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ABSTRACT

Quantum simulation is one of the most relevant applications of quantum computation for the
near future, due to its scientific impact and also because quantum simulation algorithms are
typically less demanding than generalized quantum computations. Ultimately, the success of a
quantum simulation depends on the amount and reliability of information one is able to extract
from the results. In such a context, this work reviews the theory behind quantum simulation,
with a focus on digital quantum simulation. The concepts of efficiency and reliability in
quantum simulations are discussed, particularly for implementations of digital simulation
algorithms in state-of-the-art quantum computers. A review of approaches for quantum
characterization, verification and validation techniques (QCVV) is also presented. A digital
quantum simulation of the Schrödinger equation for a single particle in 1 spatial dimension was
experimentally implemented and analyzed, along with a quantum state tomography procedure
for characterization of the final quantum state and evaluation of simulation reliability.

From the literature, it is shown that digital quantum simulation is theoretically sound and
experimentally feasible, with several applications in a wide range of physics-related fields.
Nonetheless, a number of conditions arise that must be observed for a truly efficient im-
plementation of a digital quantum simulation, from theoretical conception to experimental
circuit design. The review of QCVV techniques highlights the need for characterization and
validation techniques that could be efficiently implemented for current models of quantum
computation, particularly in instances where classical verification is not tractable. However,
there are proposals for efficient verification procedures when a set of parameters defining the
final result of the simulation is known.
The experimental simulation demonstrated partial success in comparison with an ideal

quantum simulation. From the results it is apparent that better coherence times, better
reliability and finer control are as decisive for the advancement of quantum computing power
as the more-publicized number of qubits of a given device.
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RESUMO

A simulação quântica é uma das aplicações mais relevantes da computação quântica num fu-
turo próximo, não só devido ao seu impacto científico como também porque os algoritmos de
simulação quântica são tipicamente menos exigentes do que algoritmos quânticos numéricos.
Em última análise, o sucesso de uma simulação quântica depende da quantidade e fiabilidade
das informações que é possível extrair dos resultados. Neste contexto, este trabalho apresenta
uma revisão da teoria da simulação quântica, com ênfase na simulação quântica digital. Os
conceitos de eficiência e fiabilidade em simulações quânticas são discutidos, particularmente
para implementações de algoritmos de simulação digital. Uma revisão de técnicas de caracter-
ização, verificação e validação de sistemas quânticos (QCVV) é também apresentada. Uma
simulação quântica digital da equação de Schrödinger para uma única partícula a uma dimen-
são espacial foi implementada experimentalmente e analisada, juntamente com um método
de tomografia de estado quântico para a caracterização do estado quântico final e avaliação
da fiabilidade da simulação.

A partir da literatura, é demonstrado que a simulação quântica digital é teoricamente
sólida e experimentalmente viávei, com várias aplicações em diversas áreas da física. No
entanto, existem várias condições a ter em conta para uma implementação verdadeiramente
eficiente de uma simulação quântica digital, da sua concepção teórica até à implementação
experimental de circuitos. A revisão de técnicas QCVV destaca a necessidade de técnicas de
caracterização e validação que possam ser eficientemente implementadas para modelos atuais
de computação quântica, particularmente em instâncias em que a verificação clássica não
é possível ou desejável. No entanto, existem propostas para técnicas de verificação que são
eficientes quando se conhece, a priori, um conjunto de parâmetros característicos do resultado
final da simulação.
A simulação experimental demonstrou sucesso parcial relativamente a uma simulação quân-

tica ideal. A partir dos resultados, evidencia-se que melhores tempos de coerência, maior
fiabilidade e controlo mais refinado são tão decisivos para o avanço da computação quântica
quanto o número de qubits de um dispositivo.
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1

INTRODUCTION

1.1 the context: quantum simulation

The possibility of performing computational tasks deemed inefficient, or even impossible, on
available classical computing power has increased the momentum on quantum computation
and simulation research over the past decade. However, there are still major milestones to
be reached before the first fault-tolerant, universal quantum computer is built. As of 2018,
available quantum devices work by approximating quantum computations on physical qubits;
quantum information and computation research is entering the NISQ (Noisy intermediate-
scale quantum) era. Before a noise-resilient logical qubit - one that performs as theoretically
predicted, holding its state in arbitrarily long quantum algorithms - is reached, error rates
and coherence times need to be further improved, and error correcting codes allowing for
implementation of a universal set of gates while keeping low overhead, need to be devised
(Campbell et al., 2017).

Quantum simulation is currently one of the most relevant applications of quantum computa-
tion. This is true not only due to its scientific and industrial impact, but also because quantum
simulation algorithms are typically less demanding than general quantum computations. For
example, a quantum simulator with tens of qubits could already perform useful simulations
under current technology, whereas thousands of qubits would be needed to factorize modest
numbers using Shor’s algorithm (Buluta and Nori, 2009). In fact, quantum simulators could
even explore the presence of environmental errors and decoherence to simulate the presence
of same phenomena on the simulated system (Lloyd, 1996). It is also believed that no known
classical algorithm can, without compromises, efficiently simulate the dynamics of a quantum
system (Preskill, 2018).
The biggest demonstrated classical numerical simulation of a quantum system was per-

formed by a team of researchers from IBM on a conventional supercomputer, in October 2017.
The team managed to effectively simulate a 56-qubit quantum system, which implicates that a
scenario of quantum supremacy Boixo et al. (2018) would be achieved on a quantum computer
with a greater amount of qubits and reasonable fidelity. Of course, quantum supremacy is
dependent on many factors other than qubit number (e.g. universality, fidelity, entanglement
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1.1. The context: quantum simulation 2

capabilities, decoherence), and, as classical computational power grows, so will this threshold,
so the timeline for reaching quantum supremacy remains uncertain. Fortunately, quantum
simulation is one of the most promising applications due to its relatively low computational
requirements, which means that one may see a truly useful quantum simulator even before a
universal quantum computer appears.
A significant reduction of noise and decoherence effects, together with suitable error-correcting

algorithms, allow for the possibility of fault-tolerant quantum computing (Aharonov and Ben-
Or, 1997), yet, the required overhead for error correction is still too demanding for current
and near-future quantum systems. Moreover, the nature of quantum mechanics itself suggests
that these effects can never be completely eliminated. Therefore, the necessity of validation
protocols for quantum computation and quantum simulations becomes apparent.
In Cirac and Zoller (2012), the authors, inspired by the criteria devised a decade earlier

by DiVincenzo (2000) for the physical implementation of a functional quantum computer,
define a list of conditions which a quantum simulator must fulfill to demonstrate a classically
intractable simulation of a many-body quantum system involving large-scale entanglement:

1. Quantum system: the simulator should possess a system of bosons or fermions, which
can be stored in a lattice or confined in a limited space, and have a large number of
degrees of freedom;

2. Initialization: the simulator should be able to prepare, within some bounded error, a
known quantum state;

3. Hamiltonian engineering: the simulator should be able to devise an adjustable set of
interactions with external fields or between particles, which can be local or have a
longer range. Among the accessible Hamiltonians, there should be some that cannot be
efficiently simulated with classical techniques;

4. Detection: the simulator should have the ability to perform measurements on the system,
either on individual qubits, or collectively (without the need of addressing any individual
site);

5. Verification: there should be a way of checking or increasing confidence in the results.

If the simulator is dealing with a model that cannot be classically simulated, by definition,
there should be no way of verifying the result of the simulation using classical resources. The
authors suggest alternatives such as benchmarking the simulator for problems with known
solutions, comparing the results of the simulation through different methods or physical im-
plementations, or even running the evolution backwards in time to check that it ends up in
the initial state.
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While proposed implementations, initialization, Hamiltonian evolution, and measurement
of controllable quantum systems or quantum computers have been extensively studied, par-
ticularly over the last twenty years, only more recently, as the plausibility of a quantum
supremacy scenario materializes, have verification and validation techniques been properly
discussed by the scientific community. In an article with the remarkable title "Can one trust
quantum simulators?" (Hauke et al., 2012), the authors argue that, to be truly useful, a quan-
tum simulator must satisfy four conditions: relevance, for applications and understanding
of the fields of interest; controllability of the parameters of the simulated model and state
preparation, manipulation, evolution and detection of the relevant physical properties of the
system; reliability of the observed physics of the quantum simulator in relation to an ideal
model whose properties are being simulated; efficiency, more specifically in comparison with
what is practically possible on a classical computer.

From this set of conditions for a quantum simulator it arises that the true advantage of
quantum simulators would be shown for models that are computationally hard for classical
computers - even though it may be desirable to set the parameters in a regime where the model
is tractable by classical simulations, since this provides an elementary instance of validating
the quantum simulation. This means there is a need for more sophisticated techniques of
validation, in particular for systems that are inefficient to simulate classically. A proposed
technique is the checking of the sensitivity of the quantum simulation in respect to the addition
of noise and disorder, which is possible only with sufficient control over the simulation. The
need for a careful analysis of reliability and efficiency in the presence of imperfections is
emphasized.

1.2 schrödinger equation

Simulation of quantum systems builds on a basic mathematical tool: the Schrödinger equation
which describes its evolution. Its relevance for the purpose of the current dissertation justifies
the following brief introduction.
At the beginning of the twentieth century, experimental evidence suggested that atomic

particles also exhibit a wave-like behaviour. Thus, it became reasonable to assume that a
wave equation could explain the behaviour of atomic particles; E. Schrödinger Schrödinger
(1926) was the first to publish such a wave equation, forming the basis for his work that
resulted in him being awarded the Nobel Prize in Physics in 1933.
The Schrödinger equation is a partial differential equation which provides a mathematical

model that allows for the determination of the wave function of a system, and describes its
behavior over time. It is the quantum analogue to Newton’s laws and the conservation of
energy in classical mechanics.
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The most general form of the equation is the time-dependent Schrödinger equation, which
describes the wave function ψ(r, t) of a quantum system, at time t and position r, for a given
Hamiltonian Ĥ:

i h̄
∂

∂t
ψ(r, t) = Ĥψ(r, t) (1)

The Hamiltonian can be interpreted as describing the total energy of the system. It contains
a set of operations concerning all the interactions affecting the state of the system, and as a
physical observable, it is self-adjoint. The time evolution is defined by the exponential of the
Hamiltonian, which makes it a unitary operator, as per Stone’s theorem on one-parameter
unitary groups. For a known wave function ψ(r, 0), the Schrödinger equation can provide
knowledge about the wave function at an arbitrary time tf , and allows for determination of
outcome probability; |ψ(r, tf )|2 is the probability of finding a quantum particle at a position
r and time tf .

Considering a one dimensional potential V (x), a single particle of mass m is governed by
the Hamiltonian:

Ĥ =
h̄2k̂2

2m + V (x) (2)

where h̄ is the reduced Planck constant, and k̂ is the wave number of the particle. These
quantities are related to the momentum p of the particle through the de Broglie equation for
matter waves: p2 = h̄2k̂2 = − h̄2

2m
d2

dx2 .
The general procedure for quantum simulation involves preparing an initial state |φ(0)〉,

finding the state |φ(t)〉 of the quantum system at some time t and computing the value of
some physical quantity of interest. For a time independent Hamiltonian, H, the solution to
the Schrödinger equation:

i h̄
d

dt
|φ〉 = H |φ〉 (3)

is given by |φ(t)〉 = e−i h̄Ht |φ(0)〉.
Since analytical solutions of Schrödinger’s equation have only been found for a limited

number of quantum systems, physicists often have to resort to numerical algorithms and
what computational power is available to solve the equation for a given physical system and
find its associated potential energy. Classical algorithms for quantum simulation exist, such as
quantum Monte Carlo methods (Ceperley and Alder, 1986), which can provide either exact
solutions to the equation, or polynomially scaling approximations, but generally not both;
these methods also suffer from the “negative sign problem” (Troyer and Wiese, 2005) when
applied to fermions, increasing computation time exponentially with the number of particles.
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1.3 objectives

This dissertation reviews the theory behind quantum simulation, with a focus on digital quan-
tum simulation. The concepts of efficiency and reliability (i.e. error bounds) of a quantum
simulation are also discussed, from its algorithmic formulation to the actual implementation
in real-world quantum devices with real-world limitations, namely due to processor architec-
tures and noise processes. The success of a quantum simulation ultimately depends on the
ability to extract useful information from the simulator. A review of approaches for quantum
characterization, verification and validation techniques (QCVV) is also presented.
A digital quantum simulation of the Schrödinger equation for a single particle in 1 spatial

dimension was experimentally implemented and analyzed, along with a quantum state tomog-
raphy procedure for characterization of the final quantum state and evaluation of simulation
reliability.
Within the context outlined in the beginning of this introductory section, the main research

questions addressed in this dissertation are:

1. What are the conditions for a truly efficient implementation of a digital quantum simu-
lation of a physical system, given the restrictions imposed by current noisy intermediate-
scale quantum (NISQ) devices?

2. What specifications should be considered for quantum characterization, verification or
validation (QCVV) of quantum simulators and the results of such simulations?

While it has been proven that a universal quantum computer is, in theory, able to efficiently
simulate the Hamiltonian of a physical system (Lloyd, 1996), which is limited to `-local
interactions, or even sparse Hamiltonians (Berry et al., 2017), i.e. with no more than a fixed
number of nonzero entries in each column of its fixed representation, these works do not
consider significant obstacles to implementation present in experimental settings, such as how
to efficiently decompose the Hamiltonian into a sequence of implementable operations on a
quantum computer (Vartiainen et al., 2004; Shende et al., 2006), how to efficiently find a
mapping obeying the constraints of nearest-neighbour quantum chip architectures (Siraichi
et al., 2018), or even how do these results hold in the presence of noise and decoherence
(Aharonov and Ben-Or, 1997).

However, efforts to review and unify the theory behind experimental digital quantum simu-
lation have been presented by Brown et al. (2010), and in Georgescu et al. (2014), which also
reviews the concepts behind analog quantum simulation and provides an extensive review on
the applications and implementations of quantum simulation.
The subject of verifying or validating a quantum computation overlaps with that of verifica-

tion and validation of quantum simulations, particularly when discussing the use of quantum
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computers for digital quantum simulation, which this work focuses on. As mentioned be-
fore, Hauke et al. (2012) asks "Can one trust quantum simulators?" and discusses in detail
the requirements for near-future quantum simulators and emphasizing the need for a careful
analysis of reliability and efficiency in the presence of imperfections.
The experimental and conceptual approaches to this problem are multidisciplinary. For ex-

ample, Artiles et al. (2005) present quantum tomography in the context of statistical methods;
Chuang and Nielsen (1997) originally proposed a procedure for quantum process tomography,
based itself on quantum state tomography; with a focus on efficiency, da Silva et al. (2011)
proposes a characterization method that matches experimental data with a subset of possi-
ble descriptions. Benchmarking techniques, such as proposed by Knill et al. (2008), allow
for an estimation of the fidelity of a quantum device that is not independent from a specific
quantum algorithm. From computational sciences and computational complexity theory arise
different approaches based on the concept that current models of quantum computation do not
generally allow the experimenter direct access to the quantum device; instead, interactions
occur through classical or quantum channels. Some techniques are reviewed in Gheorghiu
et al. (2017); the most prominent being quantum interactive proofing (Aharonov et al., 2017)
and blind quantum computation (Fitzsimons, 2017). All of the techniques described have,
arguably, potential use in the validation of quantum simulations.
The experimental part of this dissertation aims at providing a qualitative view on the degree

of success to be expected from an experimental simulation, namely that of the Schrödinger
equation for a single particle, on available quantum devices provided by the IBM Q initiative.
It also serves to illustrate the obstacles, described above, to digital quantum simulation in
quantum computers, and demonstrate the implementation and degree of success of a quantum
state tomography technique proposed by Smolin et al. (2012).
The simulation algorithm itself was first outlined in Zalka (1998); Wiesner (1996). An algo-

rithm for simulation of the Schrödinger equation in the circuit model of quantum computing
is detailed and simulated (classically) in Benenti and Strini (2008). This work in particular
follows the procedure proposed and experimentally demonstrated by Coles et al. (2018), while
also expanding it for 3 qubits.

1.4 outline

The dissertation is structured as follows: section 2 introduces the fundamental theoretical
concepts behind quantum simulation, while distinguishing between digital quantum simu-
lation (2.1) and analog quantum simulation (2.3). There is a focus on the efficiency and
reliability of digital quantum simulation (2.2), particularly given the constraints of noisy
intermediate-scale quantum computers. An overview on the physical implementations (2.4)
and applications (2.5) of quantum simulations is also presented.
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In section 3 a review of quantum characterization, validation and verification techniques is
given, with a particular focus on quantum state tomography, quantum process tomography,
and randomized benchmarking. General conditions for these procedures, as well as efficiency,
are discussed.
Section 4 introduces the experimental procedure, with a description of the quantum devices

(4.1) in which the experiment is realized, and a detailed description of the implementation of
the simulation algorithm (4.2) and the state tomography procedure (4.3).
The results of the experimental procedure are discussed in section 5. Finally, section 6

concludes the dissertation with a number of suggestions for future work which could expand
or build upon what is presented here.



2

QUANTUM S IMULATION

Numerical simulation plays an important role in science. Its use allows scientists to check,
in detail, the predictions of a mathematical model of a physical system, specially when such
models become too hard to solve analytically, or when details are required for specific values
of parameters. However, opting for numerical simulation is only practical when its calcula-
tions can be done efficiently with available resources. Numerical simulation for mathematical
models has historically been one step ahead of available computational power, which justifies
the widespread demand for ever more powerful supercomputers. Many calculations require
more computational power than what researchers have readily available, and this limitation is
nearly ubiquitous independently of scientific field. For those working with quantum systems,
however, this happens for rather small system sizes. This leaves open problems in important
areas, such as quantum chemistry, high-energy physics or high temperature superconductivity,
where progress is slow since for larger systems, actual models cannot be adequately tested or
used for predictions.

To appreciate how quickly computational requirements grow with the size of a quantum
system, one may consider a straightforward approach to storing and operating on a general
quantum state |ψn〉 of n qubits, each one representing a two-state quantum system. The
Hilbert space of this state grows exponentially with n, since it is spanned by 2n orthogonal
states |j〉, with 0 ≤ j < 2n. Because the n qubits can have any degree of superposition
between them, the expression for |ψn〉 becomes a sum over all these terms, each with a
different coeficient cj :

|ψn〉 =
2n−1∑
j=0

cj |j〉 (4)

To store this description of the state on a classical computer, all complex coefficients {cj}
need to be stored. Admitting each one requires two 4-byte floating point numbers, one for the
real and another for the imaginary part of the number, each coefficient occupies 8 bytes of
memory. Each additional qubit effectively doubles the amount of memory needed: a 28-qubit
state would require around 1 gigabyte of memory, and for n=38 qubits, 1 terabyte would be
necessary.

8
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Complexity theory has, however, shown (Preskill, 1998) that bounded-error quantum poly-
nomial time (BQP), the class of decision problems solvable by a quantum computer in poly-
nomial time, with an error probability of at most 1/3, is contained in PSPACE, the set of all
decision problems solvable by a Turing machine using a polynomial amount of space. This
means that, in principle, a classical computer should need only a polynomial amount of space
to store a quantum state of n qubits. In spite of that, the real difficulty and limiting factor
of a classical numerical simulation of quantum systems, is the time necessary to perform any
calculation over the state, which is exponential over the number of qubits constituting the
system.
Although a quantum computer can, by design, efficiently store the quantum state under

study, it is not a complete replacement for a classical computer. Taking into account the
methods and results of the simulations, a classical computer allows access to the full quan-
tum state, i.e. all 2n complex numbers {cj} contained in equation (4). One realization and
direct measurement of the system in a quantum device, by itself, could only tell whether
one of the coefficients cj is non-zero. For quantum simulation in particular, where a greater
amount of information about the state is usually desired, accessing enough useful information
typically requires a statistically significant number of repetitions of the simulation. In this
context, classical simulations can be classified as a "strong simulations" (Nest, 2008), since
they provide full information about the probability distribution, while repeated realization
and measurement quantum systems, on a quantum device, only provides a sampling from
the probability distribution, a "weak simulation". In this scenario, a wider class of classical
algorithms exist which can efficiently perform quantum computations. Taking this differenti-
ation into account, a quantum simulator would be particularly useful in cases when neither a
strong nor weak simulation can be efficiently performed classically.
In a lecture titled Simulating Physics with Computers (Feynman, 1982), Richard Feynman

posed the question "What kind of computer are we going to use to simulate physics?". Feyn-
man suggested a device which does not approximate a simulation using numerical algorithms
for differential equations, but exactly simulates the behaviour of physical systems. By de-
signing a well-controlled system from the bottom up, one could create a computer whose
constituent parts are governed by quantum dynamics generated by a desired Hamiltonian.
Feynman’s idealized machine is the most prominent inspiration for quantum computation,
also proposed independently by Benioff (1980), and Deutsch (1985).
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Figure 1.: Schematic representation of a quantum system and a corresponding quantum simulator
(Georgescu et al., 2014).

Described in generic terms, a procedure for quantum simulation involves taking a quantum
system with some degree of controllability, and:

1. Preparing an initial state (preparation);

2. Performing some kind of quantum processing (evolution);

3. Extracting information from the final state (measurement);

As is the case with general quantum algorithms, all three steps must be performed efficiently
(i.e. scaling polynomially with the size of the system) to obtain a computation that is efficient
overall. Step b) usually corresponds to the time evolution of the Hamiltonian, which is the
case of the simulation implemented experimentally in this work, explained in detail in section
4.2. The problem can thus be stated mathematically by the expression:

|ψ(t)〉 = eiĤt |ψ(0)〉 (5)

Given an initial state |ψ(0)〉 and the Hamiltonian Ĥ, which may itself be time-dependent,
the simulation should lead to state |ψ(t)〉 at time t. It should be noted that quantum simu-
lation is not restricted to recreating the temporal evolution of the simulated system. Other
applications include, for example, phase estimation for computing eigenvalues of the Hamilto-
nian (Abrams and Lloyd, 1999; Wang et al., 2010b), computing partition functions (Lidar and
Biham, 1997), or even using quantum computers to simulate classical physics more efficiently
(Meyer, 2002; Yung et al., 2010).
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Taking the general definition of a quantum simulation as a starting point, two approaches
can be distinguished: digital quantum simulation, and analog quantum simulation. They are
discussed in the next three sections.

