 −233.5920 −36.3039

0.8 13.5675 0 1.8700 1.8700 100.6232 100.6232 0 0

0.8 6.7837 3.6277 1.8700 1.8755 100.6232 100.6147 −52.3298 −20.3702

0.8 0 7.2553 1.8700 1.8795 100.6232 100.6077 −102.5480 −38.9404

Our calibration results confirm that the open-loop and closed-loop steady-states coincide when

penalties are linear, α2 = 0. Instead, waiting times are longer under the closed-loop solution when

penalties are non-linear, α2 > 0. This is because ω5 < 0 and supply across hospitals are dynamic

strategic substitutes, which leads to lower supply and longer waiting times in the closed-loop steady-

state when compared to the open-loop solution.

Moreover, as the waiting time disutility becomes more convex (i.e., more weight is placed on the

quadratic term), the longer is the waiting time and the lower is supply in the closed-loop steady-

state. The reason is simply that a more convex disutility function increases the magnitude of each

hospital’s supply response to changes in the waiting time, which reinforces each hospital’s incentive

to reduce supply in order to provoke a supply increase by the rival hospital, which in turn benefits

the former hospital in the form of a lower waiting time.

The difference in steady-state outcomes between the two solution concepts is larger for higher

values of the competitive segment, β. This is intuitive, since the strategic substitutability relies on

the existence of a competitive segment, wherein changes in the waiting time at one hospital affect

demand faced by the rival hospital. Thus, a larger relative size of the competitive segment will

magnify the effects of strategic substitutability.

Although waiting times are longer under the closed-loop solution, a key insight from Table 1 is

that the difference in waiting times under the open- and closed-loop solutions is very small (less
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than 1%). This suggests that, even with non-linear penalties, the less computationally demanding

open-loop solution offers a close approximation of the closed-loop one. One may worry that these

results are due to the low demand elasticity. We therefore extend the analysis under the assumption

that the waiting time elasticity is higher. We consider two additional cases. First, we assume that

the elasticity is −0.2, twice as large, which is the highest that has been reported in studies for

England (see Iversen and Siciliani (2011) for an overview). Second, we assume that the elasticity is

−1. This is an upper bound. There is only one study from Australia which provides such a large

estimate (Stavrunova and Yerokhin, 2011), and this is consistent with the features of the Australian

health system where more than half of the population is treated privately.

Tables 2 and 3 provide the results for waiting time elasticities of demand of −0.2 and −1,

respectively. They are derived following the steps detailed above. The key insight is that although

the difference in steady-state waiting times between closed- and open-loop widens, the difference

remains small.

Table 2: Calibration results for a waiting time elasticity of demand of −0.2

β α1 α2 wOL wCL SOL SCL ω3 ω5

0 0 2.3 2.3 100 100 0 0

0.2 218.4948 0 1.8700 1.8700 103.3237 103.3237 0 0

0.2 109.2474 58.4211 1.8700 1.8703 103.3237 103.3212 −322.1649 −16.7563

0.2 0 116.8421 1.8700 1.8705 103.3237 103.3193 −629.5163 −31.3129

0.5 148.9097 0 1.8700 1.8700 102.4928 102.4928 0 0

0.5 74.4548 39.8154 1.8700 1.8722 102.4928 102.4791 −231.9189 −38.3288

0.5 0 79.6308 1.8700 1.8738 102.4928 102.4683 −454.4837 −72.3946

0.8 49.207 0 1.8700 1.8700 101.2464 101.2464 0 0

0.8 24.6037 13.1571 1.8700 1.8762 101.2464 101.2272 −98.9201 −39.8422

0.8 0 26.3142 1.8700 1.8807 101.2464 101.2115 −193.7462 −76.1410

Finally, in line with Section 4.2 for the open-loop solution, we conduct comparative statics with

respect to the patient choice parameters as measured by τ and β. These are reported in Tables 4

and 5 respectively. Table 4 shows the effects of a 10% reduction in τ , whereas Table 5 shows the

effect of a 10% increase in β. All other parameters are kept unchanged, which implies that the

results displayed in Table 1 serve as a reference point of comparison. In the last four columns in
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Table 3: Calibration results for a waiting time elasticity of demand of −1

