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Abstract. We consider the problem of finding the equilibrium position of N
membranes constrained not to pass through each other, under prescribed vo-
lumic forces and boundary tensions. This model corresponds to solve vari-
ationally a N -system for linear second order elliptic equations with sequen-
tial constraints. We obtain interior and boundary Lewy-Stampacchia type
inequalities for the respective solution and we establish the conditions for
stability in measure of the interior contact zones of the membranes.

1. Introduction

Let Ω be a bounded open subset of Rd with Lipschitz boundary Γ. Denote by
uuu = (u1, . . . , uN ) the equilibrium displacements of N (N ≥ 2) elastic membranes,
each one constrained not to pass through the others, subject to external volumic
forces f = (f1, . . . , fN ) and boundary tensions g = (g1, . . . , gN ). The problem
consists of minimizing the energy functional

(1.1) E(uuu) =
∫

Ω

(
1
2

( a(uuu,uuu) + cuuu · uuu)− fff · uuu
)

+
∫

Γ

(
1
2
buuu · uuu− ggg · uuu

)
,

in the convex set

(1.2) KN =
{
vvv = (v1, . . . , vN ) ∈

[
H1(Ω)

]N
: v1 ≥ · · · ≥ vN a.e. in Ω

}
,

where a(uuu,vvv) =
N∑
k=1

a(uk, vk), with a(u, v) = aijuxi
vxj

(using the summation con-

vention for i, j = 1, . . . , d) and uuu · vvv denotes the usual internal product between uuu
and vvv.

The N -membranes problem attached to rigid supports was considered in [3]
for N linear coercive elliptic operators of second order and extended in [1] to
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quasilinear operators, with smooth coefficients of p-Laplacian type. For general
linear second order elliptic operators with measurable coefficients, see also [2].

Although Neumann boundary type problems can also be considered for more
general operators, for simplicity, here we assume

(1.3)

{
aij ∈ L∞(Ω), aij = aji, ∃ ν > 0∀ξ ∈ Rd aijξiξj ≥ ν|ξ|2,

c ∈ L∞(Ω), b ∈ L∞(Γ), c ≥ c0 ≥ 0, b ≥ b0 ≥ 0, c0 + b0 > 0.

(1.4)


f1, . . . , fN ∈ Lp(Ω), g1, . . . , gN ∈ Lq(Γ),

p ≥ 2d
d+2 if d ≥ 3, p > 1 if d = 2,

q ≥ 2(d−1)
d if d ≥ 3, q > 1 if d = 2.

Here we use
∨

and
∧

for the supremum and infimum, respectively, of two or
more functions

N∨
k=1

ξk = sup{ξ1, . . . , ξN},
N∧
k=1

ξk = inf{ξ1, . . . , ξN},

and, accordingly, we set ξ+ = ξ ∨ 0 and ξ− = −(ξ ∧ 0).
The minimization problem (1.1)-(1.2) is equivalent to the variational inequal-

ity

(1.5)


uuu ∈ KN :∫

Ω

(
a(uuu,vvv − uuu) + cuuu · (vvv − uuu)

)
+

∫
Γ

buuu · (vvv − uuu)

≥
∫

Ω

fff · (vvv − uuu) +
∫

Γ

ggg · (vvv − uuu), ∀vvv ∈ KN .

For N = 2 this problem can be considered, when the solution is known, as
two one obstacle problems. For N ≥ 3, the upper and the lower membranes are of
this type, but each membrane in between may be considered a solution of a two
obstacles problem. This last problem corresponds to a variational inequality with
the convex set given in the form

Kϕ
ψ = {ξ ∈ H1(Ω) : ψ ≤ ξ ≤ ϕ a.e. in Ω},

where the given obstacles are such that ψ ≤ ϕ. For two obstacles, the Lewy-
-Stampacchia inequalities for the solution v are

(1.6) f ∧Aϕ ≤ Av ≤ f ∨Aψ a.e. in Ω, g ∧Bϕ ≤ Bv ≤ g ∨Bψ a.e. on Γ,

where A and B denote the associated differential and boundary operators, respec-
tively,