2.1 digital quantum simulation

A digital quantum simulator (DQS) uses quantum bits to encode the initial state of the quan-
tum system as a superposition of binary bit strings. Admitting the goal of the simulation is
to get the simulator from state A to state B along a particular route, the implemented simula-
tion algorithm drives the system in discrete limited steps, by turning on and off Hamiltonians
from a set, each moving the system a controlled distance along a predetermined direction in
the Hilbert space. This technique is comparable to a typical classical simulation, where the
simulation model is mapped onto registers and standard gate operations available in a com-
mercial computer, with the help of high-level programming languages and compilers. Some
representative studies on DQS are Terhal and DiVincenzo (2002); Somma et al. (2002); Ver-
straete et al. (2009); a survey on the use of quantum computers for quantum simulation is
presented in Brown et al. (2010).
This approach can be implemented in the circuit model of quantum computation by using

compositions of quantum gates to build a desired Hamiltonian. A seminal work by Lloyd
(1996) shows that any unitary operation can be written in terms of universal quantum gates;
the same work also specifies the conditions necessary for the efficient simulation of quantum
systems on a universal quantum computer, which are detailed below. Therefore, a universal
digital quantum simulator can also be regarded as a quantum computer implementing quan-
tum algorithms for physical modelling of a quantum system. The main advantage of DQS is
precisely this universal character.
The decomposition of arbitrary Hamiltonians may at first seem problematic, since an ar-

bitrary unitary operator requires exponentially many parameters to be specified, which is
not efficient as its simulation will require exponential resources. However, as Feynman had
predicted, any system consistent with general and special relativity evolves according to local
interactions. An Hamiltonian evolution Ĥ over a system with N variables, with only local
interactions, can be expressed as:

Ĥ =
n∑
j=1

Ĥj (6)

Where each Ĥj acts on a limited space of dimension gj containing at most ` of the N
variables. By "local" interactions, the requirement is only that ` remains fixed as N increases;
it is not necessary that the variables are spatially localized, which allows this procedure
to include simulation of several non-relativistic models with long-range interactions. From
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equation (6), the maximum number of distinct terms Ĥj is given by the binomial coefficient
(N` ) < N `/`! which implies that n is polynomial in N . This is an ample upper bound for
many practical cases, since for an Hamiltonian in which each variable interacts with at most
` nearest neighbours, n ' N .
The time evolution operator U = eiHt, with H obtained from expression (6), can be

divided into τ time steps, using the Trotter decomposition method (Trotter, 1959), as eiHt ≈
(eiH1t/τ . . . eiHnt/τ )τ . On a circuit model, this means that the local time evolution is simulated
by local time evolution operators eiH1t/τ , eiH2t/τ and so on up to eiHnt/τ , and repeating τ
times. To ensure that the simulation takes place within some desired accuracy, the time
slicing needs to be regulated according to the Trotter-Suzuki formula (Suzuki, 1993):

eiHt = (eiH1t/τ . . . eiHnt/τ )τ +
∑
j′>j

[Hj′ ,Hj ]t
2/2τ +

∞∑
k=3

err(k) (7)

Where the higher order error terms err(k) are bounded by ‖err(k)‖sup ≤ τ ‖Ht/τ‖
k
sup /k!.

Here,
∥∥∥Â∥∥∥

sup
represents the supremum, or maximum expectation value, of the operator Â over

the states of interest. Taking just the first term in equation (7) to approximate eiĤt results
in a total error less than

∥∥∥τ (eiĤt/τ − 1− iĤt/τ
∥∥∥
sup

. For a given error ε and the second term
of the equation, ε ∝ t2/τ . As such, a first order Trotter-Suzuki decomposition requires that
τ ∝ t2/ε.
Once the accuracy within which the simulation is to take place is fixed, one can check that

the simulation scales efficiently in the number of operations required. The size of the most
general Hamiltonian Ĥj between ` variables is dependent on the dimensions of the individual
variables, but will be bounded by a limiting size g. The Hamiltonians Ĥ and {Ĥj} can be
time dependent as long as g remains fixed. As such, simulating eiHjt/τ requires g2

j operations,
with gj ≤ g. According to equation (7), each local operator Ĥj is simulated τ times, bounding
the total number of operations required for the simulation of eiĤt by τng2. Considering that
τ ∝ t2/ε, the total number of operations, Op, is linearly proportional to

Op ∝ t2ng2/ε (8)

In this equation, only n is dependent on system size N , and from equation (6) it was
established that n is polynomial in N , which proves that the number of operations is indeed
efficient with problem size.
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2.2 towards an efficient implementation of dqs

LLoyd’s proposal for digital quantum simulation of physical systems proves that a general
many-body system can be efficiently simulated in terms of unitary operators with local in-
teractions. While this work was a breakthrough for digital quantum simulation, efficient
experimental implementations of simulation algorithms with current quantum devices require
the observation of stricter conditions, both in terms of algebraic problems such as Hamilto-
nian decomposition and state preparation, and hardware-specific limitations, such as qubit
mapping and error correction.

hamiltonian decomposition Several current models of quantum processors, such
as those studied for experimental purposes in this work (described in section 4.1), have a 2-
dimensional lattice architecture with only nearest neighbor interactions. Consequently, only
one and two-qubit gates can be physically implemented.

Figure 2.: Graphical representation of IBM’s 5-qubit quantum device chip Tenerife, and corresponding
qubit interaction model (IBM, 2018d).

One problem arising from this specification is: given two-qubit Hamiltonians, how can
higher-dimensional qubit Hamiltonians be efficiently approximated?
In Bravyi et al. (2008), the efficient construction of higher order interactions from two-

qubit Hamiltonians is tackled by using perturbation theory gadgets. In general, most unitary
transformations on n, qubits will require an exponential number of gates. However, Bravyi et
al. show that if one restricts the Hamiltonians of both system and simulation to be physically
realistic, i.e. many-body qubit Hamiltonians Ĥ =

∑
j Ĥ

`
j with a maximum of ` interactions

per qubit, and where each qubit appears only in a constant number of the {Ĥ`
j} terms, it

is shown that the simulation is possible using two-body qubit Hamiltonians {Ĥ2
j } with an

absolute error given by nε
∥∥∥Ĥ (`)

j

∥∥∥
sup

; where n is the number of qubits, ε is the precision, and
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∥∥∥Ĥ (`)
j

∥∥∥
sup

is the largest norm of the local interactions. For physical Hamiltonians, the ground

state energy is proportional to n
∥∥∥Ĥ (`)

j

∥∥∥
sup

. This allows for an efficient approximation of the
ground state energy with arbitrarily small relative error ε.

In Raeisi et al. (2012), the first autonomous quantum algorithm for efficient simulation of
Hamiltonian many-body quantum dynamics is presented. The algorithm designs a circuit for
simulating the evolution generated by a general n-qubit `-local Hamiltonian Ĥ (n) withing a
pre-specified tolerance ε that is efficient with the number of simulated qubits for fixed `, and
also scales near-optimally with the run-time t of the simulation. The algorithm specifically
considers the case where the available gate set is composed of a two-qubit entanglement gate
plus a finite number of one-qubit gates. The resultant circuits scale polynomially with the
number of simulated qubits for fixed `, with circuit size scaling near-optimally with the run
time t of the simulation.

qubit allocation The dimension of physically implementable Hamiltonians is not the
only limitation arising from architecture specifications such as demonstrated in fig. 2. The
two-qubit entanglement gates composing the two-qubit Hamiltonians have to obey certain
constraints, namely that certain quantum operations can only be applied to selected physical
qubits (in fig. 2, for example, a two-qubit gate can be directly implemented between qubits
0 and 1, but not between qubits 0 and 3). Consequently, the logical qubits of a quantum
circuit have to be mapped to the physical qubits of the quantum computer such that all
operations can be conducted. Since it is often not possible to determine a mapping such that
all constraints are satisfied throughout the whole circuit, this mapping may change over time.
To this end, additional gates, e.g. realizing SWAP operations, are inserted in order to “move”
the logical qubits to other physical ones. They affect the reliability of the circuit, as each
further gate increases the potential for errors during the quantum computation, as well as the
execution time of the quantum algorithm.
The qubit allocation problem is formally introduced in Siraichi et al. (2018). As of August

2018, the circuit compilation algorithm provided on IBM’s software development for their
quantum devices (IBM, 2018e) is based on random searching for a mapping satisfying all the
constraints, and generally does not cope for circuits rich in two-qubit unitary gates, namely
the set of circuits with gates whose algebra is contained in SU(4), the special unitary group
of 4× 4 matrices with determinant 1. Motivated by this problem, in a very recent work,
Zulehner and Wille (2018) propose and demonstrate a dedicated compiler that satisfies all
the constraints imposed by IBM’s quantum device architectures, allows for arbitrary qubit
mappings, and generally outperforms IBM’s current solutiofn. The provided compiler was
adapted and used in the experimental part of this work.
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state preparation A crucial step in extracting useful results from a quantum simu-
lation is starting with the right description of the system to be simulated, which is encoded
in the initial state. An arbitrary pure state takes exponentially many parameters to specify,
and hence exponential complexity to prepare.
The complexity of quantum circuits is often measured by the number of CNOT gates needed

to perform the desired unitary operation. The reason for counting the number of CNOT
gates is mainly experimental, since most proposed and demonstrated quantum processors
only implement this operation for 2-qubit operations, and their realization is much more
demanding and introduces more imperfections than the realization of one-qubit gates. It is
known that, for a physical gate set composed of CNOT and single-qubit gates, the number
of CNOT gates required to prepare an arbitrary n-qubit quantum state is exponential by
a prefactor c, i.e NCNOT = c.2n. For the (currently) most efficient known algorithm for
arbitrary state preparation, c = 23/24 (Plesch and Brukner, 2011).

Shende et al. (2006) propose a quantum algorithm that prepare an arbitrary n-qubit quan-
tum state that is based on taking the inverse problem, i.e. designing a circuit that takes
the desired pure state and transforms it into the basis state |q1 · · · qn〉 = |0 · · · 0〉, and im-
plementing the inverse operation, which is trivial using quantum gates. This is achieved by
disentangling the least significant qubit into a separable product state |q1 · · · qn−1〉 ⊗ |0〉, and
recursively applying the algorithm to the (n− 1)-qubit state. The algorithm uses 2n−1 − 2n
CNOT gates, resulting in 10 CNOT gates for the 3-qubit state. Use of this algorithm is
illustrated in the 3-qubit implementation (section 4.2.2).
The search algorithm by Grover (1996) can be extended for black-box state preparation.

Soklakov and Schack (2006) demonstrate an algorithm for state preparation with arbitrary
bounded fidelity that is efficient in the number of oracle calls, provided that the state itself can
be described with an efficient (polynomial) number of parameters. Despite being asymptoti-
cally efficient, the number of sub-routines in these types of algorithms means that hundreds
of operations could be necessary to prepare states with even a small amount of qubits. A
more recent work by Sanders et al. (2018) focuses on reducing complexity of black-box state
preparation algorithms for system sizes at the reach of NISQ devices.

quantum error correction Quantum computation is “fragile”. A physical qubit
does not hold its state indefinitely, but undergoes random bit-flips and loses its phase over
time, i.e. undergoes decoherence. To overcome this and maintain a qubit state through
longer times, researchers have come up with several quantum error correction techniques
Knill et al. (2000), working on the principle of encoding a logical qubit within a specific
number of physical qubits. The errors can then be detected and corrected without affecting
the state of the logical qubit, which can hold information for longer than any of its underlying
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physical qubits. The smallest number of physical qubits that can encode and protect a logical
qubit against arbitrary errors is five Laflamme et al. (1996); Bennett et al. (1996).
The quantum threshold theorem Aharonov and Ben-Or (1997) states that there exists a

threshold η0 > 0, such that, for an arbitrary error tolerance ε > 0 an "ideal" quantum circuit Q
operating on n input qubits for t time steps using s one and two-qubit gates can be computed
on a another quantum circuit Q′ in the presence of local noise of error rate η < η0 within
ε total variation distance, with depth, size and width overheads which are polylogarithmic
in n, s, t and 1/ε. Simply put, a quantum computer may efficiently suppress logical qubit
error to arbitrarily low rates only if the required manipulations can be performed with a very
low error, i.e. below a certain threshold. The theorem shows that, for error rates above
the threshold, error correction procedures introduce more errors itself, than what is able to
correct. If one manages to keep error rates under the threshold, the more physical qubits
used to encode a logical one, the greater is the suppression of errors.
This threshold is dependent on the specific error correcting procedure. For one of the

most prominent methods for error correction, called surface code (Fowler et al., 2012a,b) the
threshold sits at approximately 1% (Wang et al., 2010a; Stephens, 2014). Surface code is the
leading quantum error correction, since it requires only a 2-D square lattice of qubits that
can interact with the nearest neighbor, an architecture implemented in several current noisy
quantum computers, including all IBM quantum devices (section 4.1). For surface code error
correction specifically, the minimum number of physical qubits necessary to encode a logical
one is nine Horsman et al. (2012). One downside of surface code error correction is that,
according to the Eastin-Knill theorem (Eastin and Knill, 2009), it cannot reliably achieve a
universal set of gates without additional resources, which results in a stricter threshold for
error correction. These additional resources are composed of high-fidelity ancilla qubits that
need to be consistently produced and discarded, and are called magic states (Bravyi and
Haah, 2012).

2.3 analog quantum simulation

Another way to use quantum mechanics for the simulation of quantum systems is by analog
quantum simulation. Succinctly, it involves taking a quantum system to mimic another by
mapping the Hamiltonian of the system to be simulated, Hsys onto the controlled Hamiltonian
of the quantum simulator, Hsim. Such a device is known as an analog quantum simulator, or
AQS.

Hsys ←→ Hsim (9)

If a mapping between system and simulator is known, it can be used to construct an
operator f such that |φ(0)〉, the initial state of the system, can be mapped to the state of
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the simulator |ψ(0)〉 by taking |ψ(0)〉 = f |φ(0)〉 (this is illustrated in fig. 1). After the
simulation procedure is executed for time t, |ψ(t)〉 can be mapped back to |φ(t)〉 via f−1. For
the Hamiltonians, Hsim = fHsysf

−1.
The choice of a mapping depends on what needs to be simulated and on the degree of

similarity in the dynamics of both systems; because of this, an AQS is generally a dedicated
device restricted to simulating a limited class of quantum systems; the simulator typically
acts as larger and more controllable "toy-model" of the system. Some representative studies
on AQS are Fischer and Schützhold (2004); Porras and Cirac (2004); Zagoskin et al. (2007).
The accuracy of the simulation depends on the extent to which the simulator is able to

reproduce the dynamics of the system to be simulated, since AQSs are usually emulating an
effective many-body theory of the simulated system, they are limited by the extend to which
the theory correctly captures the key physical properties of the system - a wrong model will
always fail to produce meaningful results, no matter how flawless the implementation. It is
in finding and applying the correct mapping that lies a big obstacle for AQS - sometimes
the mapping is straightforward, but this is not always the case, and often researchers have to
devise clever mappings involving additional externally applied fields, or ancillary systems, to
mediate various interactions.
Analog quantum simulators have the advantage of being potentially useful even in the

presence of larger error rates, up to a certain tolerance level. For example, one could use an
AQS to study a quantum system with non-negligible noise and decoherence effects, and check
if they lead to a given quantum phase transition. In this case, a qualitative answer might
still be of interest. Even if the quantum simulator suffers from uncertainties in the control
parameters, the phase transition under study could still be detected.
In comparison with DQS, initial-state preparation and measurement have not been thor-

oughly discussed and are often studied on a case-by-case basis. Because system and simulator
are assumed to be very similar, it is expected that the preparation of the initial state can
occur naturally in processes mimicking the natural relaxation of the simulated system to an
equilibrium state. Furthermore, directly measuring some physical quantity of the simulator
would yield information about its analogue in the simulated system. This may constitute an
additional advantage of analog quantum simulation, since allowing for the direct measurement
of its physical properties eliminates the need for computational processing and manipulation
of results, as it happens with DQS.

2.4 physical realizations

An extensive review of physical implementations and applications of quantum simulations is
presented in Georgescu et al. (2014). One should note that any physical system than can be
used as a quantum computer, such as the IBM devices presented in section 4.1, would also
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work as a universal machine for digital quantum simulation. On the other hand, a quantum
system that is not universal or a potential quantum computer could still implement analog
quantum simulations.

A summary of possible and demonstrated physical implementations of quantum simulators
follows, including distinguishing properties, strengths and main obstacles:

atoms and ions Neutral atoms in optical lattices (fig. 3 A)are well suited for mimicking
solid-state systems, providing the highly desirable properties of being easily tunable and
almost defect-free. A theoretical review (Lewenstein et al., 2007) discusses the potential of
atoms in optical lattices in quantum simulators. Currently, addressing individual atoms in
optical lattices is difficult, because the distance between neighboring lattice sites is comparable
to the best achievable focusing widths of laser beams.

Ions can be trapped by electromagnetic fields, laser-cooled and manipulated with high
precision for quantum simulation (Bohnet et al., 2016). Ion qubits have long coherence times,
on the order of seconds, and sequences of high-fidelity quantum gates have been demonstrated
experimentally (Lanyon et al., 2011).
Atoms in cavity arrays provide an alternative way of simulating the Bose-Hubbard model

and quantum phase transitions, as well as spin models (Kay and Angelakis, 2008). The facility
of single-site addressing, the use of only the natural hopping photon dynamics without external
fields, and the recent experimental advances towards strong coupling, makes the prospect of
using these arrays as efficient quantum simulators promising. As with ions, scaling may be
an issue.

nuclear and electronic spins Nuclear spins, manipulated by nuclear magnetic
resonance (NMR) have been among the first experimental demonstrations of quantum algo-
rithms and quantum simulation (Peng et al., 2009). Nuclear spin qubits have long coherence
times, over 1 second, and high-fidelity quantum gates. Despite benefiting from well developed
control techniques, NMR is not very flexible, and its main obstacle, as with most proposed
implementations, is the lack of scalability.
Electron spins in semiconductor quantum dots (Hensgens et al., 2017) allow for flexible

control over the confinement potential and can be excited optically. Since quantum dots
with large tunnel coupling can act as "artificial molecules", they are particularly attractive for
quantum simulation in chemistry (Lent et al., 2003). Quantum dot qubits benefit from similar
decay times as nuclear spins, but may provide an advantage due to the very low temperatures
(relative to the Fermi temperature) that can be reached and the natural long-range Coulomb
interaction.
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superconducting circuits Superconducting circuits (You and Nori, 2011) have
become a leading platform for the implementation of quantum information tasks. Quantum
information can be encoded in different ways: in the number of superconducting electrons on
a small island, in the direction of current around a loop, or oscillatory states of the circuit (fig.
3 H). Although macroscopic in size, these circuits display quantum behavior and can be seen
as "artificial atoms", with the added advantage of being designed to tailor their characteristic
frequencies and interaction strengths. State-of-the-art circuits have coherence times exceeding
100µs, which is quite high considering the energy scales of the circuit are in the range of MHz
up to 10 GHz. The fact that superconducting circuits can be produced in large numbers and
"wired" together on a chip may facilitate the simulation of several lattice geometries.

Despite being a more recent and a comparatively less mature technology than trapped
atoms/ions, or nuclear/electronic spins, superconducting quantum computing is in the basis
of the currently most prominent private ventures into physical implementations of quantum
computers, with research conducted separately by IBM (2016), Google (Castelvecchi, 2017),
and Intel (2017).

other systems Photons can carry quantum information over long distances, hardly
being affected by noise or decoherence. A serious drawback over optical implementation of
qubits is the difficulty in implementing two-qubit gates and general entanglement procedures
in the context of quantum computation, which limits flexibility and scalability of this approach.
Nonetheless, entanglement with up to 8 photons has been experimentally demonstrated (Yao
et al., 2012).
Other, less known, candidates for the implementation of quantum computation include NV

centers in diamonds (Childress and Hanson, 2013), electrons trapped on the surface of helium
(fig. 3 I) (Mostame and Schützhold, 2008), or chains of molecular nanomagnets controlled by
external magnetic fields (Santini et al., 2011).
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Figure 3.: One-dimensional or 2D arrays of qubits, plus control, could be used for the simulation of
various models in condensed-matter physics. Examples of physical implementations that
could implement such simulators include: atoms in optical lattices (A); 1D (B) or 2D (C)
arrays of cavities; ions in linear ion chains (D); 2D arrays of planar traps (E); 2D Coulomb
crystals (F); electrons in quantum dot arrays (G), in arrays of superconducting circuits (H),
or trapped on the surface of liquid helium (I) (Buluta and Nori, 2009).