β α1 α2 wOL wCL SOL SCL ω3 ω5

0 0 2.3 2.3 100 100 0 0

0.2 5265.7273 0 1.8700 1.8700 116.6184 116.6184 0 0

0.2 2632.8636 1407.9485 1.8700 1.8703 116.6184 116.6049 −1581.6013 −83.7851

0.2 0 2815.8969 1.8700 1.8706 116.6184 116.5947 −3090.4383 −156.5665

0.5 3561.6215 0 1.8700 1.8700 112.4638 112.4638 0 0

0.5 1788.8108 952.3052 1.8700 1.8724 112.4638 112.3893 −1132.2781 −190.9560

0.5 0 1904.6104 1.8700 1.8741 112.4638 112.3307 −2218.7774 −360.6664

0.8 1126.6109 0 1.8700 1.8700 106.2319 106.2319 0 0

0.8 563.3055 301.2329 1.8700 1.8769 106.2319 106.1257 −469.2457 −194.4604

0.8 0 602.4657 1.8700 1.8818 106.2319 106.0397 −918.7196 −371.5998

Tables 4 and 5, we report the percentage changes in steady-state waiting time and supply under

each of the two solution concepts.

Table 4: Steady-state effects of a 10% reduction in τ

β α1 α2 ∆%wOL ∆%wCL ∆%SOL ∆%SCL

0.2 57.0862 0 111.86 111.86 −0.15 −0.15

0.2 28.5431 15.2637 102.25 102.24 0.61 0.61

0.2 0 30.5274 94.17 94.15 1.25 1.25

0.5 39.2269 0 86.27 86.27 −0.11 −0.11

0.5 19.6143 10.4885 78.85 78.76 0.33 0.33

0.5 0 20.9769 72.60 77.52 0.70 0.70

0.8 13.5675 0 45.34 45.34 −0.05 −0.05

0.8 6.7837 3.6277 41.42 41.25 0.07 0.07

0.8 0 7.2553 38.11 37.93 0.17 0.17

In qualitative terms, the effects of increased patient choice on steady-state waiting times and

supply, as shown in Tables 4 and 5, confirm the analytical results from the analysis in Section 4.2. A

reduction in τ leads to higher steady-state waiting times, and the effect is larger if the relative size

of the competitive segment is smaller. The supply of treatments also increases, unless the disutility
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Table 5: Steady-state effects of a 10% increase in β

β α1 α2 ∆%wOL ∆%wCL ∆%SOL ∆%SCL

0.2 57.0862 0 3.01 3.01 0.02 0.02

0.2 28.5431 15.2637 2.69 2.69 0.04 0.04

0.2 0 30.5274 2.43 2.44 0.06 0.06

0.5 39.2269 0 18.39 18.39 0.08 0.08

0.5 19.6143 10.4885 16.19 16.26 0.18 0.18

0.5 0 20.9769 14.46 14.59 0.27 0.26

0.8 13.5675 0 241.17 241.17 0.23 0.23

0.8 6.7837 3.6277 191.09 193.02 1.04 1.00

0.8 0 7.2553 158.23 162.48 1.57 1.49

of waiting times is linear (i.e., α2 = 0). This is consistent with (26) in Section 4.2, showing that

the sign of dSOL/dτ is generally ambiguous but strictly positive if α2 = 0.

An increase in β also leads to higher steady-state waiting times in all cases considered, although

this effect is theoretically ambiguous, and also leads to higher treatment supply, which is consistent

with Proposition 1. Thus, Tables 4 and 5 indicate that increased patient choice tend to increase

waiting times.

6 Concluding Remarks

We have investigated whether a more competitive environment and patient choice policies play a

useful role in reducing waiting times and the extent to which such a role is altered in the presence

of penalties for providers with long waits. Overall, our results suggest that competition, however

measured, is not helpful in reducing waiting times. In a few scenarios competition can actually

increase waiting times and this is more likely to be the case in the presence of provider penalties.

If the penalties that providers face are linear in waiting times, a more competitive dynamic

environment does not affect the equilibrium waiting times. If penalties are instead non-linear so

that the marginal penalty increases with waiting times, we find that waiting times are longer under

the more competitive environment (the closed-loop solution). This arises because optimal closed-

loop strategies are dynamic strategic substitutes, implying that each hospital reduces supply in

order to ‘free-ride’ on the subsequent supply increase by the other hospital.
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Although waiting times are higher under the closed-loop solution, our calibrated model based

on cataract surgery in the English NHS suggests that the difference in waiting times under the two

solution concepts is quantitatively small (less than 1% in all our calibrations with different demand

elasticities). This suggests that although non-linear penalties introduce a negative externality where

each provider has an incentive to reduce activity, their negative impact is likely to be quantitatively

small.