(1.7) Av = − (aijvxi
)xj

+ cv, in Ω,

(1.8) Bv = aijvxi
nj + bv, on Γ,
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(n1, . . . , nd) denoting the unit outward normal vector to Γ.
The iteration of these inequalities yields the new set of N inequalities for the

solution uuu of the N -membranes problem, both in Ω and on Γ

(1.9)
l∧

k=1

fk ≤ Aul ≤
N∨
k=l

fk, a.e. in Ω, l = 1, . . . , N,

(1.10)
l∧

k=1

gk ≤ Bul ≤
N∨
k=l

gk, a.e. on Γ, l = 1, . . . , N,

which allows to reduce the regularity of the solutions to the corresponding regu-
larity of a system of equations, as shown in the next section. In particular, in the
following special cases:

• f1 = . . . = fN = f , the solution uuu of the variational inequality (1.5)
satisfies the system of N equations Auk = f a.e. in Ω, k = 1, . . . , N ;

• g1 = . . . = gN = g, the solution uuu of the variational inequality (1.5) satis-
fies the Neumann boundary conditions Buk = g a.e. on Γ, i = 1, . . . , N ,
although in the general case we only can say that uuu satisfies Signorini type
boundary conditions.

Another interesting result is the stability of the N(N−1)
2 coincidence sets

(1.11) Ik,l = {x ∈ Ω : uk(x) = · · · = ul(x) for a.e. x ∈ Ω}, 1 ≤ k < l ≤ N,

the sets of contact of l − k + 1 consecutive membranes. Given a subset A of Ω,
we denote by χA (the characteristic function of A), i.e., χA(x) = 1 if x ∈ A and
χ
A(x) = 0 if x ∈ Ω\A. As we have shown in [1] this is a consequence of writing the

solution of (1.5) as the solution of a semilinear system involving the characteristic
functions χIk,l

. We exemplify the argument in the simple case N = 3.
For N = 2 there is only one possible coincidence set, the contact of u1 with

u2. If the two forces associated with the two membranes are almost everywhere
different in Ω (f1 6= f2 a.e. in Ω), then the characteristic function χ

I1,2 of I1,2 is
easily shown to converge strongly in any Ls(Ω), 1 < s < ∞, for variations of the
forces in Lp(Ω).

For N = 3 there are three possible coincidence sets, the sets I1,2, I2,3 and
I1,3 = I1,2 ∩ I2,3. Setting χk,l = χ

Ik,l
, 1 ≤ k < l ≤ 3, the characteristic functions

χ
k,l of the sets Ik,l are shown to converge strongly in any Ls(Ω), 1 < s < ∞, for

variations of the forces f1, f2 and f3 in Lp(Ω), as long as

(1.12) f1 6= f2, f2 6= f3, f1 6=
1
2
(f2 + f3),

1
2
(f1 + f2) 6= f3.

This is a consequence of the fact that the solution uuu of (1.5) satisfies the system
a.e. in Ω,
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
Au1 = f1 + 1

2 (f2 − f1)χ1,2 + 1
6 (2f3 − f2 − f1)χ1,3

Au2 = f2 − 1
2 (f2 − f1)χ1,2 + 1

2 (f3 − f2)χ2,3 + 1
6 (2f2 − f1 − f3)χ1,3

Au3 = f3 − 1
2 (f3 − f2)χ2,3 + 1

6 (2f1 − f2 − f3)χ1,3.

(1.13)

Notice that the system (1.13) contains the case N = 2, that reduces only to
the two first equations of this system, with I2,3 = ∅ (so χ2,3 = χ

1,3 = 0). Even in
the more complicated situation of N > 3, the stability result can still be extended
in the interior of Ω as we show in Section 3. However, the corresponding stability
result on the boundary Γ is an open question. In this paper we have chosen to
present only the Neumann case when Γ = ∂Ω, but all the results are still valid,
with simple adaptations, for the mixed problem where ∂Ω = Γ0∪Γ1, with Dirichlet
data on Γ0 and Neumann data on Γ1 (see [7], for instance).