2.5 applications

Quantum simulators have numerous known applications in diverse areas of physics and chem-
istry (Lanyon et al., 2010), and even biology (Åqvist and Warshel, 1993; Dror et al., 2012).
A summary of applications grouped by scientific fields of physics follows.

condensed-matter physics One widely studied application of quantum simulations
is the simulation of models in condensed matter physics. For several models in this class, an
array of qubits plus their controls would make an ideal quantum simulator, since it can be
thought of as a simplified, magnified lattice structure of a solid, that can be manipulated in
different ways to test various models, such as changing the dimensionality or geometry of the
array. Such an array could be realized, for example, with atoms in optical lattices (Preiss
et al., 2015), atoms in arrays of cavities (Qin and Nori, 2016; Angelakis et al., 2007), ions in
microtrap arrays (Chiaverini and Lybarger Jr, 2008), or in two-dimensional crystals (Porras
and Cirac, 2006), or even with electrons in arrays of quantum dots (Byrnes et al., 2008). The
simulator’s control fields can be applied individually or to the entire array, directly realizing
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the desired Hamiltonian (AQS) or reconstructing it out of one and two-qubit gates (DQS). The
larger distances between qubits, relative to the simulated lattices, make quantum simulators
more controllable and easier to measure. The magnification factor may reach three orders of
magnitude. A representation of these examples is shown in figure 3.
Specifically, quantum simulators can help with current challenges in understanding models

such as:

a) Hubbard model, which is the simplest model of interaction of particles on a lattice. For
larger numbers of particles in more than one dimension, the model is difficult to treat
with classical resources. Somma et al. (2002) considers the simulation of the Hubbard
model in the context of DQS.

b) Spin models, used in physics mainly to explain magnetism, can be studied both through
DQS (Lanyon et al., 2011; Tsomokos et al., 2010) or AQS (Monroe et al., 2015).

c) Quantum phase transitions describe an abrupt change in the ground state of the many-
body system governed by its quantum fluctuations. They are an interesting and im-
portant subject, even if difficult to investigate both through classical simulation or
experimental methods. A recent, 53-qubit analog simulation for the observation of this
phenomenon was demonstrated recently (Zhang et al., 2017).

d) Disordered and frustrated systems. Disordered systems appear in many difficult prob-
lems in condensed-matter physics, such as transport, conductivity, spin glasses and
some models of high-TC superconductivity (De Nicola et al., 2014). Geometric frustra-
tion refers to the regime in which the geometric properties of the crystal lattice forbid
the simultaneous minimization of all the interaction energies acting in a given region.
As an example, a proposal making use of photon quantum simulation has been put
forward (Ma et al., 2014).

e) Spin glasses typically occur when the interactions between spins are ferromagnetic for
some bonds and anti-ferromagnetic for others, which causes spin orientation to become
random and almost "frozen" in time. How much speedup may be gained with the use
of quantum simulation is not a trivial question (Heim et al., 2015). There are analog
simulation proposals for specific models (Tsomokos et al., 2008).

f) Superconductivity. The high-temperature superconductivity of compounds containing
copper-oxide planes, for example, is still a puzzle that might be solved using large-scale
simulations. The CuO2 plane in a high-TC superconductor could be studied through
AQS using arrays of quantum dots (Manousakis, 2002).

high-energy physics The field of high-energy physics has also seen developments as
an application of quantum simulators; Boghosian and Taylor IV (1998) originally suggested
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of the use of quantum simulators for the study of relativistic quantum systems, such as gauge
fields or Dirac fermions. Zitterbewegung (i.e. the hypothetical rapid oscillatory motion of
elementary particles obeying the Dirac equation) has been simulated with a trapped ion
(Gerritsma et al., 2010). The simulation of gauge theories, a very computationally intensive
problem, has also been experimentally demonstrated on quantum devices (Martinez et al.,
2016).

cosmology Analog models of gravity and cosmology models could also benefit from
the use of quantum simulation. Studies have been made on the analogue of cosmological
particle creation with trapped ions (Fey et al., 2018), or the analogue of quantum field effects
in cosmological spacetime (Menicucci et al., 2010). Furthermore, the analogues of Hawking
radiation could be investigated with several options, such as atoms (Giovanazzi, 2005) or
superconducting circuits (Nation et al., 2009).

atomic physics As mentioned in section 2.4, there are deep parallels between natural
atoms and the atom-like properties formed by electrons in superconducting circuits. While
natural atoms are driven using visible or microwave photons to excite electrons, these "artificial
atoms" are driven by currents, voltage and microwave photons, allowing for the control of
electron tunneling across Josephson junctions. This allows for the tuning of properties such
as dipole moment or particular transition frequencies. Superconducting circuits can be used
to test Bell and Mermin inequalities (Alsina and Latorre, 2016), Schrödinger-cat states, or
study Landau-Zener-Stückelberg interferometry (Shevchenko et al., 2010). Simulation of the
Schrodinger equation may be used to find the allowed energy levels of quantum mechanical
systems such as atoms (as is discussed in detail and experimentally demonstrated in section
4.2), or transistors.

quantum chemistry With the rising availability of quantum processors in this decade,
interest in quantum simulation for quantum chemistry has greatly increased, quickly becoming
one of its most anticipated applications (Mueck, 2015). Currently known exact first-principles
calculations of molecular properties are intractable because their computational cost grows
exponentially with both the number of atoms and basis set size. Lu et al. (2012) review
the theory and early forays into experimental quantum simulation in quantum chemistry.
An efficient quantum simulation of molecular energies was demonstrated experimentally by
O’Malley et al. (2016). Promising experimental research into determination of molecular
ground states has been recently demonstrated, through both analog (Argüello-Luengo et al.,
2018) and digital quantum simulations (Hempel et al., 2018).
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other applications Classical simulation of the dynamics of open quantum systems
is even more costly than that of closed quantum systems, since solving the Lindblad equation
requires quadratically more resources than the Schrödinger equation for the same quantum
system. As suggested by Lloyd (1996), one could explore the natural noise and decoherence
properties of the simulator to aid in the simulation of open quantum systems. For instance,
if the noise level of the simulator is lower than the noise level of the simulated system, it is
straightforward to artificially supplement noise in the simulator to achieve a more faithful
simulation; this concept has been demonstrated experimentally (Li et al., 2013). General
methods for simulating the markovian dynamics of open quantum systems have also been
investigated (Wang et al., 2011; Di Candia et al., 2015).
Several other topics in physics research are being discussed in the context of quantum sim-

ulation, such as boson sampling (Moylett and Turner, 2018), dynamical maps and transitions
to quantum chaos (Schindler et al., 2013), neutrino oscillations (Di Molfetta and Pérez, 2016),
or brownian motion (Maniscalco et al., 2004). Quantum mechanical models of biological pro-
cesses also stand to benefit from the advancement of quantum simulation technology (Dorner
et al., 2012), and experimental simulations have been demonstrated (Pearson et al., 2016).

2.6 summary

This chapter presents the theory behind the concept of quantum simulation, i.e. the use of a
controllable quantum system to simulate another quantum system. An overview of physical
implementations and applications of quantum simulators is shown.
An analog quantum simulation involves taking a quantum system and manipulating its

Hamiltonian so it is possible to map it into the Hamiltonian of a system to be simulated;
the simulator is thus restricted to simulating a limited class of systems. A digital quantum
simulation may be performed by a quantum computer (which is regarded as a universal
quantum simulator) by discretizing the time evolution of the system and encoding its state
into a set of quantum bits.
Digital simulation of an Hamiltonian is, in theory, efficient up to an arbitrary degree of

error. However, when discussing a truly efficient experimental implementation on current
quantum computers, other steps comprising a simulation need to be taken into account, such
as state preparation, unitary decomposition, qubit mapping and error correction.
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QUANTUM CHARACTERIZAT ION , VER IF ICAT ION AND
VAL IDATION

While the computational power of quantum simulation opens a new field of possibilities in
science, it also comes with an important challenge: that of checking the accuracy of the
simulation, particularly when a classical efficient simulation is not available.

In case of a quantum computation that solves a problem in NP, one can in retrospect ef-
ficiently verify the solution by classical means. However, not all interesting problems which
quantum computation might solve are decision problems. One particularly important ques-
tion, in quantum simulation particularly, is whether one has achieved a desired quantum
state preparation. It may also be useful to obtain information about intermediate steps of a
quantum computation or simulation.
In the context of checking the results of a quantum computation or simulation, several

approaches have been discussed in the literature, each with different motivations and goals,
requirements, and varying degrees of complexity. Quantum procedures designed to certify
and calibrate designed performance fall into the general term of quantum characterization,
verification and validation protocols (QCVV). With respect to the aim of the procedure, this
work distinguishes between the three concepts.

Characterization of a quantum state aims to fully determine the mathematical description
of the state. Characterization of a quantum process aims to determine the dynamics, prop-
erties and qualities of the quantum operation. These techniques, by definition, return the
greatest amount of information about a given quantum state/process, but typically require
more resources. They include quantum state tomography and quantum process tomography
techniques, as well as randomized benchmarking.
Verification, or certification, procedures for quantum devices aim to check the correctness

of the simulation, providing an answer to the question: is the device working precisely as
anticipated?. These procedures allow the verifier to test just how reliable a given simulator is,
providing a degree of trust in the computation or simulation itself.
Validation protocols aim to check the validity of solutions, i.e. did the simulation produce a

valid solution?. A validation protocol aims to check the validity of a particular set of results
from a computation or simulation experiment.

24
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These concepts are not mutually exclusive, and a given procedure may address more than
one of these definitions (e.g. quantum process tomography not only characterizes a given
quantum process, but may also be used to verify it’s fidelity or entanglement capabilities,
among other quantities); there is no definitive consensus on how to categorize QCVV tech-
niques in the literature, and there is also some overlap between the concepts themselves. This
is due to the multidisciplinary approach and different motivations behind several techniques,
which may find their roots in fields such as physics and engineering, or computational science
and complexity theory.
In this chapter, some techniques that are relevant to the experimental work performed

are discussed in greater detail. At the end of the chapter, other techniques are presented
which may not have been demonstrated yet, but show some promise due to their higher
sophistication, potential, or generally lower complexity requirements with system size.

3.1 quantum state tomography

Quantum state tomography is a general notion describing a set of procedures and statistical
methods, using experimental data from a set of measurements, to fully determine a density
matrix ρ describing an unknown quantum state in a finite-dimensional Hilbert space.
A density matrix ρ allows for a mathematical description of both pure and mixed quantum

states. While a pure quantum state may be fully described by a ket vector, a mixed quantum
state is a statistical mixture of pure quantum states |ψi〉, each one occurring with probability
pi; this is different from a quantum superposition, which occurs due to quantum phenomena
and exactly describes the state. By contrast, a mixed state is a combination of probabilities
of each possible quantum state, and it useful in cases where one has insufficient information
about the state, i.e. when one part of the quantum system is inaccessible, or when noise and
decoherence processes occur. A density matrix is mathematically described as:

ρ =
∑
i

pi |ψi〉 〈ψi| (10)

A density matrix ρ has properties: tr(ρ) = 1 (i.e. the probabilities pi sum to 1), and
ρ = ρ†, ρ � 0 (i.e. all eigenvalues are real and non-negative). tr(A), representing the trace
of an n× n matrix A, is defined to be the sum of the elements on the main diagonal of A:
tr(A) =

∑n
i=1 aii = a11 + a22 + · · ·+ ann.

A single copy of an unknown state does not allow for its characterization, even if the state
is that of a single qubit, since no single measurement can distinguish between non-orthogonal
quantum states such as |0〉 and (|0〉+ |1〉)/

√
2 with certainty. To estimate ρ with arbitrary

precision, the source system should be able to consistently repeat the preparation of the
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same quantum state, and the measurements must be tomographically complete, i.e. the
measurement operators must form an operator basis on the system’s Hilbert space.

Figure 4.: Set of tomographically complete measurements for a single qubit state q[0] after application
of a single Hadamard gate, in the Z, Y and X basis (Coles et al., 2018).

For example, a density matrix describing a single qubit system can be written as:

ρ =
tr(ρ)I + tr(Xρ)X + tr(Y ρ)Y + tr(Zρ)Z

2 (11)

Where tr(Aρ) is interpreted as the average value of observable A. To estimate it, the key
is to measure the observable a large number of times. For example, the estimation of tr(Zρ)
involves measuring the observable Z, m times, each time obtaining an outcome zi equal to
+1 or -1. One can calculate the average of these quantities as

∑
i zi/m, and use it as an

estimate for the value of tr(Zρ). According to the central limit theorem, with large m this
estimate approximates to a Gaussian distribution with mean tr(Zρ) and standard deviation
∆Z/

√
m, where ∆Z is the standard deviation for a single measurement in Z, which is upper

bounded by 1. The standard deviation for the estimate is then 1/
√

2. The quantities tr(Xρ)
and tr(Y ρ) can be estimated by repeating the procedure for these observables, allowing one
to obtain an estimate for ρ with a degree of confidence dependent on the sample size.

Equation (11) can be generalized to an arbitrary density matrix on n qubits as:

ρ =
∑
~vk

tr(σv1 ⊗ · · · ⊗ σvnρ)σv1 ⊗ · · · ⊗ σvn
2n (12)

With sum occurring over vectors ~vk = (v1, · · · , vn) where the entries vi are chosen from the
set 0, 1, 2, 3 corresponding to the Pauli operators, which can be represented mathematically
as:

σ0 =

(
1 0
0 1

)
; σ1 =

(
0 1
1 0

)
; σ2 =

(
0 −i
i 0

)
; σ3 =

(
1 0
0 −1

)
; (13)

Here, {σ0,σ1,σ2,σ2} correspond to the observables {I,X,Y ,Z}, respectively. For each vec-
tor ~v, describing a measurement operator, there are two measurement outcomes, and each can
be taken as projector Ek. The set of Ek form a Positive Operator-Valued Measure (POVM),
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satisfying
∑
Ek = I. Admitting we have m measurements for each operator, with mj occur-

rences for each projector, the measurement frequency ωj can be determined as ωk = mj/m.
The problem of characterizing a quantum state can now be defined as that of reconstructing
ρ from the coupled set of projectors and measurement frequencies, {Ek,ωk}, i.e. matching
tr(Ekρ) and ωk. Several methods have been researched:

linear inversion This method, derived from Born’s rule (Born, 1926), is in practice
the simplest for quantum state tomography, and it aims at determining the density matrix ρ
by inverting the system of equations tr(Eiρ) = ωi.

For a measurement outcome projector Ei and the density matrix ρ describing the system,
Born’s rule states that the probability of obtaining outcome Ei is given by P(Ei|ρ) = tr(Eiρ).
Given a histogram of observations for each measurement, one can use the measurement fre-
quency ωi as an approximation, pi = ωi, to P(Ei|ρ) for each Ei:

E1 · ρ
E2 · ρ
E3 · ρ

...

 =


P(E1|ρ)
P(E2|ρ)
P(E3|ρ)

...

 ≈

p1

p2

p3
...

 = ~p (14)

One can then invert the system of equations to determine ρ. Although relatively fast, this
method does not guarantee a valid density matrix, since it might contain negative eigenvalues,
or return a sum of probabilities surpassing 1.

linear regression This approach aims at correcting the disadvantages of linear inver-
sion and minimizing computational complexity, by converting the quantum state tomography
problem into a constrained quadratic optimization problem to obtain an estimation ρ̂ of the
density matrix:

ρ̂ = argmin
ρ

∑
i

[tr(Eiρ)− ωi]2 s.t. tr(ρ) = 1 and ρ � 0 (15)

Where argmin
ρ

corresponds to the density matrix ρ for which the succeeding expression

attains its lowest value. With linear regression the current estimation can be updated as the
data is processed, reducing space requirements since not all terms need to be stored. However,
the function takes the assumption that the residuals are Gaussian-distributed, which does
not hold for a finite number of measurements. A proposal for a linear regression estimation
procedure is presented in Qi et al. (2013).
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maximum likelihood First proposed in Hradil (1997), maximum likelihood estimation
algorithms are currently the most popular and researched methods of estimation. As with
linear regression, the domain of the density matrices is restricted to the proper space, but
the aim is at finding the density matrix which maximizes the likelihood function to the
experimental results. Admitting the measured states {|ψi〉 〈ψi|} (each corresponding to a
projector Ei) have been measured with frequencies ωi, the likelihood, L(ρ′) associated with
a given state ρ′ is

L(ρ′) =
∏
i

〈ψi| ρ′ |ψi〉ωi (16)

The problem can be framed as that of maximizing the log-probability of observations (James
et al., 2005), i.e.:

ρ̂ = argmax
ρ

∑
i

ωi ln tr(Eiρ) s.t. tr(ρ) = 1 and ρ � 0 (17)

Finding the expression of ρ for which this function attains its maximum value is non-
trivial, and generally involves iterative methods. Maximum likelihood estimation is often
stated to be comparatively slow (Scholten and Blume-Kohout, 2018), and recent research has
attempted to find faster, less resource-intensive procedures for this method. In this work, the
maximum likelihood estimation method proposed by Smolin et al. (2012) was implemented
experimentally and is detailed in section 4.3.

other state tomography methods With the rising interest in quantum compu-
tation, several other types of quantum tomography procedures have been explored. Bayesian
mean estimation methods address some of the problems of maximum likelihood estimation,
by starting with a likelihood function but also allowing for a function describing the exper-
imenter’s prior knowledge about the system, which serves as a weight. The technique also
provides optimal solutions which are honest in the sense that error bars are included in
the estimate. In practice, it is not always clear how to choose these priors; Markov Chain
Monte Carlo methods are known to be analytically intractable. However, recent research on
Bayesian approaches (Kravtsov et al., 2013) have shown some encouraging results. A review
and experimental demonstration of Bayesian estimation for quantum tomography is provided
in Granade et al. (2016).
The methods described above use predetermined sets of measurements. One can try to

benefit from using the information about the unknown state, obtained from the previous
measurements, to optimize the next ones. This technique forms a new class of interactive
tomography methods with a stronger focus on optimization and reducing computational com-
plexity called adaptive quantum tomography; an overview is given in Straupe (2016).
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In data science, machine learning methods have shown promising results in compressing
high-dimensional data into low-dimension representations. The same principle may be applied
to quantum tomography procedures, which can make use of machine learning and neural
network algorithms, for more efficient data processing. Such a procedure is demonstrated in
Torlai et al. (2018).

While the reconstruction of an unknown state may be useful in itself, state tomography
techniques also allow to quantitatively evaluate the quality of a given state preparation. To
measure the "closeness" between a state reconstruction and a desired pure quantum state, the
quantum state fidelity function may be used.

Definition 3.1. The quantum state fidelity F (ψ, ρ) between a pure quantum state |ψ〉 and
a density matrix ρ is expressed as:

F (ψ, ρ) =
√
〈ψ| ρ |ψ〉 (18)

For any two ψ and ρ, 0 ≤ F (ψ, ρ) ≤ 1, with F (ψ, ρ) = 0 for two orthogonal states, and
F (ψ, ρ) = 1 if ψ and ρ represent the same quantum state.

A reconstructed state can also be measured for its purity, which can be held as a metric
for the introduction of noise processes during a computation/simulation particularly if the
desired final state is expected to be pure.

Definition 3.2. The purity γ of a quantum state represented by a density matrix ρ is a
scalar expressed as:

γ ≡ tr(ρ2) (19)

With tr(ρ2) representing the trace of the squared density matrix ρ. For any density matrix
ρ representing a state in the Hilbert space with d dimensions, the purity is bounded by
1
d ≤ γ ≤ 1, with the lower bound representing a completely mixed state and γ = 1 for a pure
state.
In general, full tomography of quantum states is computationally intensive, since the set

of measurement operators grow linearly with the number of dimensions of a system’s Hilbert
space, which grows exponentially with the number of qubits. Some techniques have been
devised which sacrifice accuracy for lighter resources, but quantum tomography of multi-
qubit states remains a very hard task, and it has not been experimentally demonstrated for
states with over 14 qubits (Straupe, 2016). In Lanyon et al. (2017), a state tomography
technique is provided which scales polynomially with system size, but it is restricted to state
which can be written in the form of a matrix product state, whose description increases only
polynomially with system size.
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3.2 quantum process tomography

Quantum process tomography (QPT) allows for the characterization of the dynamics of a
quantum system, which may then be checked against the mathematically predicted model for
the system. It is the quantum analogue of system identification of classical systems, and it
may be used, for example, to characterize the performance of an implemented quantum gate,
or different noise processes in a system.
The first approach to performing quantum process tomography was proposed in Chuang

and Nielsen (1997) and involves preparing an ensemble of quantum states, sending them
through the process, and using quantum state tomography to identify the resultant states.
The experimental procedure is as follows: for a system with a state space of d dimensions, d2

pure orthogonal quantum states |ψ1〉 , · · · , |ψd2〉 are chosen so that the corresponding density
matrices form a basis set for the space of matrices. Each state |ψj〉 is prepared and subjected
to the quantum process in study. After the operation, one can use quantum state tomogra-
phy techniques to determine the output state E(|ψj〉 〈ψj |). After repeating the process for all
chosen states, the quantum operator E is determined by a linear extension to all states; addi-
tional processing is necessary to obtain a mathematical representation of the linear mapping
from the experimental data.
Considering that the operator E maps an initial density matrix ρin to an output density

matrix ρout, i.e.:

ρin → ρout ⇒ ρin →
E(ρin)

tr(E(ρin))
(20)

One can use a set of operation elements Ai to describe the operator using a so called
operator-sum representation:

E(ρ) =
∑
i

AiρA
†
i (21)

To relate the operation elements to measurable parameters, it is convenient to consider a
description of E using a fixed set of operators Ãi which form a basis for the set of operators on
the state space: Ai =

∑
m aimÃm for some set of complex numbers aim which allows equation

(21) to be written as:

E(ρ) =
∑
mn

Ãm ρ Ã
†
n χmn (22)

Where χmn ≡
∑
i aimain is an error correlation matrix which is positive Hermitian by

definition. This shows that E can be completely described by a complex number matrix, χ,
once the set of operators Ãi has been fixed. In general, χ will contain d4 − d2 independent
parameters, because a general linear map between d×dmatrices is described by d4 parameters,
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but there are d2 additional constraints due to the fact that the trace of ρ sums to 1. For each
input state density matrix ρj = |ψj〉 〈ψj |, the operator E(ρj) can be expressed as a linear
combination of the basis states ρk:

E(ρj) =
∑
k

λjkρk (23)

Since E(ρj) is known from performing quantum state tomography on the set of output
states, λjk can be determined. From equation (22) on may write:

Ãm ρj Ã
†
n =

∑
k

βmnjk ρk (24)

Where βmnjk are complex numbers determined from the Ãm and the ρj operators. Combining
equations (23) and (24), and since each ρj is independent, it follows that for each k:

∑
mn

βmnjk χmn = λjk (25)

This relation is a sufficient condition for the matrix χ to give the correct quantum operation
E ; λjk is obtained from equation (23), and χ can be determined as:

χ = β−1 λ (26)

One may think of χ and λ as column vectors of dimension d4× 1, and β as a d4× d4 matrix
with columns indexed by mn and rows indexed by ij.