When we investigate the effect of competition as measured by policies that facilitate patient

choice, we find again that these lead to higher steady-state waiting times (regardless of whether

penalties are linear or not) and have an ambiguous effect on steady-state treatment supply (though

the effect is negative if penalties are linear and increased patients choice is proxied by a reduction

in travelling costs). This is because patient choice makes demand more responsive to waiting

times, which in turn reduces the effectiveness of supply in reducing waiting times. These effects

are exacerbated in the presence of provider penalties.

In summary, our model suggests that although policies based on provider penalties will have

the intended effect in reducing waiting times, policies which stimulate competition will not.
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Appendix A The Open-Loop Solution

A.1 Conditions for an Interior-Solution Open-Loop Steady-State

The open-loop steady-state is characterised by a positive waiting time and a partially covered

monopolistic segment if p ∈ P = (max{0, p},min{p1, p2}), where

p =
β

2
γN − 2θτ

φ
[α1 + α2(v − k)] , (A.1)

p1 = γN

[
β

2
+ (1− β)

(
v − k
τ

)]
− 2θτα1

φ
, (A.2)

and

p2 =
γN

2
− 2θτ

φ

[
α1 + α2

(
v − k − τ

2

)]
. (A.3)

From (19), the waiting time is positive if and only if p ≤ p1. Then, in order to have a partially

covered monopolistic segment in the steady-state, the following condition must be satisfied:

0 <
v − k − wOL

τ
<

1

2
. (A.4)

The lower bound is satisfied if p > p, as defined by (A.1). Note that p may be negative, but p ∈ R+

must hold. Thus, p > max{0, p}.

The upper bound, in turn, is satisfied if p < p2. Since p1 > 0 ∧ p1 > p, P is non-empty when

p1 < p2. Conversely, p2 only verifies p2 > p, as it may be negative. If p2 < 0, parameters are such

that p < p2 < 0 < p1. Then, P is non-empty when p2 < p1 if and only if p2 > 0, which holds for a

sufficiently large γ.

A.2 Open-Loop Stability

The Jacobian matrix of the symmetric system of equations (15), (16), and (18) is:

JOL =


− θ(1−β)N

τ
θ2

γ 0

α2 ρ+ θ(2−β)N
2τ − θβN

2τ

0 − θβN
2τ ρ+ θ(2−β)N

2τ

 (A.5)
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and has characteristic polynomial

P (s) = −s3 +

(
2ρ+

θN

τ

)
s2 +

(
α2θ

2

γ
+

(
θβN

2τ

)2

−
[
ρ+

θ(2− β)N

2τ

] [
ρ− θ(2− 3β)N

2τ

])
s

− θ(1− β)N

τ

[
ρ+

θN

τ

] [
ρ+

θ(1− β)N

τ

]
− α2θ

2

γ

[
ρ+

θ(2− β)N

2τ

]
. (A.6)

Since P (s) is a third-degree polynomial whose factorisation is unfeasible, solving analytically

for its roots yields little insight into the nature of the eigenvalues. According to the fundamental

theorem of algebra, P (s) has exactly three roots (real or complex). The coefficients of the cubic term

and constant term are negative, while the coefficient of the quadratic term is positive. Although the

sign of the coefficient of the linear term is ambiguous, it still follows that P (−s) has a single change

of sign—either between the second the the first powers or between the latter and the constant

term. Thus, by Descartes’ Rule of Signs, P (s) has a single real negative root, which implies that

the steady-state is a saddle point.