2. The Lewy-Stampacchia inequalities

We begin this section recalling a theorem for the double obstacle problem:

Theorem 2.1. Suppose that ψ1, ψ2 ∈ H1(Ω), f ∈ Lp(Ω), g ∈ Lq(Γ), p, q defined as
in (1.4). Let u be the solution of the variational inequality

(2.1)
∫

Ω

(
a(u, v − u) + cu(v − u)

)
+

∫
Γ

b(v − u) ≥
∫

Ω

f(v − u) +
∫

Γ

g(v − u),

with the assumptions (1.3), in the convex set

(2.2) Kψ2
ψ1

= {v ∈ H1(Ω) : ψ1 ≤ v ≤ ψ2 a.e. in Ω}.

If
(
Aψ1 − f

)+
,
(
Aψ2 − f

)− ∈ Lp(Ω) and
(
Bψ1 − g

)+
,
(
Bψ2 − g

)− ∈ Lq(Γ),
then

f ∧Aψ1 ≤ Au ≤ f ∨Aψ2, a.e. in Ω,(2.3)

g ∧Bψ1 ≤ Bu ≤ g ∨Bψ2, a.e. on Γ.(2.4)

Proof. The proof of this theorem is a simple adaptation of the arguments used for
the one obstacle problem with Neumann boundary condition (see, for instance, [9]
or [7]).

Remark 2.2. We observe that both the lower and the upper one obstacle variational
inequalities (2.1) in the convex sets

Kψ1 = {v ∈ H1(Ω) : v ≥ ψ1 a.e. in Ω}
and

Kψ2 = {v ∈ H1(Ω) : v ≤ ψ2 a.e. in Ω},
can be regarded as particular cases of the double obstacle problem, corresponding
formally to ψ2 = +∞ and ψ1 = −∞, respectively.
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Given N functions ϕ1, . . . , ϕN , we define, for 1 ≤ k < l ≤ N , the average of
ϕk, . . . , ϕl as

(2.5) 〈ϕ〉k,l =
ϕk + · · ·+ ϕl
l − k + 1

.

Denote

(2.6) ξ0 = max {〈f〉1,k : k = 1, . . . , N} , η0 = max {〈g〉1,k : k = 1, . . . , N}

and, for k = 1, . . . , N,

(2.7) ξk = k
(
ξ0 − 〈f〉1,k

)
ηk = k

(
η0 − 〈g〉1,k

)
We may approximate the solution of (1.5) by the solution of the penalized

problem given by the semilinear system with Neumann boundary conditions, for
k = 1, . . . , N,

(2.8)


Auεk + ξkθε(uεk − uεk+1)− ξk−1θε(uεk−1 − uεk) = fk in Ω,

Buεk + ηkθε(uεk − uεk+1)− ηk−1θε(uεk−1 − uεk) = gk on Γ,

with the conventions uε0 = +∞, uεN+1 = −∞, where for ε > 0, θε is defined by
θε(s) = −1 if s ≤ −ε, θε(s) = − s

ε , if −ε < s < 0 and θε(s) = 0 for s ≥ 0.

Proposition 2.3. With the assumptions (1.3) and (1.4), problem (2.8) has a unique
solution (uε1, . . . , u

ε
N ), bounded independently of ε in

[
H1(Ω)

]N
. Besides that, Auεuεuε

and Buεuεuε are bounded independently of ε in [Lp(Ω)]N and in [Lq(Γ)]N , respectively.

Proof. Consider the monotone operator

〈Ψε(vvv),www〉 =
N∑
k=1

∫
Ω

(
ξkθε(vk − vk+1)− ξk−1θε(vk−1 − vk)

)
wk(2.9)

+
N∑
k=1

∫
Γ

(
ηkθε(vk − vk+1)− ηk−1θε(vk−1 − vk)

)
wk

The problem (2.8) is equivalent to the semilinear variational problem


uεuεuε ∈

[
H1(Ω)

]N
:∫

Ω

(a(uεuεuε, vvv) + cuεuεuε · vvv) +
∫

Γ

buεuεuε · vvv + 〈Ψε(uεuεuε), vvv〉

=
∫

Ω

fff · vvv +
∫

Γ

ggg · vvv, ∀vvv ∈
[
H1(Ω)