Concurrently to the work by Nielsen and Chuang, Poyatos et al. (1997) describes a pro-
cedure for the complete characterization of a quantum process in an open quantum system,
particularly for the case of a universal two-qubit gate. The procedure can be scaled to a
quantum gate involving an arbitrary number of qubits, since it has been shown that any com-
putation on a universal quantum computer can be decomposed using only one and two-qubit
quantum gates.
The methods of process tomography described above may be thought of as indirect meth-

ods of characterization of quantum dynamics, since they require the use of quantum state
tomography to reconstruct the quantum process.
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Figure 5.: Bloch sphere representation of quantum tomography procedures; a) quantum state tomog-
raphy aims to characterize a quantum state preparation, by subjecting the state to a set
of well calibrated measurements; b) quantum process tomography aims to reconstruct a
description of a unitary operation, by reconstructing the output states (e.g. using state
tomography) for a set of well-characterized input states (Ringbauer, 2017).

By contrast, direct methods of characterization of quantum dynamics provide a full charac-
terization of quantum systems without any state tomography. A review and resource analysis
for different strategies of quantum process tomography is given in Mohseni et al. (2008).
When applying quantum process tomography techniques to evaluate the performance of a

quantum operation, the resulting mathematical description of the operation may be used in
performance metrics such as gate fidelity, which measures the extent to what an experimen-
tally implemented operator matches an ideal one.

Definition 3.3. Average gate fidelity between an experimentally implemented operation E
and an ideal operation U , for a set of input states |ψ〉 is given by the expression:

FG(U , E) = 〈ψ|U † E(|ψ〉 〈ψ|)U |ψ〉 (27)

Gate fidelity values are bounded by 0 ≤ FG ≤ 1, with 0 meaning a completely orthogonal
operation to the ideal one, and FG(U ,U) = 1. One may chose, instead, to estimate a minimum
quantum gate fidelity by simply using the input |ψ〉 for which gate fidelity attains is lowest
value.

As with quantum state tomography, general quantum process tomography techniques are
very resource intensive, since they scale polynomially with the number of dimensions of the
Hilbert space of the system, which itself grows exponentially with system size, i.e. number of
qubits. This means general quantum process tomography is not efficient.

3.3 randomized benchmarking

An important challenge of quantum computing experiments is to physically realize gates that
have low error. From the quantum threshold theorem and the prospect of fault tolerant quan-



3.3. Randomized benchmarking 33

tum computing, the need for error rates below 10−2 becomes evident; the current consensus
is that one should aim for error rates below 10−4 to avoid excessive resource overhead.
A possible approach to verifying error rates of a quantum gate is to use process tomogra-

phy to characterize it and establish its behavior. This requires that the single-qubit gates
and measurement operators employed in the procedure have lower error than the bound to
be established on the gate under study, which makes QPT particularly sensitive to state
preparation and measurement errors. Additionally, complete quantum gate characterization
rapidly becomes experimentally intractable due to the exponentially large Hilbert space. To
characterize error rates, however, a full mathematical description of the operation is not
necessary.
Randomization has been suggested as a tool for characterizing features of quantum noise

in Emerson et al. (2005). The authors propose implementing random unitary operators U
followed by their inverses U−1. Under the assumption that the noise model can be represented
by a quantum operation acting independently between the implementations of U and U−1,
the effect of the randomization is to depolarize the noise. The average fidelity of the process
applied to a pure initial state is the same as the average over pure states of the fidelity of the
noise operation.
Randomized benchmarking (RB), as proposed in Knill et al. (2008), is designed for the

estimation of average gate fidelity and simplifies this procedure by restricting the unitaries
to Clifford gates and by not requiring that the sequence is strictly self-inverting. It is specifi-
cally tailored to compensate for preparation and measurement errors by considering only the
exponential decay of sequences of random gates, but it comes at the cost of only obtaining
information about the average gate error over the Clifford group, although some alternative
approaches have been recently devised for extending RB to estimate the error of a single,
arbitrary gate (Magesan et al., 2012).
A straightforward procedure for randomized benchmarking of a quantum processor can be

outlined in three steps:

1. Perform a randomly chosen sequence of Clifford gates that ought to return the processor
to its initial state;

2. Perform a measurement at the end of each sequence to see whether the device returned
to the initial state; repeat steps 1 and 2 for a number of sequences;

3. Plot the observed "survival" probabilities against sequence length, and fit the results to
an exponential decay curve. A decay rate r is then estimated from increase in error
probability of the final measurements as a function of sequence length.

The generally accepted theory behind randomized benchmarking suggests that, for small
error rates, r is approximately equal to the average, over all n-qubit Clifford gates, of gate
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infidelity between the experimentally implemented gates and their ideal counterparts. Average
gate infidelity is simply 1− FG, the average gate fidelity as expressed in definition (3.3). A
discussion on the actual significance of r and how it relates to average rate infidelity is
presented in Proctor et al. (2017).
The reported gate errors for the quantum devices detailed in section 4.1 were obtained from

the randomized benchmarking procedure detailed in Gambetta et al. (2012), which accounts
for errors arising from cross-talk and unwanted interactions in multi-qubit systems. For a
system with n qubits and dimension size d = 2n, with a decay rate r from the exponential fit
to the data obtained from the randomized benchmarking procedure, the average error rate η
is estimated as:

η =
(d− 1)(1− r)

d
(28)

In Sanders et al. (2015) it is shown that the upper and lower bounds for actual quantum gate
error rates may vary greatly and should be taken into account for estimations of gate errors
in the context of the quantum threshold theory. These bounds can me made more accurate
by making use of a proposed quantity called "Pauli distance", estimated from verification
procedures akin to randomized benchmarking.
Randomized benchmarking provides a method for benchmarking the set of Clifford gates

that is efficient with the number of qubits. While benchmarking the full unitary group would
be ideal, this is an inefficient task since just generating a Haar-random unitary operator is
inefficient in n. However, since the unitary group can be generated by adding just one single-
qubit rotation not in the Clifford group, a benchmark for the Clifford group can actually
provide useful information regarding a benchmark for a generating set of the full unitary
group. In addition, it has been shown that any unitary operation can be implemented using
Clifford gates, and single-qubit ancilla state (Bravyi and Kitaev, 2005).

3.4 other verification and validation methods

The experimental, and data post-processing, requirements of full quantum tomography have
made the study of alternative validation methods an active field of research in the last decade.
The broad range of approaches stems for the multidisciplinary nature of quantum information
and computation itself and it has been found that several concepts around validation and
verification of classical systems can be translated into the quantum mechanical systems.

With the aim of verifying the preparation of a desired quantum state ρ by an experimental
quantum system, (Flammia and Liu, 2011) propose the preparation of a number of copies of
the state, which are then measured in a random subset of Pauli observables chosen according
to an "importance weighting" rule, i.e. by selecting Pauli operators that are most likely to
detect deviations from ρ. Although, for a system with n qubits, there are 4n distinct Pauli
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operators, sampling a constant number of them is enough to estimate the fidelity F (ρ,σ)
up to a constant additive error, for an arbitrary σ produced experimentally. The number of
repetitions for each measurement depends on the state ρ, and in the worst case, it is O(2n)1,
being much smaller in various cases of interest, such as stabilizer states, where it is constant,
or the W state, where it is quadratic with n. Note however, that the procedure depends on
having a theoretical ideal state ρ which will be compared against the experimental results.

Similar findings were independently demonstrated in da Silva et al. (2011), where the au-
thors distinguish between two types of characterization: certification, which consists of esti-
mating the fidelity between an experimental device and some theoretical target; and learning,
which consists of identifying the theoretical description from a restricted set of possibilities
that best matches the experimental data. For some "variational" states that can be specified
with a small number of parameters, examples where these parameters can be extracted di-
rectly from experiments are provided. It is also shown that stabilizer states and Clifford group
operations can be learned efficiently. For systems evolving according to local Hamiltonians,
with ∂

∂t ρ̂ = Gρ̂, the time evolution generator G can be learned with a number of experimen-
tal settings growing linearly with the system size, and a polynomial classic postprocessing
complexity.
Other proposals are rooted in concepts from computational complexity theory, such as

interactive proof systems. In an interactive proof system, a computer is modelled as the
exchange of messages between two parties: a computationally weak, i.e. polynomial verifier,
can interact with a more powerful but untrusted prover. In Aharonov et al. (2017), a quantum
interactive proof protocol is devised, where the experimentalist is not purely classical but can
store and manipulate a constant number - 3, at most - of qubits, exchanging them with
an arbitrary quantum system (fig. 6.a). Moreover, it is proven that this relaxed version of
quantum interactive proofing (QPIP*) contains all problems in the class BQP. It remains to
be found whether or not a completely classical verifier can use quantum interactive proofing
to test quantum evolutions efficiently.

1 The Big O notation describes the limiting behaviour of a function using asymptotic analysis. Here, it is used
to bound the performance of the procedure in terms of measurement operations as a function of qubit number.
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Figure 6.: Different protocols for private quantum computing (Fitzsimons, 2017); a) Quantum inter-
active proof protocol considered by Aharonov et al. (2017) in which the client has access
to a quantum computer capable of performing arbitrary operations on a constant number
of qubits; b) Blind quantum computing setting proposed by Childs (2001), where the the
client has a large quantum memory together with the ability to perform Pauli operations on
qubits and to transmit them to the server; c) BQC protocol where the client communicates
through classical channels with two non-communicating servers who share some entangled
particles (Broadbent et al., 2009).

Blind quantum computation protocols (Fitzsimons, 2017) emerged from the need to securely
delegate quantum computation to an untrusted device while maintaining the privacy of the
computation; despite having different motivations, BQC is similar, in intuition, to QPIP. BQC
is even more relevant considering that current developments in quantum computation are
centralized - access is provided on the cloud, and computations are delegated to these devices
through the Internet. Despite its original goal, many BQC protocols also allow for verification
of the computation being performed, by embedding hidden tests in the computation. While
the ultimate goal in this area is to devise a BQC protocol which could be implemented
between a client with no quantum capabilities and a single quantum server, progress has
come by relaxing the restrictions to an ideal BQC protocol. Current proven protocols include
settings where the client has access to some quantum computational power (fig. 6.b), or
settings which allow for a purely classical client and multiple non-communicating quantum
servers (fig. 6.b). As with QPIP, it remains an open question whether BQC is possible with
a single quantum server, and a classical client.
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3.5 summary

The experimental and conceptual approaches to the problem of validating a quantum com-
putation/digital quantum simulation are multidisciplinary, and in this dissertation they are
grouped into an umbrella term: quantum characterization, verification and validation tech-
niques (QCVV).
This section focuses on specific techniques, such as quantum state tomography, which allows

for the full characterization of a quantum system by requiring repeated copies of the system
which are then measured over different operators. Similarly, quantum process tomography
allows for the full characterization of a quantum process, e.g. by preparing different quan-
tum states and creating a mapping of the transformations over the measured states. These
techniques are inefficient since they scale exponentially with the number of qubits; they are
also particularly sensitive to noise. The reliability of quantum computers is typically verified
using randomized benchmarking. In its most general form, this technique efficiently estimates
fidelity of a quantum gate independently of the computation being performed. Additional
figures of merit may be used together with fidelity to estimate average error rates.
From computational sciences, and computational complexity theory, arise different ap-

proaches based on the concept that current models of quantum computation do not gen-
erally allow the experimenter direct access to the quantum device; instead, interactions occur
through classical or quantum channels. The most prominent of these techniques are quantum
interactive proofing and blind quantum computation.
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EXPERIMENTAL PROCEDURE

Having discussed the requirements for efficiency and reliability of digital quantum simulations
in real-world quantum devices, this chapter describes the steps necessary for an actual imple-
mentation of a simulation, namely that of the Schrödinger equation for a single particle in one
dimension, using 2 or 3 qubits, plus one qubit as an ancilla (i.e. used in auxiliary operations
and discarded before the measurement operations).

The goal of the experimental procedure is not to compare the performance of the algorithm
or the implementations against the analytical solution of the Schrödinger equation of a single
particle, but to evaluate the reliability of the quantum devices in comparison with an ideal
version of a quantum simulation (enacted by a classical simulator), in light of the constraints
and noise parameters of the devices.

4.1 quantum devices

The IBMQuantum Network (IBM, 2018a) is a cloud-based platform, developed by IBM, which
makes it possible to program and remotely interact with a quantum processor housed in an
IBM Research lab. IBM’s implementation of quantum processors is based on superconducting
qubits, which can be programmed according to the quantum circuit model of computation
by applying quantum gates, either using its online GUI (IBM, 2018c), writing a quantum
program in OpenQASM, a quantum assembly programming language (Cross et al., 2017), or
through QISKit, an SDK for writing and executing quantum circuits (IBM, 2018e).
This work makes use of QISKit, a Python-based software development kit for IBM’s quan-

tum devices, to create quantum circuits, compile them according to the available gate set
and qubit mapping restrictions, execute and extract the results, both on a local, classical
simulator, and on remote quantum devices, specifically IBM Q5 Tenerife (ibmqx4), which
contains a 5-qubit quantum processor and is currently available to the public, and IBM Q20
Tokyo (ibmq20) a more recent device with a 20-qubit quantum processor.

Both devices are based on superconducting transmon qubits, a type of superconducting
charge qubit designed to have reduced sensitivity to charge noise and longer coherence times,
which is achieved by increasing the ratio of the Josephson energy to the charging energy;

38
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this type of qubit was first demonstrated experimentally in Koch et al. (2007). A charge
qubit is formed by a superconducting island, also known as a Cooper-pair box, coupled by
a Josephson junction to a superconducting reservoir. The state of the qubit is determined
by the number of Cooper pairs which have tunneled across the junction. In contrast with
the charge state of an atomic or molecular ion, the charge states of such an "island" involve
a macroscopic number of conduction electrons of the island. The quantum superposition of
charge states can be achieved by tuning the gate voltage that controls the chemical potential
of the island. Measurement, control and coupling of the transmons is performed by means of
microwave resonators with techniques of circuit quantum electrodynamics, also applicable to
other superconducting qubits. This coupling is achieved by a putting a capacitor between the
qubit and the resonator. The qubits are connected with coplanar waveguide bus resonators,
and quantum operations are conducted by applying microwave pulses to the qubits.
IBM’s interface allows the user to program a quantum algorithm using a broad set of single-

qubit gates, including Pauli and Clifford gates, general unitary and phase shift gates; and
multi-qubit gates such controlled-NOT, swap, CCNOT (i.e. a NOT gate with two controls),
or Fredkin gates. However, these are compiled into the two types of quantum operations
which can be directly implemented physically. One is a unitary operation

U(θ,φ,λ) = RZ(φ)RY (θ)RZ(λ) (29)

acting on a single qubit, composed of a Bloch sphere qubit rotation on the z-axis, followed by
a rotation on the y-axis and another rotation on the z-axis (i.e. a generalized Euler rotation).
At the hardware level, these operations are performed by a series of Gaussian derivative and
Gaussian flattop pulses with amplitude and angle parameters defined by the expression (29).
The other physically implementable operation is a controlled NOT gate (CNOT, or CX) - if
the so-called control qubit (denoted as • in quantum circuits) is in basis state |1〉, the state of
the target qubit (denoted as ⊕ in quantum circuits) is inverted, i.e. a NOT ≡ X operation
is performed; if the control qubit is in basis state |0〉, the target qubit goes unaltered. This is
physically achieved by creating cross-resonance interaction between neighboring qubits that
are connected by a superconducting bus resonator. These two operations form an universal
basis, which means that any quantum algorithm can be conducted using only single-qubit
unitary and CNOT operations.
Besides the restriction regarding the available gates, there are further physical constraints

given by the physical architecture of the chip. In fact, CNOT gates can be directly applied
only to qubits that are connected.
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Figure 7.: Quantum device mapping scheme with specifications for qubit interactions; a) for IBM Q5
Tenerife; b) for IBM Q20 Tokyo (IBM, 2018d).

These restrictions are represented in fig. 7, for both quantum devices used experimentally;
qubits are represented by vertices, and an arrow pointing from qubit qi to qubit qj indicates
that only CNOT with qi as control, and qj as target can be applied. In the case of IBM Q20,
the edges are bidirectional, i.e. both qi and qj can be used as either control or target.
Additionally, each operation performed with quantum gates introduces noise in the system,

which results in imperfect computations since there is no error correction technique applied.
According to IBM, CNOT gates are less accurate than single-qubit operations by approxi-
mately a factor of 10. The error rates are not fixed and depend on the calibration of the
device. Each device is typically calibrated twice daily, and from each calibration a list of
qubit-specific operation error rates is provided, following the procedure described in Gam-
betta et al. (2012) and discussed in section 3.3, as well as the associated measurement error
rates.

Besides error rates, coherence times impose limits on the amount of operations a given
algorithm may experimentally perform to achieve results with reasonable fidelity, since physi-
cal gate operations have an associated execution time. The backend information provided by
IBM (2018b) for Tenerife includes times for the pulses to be performed for each gate; in the
case of a single qubit unitary gate, the specific implementation times are 0 ns, 70 ns, and 140
ns for physical gates U(0, 0,λ), U (0,φ,λ), and U(θ,φ,λ) respectively, where θ,φ,λ 6= 0. In
the case of U (0, 0,λ), a physical change to the system is avoided with a software-side frame
change is enacted, which explains the null execution time. It should be noted that the unitary
operation U(0, 0,λ), also known as phase shift, changes the phase of the state |1〉, which does
not, by itself, affect measurement probabilities in the computational basis. For Tenerife, the
execution times for CNOT gates vary slightly between qubits, so an average value of 410 ns
was considered.

One can distinguish between two measures of decoherence:
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1. T1 is the "longitudinal coherence time" (also known as "amplitude damping"), and it
measures loss of energy from the system.

2. T2 is the "transverse coherence time" (also known as "phase damping").

One way to estimate T1 is to initialize a qubit to the ground state |0〉 (for , apply an X gate
to turn it into |1〉, and measure it in the computational basis after a time t. The probability
of the qubit staying in the |1〉 state is expected to follow an exponential decay curve e−t/T1 .
To experimentally determine T2, one can initialize a qubit to the ground state |0〉, apply
an Hadamard transform H to change it into |0〉+|1〉√

2 and wait for a time t before applying
another transform H and measuring the qubit on the computational basis. The decay in the
probability of obtaining a |0〉 measurement should follow the expression e−t/T2+1

2 .

Figure 8.: Expected experimental curves for T1 and T2 (Chuang, 2003).

Since IBM provides values for coherence times T1 and T2 these times can be compared with
an estimated time for the execution. These quantities will be discussed along with the results
of the simulations.

4.2 simulation algorithm

The simulation algorithm performed in this work follows, and expands upon, the outline
presented in Coles et al. (2018); a similar algorithm for the simulation of the Schrödinger
equation is demonstrated in Benenti and Strini (2008). The general method for simulating
the Schrödinger equation of a particle in one dimension was originally suggested by Zalka
(1998) and Wiesner (1996).

In the one-dimensional simplification, the motion of the system can be restricted to a
region −d ≤ x ≤ d, which can be decomposed into 2n intervals of length ∆x = 2d

2n , such that
it is possible to approximate the wave function over a discrete grid with points xm, where
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i ∈ [1, 2n]. Each point xm, determined by the discretization of position, can be encoded in a
state |qm〉 using n qubits such that m ∈ [1, 2n] and |qm〉 = |q〉n−1 ⊗ |q〉n−2 ⊗ ...⊗ |q〉0. The
wave function can then be expressed as:

|ψ(x, t)〉 = 1
NF

2n∑
i=1

ψ(xm, t) |qm〉 (30)

Where NF =
√∑2n

i=0 |ψ(xm, t)|2 acts as a normalization factor.
The time evolution operator over a step ∆t is split into two steps using Trotter decompo-

sition: e−
i
h̄
[H0+V (x)]∆t ≈ e−

i
h̄
H0∆t e−

i
h̄
V (x)∆t. This approximation is only exact up to terms

of order (∆t)2 since the operators H0, pertaining to momentum, and V (x), pertaining to
position, do not commute. Admitting, for simplicity, h̄ = m = 1, the wave function for a
point in space x1 after a time step ∆t can then be determined as:

ψ(xi, t+ ∆t) = e−ik̂
2∆t e−iV (xm)∆t ψ(xm, t) (31)

Where k is the wavenumber of the particle (see section 1.2 for the theory behind the equa-
tion). In this approximation, the time evolution operator consists in alternating applications
of the phase shift operator in the position and momentum representations. The Fourier trans-
formation can be used to link these operators by first applying the direct Fourier transform,
F , to get into the momentum representation, where e−ik̂2∆t is diagonal. The inverse Fourier
transform, F−1, is then applied to return the system to the position representation, where
e−iV (xm)∆t is diagonal. The wave function at a time l∆t is obtained by applying l times the
operator

F−1 e−ik̂
2∆t F e−iV (xm)∆t (32)

From this, the simulation of the Schrödinger equation on a quantum computer can be
outlined into the following steps:

1. Prepare the encoded initial state on the quantum computer, by applying the necessary
transformations, Ûprep, over n qubits representing N = 2n points;

2. Apply a diagonal phase transformation of the form e−iV (xm)∆t;

3. Apply the Quantum Fourier Transform to change the system into momentum represen-
tation;

4. Apply a diagonal phase transformation of the form e−ik̂
2∆t;

5. Apply the inverse QFT to return to the coordinate representation;

6. Repeat steps (2) through (5) until an arbitrary time l∆t is reached.
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Figure 9.: Circuit schematic for the algorithm over the defined steps.

For all steps of the simulation, qubits obey the same order (endianness) in which they
are arranged into larger values. For example, position x3 may be encoded, using a 4 qubit
state, as either |0011〉 or |1100〉, but step initialization, the Fourier transform and phase
transformations all depend on this numerical order and should admit the same convention.
In appendix A, a more detailed explanation of the quantum computing programming model
is presented.
In this simulation, the chosen initial state ψ(x, 0) takes the form of a discrete Π-function.