Appendix B Closed-Loop Solution

B.1 Increasing Marginal Waiting Time Disutility

The Hamilton-Jacobi-Bellman (HJB) equation for hospital i is15

ρV i(wi, wj) = max

{
T + pSi −

γ

2
S2
i − α1wi −

α2

2
w2
i + θ

∂V i

∂wi
(Di − Si) + θ

∂V i

∂wj
(Dj − Sj)

}
. (B.1)

Given the linear-quadratic structure of the game, we conjecture that the value function for hospital

i takes the form:

V i(wi, wj) = ω0 + ω1wi + ω2wj +
ω3

2
w2
i +

ω4

2
w2
j + ω5wiwj . (B.2)

Maximisation of the right-hand side of the HJB equations yields:

Si(wi, wj) =
p− θ(ω1 + ω3wi + ω5wj)

γ
. (B.3)

Substituting Hospital i’s supply rule and the analogous to Hospital j into the HJB equation,

15 To save notation, we omit the time index t in all subsequent expressions.
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together with (7)-(8), we obtain:

ρV i(wi, wj) = T + p

[
p− θ(ω1 + ω3wi + ω5wj)

γ

]
− γ

2

[
p− θ(ω1 + ω3wi + ω5wj)

γ

]2

− α1wi −
α

2
w2
i
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[
β

(
1

2
+
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2τ

)
N + (1− β)

(
v − k − wi

τ

)
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γ

]
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[
β

(
1

2
+
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2τ

)
N + (1− β)

(
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τ

)
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γ

]
,

(B.4)

which can be rewritten as

T +
p2

2γ
+ σ(ω1 + ω2) +
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where σ = θβN
2 + θ(1− β)

(
v−k
τ

)
N − θ

γ p.

For the equality to hold, the terms in brackets in the above equation have to be equal to zero.

Since the last three terms depend only on ω3, ω4, and ω5, we focus on the system of three equations

in three unknowns given by:

−
[
ρ

2
+
θ(2− β)N

2τ

]
ω3 +

θ2

2γ
ω2

3 +
θβN

2τ
ω5 +

θ2

γ
ω2

5 −
α2

2
= 0, (B.6)

−
[
ρ

2
+
θ(2− β)N

2τ

]
ω4 +

θ2

γ
ω3ω4 +

θβN

2τ
ω5 +

θ2

2γ
ω2

5 = 0, (B.7)

θβN

2τ
(ω3 + ω4)−

[
ρ+

θ(2− β)N

τ

]
ω5 +

2θ2

γ
ω3ω5 +

θ2

γ
ω4ω5 = 0. (B.8)

It turns out that the solution to the system depends on the root of sixth degree polynomial,

precluding the computation of an analytical solution. Assume, for now, that a solution to (B.6)-

(B.8) exists and that it is such that (31) constitutes a Markov Perfect Nash Equilibrium.
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From (B.6), two candidate solutions for ω3 (as functions of ω5) ensue:

ω3 =
γ

θ2


[
ρ

2
+
θ(2− β)N

2τ

]
±

√[
ρ

2
+
θ(2− β)N

2τ

]2

− 2θ2

γ

[
θ2

γ
ω2

5 +
θβN

2τ
ω5 −

α2

2

] . (B.9)

A solution to Hospital i’s maximisation problem is attained if the value function is concave with

respect to wi, which requires ω3 < 0. The greater root (unambiguously positive) is therefore ruled

out. For the smaller root to be negative, the second term under the square-root must be positive,

which is true for ω5 ∈ (ω5, ω5), with

ω5 = − γ

2θ2

θβN
2τ

+

√(
θβN

2τ

)2

+
2θ2α2

γ

 < 0, (B.10)

ω5 = − γ

2θ2

θβN
2τ
−

√(
θβN

2τ

)2

+
2θ2α2

γ

 > 0. (B.11)

Additionally, in order for (31) to be a Markov Perfect Nash Equilibrium, the value function

must be bounded from above. A necessary and sufficient condition for this requirement to hold is

that waiting times converge in equilibrium. Inserting (7), (8), (31), and the analogous supply rule

for Hospital j into (11)-(12) yields the following system of differential equations:

ẇi
θ

=

[
−(2− β)N

2τ
+
θ

γ
ω3

]
wi +

[
βN

2τ
+
θ

γ
ω5

]
wj +N

[
β

2
+ (1− β)

(
v − k
τ

)]
−
(
p− θω1

γ

)
,

(B.12)

ẇj
θ

=

[
βN

2τ
+
θ

γ
ω5

]
wi +

[
−(2− β)N

2τ
+
θ

γ
ω3

]
wj +N

[
β

2
+ (1− β)

(
v − k
τ

)]
−
(
p− θω1

γ

)
.