]N(2.10)

and this problem has a unique solution, by standard monotone methods.
Since

Auεuεuε = fff −
(
ξkθε(uεk − uεk+1)− ξk−1θε(uεk−1 − uεk)

)
k=1,...,N

,
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−1 ≤ θε ≤ 0 and fff,ξξξ ∈ [Lp(Ω)]N , it follows that {Auεuεuε : 0 < ε < 1} belongs
to a bounded subset of [Lp(Ω)]N . Analogously, after integration by parts, the set
{Buεuεuε : 0 < ε < 1} is bounded in [Lq(Γ)]N .

Proposition 2.4. Under the assumptions (1.3) and (1.4), let uεuεuε be the solution of
problem (2.8) and uuu the solution of the variational inequality (1.5). Then

(2.11) uεk ≤ uεk−1 + ε, k = 2, . . . , N,

and, when ε→ 0,

uεuεuε −→ uuu in
[
H1(Ω)

]N
,

Auεuεuε −−⇀ Auuu in [Lp(Ω)]N -weak, Buεuεuε −−⇀ Buuu in [Lq(Γ)]N -weak.

Proof. We begin noticing that,

ξk ≥ 0 (k ≥ 1),
(
ξk−1 − ξk−2

)
−

(
ξk − ξk−1

)
= fk − fk−1 (k ≥ 2),

ηk ≥ 0 (k ≥ 1),
(
ηk−1 − ηk−2

)
−

(
ηk − ηk−1

)
= gk − gk−1 (k ≥ 2).

To prove (2.11), we multiply the k−th equation of (2.8) by (uεk − uεk−1 − ε)+
and integrate on Ω. Using that θε(uεk−1−uεk)(uεk−uεk−1−ε)+ = −(uεk−uεk−1−ε)+
and θε(uεk − uεk+1) ≥ −1, we obtain∫

Ω

Auεk(u
ε
k − uεk−1 − ε)+ ≤

∫
Ω

[fk + ξk − ξk−1] (uεk − uεk−1 − ε)+(2.12)

+
∫

Γ

[gk + ηk − ηk−1] (uεk − uεk−1 − ε)+.

With similar arguments, if we multiply, for k ≥ 2, the ( k − 1)−th equation
of (2.8) by (uεk − uεk−1 − ε)+ and integrate on Ω we obtain,

∫
Ω

Auεk−1(u
ε
k − uεk−1 − ε)+ ≥

∫
Ω

[fk−1 + ξk−1 − ξk−2] (uεk − uεk−1 − ε)+(2.13)

+
∫

Γ

[gk−1 + ηk−1 − ηk−2] (uεk − uεk−1 − ε)+.

Subtracting equation (2.13) from (2.12), using the assumptions (1.3), the
conclusion (2.11) follows.

The strong convergence in
[
H1(Ω)

]N of uεuεuε to the solution uuu of the variational
inequality (1.5), when ε→ 0, follows by a standard argument.

The uniform boundedeness of {Auεuεuε : 0 < ε < 1} in [Lp(Ω)]N implies the
weak convergence of Auεuεuε to Auuu in [Lp(Ω)]N , and, analogously, the boundedeness
of {Buεuεuε : 0 < ε < 1} in [Lq(Γ)]N implies the weak convergence of Buεuεuε to Buuu in
[Lq(Γ)]N .

We are now able to prove the following result:
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Theorem 2.5. Under the assumptions (1.3) and (1.4), the solution uuu of the problem
(1.5) satisfies the following Lewy-Stampacchia type inequalities

(2.14)

f1 ≤ Au1 ≤ f1 ∨ · · · ∨ fN
f1 ∧ f2 ≤ Au2 ≤ f2 ∨ · · · ∨ fN

...
f1 ∧ · · · ∧ fN−1 ≤ AuN−1 ≤ fN−1 ∨ fN
f1 ∧ · · · ∧ fN ≤ AuN ≤ fN


a.e. in Ω

and

(2.15)

g1 ≤ B u1 ≤ g1 ∨ · · · ∨ gN
g1 ∧ g2 ≤ B u2 ≤ g2 ∨ · · · ∨ gN

...
g1 ∧ · · · ∧ gN−1 ≤ B uN−1 ≤ gN−1 ∨ gN
g1 ∧ · · · ∧ gN ≤ B uN ≤ gN


a.e. on Γ.