For simplicity, the case of a free particle is considered, such that the potential V (x) = 0,
making the diagonal phase transformation pertaining to V (x) a trivial step (i.e. the identity
operation).
On a quantum computer, one can perform the quantum Fourier transformation as described

in (Nielsen and Chuang, 2010, chap. 5), which is the quantum analogue to the discrete
Fourier transformation. For this brief theoretical explanation, take into account a particular
description of an n-qubit quantum state state |j〉, written using the binary representation
j = j1 j2 · · · jn or, more formally, j = j12n−1 + j22n−2 + · · · + jn20. Using the notation
0.jl jl+1 · · · jm to represent the binary fraction jl/2+ jl+1/4+ · · ·+ jm/2m−l+1, the quantum
Fourier transform can be described by the product representation:

|j1, · · · , jn〉 →
(|0〉+ e2πi0.jn |1〉)(|0〉+ e2πi0.jn−1jn |1〉) · · · (|0〉+ e2πi0.j1j2···jn |1〉)

2n/2 (33)

This unitary operation can be performed efficiently for a system with n qubits, with com-
plexity O(n2) in Hadamard gates (H) and controlled phase shift gates, i.e. a phase shift
operation Rm ≡ P (2πi/2m) on target qubit. On the circuit model of computation, the
algorithm for the quantum Fourier transform can be represented graphically (fig. 10).
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Figure 10.: Efficient circuit for the quantum Fourier transform. Not shown are the swap gates at the
end of the circuit which reverse the order of the qubits, or normalization factors of 1/

√
2

in the output (Nielsen and Chuang, 2010).

The momentum expression adopted in this simulation takes into consideration how each
position is encoded into a binary string, which is itself a description of a quantum state. For
the 2 and 3-qubit simulation:

k̂ = −

√
1

22n−3
φ

∆t

1 +
n∑
j=1

2n−jẐj

 (34)

Where φ is the characteristic phase shift experienced by the state on time step ∆t. As such,
in this encoding, the phase-shift operation e−ik̂

2∆t contains one and two commuting qubit
operations, obtained by expanding the phase transformation from equation (34):

exp
(
−ik̂2∆t

)
= exp

 iφ

22n−3 (1 +
n∑
j=1

2n−jẐj)2

 (35)

This particular operation employs an extra qubit as an ancilla for phase transformation
operations, a technique shown, as an example, in fig. 11.

Figure 11.: Quantum Circuit for simulating the Hamiltonian Ĥ = Ẑ1⊗ Ẑ2⊗ Ẑ3 for time ∆t, using one
ancilla qubit (Nielsen and Chuang, 2010).

After the realization of the phase transformation, the inverse quantum Fourier transform
is then performed so the system returns to coordinate representation. This is achieved by
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applying the inverse unitary operator of the direct QFT (equivalent to applying the inverse
gates by inverse order).
The system may then be measured on the computational basis over each qubit, or charac-

terized with quantum state tomography techniques.

4.2.1 2-qubit implementation

The initial wave function ψ(x, 0) needs to be encoded using n = 2 qubits, representing a
4-point grid. The Π-function is discretized as ψ{x0,x1,x2,x3} = {0, 1, 1, 0}, and it can be
encoded, up to a normalization constant, as the superposition state |q1 q2〉 = |01〉+ |10〉.

Figure 12.: Graphic representation of the amplitudes, up to a normalization constant, of the Π-function
as a superposition of 2-qubit states.

The state can be prepared directly using gate-based operators on a quantum computer as:

Ûprep = X̂1 . ˆCX12 . X̂1 . Ĥ1 (36)

Where X̂1 and Ĥ1 are the operators corresponding to the Pauli-X and Hadamard gate,
respectively, each acting on qubit 1, and ˆCX12 is the conditional-NOT gate, acting on qubit
2 with qubit 1 as control (the algebraic description of these operations is presented in ap-
pendix A). The quantum circuit gates for initial state preparation can also be represented
schematically:
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Figure 13.: Circuit schematic for the operations composing the state preparation, Ûprep.

The quantum Fourier transform is then applied, followed by an X gate performed on
the most significant qubit to center the momentum representation on zero (the quantum
equivalent to centering the frequency representation around zero for a classical discrete Fourier
transform). Algebraically, ˆQFT = X̂2 . Ĥ2 .CP̂(π2 )12 . Ĥ1.

Figure 14.: Circuit schematic for the operations composing the 2-qubit centered quantum Fourier trans-
form, ˆQFT . The transform is followed by an X gate to center the momentum representa-
tion.

The SWAP operation is avoided by simply changing qubit references and admitting the
inverse order. By expanding k̂ on equation (35) for n = 2, ignoring global phase:

e−ik̂
2∆t = eiφ(2Ẑ1+Ẑ2+2Ẑ1⊗Ẑ2) = ei2φẐ1 eiφẐ2 ei2φ(Ẑ1⊗Ẑ2) (37)

Where ei2φ(Ẑ1⊗Ẑ2) is applied following the technique demonstrated in fig. 11.

Figure 15.: Circuit schematic of the phase transformation operations e−ik̂2∆t for the 2-qubit simulation,
with φ = π, using one ancilla qubit. The order of the qubits is inverted due to the previously
applied quantum Fourier transform.

After performing the phase transformation, the system is returned to the position represen-
tation by applying the inverse transformation to ˆQFT . This completes one iteration of the
simulation over the time step ∆t, and each qubit may then be measured.
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Figure 16.: Circuit representation of the 2-qubit free particle simulation for φ = π- The third qubit is
used as an ancilla, and is discarded (i.e. not measured) at the end of the simulation. The
fourth line represents a 2-bit classical register containing the results of the measurement
for each qubit.

4.2.2 3-qubit implementation

In the case of the 3-qubit simulation, the initial state is encoded in n3 = 8 discrete intervals as
ψ{x1,x2,x3,x4,x5,x6,x7,x8} = {0, 0, 1, 1, 1, 1, 0, 0}, and represented as the superposition of
3-qubit states, up to a normalization constant, |q1, q2, q3〉 = |010〉+ |011〉+ |100〉+ |101〉. In
practice, the discrete representation of the Π-function consists in simply doubling the amount
of intervals in fig. 12:

Figure 17.: Graphic representation of the amplitudes, up to a normalization constant, of the Π-function
as a superposition of 3-qubit states.

The initial state was prepared from register |000〉 using the algorithm proposed in Shende
et al. (2006). The algorithm is already implemented in QISKit’s libraries and, as mentioned
previously, is based on taking the inverse problem, i.e. designing a circuit for obtaining the n-
qubit state |q1 · · · qn〉 = |0 · · · 0〉, and implementing the inverse operation, which is trivial using
quantum gates. This is achieved by disentangling the least significant qubit into a separable



4.2. Simulation algorithm 48

product state |q1 · · · qn−1〉 ⊗ |0〉, and recursively applying the algorithm to the (n− 1)-qubit
state. The algorithm uses 2n−1− 2n CNOT gates, resulting in 10 CNOT gates for the 3-qubit
state.

Figure 18.: Circuit schematic for the operations composing the initial state preparation for the 3-qubit
simulation.

The centered quantum Fourier transform was then applied followed, which for a 3-qubit
system corresponds to ˆQFT = X̂3. Ĥ3.CP̂(π2 )23. Ĥ2.CP̂(π4 )13.CP̂(π2 )12. Ĥ1.

Figure 19.: Circuit schematic for the operations composing the 3-qubit centered quantum Fourier trans-
form, ˆQFT .

The phase transformation operation was obtained by expanding equation (35) for n=3:

exp{−ik̂2∆t} = exp{iφ
(
Ẑ1 +

1
2 Ẑ2 +

1
4 Ẑ3 + 2Ẑ1 ⊗ Ẑ2 + Ẑ1 ⊗ Ẑ3 +

1
2 Ẑ2 ⊗ Ẑ3

)
} (38)

Figure 20.: Circuit schematic of the phase transformation operations e−ik̂2∆t for the 3-qubit simulation,
with φ = π, using one ancilla qubit. The order of the qubits is inverted due to the previously
applied quantum Fourier transform.
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After performing the phase transformation, the system is returned to the position repre-
sentation by applying the inverse transformation to ˆQFT , completing one iteration of the
simulation over the time step ∆t. Each qubit may then be individually measured.

Figure 21.: Circuit representation of the 3-qubit free particle simulation for φ = 0- The fourth qubit is
used as an ancilla, and is discarded (i.e. not measured) at the end of the simulation. The
last line represents a 3-bit classical register containing the results of the measurement for
each qubit.

4.3 quantum state tomography

Measuring each qubit on the computational basis after the simulation, for a large number of
repetitions, allows one to estimate the probability distribution of each measurement, which
corresponds to the squared modulus of each amplitude of the simulated wave function. With
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this information alone it is not possible to quantify the fidelity of the simulation, or character-
ize the quantum state being simulated, since a measurement collapses the state of the system
into an eigenstate of the associated measurement operator.
The general principle behind quantum state tomography is that by repeatedly performing

different measurements, forming a basis, of quantum systems described by identical density
matrices, frequency counts can be used to infer probabilities, and these probabilities are com-
bined to determine a density matrix which fits the best with the observations; the underlying
theory is detailed in section 3.1. The specific state tomography algorithm implemented in
the experimental procedures computes the maximum-likelihood density matrix ρ describing
a mixed quantum state given a set of measurement outcomes in a complete orthonormal op-
erator basis. The algorithm for processing the measurement data is implemented in QISKit’s
tool library.
For a n-qubit system, 3n different measurements have to be performed, each with an asso-

ciated quantum circuit.

(a) Measurement in X0 ⊗X1; (b) Measurement in X0 ⊗ Y1; (c) Measurement in X0 ⊗Z1;

(d) Measurement in Y0 ⊗X1; (e) Measurement in Y0 ⊗ Y1; (f) Measurement in Y0 ⊗Z1;

(g) Measurement in Z0 ⊗X1; (h) Measurement in Z0 ⊗ Y1; (i) Measurement in Z0 ⊗Z1;

Figure 22.: For the state tomography procedure 32 = 9 measurement operators were created in QISKit
for the 2-qubit simulation. Each was appended to the end of the simulation algorithm,
forming 9 distinct quantum circuits.

For the 2-qubit simulation, 9 quantum circuits were created (fig. 22), and each one was
executed 100 times. The 3-qubit simulation was measured using 27 distinct quantum circuits,
also with 100 executions each. The data obtained from the measurements for each operator
can be obtained by calling the function tomography_data on the results of the execution,
along with the simulation circuit and set of measurement operators. A density matrix ρ

can then be built by calling the function fit_tomography_data on the state tomography
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data. This particular method (Smolin et al., 2012) constrains positivity by setting negative
eigenvalues to zero and re-scaling the positive eigenvalues.
The reconstructed matrix ρ can be compared with the density matrix of the ideal state

by determining the state fidelity (definition 3.1), and its purity can be measured (definition
3.2). Since the desired final state of the simulation is analytically known for both the 2 and
3-qubit simulations, the results of the tomographic characterization may be used to evaluate
the performance of the state tomography technique itself.

4.4 procedure

The experimental procedure can be separated into two parts. First, for the 2-qubit simulation,
three separate simulations of the Schrödinger equation for the wave function of a single particle
in 1 spatial dimension were experimentally implemented, each with a different value of φ,
the characteristic phase shift (detailed in section 4.2) experienced over one iteration of the
simulation; in the 3-qubit case, the simulation was implemented for a single value of φ. Then,
each implementation was executed:

1. In the classical simulator of a quantum system provided by IBM’s software development
kit, representing an ideal universal quantum simulator without noise or decoherence
(this is possible due to the low number of qubits of the simulation);

2. Using the software’s integrated compiler for quantum circuits, in two specific quantum
devices (see section 4.1), IBM Q5 Tenerife and IBM Q 20 Tokyo;

3. Using the compiling procedure recently proposed and provided by Zulehner and Wille
(2018), in the same two quantum devices. This technique will be referred to as an
’alternative compiler’ for the purposes of discussing the results.

It should be noted that the classical simulator not only performs numerical simulation of
quantum algorithms, but also emulates the randomness inherent to quantum state measure-
ments. Each specific implementation was executed 1000 times, in the case of the 2-qubit
simulation, and 2000 times, in the case of the 3-qubit simulation. After each execution, the
qubits were individually measured on the computational basis. The probability distribution
of the measurements should follow the discrete wave function amplitudes of the particle’s
Schrödinger equation after a time ∆t.

For the results of each implementation, a frequency of correct measurements can be esti-
mated; here, correct measurements are taken as measurement results with an expected non-
zero probability after an ideal simulation. For example, for the quantum state represented in
fig. 12, the frequency of correct measurements would be the frequency of measurements that
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resulted returned either |01〉 or |10〉. This figure can be compared with a rough estimation of
the probability that the simulation suffered from no errors during the execution.
For each device, IBM provides a list of qubit-specific error rates for single-qubit gates,

CNOT gates and the measurement operators. These are estimated from randomized bench-
marking (detailed in section 3.3). The error rates are updated each time the device is cal-
ibrated, which occurs daily. The discussion of the experimental results will take a naive
approach for estimation of simulation error probabilities. Admitting that operations acting
on distinct sets of qubits can occur simultaneously, a quantum circuit has an associated cir-
cuit depth, namely the number of time steps required for the simulation. Each time step is
associated with a circuit layer which contains only gates acting on distinct sets of qubits. A
circuit layer is "greedy" in the sense that it contains the largest possible number of operations
fitting one circuit layer.

Figure 23.: A quantum circuit with three distinct circuit layers.

For IBM devices, single-qubit operations and CNOT operations have distinct execution
times. The error rates are qubit dependent, but CNOT gates have an average error rate that
is one order of magnitude larger than single-qubit operations. As such, for each experimental
quantum circuit implementation the number of layers containing CNOT gates and the number
of layers containing only single qubit operations can be distinctly determined. The execution
time of the circuit can be estimated as:

TE = NCNOT TCNOT +NU TU (39)

Where NCNOT and NU are the number of layers containing at least one CNOT gate, and
the number of layers containing only single-qubit gates, respectively; TCNOT and TU are the
average execution times for layers containing CNOT and for layers containing only single-qubit
gates. For the analysis, execution times TU = 70ns and TCNOT = 410ns were considered;
these were estimated from the backend information provided by IBM in IBM (2018b), which
includes times for the pulses to be performed for each gate. Since gate execution times for
Tokyo were not provided by IBM at the time of writing, the same values were admitted for
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this device. The total execution times can be compared with the provided coherence times
T1 and T2 in both devices. The manufacturer proves a list of qubit-specific values for T1 and
T2 in each device; for simplification, the average value was considered.

For each layer a distinct error rate can be considered: erCNOT for layers containing at least
one CNOT gate, and erU for layers with only single-qubit operations. A figure of merit PS can
be used as a simplistic estimation for the probability of a simulation without the occurrence
of errors (i.e. an "ideal" simulation):

PS = (1− erCNOT )NCNOT . (1− erU )NU . (1− erM ) (40)

Where erM is average the error rate for measurement operators. This is a very simplified
approach to the study of probabilities of simulation errors, since it does not take into account
the probability of an error changing the system between two correct states, or errors occurring
more than once; as such it is expected that this figure will suggest worse results than what is
actually detected. However, one can still study how this quantity correlates to the frequency
of correct measurements.

For the second part of the experimental procedure, each n-qubit implementation was re-
peated, but this time each was measured on a different Pauli basis, for a total of 3n specific
quantum circuits, forming a tomographically complete set of measurements for each imple-
mentation. The state was reconstructed from the maximum likelihood technique (detailed in
section 3.1) proposed by Smolin et al. (2012). From the reconstructed density matrix, one
can compare it with the ideal final state, which can be trivially calculated analytically, by
estimating quantum state fidelity (definition 3.1) to the ideal final state, and quantum state
purity (definition 3.2), since it is expected that the final state is pure. The tomography proce-
dures were also executed in the classical simulator, which allows to check the performance of
the procedure in the absence of noise. Using these quantities, one can infer how much of the
fidelity was lost due to noise and decoherence. For example, a low state fidelity with a high
gate purity would indicate an inaccurate implementation of the algorithm, since the resulting
low fidelity could not be explained by noise.
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RESULTS AND DISCUSS ION

The results of the procedure detailed in section 4.4 were compared with the expected final
state, by solving for equation:

ψ(xi, t+ ∆t) = e−ik̂
2∆t e−iV (xm)∆t ψ(xm, t) (41)

Where k̂ is obtained from equation (34) and V {xm} = 0. Considering the simulation
is done for a single time step ∆t, it is trivial to solve for the final state as a function of the
characteristic phase shift φ. Starting with the wave function encoding |ψ(xm, 0)〉 = |01〉+ |10〉,
up to a normalization constant, one can expect, after ∆t, the state:

φ = 0 : |ψ(xm, ∆t)〉 = |01〉+ |10〉

φ = π/2 : |ψ(xm, ∆t)〉 = |00〉+ |01〉+ |10〉+ |11〉 (42)

φ = π : |ψ(xm, ∆t)〉 = |00〉+ |11〉

Or, for the 3-qubit simulation, which was implemented only for φ = 0:

φ = 0 : |ψ(xm, 0)〉 = |ψ(xm, ∆t)〉 = |010〉+ |011〉+ |100〉+ |101〉 (43)

The estimated coherence times and error rates for both devices were obtained from the
average of the qubit-specific coherence times and error rates provided by the SDK.

Device T1(µs) T2(µs) EU (10−3) ECNOT (10−2) EM (10−2)

ibmqx4 (Tenerife) 49.8 24.8 1.72 4.54 4.88

ibmq20 (Tokyo) 84.6 55.0 1.45 3.05 7.57

Table 1.: Average device parameters for coherence times T1 and T2, and average single-qubit (EU ),
CNOT (ECNOT ) and measurement (EM ) error rates.

54
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Figure 24.: Graphic representation of the amplitudes, up to a normalization constant, of the probability
distribution of the desired final wave function as a superposition of 2-qubit states, for φ = 0
(top); φ = π/2 (middle); φ = π (bottom).

5.1 2-qubit simulation

Before executing each simulation, the compiled quantum circuits were analyzed to determine
the number of layers for each execution, NU andNCNOT . These quantities allow for estimation
of execution time, given that each single-qubit unitary operation takes an average of 70ns,
and a CNOT operation takes of 500ns
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Figure 25.: Quantum circuit of the 2-qubit quantum simulation for φ = 0: in an ideal simulator (top);
compiled for ibmqx4, using QISKit’s compiler (middle); compiled for ibmqx4, using the
alternative compiler by Zulehner and Wille (2018) (bottom).

A comparison is shown, as an example, in fig. 25 for the 2-qubit simulation on an ideal
simulator and on ibmqx4, and φ = 0. The compilers ’condense’ consecutive single-qubit gates
as one unitary gate, and further optimizations are performed such that the circuit complies
with the physical gate set and mapping constraints of the device. In this particular example,
the circuit compilation provided by QISKit resulted in a circuit with 7 single-qubit layers and
9 CNOT layers, while the compiler provided by Zulehner et al. resulted in a circuit with 6
single-qubit layers and 7 CNOT layers, a marginal improvement.
The 2-qubit simulation was executed for φ = {0,π/2,π} and each qubit measured in the

computational basis.
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(a) φ = 0

(b) φ = π/2

(c) φ = π

Figure 26.: Probability distribution of the 2-qubit simulation for 3 distinct φ, for the classical simulator,
ibmqx4, and ibmq20, using QISKit’s standard compiler.
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For φ = 0, ibmqx4 obtained a frequency of correct measurements fC = 0.73, while in
the case of ibmq20, fC = 0.60. For φ = π, ibmqx4 returned correct states with frequency
fC = 0.76, while for ibmq20, fC = 0.60. For φ = π/2, the desired final state is a uniform
superposition of all possible states. Here ibmqx4 returned the biggest deviations from the
expected frequencies, namely for the states |00〉 and |01〉.

The implementations described above were repeated, but instead of performing standard
measurements, the quantum state tomography procedure described in 4.3 was applied. This
allows to characterize the density matrix of the final state on each implementation, from
which the state fidelity (definition 3.1) and state purity (definition 3.2) can be estimated.
The tables of the experimental data for each chosen parameter of φ follow.

φ = 0 ibmqx4 (Tenerife) ibmq20 (Tokyo)

Results

Classical

Simulator QISKit Alternative QISKit Alternative

|00〉 0.000 0.167 0.123 0.214 0.388

|01〉 0.477 0.362 0.366 0.330 0.257

|10〉 0.523 0.370 0.456 0.269 0.129

|11〉 0.000 0.101 0.055 0.187 0.226

Fidelity 0.96 0.64 0.59 0.45 0.32

Purity 0.93 0.49 0.43 0.34 0.33

NU 15 7 6 7 17

NCNOT 9 9 7 14 15

TE 4.2 3.3 6.2 7.3

PS 0.62 0.68 0.59 0.57

Table 2.: Experimental results of the 2-qubit simulation for φ = 0, for the classical simulator and
quantum devices ibmqx4 and ibmq20.



5.1. 2-qubit simulation 59

φ = π/2 ibmqx4 (Tenerife) ibmq20 (Tokyo)

Results

Classical

Simulator QISKit Alternative QISKit Alternative

|00〉 0.234 0.337 0.227 0.217 0.394

|01〉 0.278 0.171 0.247 0.298 0.237

|10〉 0.248 0.262 0.305 0.286 0.125

|11〉 0.240 0.230 0.221 0.199 0.244

Fidelity 0.99 0.59 0.61 0.39 0.32

Purity 0.98 0.46 0.49 0.36 0.35

NU 15 8 8 8 17

NCNOT 9 9 9 15 15

TE 4.3 4.3 6.7 7.3

PS 0.62 0.62 0.57 0.57

Table 3.: Experimental results of the 2-qubit simulation for φ = π/2, for the classical simulator and
quantum devices ibmqx4 and ibmq20.

φ = π ibmqx4 (Tenerife) ibmq20 (Tokyo)

Results

Classical

Simulator QISKit Alternative QISKit Alternative

|00〉 0.487 0.383 0.342 0.271 0.438

|01〉 0.000 0.095 0.183 0.212 0.222

|10〉 0.000 0.149 0.146 0.186 0.136

|11〉 0.513 0.373 0.329 0.331 0.204

Fidelity 0.98 0.62 0.57 0.45 0.43

Purity 0.96 0.47 0.49 0.39 0.41

NU 15 8 10 8 16

NCNOT 9 9 9 17 15

TE 4.3 4.4 7.5 7.3

PS 0.62 0.62 0.54 0.57

Table 4.: Experimental results of the 2-qubit simulation for φ = π, for the classical simulator and
quantum devices ibmqx4 and ibmq20.
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5.2 3-qubit simulation

For the 3-qubit simulations, the same procedure was adopted. Each circuit is previously
compiled so the number of layers can be determined, such that execution time and probability
of an ideal simulation can be estimated. However only the implementation for φ = 0 is
analyzed.