(B.13)

The Jacobian of (B.12)-(B.13) is:

JCL = θ

− (2−β)N
2τ + θ

γω3
βN
2τ + θ

γω5

βN
2τ + θ

γω5 − (2−β)N
2τ + θ

γω3

 (B.14)

and its eigenvalues are

s1 = θ

[
−N
τ

+
θ

γ
(ω3 − ω5)

]
, (B.15)

s2 = θ

[
−(1− β)N

τ
+
θ

γ
(ω3 + ω5)

]
. (B.16)

A sufficient condition for waiting times to converge is that both eigenvalues are negative. Then,

s1 < 0 if ω5 > −γN
θτ + ω3 and s2 < 0 if ω5 <

γ(1−β)N
θτ − ω3.
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Using the expression for ω3 as a function of ω5 (B.9), the necessary condition s1 < 0 ∧ s2 <

0 ∧ ω3 < 0 is satisfied if ω5 ∈ Ω =
(
max{ω5, ω5

′},min{ω5, ω5
′}
)
, where

ω5
′ =

γ

6θ2

ρ− 2θβN

τ
−

√(
ρ− 2θβN

τ

)2

+
12θ2

γ

[
γN

θτ

(
ρ+

θ(1− β)N

τ

)
+ α2

] < 0, (B.17)

ω5
′ =

γ

6θ2

−(ρ+
2θβN

τ

)
+

√(
ρ+

2θβN

τ

)2

+
12θ2

γ

[
γ(1− β)N

θτ

(
ρ+

θN

τ

)
+ α2

] > 0.

(B.18)

Thus, provided that a solution to (B.6)-(B.8) exists, it constitutes a Markov Perfect Nash Equilib-

rium (or closed-loop equilibrium) if ω5 ∈ Ω. Finally, an equilibrium with ω5 = 0 is ruled out by

inspection of (B.6)-(B.8).

B.2 Constant Marginal Waiting Time Disutility

Here we show that, under constant marginal waiting time disutility, the open-loop and closed-loop

solutions coincide and that the optimal supply function S(t) is constant over time.

Setting α2 = 0 in equations (19) and (22), the steady-state waiting time and supply in the

open-loop solution are given by

w =
τ

(1− β)N

{
N

[
β

2
+ (1− β)

(
v − k
τ

)]
− p

γ
− 2θτα1

γφ

}
(B.19)

and

S =
p

γ
+

2θτα1

γφ
. (B.20)

Optimality is ensured also for α2 = 0 due to the concavity of the current-value Hamiltonian with

respect to Si(t) and wi(t).

Let us now proceed to show that S(t) is constant over time. When α2 = 0, the Jacobian of (15),

(16), and (18) ((A.5) in Appendix A.2) has a single negative eigenvalue, given by ŝ = − θ(1−β)N
τ .

A solution to system of differential equations that satisfies the transversality conditions, by en-

suring convergence to the steady-state, requires that the arbitrary constants associated with the

non-negative eigenvalues are set equal to zero. Note that this result implies that the open-loop

equilibrium, like in the game with increasing marginal waiting time disutility, is stable in saddle

sense. Such solution takes the form: w(t) = Aν11e
ŝt+w, µ(t) = Aν12e

ŝt+µ, and λ(t) = Aν13e
ŝt+λ,

where A is an arbitrary constant, and ν = [ ν11 ν12 ν13 ]T denotes the eigenvector associated with ŝ.

35



It turns out that ν = [ c 0 0 ]T , with c ∈ R. Then, µ(t) = µ, which from (14) implies that S(t) = S∀t.

Consider, now, the closed-loop solution under constant marginal waiting time disutility. When

α2 = 0, the system of equations (B.6)-(B.8) has a single candidate solution for which the value

function is not convex with respect to wi. The remaining five candidates have ω3 > 0 and cannot

therefore constitute a solution the hospital’s maximisation problem. The solution that yields a

linear—hence, concave—value function with respect to wi is ω3 = ω4 = ω5 = 0. This linearity of

the value function with respect to waiting times is not surprising given the linear structure of the

game when α2 = 0. With ω3 = ω5 = 0, hospital i’s optimal supply rule becomes:

Si(wi, wj) =
p− θω1

γ
. (B.21)

Under closed-loop rules, players strategies are, by construction, a function of the state variables—

here, waiting times—rather than time-profiles as is the case of open-loop rules. If the marginal

waiting time disutility is constant, the optimal supply rule is independent, in each t, of waiting

times. Thus, supply is constant over time as in the open-loop solution derived above.