Proof. If (v, u2, . . . , uN ) ∈ KN , with v ∈ Ku2 , we see that u1 ∈ Ku2 solves the
variational inequality (1.5) with f = f1. Observing that Au2 ∈ Lp(Ω) and that
Bu2 ∈ Lq(Γ), by (2.3) and (2.4) we have

f1 ≤ Au1 ≤ f1 ∨Au2 a.e. in Ω

g1 ≤ B u1 ≤ g1 ∨B u2 a.e. in Γ.

Since uk ∈ Kuk−1
uk+1 solves the two obstacles problem (2.1) with f = fk,

k = 2, . . . , N − 1, and satisfies, by (2.3) and (2.4),

fk ∧Auk−1 ≤ Auk ≤ fk ∨Auk+1 a.e. in Ω,

gk ∧B uk−1 ≤ B uk ≤ gk ∨B uk+1 a.e. in Γ.

As uN ∈ KuN−1 satisfies

fN ∧AuN−1 ≤ AuN ≤ fN a.e. on Ω,

gN ∧B uN−1 ≤ B uN ≤ gN a.e. on Γ,

(2.14) and (2.15) are easily obtained by simple iterations.

Remark 2.6. The Lewy-Stamppachia inequalities appeared first in [6] for the obsta-
cle problem with Dirichlet boundary conditions and were extended to the Neumann
case in [5] (see also [9] and [8]).

From (2.14) and (2.15) the following corollary is immediate:

Corollary 2.7. Let uuu be the solution of the variational inequality (1.5). We have

if fff = (f, . . . , f), then Auuu = fff in Ω, if ggg = (g, . . . , g), then Buuu = ggg on Γ.

From the linear elliptic regularity theory (see [4] or [8], for instance) we have
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Corollary 2.8. Under the assumptions (1.3) and (1.4), the solution uuu of (1.5) is
in

[
C0,α(Ω)

]N
, for some 0 < α < 1. Besides that, if aij ∈ C0,1(Ω) then uuu ∈[

W 2,p
loc (Ω)

]N
and uuu ∈

[
C1,β(Ω)

]N if 0 < β = 1 − d
p < 1; if in addition Γ ∈ C1,1,

b ∈ C0,1(Γ) and fff ∈
[
L2(Ω)

]N , ggg ∈
[
L2(Γ)

]N then uuu ∈
[
W 3/2,2(Ω)

]N
; finally, if

also g1 = · · · = gN ∈ W 1− 1
p ,p(Γ), then uuu ∈

[
W 2,p(Ω)

]N .

3. The stability of the coincidence sets

Let ununun be the solution of the N -membranes problem (1.5), under the assumptions
(1.3), with given data fnfnfn and gngngn satisfying (1.4). Assuming that fnfnfn converges
to fff in [Lp(Ω)]N and that gngngn converges to ggg in [Lq(Γ)]N , we shall extend now
the following stability result in Ls(Ω) (1 ≤ s < ∞) of [1] for the corresponding
coincidence sets (defined in (1.11)),

χ
{un

k =···=un
l } −−−−→

n

χ
{uk=···=ul}, for 1 ≤ k < l ≤ N.

Recalling the inequalities (2.14), Auuu = FFF a.e. in Ω, for some function
FFF ∈ [Lp(Ω)]N , as in Lemma 2 of [8], we have

Auk = Auk+1 a.e. in {x ∈ Ω : uk(x) = uk+1(x)}
and so we can characterize a.e. in Ω each Fk in terms of fl and the characteristic
functions χ{ur=···=us}, 1 ≤ l ≤ N , 1 ≤ r < s ≤ N .

In what follows, we use, as before, the convention, u0 = +∞ and uN+1 = −∞.
We define the following sets

(3.1) Θk,l = {x ∈ Ω : uk−1(x) > uk(x) = · · · = ul(x) > ul+1(x)},
the sets of contact of exactly the membranes uk, . . . , ul.