Figure 27.: Probability distribution of the 3-qubit simulation for φ = 0, for the classical simulator,
ibmqx4, and ibmq20.

The probability distributions for both ibmqx4 and ibmq20 seem to have a noisy superposi-
tion of all possible states without any resemblance to the desired final state, as the comparison
with the results on a classical simulator shows. This correlates with the relatively large es-
timated execution times and low probability of ideal simulations, as it can be seen in table
5.
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φ = 0 ibmqx4 (Tenerife) ibmq20 (Tokyo)

Results

Classical

Simulator QISKit Alternative QISKit Alternative

|000〉 0.000 0.182 0.181 0.131 0.148

|001〉 0.000 0.113 0.127 0.131 0.1135

|010〉 0.255 0.163 0.225 0.127 0.129

|011〉 0.253 0.131 0.101 0.153 0.134

|100〉 0.251 0.131 0.112 0.101 0.1355

|101〉 0.242 0.074 0.078 0.135 0.105

|110〉 0.000 0.099 0.096 0.105 0.1045

|111〉 0.000 0.109 0.082 0.120 0.1305

Fidelity 0.96 0.16 0.10 0.15 0.10

Purity 0.93 0.20 0.19 0.17 0.18

NU 30 37 38 24 51

NCNOT 34 47 39 52 49

TE 26.1 22.2 27.7 28.1

PS 0.10 0.15 0.18 0.19

Table 5.: Experimental results of the 3-qubit simulation for φ = 0, for the classical simulator and
quantum devices ibmqx4 and ibmq20.

5.3 discussion

When studying and measuring quantum systems, particularly when the final state contains
some form of superposition of basis states, some "randomness" in the results of a measurement
is to be expected. The Copenhagen interpretation of quantum mechanics, currently the
most widely accepted expression of the meaning of quantum systems, considers that the
measurement process is itself unpredictable due to the indeterministic nature of a quantum
system (prior to observation). It is why a single execution of a simulation does not allow
for characterization of a quantum state, and the results of a quantum simulation are ideally
considered in the limit of an infinite number of executions with associated measurements.

This unpredictability can be observed by comparing the frequency of results for the classical
simulator in fig. 26 and 27 with the expected probability distribution of the final wave
function (fig. 24). Even though each implementation was executed and 1000 times, for the
2-qubit simulation, and 2000 times for the 3-qubit one, there is still a noticeable variance
result frequencies versus the theoretical expression of probability amplitudes. Despite this
variance, the state tomography technique implemented successfully reconstructed the state
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with fidelities ranging between 0.96 and 0.99, for the 2-qubit simulation with 100 shots per
measurement circuit (total of 900 for the 9 measurement circuits), and a fidelity of 0.96 for the
3-qubit simulation, where each of the 27 measurement circuits was also executed 100 times,
totalling 2700 executions for characterization. As such, this characterization method can be
considered to have been successful given the number of executions and the reconstruction
technique. However, one may quickly predict how its exponential scaling with the number of
qubits makes it unfeasible for larger systems: using this technique to fully characterize the
state of a 5-qubit quantum device, such as ibmqx4, would require implementing a total of
35 = 243 measuring circuits; the full characterization of ibmq20 would require approximately
3× 109 circuits; this is before actual processing of the measurement data begins.

The tomographic reconstruction technique also reduces the degree of purity of the quantum
state, which is expected given that the reconstruction data has a non-zero degree of uncer-
tainty for a finite number of measurements. For the 2-qubit simulation, the reconstructed
state purity ranged between 0.93 and 0.98, while for the 3-qubit simulation the state purity
was estimated at 0.93. This is despite the assurance that the classical simulation produced
consistently pure states, since this particular model of simulation does not account for deco-
herence or noise processes.
For the simulation implemented on the quantum devices, Tenerife (ibmqx4 ) and Tokyo

(ibmq20 ), the compilation technique provided in QISKit, and the alternative by Zulehner and
Wille (2018) were analyzed. Both compilers managed to reduce the number of single-qubit
layers relative to the explicit implementation in the ideal simulator, which is achieved by con-
densing consecutive gates for a given qubit into a single physically implementable unitary gate
U(θ,φ,λ). The number of CNOT layers never diminished aside for the 2-qubit simulation for
φ = 0, where the alternative compiler managed to provide a significant reduction of 2 CNOT
layers (from 9 to 7 layers). In fact, the alternative compiler did a better job at optimizing
the number of required CNOT gates, particularly for the 3-qubit simulation on both devices.
However neither compiler could eliminate unnecessary redundancy in some particular cases
where two consecutive CNOT were applied in the same pair of qubits (e.g. fig. 25, middle
and bottom rows). CNOT gates are self invertible, which means that two consecutive ap-
plications of this gate are equivalent with an identity operation, and as such the operations
can simply be discarded. In situations where optimization techniques would preferably be
avoided, the software allows for implementation of barriers that force the compiler to treat
different sections of the circuit as separate operations.
It should be noted that throughout this work, no way of bypassing the SDK compiler

was found, even if the circuit produced by the alternative compiler observed all the physical
constraints of the architecture. This is particularly troubling in the case of ibmq20, where the
compilation of the same circuit using QISKit’s own compiler resulted in a significantly less
efficient compilation in comparison with ibmqx4, despite the former having significantly better
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qubit connectivity. As an example, it can be observed in fig. 7 that qubits {1, 7, 6, 5, 11} from
ibmq20 have at least the same functional connectivity as qubits {0, 1, 2, 3, 4} from ibmqx4.
This constituted a limiting factor in the efficiency improvements of the alternative compiler;
as such, the layer comparison between compilers, provided in tables 2 - 5 does not do justice to
the improvement potential of this alternative. However, for a true comparison of simulation
results and fidelity, the circuit that was experimentally executed (i.e after re-compilation by
the SDK) is the one to be considered. It turns out that an option to turn off compiling
functionality is indeed accessible through the SDK, but it was only found after treatment of
these specific results. Considering compiler performance, the underlying conclusion is that
the mapping and optimization of quantum circuits for 2-dimensional qubit architectures is a
very recent problem, and one that would greatly benefit from a deeper study into the field of
optimization and mapping techniques for quantum circuits.

As for the simulation results on both real devices, for the 2-qubit simulation (fig. 26),
ibmqx4 returned generally better quality results for φ = 0,π; in the implementation for
φ = π/2 ibmq20 returned a more uniform probability distribution, which is desirable for
that particular case. These results are expected even though ibmq20 has lower error rates
for single-qubit and CNOT gates (table 1), since post-compilation circuits for this device, in
comparison with the equivalent implementation for ibmqx4, resulted in 55-89% more CNOT
gates, which greatly increased estimated execution times (TE) and reduced the estimated
probability of an error-free simulation (PE). In both devices, state fidelity and state purity
of the reconstructed density matrix dramatically decreased and generally correlate with error
in distribution probabilities observed in fig. 26 as well as with the estimated figures for PE .
These results, in part attest to the sensitivity of tomographic techniques in noisier settings
- as stated in the literature Gambetta et al. (2012), quantum tomography techniques are
particularly sensitive to noise, and that is one of the reasons other methods for verification
of quantum systems are generally considered (e.g. randomized benchmarking, section 3.3).

Fidelity ranges were worse for ibmq20 (0.32− 0.45) than in ibmqx4 (0.57− 0.64), which is
consistent with measurement results. A decrease in fidelity figures was typically accompanied
by lower state purity estimates, which is expected when the reconstructed density matrix
differs from the desired one due to noisy processes instead of approximation errors (or a
wrong implementation).

Besides error rates, coherence times (table 1) may also have slightly deteriorated the results.
Coherence times are inherently linked with quantum gate error rates and their associated
execution time - isolating for other factors, a longer coherence time implicates a lower rate of
decoherence, and therefore error, for the interval when the gate is being executed. However,
estimated execution times were one order of magnitude smaller than T1 and T2 for both
devices, which is reasonable for approximate quantum computations.
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As for the 3-qubit implementations, no simulation executed on either quantum device pro-
duced meaningful results, as it can be observed in fig. 27. The compiled circuits contained a
large number of CNOT layers, which pushed estimated execution times to the limits of deco-
herence, particularly for ibmqx4 - average coherence times for this device (T1 = 49.0µs,T2 =

24.8µs) are significantly smaller than those on ibmq20 (T1 = 84.6µs,T2 = 55.0µs). As de-
scribed on section 4.1 T1, also known as "amplitude damping", refers to the gradual loss of
energy of a qubit, i.e. its tendency to decay to the ground state, |0〉. The measurement re-
sults returned by ibmqx seem to indeed have a slight bias toward |000〉 and other low energy
states. Even without accounting for decoherence specifically, accumulated error rates, from
the number of gates executed, greatly diminished the probability of a successful simulation
(PE). This conjecture is validated by the low fidelity and purity of the reconstructed density
matrix obtained through the state tomography technique.

Regarding the compilers, in the 3-qubit case the standard compiler performed significantly
worse in terms of total number of CNOT layers, which have the most error. The difference
in compiled circuit depth (i.e. total number of layers) between devices much less pronounced
than for the 2-qubit simulations. One interesting comparison is between compilation tech-
niques for the implementation of the simulation in ibmq20. The alternative compiler, despite
managing to reduce the number of CNOT layers by 3 and increase the number of single-
qubit layers by 27 more than doubling its amount (relatively to the standard compiler), the
estimated time execution was just marginally larger, while the probability of an ideal simula-
tion increased slightly. This illustrates just how tasking the execution of CNOT layers is in
comparison with single-qubit layers.
Since the experimental algorithm relies not only in a heavy use of CNOT gates which are

slower and more error-prone, but also requires finer control over superposition and amplitudes
of states (unlike, for example, a quantum search algorithm which is supposed to return a single
output state), particularly for quantum state tomography, it is not unforeseen that the results
would shed a harsh light on the performance of these quantum devices.

One underlying conclusion is that, if experimental quantum computation is to progress
into more complex quantum algorithms and circuits, this family of quantum devices would
greatly benefit from an increase in coherence times and decrease in error rates, more so than
an increase in the number of qubits. In fact, one of the near-term challenges for quantum
computation scientists should be to find useful quantum algorithms that make use of most of
the qubits available on recent quantum devices such as ibmq20, while keeping a complexity
low enough to produce meaningful results. Other potentially useful ways to improve on the
quality of these results are the development of better optimization and mapping schemes, as
well as implementation of error correction procedures.
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CONCLUS IONS

The purpose of this work is to overview the theoretical concepts around quantum simulation
and quantum tomography, as well as study more sophisticated validation techniques that
scale in an efficient way with system size, and build towards a potentially useful experimental
application of quantum simulation and validation techniques. As it progressed, it became
evident not only that the concepts of efficiency and reliability are closely related in the field of
digital quantum simulation, but also that there is a pressing need for a thorough discussion of
these concepts from theoretical conception to experimental implementation on NISQ devices.
In such a context, an effort was made towards outlining the necessary conditions for efficiently
implementing a digital simulation given the constraints imposed by present-day quantum
devices.

In this dissertation, the fundamental theory in analog and digital quantum simulation was
introduced, as well as the essential theoretical concepts necessary for the understanding of
a simulation of the Schrödinger equation. From this and the overview of physical realiza-
tions and applications of quantum simulators, it follows that quantum simulation has the
potential to be efficient, useful and within close reach of researchers beyond proof-of-concept
applications.
A review of current and promising characterization and validation techniques for quantum

simulation and computation was presented. Similarly to the hypothesis that arbitrary state
preparation is not efficient unless derived from an efficient (i.e. polynomial) description of
the state, it is believed that a full characterization of a quantum state cannot be efficiently
performed unless one restricts its parameters to a polynomial set of possibilities. Verification
and validation of quantum processes and computations may, however, be performed efficiently.
Randomized benchmarking is the most widely used technique for verification of current

quantum computers. The fidelity figures reported from implementation of this technique
are generally compared with the error rates provided by the quantum threshold theorem
(Aharonov and Ben-Or, 1997), which may engender optimism that current technology is near
the threshold required for fault-tolerant quantum computation. Sanders et al. (2015) gives a
sobering assessment of this comparison, by determining an upper-bound on error rates from
average gate fidelity estimations. For example, it is shown that it is possible for a two-qubit
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gate with 99% fidelity to have an error rate of up to 13%; conversely, a two-qubit gate must
have a fidelity of over 99.9995% to ensure an error rate below 1%. These findings illustrate the
need for more thorough benchmarking protocols that provide better grounded expectations
of quantum device performance.
The experimental part included implementing 2 and 3-qubit simulation algorithms (plus one

ancilla qubit) of the Schrödinger equation of a single particle in 1 dimension. These were run
on a classical simulator, and also implemented in IBM’s quantum devices, the 5-qubit ibmqx4
- Tenerife and the more recent 20-qubit ibmq20 - Tokyo. For the 2-qubit simulations, even
though the quantum device presented approximately correct results, significant error rates
were observed. The implemented quantum state tomography techniques were able to success-
fully reconstruct the state in the classical simulator (which emulates a quantum simulator
without any noise or decoherence), showing that the technique and associated reconstructed
method are sound; in the case of the quantum devices, there was a substantial reduction in
accuracy, demonstrating its sensitivity to noise and error processes. The 3-qubit simulation
pushed both devices past their capability to return useful results; this was expected from
the study of average error rates, decoherence times and depth of the implemented quantum
circuits. Two techniques of compilation and mapping were experimentally compared; despite
performing adequately, the results highlighted the problem of finding an optimal mapping
using efficient resources, as well as the potential for more sophisticated optimization schemes.
Quantum simulation technology has a great room for improvement, more so in controlla-

bility and scalability performance. Quantum simulators cannot yet handle large arrays of
qubits while maintaining experimentally acceptable levels of noise and decoherence. It should
be noted that a scenario of quantum supremacy is not necessary to find useful uses for the
technology, since even small-scale quantum simulators allow for the investigation of quantum
mechanical phenomena. Research into quantum simulators, by itself, may also have a pos-
itive impact on the development of related fields, such as adiabatic quantum computation,
measurement-based quantum computation, and topological quantum computation.
From the theoretical review and experimental results, the underlying conclusion is that,

while there has been an extraordinary progress in implementation of quantum devices over
the past decade, there is a need for more accurate, and thorough, techniques for verifica-
tion of fidelity and reliability of quantum computers and quantum simulators. Experimental
performance of available quantum devices may seem disappointing if one is expecting NISQ
devices to provide ideal results. Arguably, current quantum devices are neither groundbreak-
ing nor irrelevant, and should instead be regarded as a step towards more powerful quantum
technologies to be developed in the future.
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6.1 future work

From this work, several routes may be taken towards improving and expanding on the concepts
described. One could venture towards exploring the fundamental theory of a class of analog
quantum simulators, as well as their efficiency and reliability characteristics and techniques of
validation and verification, in a similar way as it was realized in this work for digital quantum
simulations. Analog quantum simulators have been getting notably more sophisticated, and
are already being employed to study quantum dynamics in regimes which may be beyond
the reach of classical simulators (Zhang et al., 2017). One obstacle is increasing accuracy in
control, since current simulators only crudely approximates the model system in study. For
that reason, analog simulators are best suited for studying features that are relatively robust
with respect to introducing small sources of error. A major challenge for research using analog
quantum simulators is identifying accessible properties of quantum systems which are robust
with respect to error, while also hard to simulate classically.

Verification and validation techniques besides quantum state tomography, quantum process
tomography and randomized benchmarking could be explored, with a bigger emphasis towards
efficiency and resilience against noise. An experimental implementation and study of some
of these techniques, such as Flammia and Liu (2011), on publicly available quantum devices
should be within reach and provide a deeper insight on their strengths and weaknesses in noisy
quantum devices. More sophisticated quantum tomography techniques, such as adaptive
quantum tomography (Granade et al., 2016) or approaches based on machine learning (Torlai
et al., 2018). One could also study the possibility of using currently available quantum
devices for the experimental demonstration of validation protocols directed towards cloud-
based quantum computations, such as quantum interactive proofing (Aharonov et al., 2017)
or blind quantum computation (Fitzsimons, 2017).
One very recent problem with great potential for application is the development of com-

pilation and mapping algorithms for quantum computers with 2 dimensional qubit lattices
with nearest neighbor interactions, such as those described in this work. This problem is for-
mally introduced by Siraichi et al. (2018), and the proposal by Zulehner and Wille (2018) was
already implemented experimentally in the experimental part of this work. The implemen-
tation of simplified, and less demanding, error correction schemes could also be approached
and experimentally studied on quantum devices while taking into account chip architecture.
The Schrödinger equation simulation algorithm presented here can easily be scaled for a

larger number of qubits, even if such a simulation is past the limits of current devices. A
more challenging prospect would be that of using the equation for the simulation of a particle
in 2 dimensions, or simulating the Schrödinger equation for basic molecules, i.e. ab initio
quantum chemistry digital simulations.
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A
QUANTUM COMPUTING

a.1 hilbert space and the bra-ket notation

In quantum mechanics, wave functions and other quantum states can be represented as vectors
in a complex Hilbert space, an abstract vector space possessing the structure of an inner
product. When dealing with the algebra of quantum algorithms operating with n qubits, these
spaces are limited to 2n dimensions. Bra–ket notation is a standard notation for describing
quantum states. It uses angle brackets (the 〈 and 〉 symbols), and a vertical bar between
objects to denote the scalar product of vectors or the action of a linear functional on a vector
in a complex vector space.

Quantum superpositions can be described as vector sums of the constituent states. For
example, an electron in the state |1〉+ i |2〉 is in a quantum superposition of the state |1〉 and
|2〉.

The scalar product is written as 〈φ | ψ〉, where the left part is called the bra, typically
represented as a row vector, and the right part is called the ket, typically represented as a
column vector. A bra is the Hermitian conjugate of a ket with the same label.
In quantum mechanics, the product 〈φ| |ψ〉 is the probability amplitude that determines

how |ψ〉 is linearly decomposed into |φ〉. The probability itself is the absolute square of the
amplitude, | 〈φ| |ψ〉 |2

The outer product is written as |ψ〉 〈φ| which can also be represented as a matrix multi-
plication, since a column vector times a row vector equals a matrix.
One of the uses of the outer product is to construct projection operators. Given a ket |ψ〉

of norm 1, the orthogonal projection onto the subspace spanned by |ψ〉 is |ψ〉 〈ψ|.

Two Hilbert spaces V and W may form a third space V ⊗W by a tensor product. If |ψ〉
is a ket in V and |φ〉 us a ket in W , the direct product of the two kets is a ket in V ⊗W . The
direct product may be written in various notations: |ψ〉|φ〉, |ψ〉 ⊗ |φ〉, |ψφ〉, |ψ,φ〉.

80
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The tensor product is useful to describe quantum systems composed of multiple subsystems.

A linear operator is a linear map that inputs a ket and outputs a ket. In anN -dimensional
Hilbert space, |ψ〉 can be written as an N × 1 column vector, and then a linear operator A
is an N ×N matrix with complex entries. The ket A |ψ〉 can be computed by regular matrix
multiplication.
Dynamics of a quantum state are described by unitary linear operators U on the Hilbert

space of quantum states. Such that the transformation acting on a state |ψ〉 → U |ψ〉. Mea-
surements are observable physical quantities (such as energy or momentum) represented by
self-adjoint operators in Hilbert space. For a given state |ψ〉, the expectation value of the
observable O is obtained by computing 〈ψ|O |ψ〉.