With ω3 = ω4 = ω5 = 0, (B.5) simplifies to:

{
T +

p2

2γ
+ σ(ω1 + ω2) +

θ2

2γ
ω2

1 +
θ2

γ
ω1ω2 − ρω0

}
+ wi

{
−
[
ρ+

θ(2− β)N

2τ

]
ω1 +

θβN

2τ
ω2 − α1

}
+ wj

{
θβN

2τ
ω1 −

[
ρ+

θ(2− β)N

2τ

]
ω2

}
= 0. (B.22)

Since the last two terms depend only on ω1 and ω2, we focus on the 2× 2 system and solve for ω1.

The solution is given by

ω1 = − τα1 [2ρτ + θ(2− β)N ]

2 [ρτ + θ(1− β)N ] [ρτ + θN ]
= −2τα1

φ
. (B.23)

Inserting the expression for ω1 into the optimal supply rule for hospitals i and j yields Si = Sj = S.

Using this result, the closed-loop steady-state waiting time is derived from the equations of motion

(11)-(12), with ẇi(t) = ẇj(t) = 0. Simple algebra shows that wi = wj = w.

Finally, the supply rule constitutes a Markov Perfect Nash Equilibrium if the value function is

bounded from above. It is straightforward to see from (B.15) and (B.16) that s1 < 0 and s2 < 0

when ω3 = ω5 = 0.
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B.3 Transitional Dynamics

In order to analyse the convergence to the steady-state in the closed-loop solution, we turn to its

open-loop representation. That is, we derive time-profiles of the waiting time, supply, and demand

from the optimal closed-loop supply rule. Let the superscript CL denote the closed-loop steady-

state. The eigenvalues governing the system of differential equations (B.12)-(B.13), s1 and s2, are

respectively associated with the eigenvectors ν1 = c1 [ 1 −1 ]T and ν2 = c2 [ 1 1 ]T , with c1, c2 ∈ R.

Setting c1 = c2 = 1, the solution of the system of differential equations (B.12)-(B.13) takes the

form:

wi(t) = C1e
s1t + C2e

s2t + wCL, (B.24)

wj(t) = −C1e
s1t + C2e

s2t + wCL, (B.25)

where C1 and C2 are arbitrary constants. The closed-loop steady-state waiting time wCL is retrieved

by setting ẇi = ẇj = 0 in (B.12)-(B.13) and solving for wi and wj . This yields:

wCL =
N
[
β
2 + (1− β)

(
v−k
τ

)]
−
(
p−θω1

γ

)
(1−β)N

τ − θ
γ (ω3 + ω5)

. (B.26)

Inserting the initial conditions wi(0) = w0i and wj(0) = w0j into (B.24)-(B.25) and solving for C1

and C2 gives C1 =
w0i−w0j

2 and C2 =
w0i+w0j

2 − wCL. Then, waiting times at Hospital i converge

to the steady-state according to:

wi(t) =

(
w0i − w0j

2

)
es1t +

(
w0i + w0j

2
− wCL

)
es2t + wCL. (B.27)

Consider, now, the dynamics of supply and demand. Inserting (B.27) and the analogous equation

for wj(t) into (31) yields:

Si(t) =
θ

γ

[
(ω5 − ω3)

(
w0i − w0j

2

)
es1t − (ω3 + ω5)

(
w0i + w0j

2
− wCL

)
es2t
]

+
p− θ[ω1 + (ω3 + ω5)wCL]

γ
. (B.28)

Using (7), (B.27), and the analogous equation for wj(t), the dynamics of demand faced by Hospital

i in the competitive and monopolistic segments are respectively given by

Di
C(t) = βN

[
1

2
+

(
w0j − w0i

2τ

)
es1t
]

(B.29)
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and

Di
M (t) =

(1− β)N

τ

[
v − k − wCL +

(
w0j − w0i

2

)
es1t +

(
wCL − w0i + w0j

2

)
es2t
]
. (B.30)

If w0i = w0j , it follows from equations (B.27)-(B.30) that the dynamics of waiting times, supply,

and demand are uniquely governed by s2, and convergence is thus monotonic. By the same token,

convergence is monotonic as well if the initial waiting times differ but their average equals the

steady-state waiting time wCL. Note, additionally, that demand in the competitive segment always

converges monotonically to βN/2.

