## Novel ultra-short peptide hydrogel as a potential drug nanocarrier

Joana F. G. Silva, <sup>a</sup> Sérgio R. S. Veloso, <sup>a</sup> P.J.G. Coutinho, <sup>a</sup> E.M.S. Castanheira, <sup>a</sup> J. A. Martins, <sup>b</sup> and Paula M.T. Ferreira

<sup>a</sup>Centre of Physics (CFUM), University of Minho, Campus de Gualtar, 4710 057 Braga, Portugal <sup>b</sup>Centre of Chemistry (CQUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal

Hydrogels endow a pristine soft-materials class of a large variety of applications, ranging from magnetic resonance imaging and drug delivery to catalysis and as template materials [1]. Particularly, self-assembled biocompatible peptide-based hydrogels have shown promising properties and results as nanocarriers for antitumor drugs [2-4]. Here, a stimulus-responsive self-assembled intertwined fibrillar structure is achieved through the cooperative effect of different non-covalent intra- and intermolecular interactions [1].

Lately, the development of hydrogelators with optimum drug delivery and mechanical properties at low cost and minimalist length has been a main challenge [2,3], which requires a cautious structure design. Such properties are not only desired for the pristine material hydrogel but also in the combination with composites [4]. Hereby, considering structural aspects required to favour hydrogelation and empirical knowledge on the self-assembly of dipeptides, a new hydrogelator comprising a methionine residue and a dehydrophenylalanine residue was designed and synthesised through a low-cost synthesis route.

The hydrogel was characterized using fluorescence-based techniques (fluorescence emission, excitation and anisotropy). A critical gelation concentration of 0.1 wt% was obtained (Figure 1), which is very advantageous for a hydrogelator with only two aromatic moieties. The developed nanosystem exhibited promising results as a competitor to current available ultra-short hydrogelators.

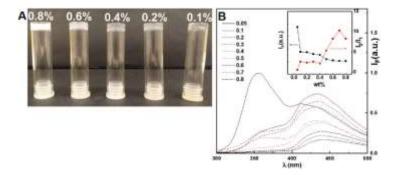



Figure 1. (A) Image of the hydrogels in the concentration range 0.1-0.8 wt%. (B) Fluorescence emission spectra of the hydrogels in the concentration range 0.1-0.8 wt%. Inset: Monomer fluorescence emission (360 nm) and aggregate band (440 nm) to monomer band emission ratio dependence on the hydrogelator concentration.

## **Acknowledgements**

This work was supported by the Portuguese Foundation for Science and Technology (FCT) in the framework of the Strategic Funding of CF-UM-UP (UID/FIS/04650/2019) and CQUM (UID/QUI/00686/2016). FCT, FEDER, PORTUGAL2020 and COMPETE2020 are also acknowledged for funding under research projects PTDC/QUI-QOR/29015/2017 (POCI-01-0145-FEDER-029015) and PTDC/QUI-QFI/28020/2017 (POCI-01-0145-FEDER-028020).

## References

- [1] S. R. S. Veloso et al., Pharmaceutics, **2018**, 10, 145.
- [2] H. Vilaça et al., Biomacromolecules, 2015, 16, 3562-3573.
- [3] H. Vilaça et al., J. Mater. Chem B, 2017, 5, 8607-8617.
- [4] S.R.S. Veloso et al., Phys. Chem. Chem. Phys., 2019, DOI: 10.1039/C9CP00352E.