Wave function normalization is the scaling of a wave function so that its norm is 1.

a.2 quantum computing programming model

A qubit (short for quantum bit) is a two-dimensional quantum mechanical system that is in
a state |q〉 = α |0〉+ β |1〉, where the ket notation:

|0〉 =
(

1
0

)
; |1〉 =

(
0
1

)
; (44)

is shorthand for the vectors encoding the two basis states. α and β are the complex numbers
with |α|2 + |β|2 = 1. If the qubit gets measured, it will be observed with state |0〉 with proba-
bility |α|2, or in state |1〉 with probability |β|2. This normalization of probability amplitudes
allows for an alternative representation of a single qubit state:

|q〉 = cos(θ/2) |0〉+ sin(θ/2)eiϕ |1〉 (45)

where 0 ≤ θ ≤ π and 0 ≤ ϕ < 2π. From this it is clear that there is a one-to-one correspon-
dence between qubit states (C2) and the points on the surface of a unit sphere (R3). This is
called the Bloch sphere representation of a qubit state.
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Figure 28.: Bloch sphere representation of a single qubit state |ψ〉

The joint state of a system of qubits is described by the tensor product ⊗. For a system
of, two qubits, for example, each in a state |qj〉 = αj |0〉+ βj |1〉, for j = 1, 2, the state is:

|q1〉 ⊗ |q2〉 = |q1q2〉 = α1α2 |00〉+ α1β2 |01〉+ β1α2 |10〉+ β1β2 |11〉 (46)

A measurement of both qubits could result in any of the four possibilities associated with
the four basis vectors.
By analogy to classical logical gates such as NOT and AND, a basic operation on a qubit

or system of qubits is called a gate, which mathematically is a unitary transformation U .
In contrast to classical gates, unitaries are reversible and hence the number of input qubits
always equals the number of output qubits. The gates mentioned during this dissertation and
their algebraic representation follow in section A.3.
A quantum algorithm using n-qubits can be graphically represented as a quantum circuit

with n horizontal lines, each representing a qubit. Here, quantum gates are represented by
boxes over one (single qubit) or two lines (CNOT). Operations on the qubits are ordered from
left to right.
A quantum gate Û acting on qubit q1 of an n-qubit register |q1 · · · qn〉 can be mathematically

expressed as:

Û |q1〉 ⊗ |q2 · · · qn〉 = (X̂ ⊗ Û ⊗ · · · ⊗ Î) |q1q2 · · · qn〉 (47)
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where Î is simply the identity operation (i.e. leaving the qubit unchanged). In this work, the
algebraic expression representing a quantum gate Û operating on qubit qj is written as Ûj
where:

Î1 ⊗ · · · ⊗ Ûj ⊗ · · · ⊗ În (48)

represents the full algebraic expression for the operation. This allows expressions representing
the action of a string of quantum gates over a register to adopt a more readable form such as
demonstrated in equation 36 and throughout section 4.2:

Ûprep = X̂1 . ˆCX12 . X̂1 . Ĥ1 (49)

which can be written in its expanded form as Ûprep = (X̂1⊗ Î2) . ˆCX12 . (X̂1⊗ Î2) . (Ĥ1⊗ Î2).

a.3 quantum gates

This section describes the matrix representation of all the quantum gates referenced through-
out this work. In QISKit, the most general single qubit gate is the unitary U3 gate:

Û3(θ,φ,λ) =
(

cos(θ/2) −eiλ sin(θ/2)
eiφ sin(θ/2) eiλ+iφ sin(θ/2)

)

The software also allows for more restricted versions of this unitary:

Û2(φ,λ) = 1√
2

(
1 −eiλ

eiφ eiλ+iφ

)
= Û3(π/2,φ,λ)

Û1(λ) =
1√
2

(
1 0
0 eiλ

)
= Û3(0, 0,λ)

Here, U1(λ) is equivalent to a quantum phase gate, Pλ. Other referenced single qubit gates
are:

Î =

(
1 0
0 1

)
; Ĥ = 1√

2

(
1 1
1 −1

)
;

X̂ =

(
0 1
1 0

)
Ŷ =

(
0 −i
i 0

)
Ẑ =

(
1 0
0 −1

)

R̂X(θ) =

(
cos θ/2 −i sin θ/2
−i sin θ/2 cos θ/2

)
R̂Y (θ) =

(
cos θ/2 − sin θ/2
sin θ/2 cos θ/2

)
R̂Z(φ) =

(
e−iφ/2 0

0 eiφ/2

)
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For controlled-NOT (or controlled-X) operations acting on qubits |q1q2〉 the gate CNOT12,
with qubit 1 as control and qubit 2 as target, has a different representation than CNOT21,
with qubit 2 as control and qubit 1 as target:

ĈX12 = ĈNOT12 =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 ; ĈX21 = ĈNOT21 =


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0


The controlled-phase rotation, CU1(λ) or CP(λ), has the same representation independently

of which qubit is the target, and which is the control:

ˆCU1(λ)12 = CP(λ)12 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 eiλ





B
QISK IT IMPLEMENTATION

The experiments were run using the QISKit Terra SDK, version 0.5.7, which requires Python
3.5 or later. The code presented can be executed interactively with Jupyter Notebook. The
alternative compiler (Zulehner and Wille, 2018) is available in http://iic.jku.at/eda/

research/ibm_qx_mapping/.
This software should be independent of operating system, and theoretically, there are no

specific architecture requirements as long as the software dependencies are satisfied. Here.
all results were obtained using a machine with a 2.5GHz Intel Core i5 processor and 6GB of
DDR3 memory, running Windows 10 64-bit.
Executing the experiments in IBM’s quantum devices requires the registering of a private

token associated with a (free) account, which may be created in https://quantumexperience.

ng.bluemix.net/qx/experience. Before executing the scripts below, the string ’TOKEN’

should be replaced with a string containing a valid token.

b.1 2-qubit algorithms

To run the simulation with the different parameters presented in this work, some initial
variables need to be changed.

φ = 0 |ψ(xm, ∆t)〉 = 1√
2 (|01〉+ |10〉) phi= 0 idealvec= [0,1/sqrt(2),1/sqrt(2),0]

π/2
1
2 (e

iπ/4 |00〉+ e−iπ/4 |01〉

+eiπ/4 |10〉+ e−iπ/4 |11〉)
pi/2 (1/sqrt(8))[1+j,1-j,1-j,1+j]

π 1√
2 (|00〉+ |01〉) pi [1/sqrt(2),0,0,1/sqrt(2)]

Table 6.: Characteristic phase shift and associated desired final state for each implementation (left);
corresponding variables to be modified (right).

To change between devices, the string variable backend should be set to either ’ibmqx4’

or ’ibmq_20_tokyo’. For the alternative compiler, the mapping has to be set explicitly.
For ibmqx4, mapping = [[1, 0], [2, 0], [2, 1], [3, 2], [3, 4], [4, 2]].
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For ibmq20, mapping = [[0, 1], [0, 5], [1, 0], [1, 2], [1, 6], [1, 7], [2, 1],

[2, 3], [2, 6], [3, 2], [3, 8], [3, 9], [4, 8], [4, 9], [5, 0], [5, 6], [5, 10],

[5, 11], [6, 1], [6, 2], [6, 5], [6, 7], [6, 10], [6, 11], [7, 1], [7, 6], [7,

8], [7, 12], [7, 13], [8, 3], [8, 4], [8, 7], [8, 9], [8, 12], [8, 13], [9, 3],

[9, 4], [9, 8], [10, 5], [10, 6], [10, 11], [10, 15], [11, 5], [11, 6], [11, 10],

[11, 12], [11, 16], [11, 17], [12, 7], [12, 8], [12, 11], [12, 13], [12, 16], [13,

7], [13, 8], [13, 12], [13, 14], [13, 18], [13, 19], [14, 13], [15, 10], [15, 16],

[16, 11], [16, 12], [16, 15], [16, 17], [17, 11], [17, 16], [18, 13], [19, 13]].

1 # # Simulation of the Schrodinger equation
2 #
3 # This is a quantum simulation of the schrodinger equation for a free (V(x)=0) 1D particle in a

4-point grid, using 2 qubits.↪→
4
5 # In[11]:
6
7
8 # Import the QuantumProgram and our configuration
9 from math import pi, sqrt

10 from pprint import pprint
11 import time
12 import numpy as np
13 import qiskit
14
15 from qiskit import QuantumProgram #QuantumProgram is being deprecated
16 from qiskit import ClassicalRegister, QuantumRegister
17 from qiskit import QuantumCircuit, available_backends, execute, register, get_backend, compile
18
19 # Import basic plotting tools
20 from qiskit.tools.visualization import plot_histogram, circuit_drawer, plot_state
21 from qiskit.tools.visualization import matplotlib_circuit_drawer as drawer, qx_color_scheme
22 get_ipython().run_line_magic('matplotlib', 'inline')
23 get_ipython().run_line_magic('config', "InlineBackend.figure_format = 'svg'")
24 my_style = {'cregbundle': True, 'compress': True, 'usepiformat': True, 'latexdrawerstyle': False,

'showindex': True}↪→
25
26 # Import tomography tools
27 import qiskit.tools.qcvv.tomography as tomo
28
29 # Aditional packages
30 from qiskit.tools.qi.qi import *
31
32 # Compiler function
33
34 from qiskit.dagcircuit import DAGCircuit
35 import pyximportcpp; pyximportcpp.install()
36 import a_star_mapper_challenge
37 import pre_processing
38 import post_mapping_optimization
39
40 import copy
41 import sys, os, traceback
42
43 GLOBAL_TIMEOUT = 3600
44 ERROR_LIMIT = 1e-10
45
46 from qiskit.unroll import Unroller, DAGBackend
47 from qiskit._openquantumcompiler import dag2json
48 from multiprocessing import Pool
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49 from qiskit.mapper._mappererror import MapperError
50
51
52 # Register token
53
54 try:
55 register('TOKEN',
56 "https://quantumexperience.ng.bluemix.net/api")
57 print('Available backends:\n')
58 print(available_backends({'simulator':False}))
59 print('Available simulators:')
60 print(available_backends({'simulator':True}))
61
62 except:
63 print('No valid token registered. Proceeding with available simulators.\n')
64 #print(available_backends())
65
66
67 # Set variables for the simulation
68 #Device
69 backend = 'ibmqx4'
70 #Characteristic phase shift
71 phi = 0
72 #Desired final state
73 idealvec = [0, 1/sqrt(2), 1/sqrt(2), 0]
74 #Mapping list: ibmqx4m or ibmq20m
75 mapping = [[1, 0], [2, 0], [2, 1], [3, 2], [3, 4], [4, 2]]
76
77
78 # ## Ideal simulation
79 #
80 # QISKit provides the option to use a local, classical simulator of a quantum device according to

mathematical models. The results of the simulator should replicate those of an ideal quantum
simulator, i.e. without decoherence or errors.

↪→
↪→

81
82 # In[25]:
83
84
85 #Define number of Qubits and bits of the circuit
86 qnum = 5
87 bnum = 2
88
89 #Qubit numbering scheme
90
91 q0 = 0
92 q1 = 1
93 q2 = 2
94
95 # Creating Programs
96 qp = QuantumProgram()
97 q = qp.create_quantum_register('q', qnum)
98 c = qp.create_classical_register('c', bnum)
99 qc = qp.create_circuit('Circuit', [q], [c])

100
101
102 #State preparation
103 qc.h(q[q0])
104 qc.x(q[q0])
105 qc.cx(q[q0], q[q1])
106 qc.x(q[q0])
107
108 #Direct fast fourier transform (QFT)
109 qc.h(q[q0])
110 qc.cu1(pi/2, q[q1], q[q0])
111 qc.h(q[q1])
112
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113 #NOTE: Swapping gate (at the end of QFT)
114 #eliminated by simply changing qubit references
115
116 #Momentum centering
117 qc.x(q[q1])
118
119 #Phase transformations
120 qc.u1(2*phi, q[q1])
121 qc.u1(phi, q[q0])
122
123 qc.cx(q[q0], q[q2])
124 qc.cx(q[q1], q[q2])
125 qc.u1(2*phi, q[q2])
126 qc.cx(q[q1], q[q2])
127 qc.cx(q[q0], q[q2])
128
129 #Momentum (de)centering
130 qc.x(q[q1])
131
132 #Inverse QFT
133 qc.h(q[q1])
134 qc.cu1(-pi/2, q[q1], q[q0])
135 qc.h(q[q0])
136
137 #Measurement
138 #qc.measure(q[q0], c[0])
139 #qc.measure(q[q1], c[1])
140
141 #Get the qasm file
142 original_str = qp.get_qasm("Circuit")
143 #print(original_str)
144
145 #Draw the circuit
146 drawer(qc, style=my_style)
147
148
149 # In[19]:
150
151
152 #Using the state vector simulator, we can check if the algorithm produces the desired state
153
154 #Desired state (after delta t)
155 idealvec = [0, 1/sqrt(2), 1/sqrt(2), 0]
156
157 job_sv = execute(qc, backend='local_statevector_simulator')
158 statevector = job_sv.result().get_statevector(qc)
159
160 #The statevector describes the state of all 5 qubits; we can extract the 2-qubit state for simplicity
161 simvec = statevector[0:4]
162
163 #The Fidelity function can compare the desired state to the ideal output of the circuit:
164 F_fit = state_fidelity(simvec, idealvec)
165 print('Fidelity =', F_fit)
166
167
168 # In[26]:
169
170
171 #After state vector simulation, we can add the measurement gates:
172 qc.measure(q[q0], c[0])
173 qc.measure(q[q1], c[1])
174
175
176 # In[27]:
177
178
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179 #Its possible to check the compiled circuit for the ideal simulator:
180 ideal_comp = compile(qc, backend='local_qasm_simulator');
181 ideal_qasm = qp.get_compiled_qasm(ideal_comp, 'Circuit');
182 ideal_circ = qiskit.load_qasm_string(ideal_qasm);
183
184 drawer(ideal_circ, style=my_style)
185
186
187 # In[29]:
188
189
190 #We can also run the simulation and check for the expected results:
191 job_ideal = execute(qc, 'local_qasm_simulator', shots=1000, max_credits=3)
192
193 lapse = 0
194 interval = 5
195 while not job_ideal.done:
196 print('Status @ {} seconds'.format(interval * lapse))
197 print(job_ideal.status)
198 time.sleep(interval)
199 lapse += 1
200 print(job_ideal.status)
201
202 print(job_ideal.result().get_counts(qc))
203 plot_histogram(job_ideal.result().get_counts(qc))
204
205
206 # ## Simulation using QISKit's optimization algorithms
207 #
208 #
209 # The simulation has to obey a predetermined gate set. For IBMQX4, it is composed of all gates

belonging to SU(2), and the CNOT gate. The simulation also has to observe the specific coupling
map for the quantum device. This coupling map determines which pairs of qubits can be used for the
direct implementation of a CNOT gate. In the case of ibmqx4, the coupling map is:

↪→
↪→
↪→

210 #
211 # <img src="../images/ibmqx4-connections.png" alt="Note: In order for images to show up in this jupyter

notebook you need to select File => Trusted Notebook" width="500 px" align="center">↪→
212 #
213 #
214 # QISKit provides automated tools for the compiling of quantum algorithms into device-compliant

circuits.↪→
215
216 # In[31]:
217
218
219 #We can first check the circuit compiled for ibmqx4
220 qx4_comp = compile(qc, backend=backend);
221 qx4_qasm = qp.get_compiled_qasm(qx4_comp, 'Circuit');
222 qx4_circ = qiskit.load_qasm_string(qx4_qasm);
223
224 drawer(qx4_circ, style=my_style)
225
226
227 # In[33]:
228
229
230 #Checking device availability
231 backendx = get_backend(backend);
232 pprint(backendx.status)
233
234
235 # In[34]:
236
237
238 #Run results on ibmqx4
239 job_qx4 = execute(qc, 'ibmqx4', shots=1000, max_credits=3)
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240
241 lapse = 0
242 interval = 30
243 while not job_qx4.done:
244 print('Status @ {} seconds'.format(interval * lapse))
245 print(job_qx4.status)
246 time.sleep(interval)
247 lapse += 1
248 print(job_qx4.status)
249
250 print(job_qx4.result().get_counts(qc))
251 plot_histogram(job_qx4.result().get_counts(qc))
252
253
254
255
256 # ## Running optimization algorithms
257 #
258 # Very recently, mapping algorithms have been developed which claim to have better efficiency than

QISKit's. Such one is described in:↪→
259 #
260 # Compiling SU(4) Quantum Circuits to IBM QX Architectures, by Zulehner, Alwin and Wille, Robert.
261 # http://iic.jku.at/files/eda/2018_arxiv_developer_challenge.pdf
262 #
263 # The optimization algorithm was run according to the provided tools, adapted for the simulation

circuit. The circuit first has to be compiled into the gate set {u1, u2, u3, cx, id}↪→
264
265 # In[40]:
266
267
268 #Optimization function
269
270 def qasm_to_dag_circuit(qasm_string, basis_gates='u1,u2,u3,cx,id'):
271 """
272 Convert an OPENQASM text string to a DAGCircuit.
273
274 Args:
275 qasm_string (str): OPENQASM2.0 circuit string.
276 basis_gates (str): QASM gates to unroll circuit to.
277
278 Returns:
279 A DAGCircuit object of the unrolled QASM circuit.
280 """
281 program_node_circuit = qiskit.qasm.Qasm(data=qasm_string).parse()
282 dag_circuit = Unroller(program_node_circuit,
283 DAGBackend(basis_gates.split(","))).execute()
284 return dag_circuit
285
286
287
288 def compiler_function(dag_circuit, coupling_map=None, gate_costs=None):
289 """
290 Modify a DAGCircuit based on a gate cost function.
291
292 Instructions:
293 Your submission involves filling in the implementation
294 of this function. The function takes as input a DAGCircuit
295 object, which can be generated from a QASM file by using the
296 function 'qasm_to_dag_circuit' from the included
297 'submission_evaluation.py' module. For more information
298 on the DAGCircuit object see the or QISKit documentation
299 (eg. 'help(DAGCircuit)').
300
301 Args:
302 dag_circuit (DAGCircuit): DAGCircuit object to be compiled.
303 coupling_circuit (list): Coupling map for device topology.
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304 A coupling map of None corresponds an
305 all-to-all connected topology.
306 gate_costs (dict) : dictionary of gate names and costs.
307
308 Returns:
309 A modified DAGCircuit object that satisfies an input coupling_map
310 and has as low a gate_cost as possible.
311 """
312
313
314 #####################
315 # Put your code here
316 #####################
317
318 import copy
319 from qiskit.mapper import Coupling, coupling_list2dict
320 from qiskit import qasm, unroll
321 import networkx as nx
322
323 if gate_costs == None:
324 gate_costs = {'id': 0, 'u1': 0, 'measure': 0, 'reset': 0, 'barrier': 0, 'u2': 1, 'u3': 1, 'U':

1, 'cx': 10, 'CX': 10}↪→
325
326 compiled_dag = copy.deepcopy(dag_circuit)
327
328 # temporary circuit to add all used gates to the available gate set
329 tmp_qasm = "OPENQASM 2.0;\n" + "gate cx c,t { CX c,t; }\n" +

"gate u3(theta,phi,lambda) q { U(theta,phi,lambda) q; }\n" + "gate
u2(phi,lambda) q { U(pi/2,phi,lambda) q; }\n" + "gate u1(lambda) q {
U(0,0,lambda) q; }\n" + "qreg q[2];\n" + "cx q[0],
q[1];\n" + "u3(0.1,0.4,0.7) q[0];\n" + "u2(0.1,0.4)
q[0]\n;" + "u1(0.1) q[0];\n"

↪→
↪→
↪→
↪→
↪→

330 u = unroll.Unroller(qasm.Qasm(data=tmp_qasm).parse(),
331 unroll.DAGBackend(["cx", "u3", "u2", "u1"]))
332 tmp_circuit = u.execute()
333
334 # prepare empty circuit for the result
335 empty_dag = DAGCircuit()
336
337 coupling = Coupling(coupling_list2dict(mapping))
338 empty_dag.add_qreg('q', coupling.size())
339
340 for k, v in sorted(compiled_dag.cregs.items()):
341 empty_dag.add_creg(k, v)
342
343 empty_dag.basis = compiled_dag._make_union_basis(tmp_circuit)
344 empty_dag.gates = compiled_dag._make_union_gates(tmp_circuit)
345
346 # pre processing: group gates
347 grouped_gates = pre_processing.group_gates(compiled_dag)
348
349 # call mapper (based on an A* search) to satisfy the constraints for CNOTs given by the

coupling_map↪→
350 compiled_dag = a_star_mapper_challenge.a_star_mapper(copy.deepcopy(grouped_gates),

coupling_list2dict(mapping), coupling.size(), copy.deepcopy(empty_dag))↪→
351 grouped_gates_compiled = pre_processing.group_gates(compiled_dag)
352
353 # estimate the cost of the mapped circuit: the number of groups as well as the cost regarding to

gate_costs↪→
354 min_groups = grouped_gates_compiled.order()
355 min_cost = 0
356 for op, count in compiled_dag.count_ops().items():
357 min_cost += count * gate_costs[op]
358
359 # Repeat the mapping procedure 9 times and take the result with minimum groups/cost. Each call may

yield a different result, since the mapper is implemented with a certain non-determinism. In
fact, in the priority queue used for implementing the A* algorithm, the entries are a pair of
the priority and a pointer to an object holding th mapping infomation (as second criterion).
Thus, it is uncertain which node is expanded first if two nodes have the same priority (it
depends on the value of the pointer). However, this non-determinism allows to find different
solution by repeatedly calling the mapper.

↪→
↪→
↪→
↪→
↪→
↪→
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360 for i in range(9):
361 result = a_star_mapper_challenge.a_star_mapper(copy.deepcopy(grouped_gates),

coupling_list2dict(mapping), coupling.size(), copy.deepcopy(empty_dag))↪→
362 grouped_gates_result = pre_processing.group_gates(result)
363
364 groups = grouped_gates_result.order()
365 cost = 0
366 for op, count in result.count_ops().items():
367 cost += count * gate_costs[op]
368 # take the solution with fewer groups (fewer cost if the number of groups is equal)
369 if groups < min_groups or (groups == min_groups and cost < min_cost):
370 min_groups = groups
371 min_cost = cost
372 compiled_dag = result
373 grouped_gates_compiled = grouped_gates_result
374
375 # post-mapping optimization: build 4x4 matrix for gate groups and decompose them using KAK

decomposition.↪→
376 # Moreover, subsequent single qubit gates are optimized
377 compiled_dag = post_mapping_optimization.optimize_gate_groups(grouped_gates_compiled,

coupling.get_edges(), copy.deepcopy(empty_dag), gate_costs)↪→
378
379 return compiled_dag
380
381
382 # In[45]:
383
384
385
386 #Get the optimized circuit qasm, load it into a circuit, and visualize it
387 gateset_comp = compile(qc, backend='local_qasm_simulator', basis_gates='u1,u2,u3,cx,id');
388 gateset_str = qp.get_compiled_qasm(gateset_comp, 'Circuit');
389 opti_str=compiler_function(qasm_to_dag_circuit(gateset_str)).qasm();
390 opti_circ = qiskit.load_qasm_string(opti_str, name = 'Circuit');
391 drawer(opti_circ, style=my_style)
392
393
394 # In[50]:
395
396
397 #We can check if the compiler provides further optimization
398 opti_qx4_comp = compile(opti_circ, backend=backend);
399 opti_qx4_qasm = qp.get_compiled_qasm(opti_qx4_comp, 'Circuit');
400 opti_qx4_circ = qiskit.load_qasm_string(opti_qx4_qasm, name='Circuit');
401
402 drawer(opti_qx4_circ, style=my_style)
403
404
405 # In[52]:
406
407
408 #We now run the optimized circuit, and check the results
409 opti_qx4 = execute(opti_qx4_circ, backend=backend, shots=1000, max_credits=3)
410
411 lapse = 0
412 interval = 30
413 while not opti_qx4.done:
414 print('Status @ {} seconds'.format(interval * lapse))
415 print(opti_qx4.status)
416 time.sleep(interval)
417 lapse += 1
418 print(opti_qx4.status)
419
420 print(opti_qx4.result().get_counts(qc))
421 plot_histogram(opti_qx4.result().get_counts(qc))
422



B.1. 2-qubit algorithms 93

423
424 # ## Device parameters
425
426 # In[53]:
427
428
429 backendx = get_backend(backend);
430 pprint(backendx.status)
431 pprint(backendx.configuration)
432 pprint(backendx.calibration)
433 pprint(backendx.parameters)
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The script for quantum state tomography over the 2-qubit simulation follows.