For the transitional dynamics in the closed-loop solution under constant marginal waiting time

disutility, simply set ω3 = ω5 = 0 in equations (B.27)-(B.30). Constant hospital activity over time

for α2 = 0 is then confirmed by (B.28).

B.4 Non-Monotonic Convergence

Equations (B.27)-(B.30) show that convergence to the steady-state depends on two, possible oppos-

ing, forces. It depends on whether a hospital’s initial waiting time is longer than that of the rival,

and whether the average initial waiting time in the market differs from the steady-state waiting

time. When these two conditions hold, the possibility of non-monotonic convergence arises. To see

why non-monotonic convergence might occur, consider the equilibrium dynamics of waiting times

described in (B.27). If the average initial waiting time is above (below) the steady-state, the first

two terms have opposite signs for the hospital with the shorter (longer) waiting time. In both

cases, whether or not non-monotonic convergence emerges depends on the relative size and speed

of convergence (to zero) of each of those terms.

Differentiating (B.27) with respect to time and equating to zero yields a single critical point

given by

t∗ =

(
1

s1 − s2

)
ln

[
−s2

s1

(
w0i + w0j − 2wCL

w0i − w0j

)]
, (B.31)

where s1 and s2 are given by (B.15) and (B.16), respectively. Convergence is non-monotonic for

Hospital i if and only if t∗ ∈ R+. With s1, s2 < 0, the first factor in (B.31) is negative if |s1| > |s2|.

Thus, t∗ ∈ R+ if and only if the second factor in (B.31) is defined and is negative, which requires

that the expression in the square brackets lies between 0 and 1. It is possible to derive some

easily interpretable conditions for this expression to be positive. Since − s2
s1
< 0, we must have

w0i+w0j−2wCL

w0i−w0j
< 0. Two cases then arise:
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1. If the average initial waiting time is above the steady-state waiting time, the numerator is

positive, and
w0i+w0j−2wCL

w0i−w0j
is negative only if Hospital i has an initial waiting time below

that of Hospital j.

2. If the average initial waiting time is below the steady-state waiting time, the numerator is

negative, and
w0i+w0j−2wCL

w0i−w0j
is negative only if Hospital i has an initial waiting time above

that of Hospital j.

Therefore, when he average initial waiting time is above (below) the steady-state waiting time,

it is the hospital with the shortest (longest) waiting time that exhibits non-monotonic convergence,

provided that |s1| > |s2| and − s2
s1

(
w0i+w0j−2wCL

w0i−w0j

)
∈ (0, 1).

To conclude the proof, we consider the shape of (B.27). Evaluating its second-order derivative

with respect to t at t∗ yields the following results:

1. If (w0i + w0j > 2wCL) ∧ (w0i < w0j), then w
′′
i (t∗) < 0 simplifies to:

(
s1

s2

)2

e(s1−s2)t∗(w0i − w0j) < −(w0i + w0j − 2wCL). (B.32)

Diving both sides by (w0i−w0j) reverses the inequality sign. Then, using (B.31), the inequality

becomes s1
s2
> 1, which is true.

2. If (w0i + w0j < 2wCL) ∧ (w0i > w0j), then w
′′
i (t∗) > 0 simplifies to:

(
s1

s2

)2

e(s1−s2)t∗(w0i − w0j) > −(w0i + w0j − 2wCL). (B.33)

Diving both sides by (w0i−w0j) does not reverse the inequality sign. Then, using (B.31), the

inequality becomes s1
s2
> 1, which is true.

Hence, if |s1| > |s2|, − s2
s1

(
w0i+w0j−2wCL

w0i−w0j

)
∈ (0, 1), and the average initial waiting time is above

(below) the steady-state waiting time, the dynamics of the waiting time at the hospital with the

shortest (longest) initial wait has a unique maximum (minimum). This implies that the waiting time

at the hospital with the shortest (longest) initial wait first increases (decreases) before decreasing

(increasing) towards the steady-state.
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