Proposition 3.1. If k, l ∈ N are such that 1 ≤ k ≤ l ≤ N , we have

1. Aur =

{ 〈f〉k,l a.e. in Θk,l if r ∈ {k, . . . , l},

fr a.e. in Θk,l if r 6∈ {k, . . . , l}.
2. If k < l then for all r ∈ {k, . . . , l} 〈f〉r+1,l ≥ 〈f〉k,r a.e. in Θk,l.

Proof. Because of the regularity result Auuu ∈ [Lp(Ω)]N , the proof of this propo-
sition is the same as for the case with boundary Dirichlet condition, done in [1],
since it was done locally at a.e. point x ∈ Ω.

Remark 3.2. It is well known that a necessary condition for existing contact in the
case of two membranes u1 and u2, subject to external forces f1 and f2 respectively,
is that f2 ≥ f1. Depending on the boundary conditions, this condition may be (or
not) sufficient for contact.

We would like to emphasize that condition 2. of the preceding proposition is
a necessary condition for the first r − k membranes (k < r ≤ l) to be in contact
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with the other l − r + 1 membranes. We can interpret physically the condition 2.
by regarding the first r − k membranes as one membrane where a force with the
intensity of the average of the forces fk, . . . , fr is applied and all the other l−r+1
as another one where it was applied a force with the intensity equal to the average
of the remaining forces fr+1, . . . , fl.

As for the boundary Dirichlet condition case, we may characterize the varia-
tional inequality (1.5) as a system of N equations, coupled through the character-
istic functions of the coincidence sets Ik,l. In (1.13) we presented the system for
N = 3, containing as a special case N = 2. The next theorem presents the general
case.

Theorem 3.3. Under the assumptions (1.3), let uuu be the solution of the problem
(1.5) with data fff and ggg satisfying (1.4). Then

(3.2) Aur = fr +
∑

1≤k<l≤N, k≤r≤l

bk,lr
χ
k,l a.e. in Ω,

where

bk,lr [f ] =


〈f〉k,l − 〈f〉k,l−1 if r = l

〈f〉k,l − 〈f〉k+1,l if r = k

2
(l−k)(l−k+1)

(
〈f〉k+1,l−1 − 1

2 (fk + fl)
)

if k < r < l.

Also exactly as in [1], using the variational convergence ununun −→ uuu in
[
H1(Ω)

]N ,
we may prove the continuous dependence of the coincidence sets with respect to
the external data.

Theorem 3.4. Assuming (1.3) and given n ∈ N, let ununun denote the solution of
problem (1.5) with given data fnfnfn ∈ [Lp(Ω)]N , gngngn ∈ [Lq(Γ)]N , with p, q as in (1.4).

Suppose that

fnfnfn −−−−→
n

fff in [Lp(Ω)]N , gngngn −−−−→
n

ggg in [Lq(Γ)]N .

Then

(3.3) ununun −−−−→
n

uuu in
[
H1(Ω)

]N
.

If, in addition, the limit forces satisfy

(3.4) 〈f〉k,r 6= 〈f〉r+1,l for all k, r, l ∈ {1, . . . , N} with k ≤ r < l,

then, for any 1 ≤ s <∞, ∀ k, l ∈ {1, . . . , N}, k < l,

(3.5) χ
{un

k =···=un
l } −−−−→

n

χ
{uk=···=ul} in Ls(Ω).

Remark 3.5. The condition (3.4) for the stability of the coincidence sets for N = 2
is simply f2 6= f1 and for N = 3, the condition (1.12) (see [2] for a direct proof).
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Remark 3.6. It would be interesting to prove a condition analogous to the system
(3.2) for the boundary operator B (under additional regularity of the solution uuu),
i.e., to find sufficient conditions for some coefficients γj,kr involving the averages
〈g〉k,l such that, if Îk,l = {x ∈ Γ : uk(x) = · · · = ul(x)}, then

Bur = gr +
∑

1≤k<l≤N, k≤r≤l

γk,lr
χ
Îk,l

a.e. on Γ.
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