1 # # Simulation of the Schrodinger equation
2 #
3 # This is a quantum simulation of the schrodinger equation for a free (V(x)=0) 1D particle in a

4-point grid, using 2 qubits.↪→
4
5 # In[1]:
6
7
8 # Import the QuantumProgram and our configuration
9 from math import pi, sqrt

10 from pprint import pprint
11 import time
12 import numpy as np
13 import qiskit
14
15 from qiskit import QuantumProgram #QuantumProgram is being deprecated
16 from qiskit import ClassicalRegister, QuantumRegister
17 from qiskit import QuantumCircuit, available_backends, execute, register, get_backend, compile
18
19 # Import basic plotting tools
20 from qiskit.tools.visualization import plot_histogram, circuit_drawer, plot_state
21 from qiskit.tools.visualization import matplotlib_circuit_drawer as drawer, qx_color_scheme
22 get_ipython().run_line_magic('matplotlib', 'inline')
23 get_ipython().run_line_magic('config', "InlineBackend.figure_format = 'svg'")
24 my_style = {'cregbundle': True, 'compress': True, 'usepiformat': True, 'latexdrawerstyle': False,

'showindex': True}↪→
25
26 # Import tomography tools
27 import qiskit.tools.qcvv.tomography as tomo
28
29 # Aditional packages
30 from qiskit.tools.qi.qi import *
31
32 # Compiler function
33
34 from qiskit.dagcircuit import DAGCircuit
35 import pyximportcpp; pyximportcpp.install()
36 import a_star_mapper_challenge
37 import pre_processing
38 import post_mapping_optimization
39
40 import copy
41 import sys, os, traceback
42
43 GLOBAL_TIMEOUT = 3600
44 ERROR_LIMIT = 1e-10
45
46 from qiskit.unroll import Unroller, DAGBackend
47 from qiskit._openquantumcompiler import dag2json
48 from multiprocessing import Pool
49 from qiskit.mapper._mappererror import MapperError
50
51
52 # Register token
53
54 try:
55 register('TOKEN',
56 "https://quantumexperience.ng.bluemix.net/api")
57 print('Available backends:\n')
58 print(available_backends({'simulator':False}))
59 print('Available simulators:')
60 print(available_backends({'simulator':True}))
61
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62 except:
63 print('No valid token registered. Proceeding with available simulators.\n')
64 #print(available_backends())
65
66
67 # Set variables for the simulation
68 #Device
69 backend = 'ibmqx4'
70 #Characteristic phase shift
71 phi = 0
72 #Desired final state
73 idealvec = [0, 1/sqrt(2), 1/sqrt(2), 0]
74 #Mapping list
75 mapping = [[1, 0], [2, 0], [2, 1], [3, 2], [3, 4], [4, 2]]
76
77 # ## Ideal simulation
78 #
79 # QISKit provides the option to use a local, classical simulator of a quantum device according to

mathematical models. The results of the simulator should replicate those of an ideal quantum
simulator, i.e. without decoherence or errors.

↪→
↪→

80
81 # In[2]:
82
83
84 #Define number of Qubits and bits of the circuit
85 qnum = 5
86 bnum = 2
87
88
89 #Qubit numbering scheme
90
91 q0 = 0
92 q1 = 1
93 q2 = 2
94
95 # Creating Programs
96 qp = QuantumProgram()
97 q = qp.create_quantum_register('q', qnum)
98 c = qp.create_classical_register('c', bnum)
99 qc = qp.create_circuit('Circuit', [q], [c])

100
101
102 #State preparation
103 qc.h(q[q0])
104 qc.x(q[q0])
105 qc.cx(q[q0], q[q1])
106 qc.x(q[q0])
107
108 #Direct fast fourier transform (QFT)
109 qc.h(q[q0])
110 qc.cu1(pi/2, q[q1], q[q0])
111 qc.h(q[q1])
112
113 #NOTE: Swapping gate (at the end of QFT)
114 # eliminated by simply changing qubit references
115
116 #Momentum centering
117 qc.x(q[q1])
118
119 #Phase transformations
120 qc.u1(2*phi, q[q1])
121 qc.u1(phi, q[q0])
122
123 qc.cx(q[q0], q[q2])
124 qc.cx(q[q1], q[q2])
125 qc.u1(2*phi, q[q2])
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126 qc.cx(q[q1], q[q2])
127 qc.cx(q[q0], q[q2])
128
129 #Momentum (de)centering
130 qc.x(q[q1])
131
132 #Inverse QFT
133 qc.h(q[q1])
134 qc.cu1(-pi/2, q[q1], q[q0])
135 qc.h(q[q0])
136
137 #Measurement
138 #qc.measure(q[q0], c[0])
139 #qc.measure(q[q1], c[1])
140
141 #Get the qasm file
142 original_str = qp.get_qasm('Circuit')
143 #print(original_str)
144
145 #Draw the circuit
146 drawer(qc, style=my_style)
147
148
149 # In[3]:
150
151
152 #Using the state vector simulator, we can check if the algorithm produces the desired state
153
154 job_sv = execute(qc, backend='local_statevector_simulator')
155 statevector = job_sv.result().get_statevector(qc)
156
157 #The statevector describes the state of all 5 qubits; we can extract the 2-qubit state for simplicity
158 simvec = statevector[0:4]
159 print('State vector = ', simvec)
160
161
162 #The Fidelity function can compare the desired state to the ideal output of the circuit:
163 F_fit = state_fidelity(simvec, idealvec)
164 print('Fidelity =', F_fit)
165
166 #Create density matrix of desired state
167 ideal_rho = outer(simvec)
168 plot_state(ideal_rho)
169
170
171 # In[4]:
172
173
174 # Construct state tomography set for measurement of qubits [q0, q1] in the Pauli basis
175 qc_tomo_set = tomo.state_tomography_set([q0, q1])
176
177 # Add the state tomography measurement circuits to the Quantum Program
178 qc_tomo_circuit_names = tomo.create_tomography_circuits(qp, 'Circuit', q, c, qc_tomo_set)
179
180 circuit_list = [];
181
182 print('Created State tomography circuits:')
183 for name in qc_tomo_circuit_names:
184 circuit_list.append(qp.get_circuit(name))
185 print(name)
186
187
188 # In[6]:
189
190
191 # Test results on local simulator
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192 backend = 'local_qasm_simulator'
193
194 # Define number of shots for each measurement basis
195 shots = 100
196
197 # Run the simulation
198
199 qc_tomo_job = execute(circuit_list, backend=backend, shots=shots, max_credits=3)
200
201 lapse = 0
202 interval = 1
203 while not qc_tomo_job.done:
204 print('Status @ {} seconds'.format(interval * lapse))
205 print(qc_tomo_job.status)
206 time.sleep(interval)
207 lapse += 1
208 print(qc_tomo_job.status)
209
210 qc_tomo_result = qc_tomo_job.result()
211 print(qc_tomo_result)
212
213 # Extract tomography data from results
214 qc_tomo_data = tomo.tomography_data(qc_tomo_result, 'Circuit', qc_tomo_set)
215
216 #Reconstruct the state from count data
217 rho_fit = tomo.fit_tomography_data(qc_tomo_data)
218
219 print('Vector = ', rho_fit)
220
221 # calculate fidelity, concurrence and purity of fitted state
222 F_fit = state_fidelity(rho_fit, simvec)
223 con = concurrence(rho_fit)
224 pur = purity(rho_fit)
225
226 # plot
227 plot_state(rho_fit,)
228 plot_state(rho_fit, 'paulivec')
229 print('Fidelity =', F_fit)
230 print('concurrence = ', str(con))
231 print('purity = ', str(pur))
232
233
234 # In[5]:
235
236
237 #Checking device availability
238 backendx = get_backend(backend);
239 pprint(backend.status)
240
241
242 # In[6]:
243
244 # Define number of shots for each measurement basis
245 shots = 100
246
247 # Run the simulation
248
249 qc_tomo_job_qx4 = execute(circuit_list, backend=backend, shots=shots, max_credits=3)
250
251 lapse = 0
252 interval = 30
253 while not qc_tomo_job_qx4.done:
254 print('Status @ {} seconds'.format(interval * lapse))
255 print(qc_tomo_job_qx4.status)
256 time.sleep(interval)
257 lapse += 1
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258 print(qc_tomo_job_qx4.status)
259
260 qc_tomo_result_qx4 = qc_tomo_job_qx4.result()
261 print(qc_tomo_result_qx4)
262
263 # Extract tomography data from results
264 qc_tomo_data = tomo.tomography_data(qc_tomo_result_qx4, 'Circuit', qc_tomo_set)
265
266 #Reconstruct the state from count data
267 rho_fit = tomo.fit_tomography_data(qc_tomo_data)
268
269 print('Vector = ', rho_fit)
270
271 # calculate fidelity, concurrence and purity of fitted state
272 F_fit = state_fidelity(rho_fit, simvec)
273 con = concurrence(rho_fit)
274 pur = purity(rho_fit)
275
276 # plot
277 plot_state(rho_fit,)
278 plot_state(rho_fit, 'paulivec')
279 print('Fidelity =', F_fit)
280 print('concurrence = ', str(con))
281 print('purity = ', str(pur))
282
283
284
285 # # Running optimization algorithms
286
287 # In[7]:
288
289
290 #Optimization function
291
292 def qasm_to_dag_circuit(qasm_string, basis_gates='u1,u2,u3,cx,id'):
293 """
294 Convert an OPENQASM text string to a DAGCircuit.
295
296 Args:
297 qasm_string (str): OPENQASM2.0 circuit string.
298 basis_gates (str): QASM gates to unroll circuit to.
299
300 Returns:
301 A DAGCircuit object of the unrolled QASM circuit.
302 """
303 program_node_circuit = qiskit.qasm.Qasm(data=qasm_string).parse()
304 dag_circuit = Unroller(program_node_circuit,
305 DAGBackend(basis_gates.split(","))).execute()
306 return dag_circuit
307
308
309
310 def compiler_function(dag_circuit, coupling_map=None, gate_costs=None):
311 """
312 Modify a DAGCircuit based on a gate cost function.
313
314 Instructions:
315 Your submission involves filling in the implementation
316 of this function. The function takes as input a DAGCircuit
317 object, which can be generated from a QASM file by using the
318 function 'qasm_to_dag_circuit' from the included
319 'submission_evaluation.py' module. For more information
320 on the DAGCircuit object see the or QISKit documentation
321 (eg. 'help(DAGCircuit)').
322
323 Args:
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324 dag_circuit (DAGCircuit): DAGCircuit object to be compiled.
325 coupling_circuit (list): Coupling map for device topology.
326 A coupling map of None corresponds an
327 all-to-all connected topology.
328 gate_costs (dict) : dictionary of gate names and costs.
329
330 Returns:
331 A modified DAGCircuit object that satisfies an input coupling_map
332 and has as low a gate_cost as possible.
333 """
334
335
336 #####################
337 # Put your code here
338 #####################
339
340 import copy
341 from qiskit.mapper import Coupling, coupling_list2dict
342 from qiskit import qasm, unroll
343 import networkx as nx
344
345 if gate_costs == None:
346 gate_costs = {'id': 0, 'u1': 0, 'measure': 0, 'reset': 0, 'barrier': 0, 'u2': 1, 'u3': 1, 'U':

1, 'cx': 10, 'CX': 10}↪→
347
348 compiled_dag = copy.deepcopy(dag_circuit)
349
350 # temporary circuit to add all used gates to the available gate set
351 tmp_qasm = "OPENQASM 2.0;\n" + "gate cx c,t { CX c,t; }\n" +

"gate u3(theta,phi,lambda) q { U(theta,phi,lambda) q; }\n" + "gate
u2(phi,lambda) q { U(pi/2,phi,lambda) q; }\n" + "gate u1(lambda) q {
U(0,0,lambda) q; }\n" + "qreg q[2];\n" + "cx q[0],
q[1];\n" + "u3(0.1,0.4,0.7) q[0];\n" + "u2(0.1,0.4)
q[0]\n;" + "u1(0.1) q[0];\n"

↪→
↪→
↪→
↪→
↪→

352 u = unroll.Unroller(qasm.Qasm(data=tmp_qasm).parse(),
353 unroll.DAGBackend(["cx", "u3", "u2", "u1"]))
354 tmp_circuit = u.execute()
355
356 # prepare empty circuit for the result
357 empty_dag = DAGCircuit()
358
359 coupling = Coupling(coupling_list2dict(mapping))
360 empty_dag.add_qreg('q', coupling.size())
361
362 for k, v in sorted(compiled_dag.cregs.items()):
363 empty_dag.add_creg(k, v)
364
365 empty_dag.basis = compiled_dag._make_union_basis(tmp_circuit)
366 empty_dag.gates = compiled_dag._make_union_gates(tmp_circuit)
367
368 # pre processing: group gates
369 grouped_gates = pre_processing.group_gates(compiled_dag)
370
371 # call mapper (based on an A* search) to satisfy the constraints for CNOTs given by the

coupling_map↪→
372 compiled_dag = a_star_mapper_challenge.a_star_mapper(copy.deepcopy(grouped_gates),

coupling_list2dict(mapping), coupling.size(), copy.deepcopy(empty_dag))↪→
373 grouped_gates_compiled = pre_processing.group_gates(compiled_dag)
374
375 # estimate the cost of the mapped circuit: the number of groups as well as the cost regarding to

gate_costs↪→
376 min_groups = grouped_gates_compiled.order()
377 min_cost = 0
378 for op, count in compiled_dag.count_ops().items():
379 min_cost += count * gate_costs[op]
380
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381 # Repeat the mapping procedure 9 times and take the result with minimum groups/cost. Each call may
yield a different result, since the mapper is implemented with a certain non-determinism. In
fact, in the priority queue used for implementing the A* algorithm, the entries are a pair of
the priority and a pointer to an object holding th mapping infomation (as second criterion).
Thus, it is uncertain which node is expanded first if two nodes have the same priority (it
depends on the value of the pointer). However, this non-determinism allows to find different
solution by repeatedly calling the mapper.

↪→
↪→
↪→
↪→
↪→
↪→

382 for i in range(9):
383 result = a_star_mapper_challenge.a_star_mapper(copy.deepcopy(grouped_gates),

coupling_list2dict(mapping), coupling.size(), copy.deepcopy(empty_dag))↪→
384 grouped_gates_result = pre_processing.group_gates(result)
385
386 groups = grouped_gates_result.order()
387 cost = 0
388 for op, count in result.count_ops().items():
389 cost += count * gate_costs[op]
390 # take the solution with fewer groups (fewer cost if the number of groups is equal)
391 if groups < min_groups or (groups == min_groups and cost < min_cost):
392 min_groups = groups
393 min_cost = cost
394 compiled_dag = result
395 grouped_gates_compiled = grouped_gates_result
396
397 # post-mapping optimization: build 4x4 matrix for gate groups and decompose them using KAK

decomposition.↪→
398 # Moreover, subsequent single qubit gates are optimized
399 compiled_dag = post_mapping_optimization.optimize_gate_groups(grouped_gates_compiled,

coupling.get_edges(), copy.deepcopy(empty_dag), gate_costs)↪→
400
401 return compiled_dag
402
403
404 # In[8]:
405
406
407 #Get the optimized circuit qasm, load it into a circuit, and visualize it
408 gateset_comp = compile(qc, backend='local_qasm_simulator', basis_gates='u1,u2,u3,cx,id');
409 gateset_str = qp.get_compiled_qasm(gateset_comp, 'Circuit');
410 opti_str=compiler_function(qasm_to_dag_circuit(gateset_str)).qasm();
411 opti_circ = qiskit.load_qasm_string(opti_str, name = 'Circuit');
412 drawer(opti_circ, style=my_style)
413
414
415 # In[9]:
416
417
418 # Construct state tomography set for measurement of qubits [q0, q1] in the Pauli basis
419 qc_tomo_set = tomo.state_tomography_set([q0, q1])
420
421 # Add the state tomography measurement circuits to the Quantum Program
422 qc_tomo_circuit_names = tomo.create_tomography_circuits(qp, 'Circuit', q, c, qc_tomo_set)
423
424 circuit_list = [];
425
426 print('Created State tomography circuits:')
427 for name in qc_tomo_circuit_names:
428 circuit_list.append(qp.get_circuit(name))
429 print(name)
430
431
432 # In[10]:
433
434
435 # Define number of shots for each measurement basis
436 shots = 100
437
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438 # Run the simulation
439
440 qc_tomo_job_qx4 = execute(circuit_list, backend=backend, shots=shots, max_credits=3)
441
442 lapse = 0
443 interval = 30
444 while not qc_tomo_job_qx4.done:
445 print('Status @ {} seconds'.format(interval * lapse))
446 print(qc_tomo_job_qx4.status)
447 time.sleep(interval)
448 lapse += 1
449 print(qc_tomo_job_qx4.status)
450
451 qc_tomo_result_qx4 = qc_tomo_job_qx4.result()
452 print(qc_tomo_result_qx4)
453
454 # Extract tomography data from results
455 qc_tomo_data = tomo.tomography_data(qc_tomo_result_qx4, 'Circuit', qc_tomo_set)
456
457 #Reconstruct the state from count data
458 rho_fit = tomo.fit_tomography_data(qc_tomo_data)
459
460 print('Vector = ', rho_fit)
461
462 # calculate fidelity, concurrence and purity of fitted state
463 F_fit = state_fidelity(rho_fit, simvec)
464 con = concurrence(rho_fit)
465 pur = purity(rho_fit)
466
467 # plot
468 plot_state(rho_fit,)
469 plot_state(rho_fit, 'paulivec')
470 print('Fidelity =', F_fit)
471 print('concurrence = ', str(con))
472 print('purity = ', str(pur))
473
474
475 # ## Device parameters
476
477 # In[12]:
478
479
480 backendx = get_backend(backend);
481 pprint(backendx.status)
482 pprint(backendx.configuration)
483 pprint(backendx.calibration)
484 pprint(backendx.parameters)

b.2 3-qubit algorithms

To change between devices, the string variable backend should be set to either ’ibmqx4’ or
’ibmq_20_tokyo’. For the alternative compiler, the mapping has to be set explicitly.

For ibmqx4, mapping = [[1, 0], [2, 0], [2, 1], [3, 2], [3, 4], [4, 2]].
For ibmq20, mapping = [[0, 1], [0, 5], [1, 0], [1, 2], [1, 6], [1, 7], [2, 1],

[2, 3], [2, 6], [3, 2], [3, 8], [3, 9], [4, 8], [4, 9], [5, 0], [5, 6], [5, 10],

[5, 11], [6, 1], [6, 2], [6, 5], [6, 7], [6, 10], [6, 11], [7, 1], [7, 6], [7,
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8], [7, 12], [7, 13], [8, 3], [8, 4], [8, 7], [8, 9], [8, 12], [8, 13], [9, 3],

[9, 4], [9, 8], [10, 5], [10, 6], [10, 11], [10, 15], [11, 5], [11, 6], [11, 10],

[11, 12], [11, 16], [11, 17], [12, 7], [12, 8], [12, 11], [12, 13], [12, 16], [13,

7], [13, 8], [13, 12], [13, 14], [13, 18], [13, 19], [14, 13], [15, 10], [15, 16],

[16, 11], [16, 12], [16, 15], [16, 17], [17, 11], [17, 16], [18, 13], [19, 13]].

1 # coding: utf-8
2
3 # # Simulation of the Schrödinger equation
4 #
5 # This is a quantum simulation of the schrodinger equation for a free (V(x)=0) 1D particle in a

4-point grid, using 2 qubits.↪→
6
7 # In[1]:
8
9

10 # Import the QuantumProgram and our configuration
11 from math import pi, sqrt
12 from pprint import pprint
13 import time
14 import numpy as np
15 import qiskit
16
17 from qiskit import QuantumProgram #QuantumProgram is being deprecated
18 from qiskit import ClassicalRegister, QuantumRegister
19 from qiskit import QuantumCircuit, available_backends, execute, register, get_backend, compile
20
21 # Import basic plotting tools
22 from qiskit.tools.visualization import plot_histogram, circuit_drawer, plot_state
23 from qiskit.tools.visualization import matplotlib_circuit_drawer as drawer, qx_color_scheme
24 get_ipython().run_line_magic('matplotlib', 'inline')
25 get_ipython().run_line_magic('config', "InlineBackend.figure_format = 'svg'")
26 my_style = {'cregbundle': True, 'compress': True, 'usepiformat': True, 'latexdrawerstyle': False,

'showindex': True}↪→
27
28 # Import tomography tools
29 import qiskit.tools.qcvv.tomography as tomo
30
31 # Aditional packages
32 from qiskit.tools.qi.qi import *
33
34 # Compiler function
35
36 from qiskit.dagcircuit import DAGCircuit
37 import pyximportcpp; pyximportcpp.install()
38 import a_star_mapper_challenge
39 import pre_processing
40 import post_mapping_optimization
41
42 import copy
43 import sys, os, traceback
44
45 GLOBAL_TIMEOUT = 3600
46 ERROR_LIMIT = 1e-10
47
48 from qiskit.unroll import Unroller, DAGBackend
49 from qiskit._openquantumcompiler import dag2json
50 from multiprocessing import Pool
51 from qiskit.mapper._mappererror import MapperError
52
53
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54 # Register token
55
56 try:
57 register('TOKEN',
58 "https://quantumexperience.ng.bluemix.net/api")
59 print('Available backends:\n')
60 print(available_backends({'simulator':False}))
61 print('Available simulators:')
62 print(available_backends({'simulator':True}))
63
64 except:
65 print('No valid token registered. Proceeding with available simulators.\n')
66 print(available_backends())
67
68
69 # Set variables for the simulation
70 #Device
71 backend = 'ibmqx4'
72 #Characteristic phase shift
73 phi = 0
74 #Desired final state
75 idealvec = [0, 1/sqrt(2), 1/sqrt(2), 0]
76 #Mapping list
77 mapping = [[1, 0], [2, 0], [2, 1], [3, 2], [3, 4], [4, 2]]
78
79
80 # ## Ideal simulation
81 #
82 # QISKit provides the option to use a local, classical simulator of a quantum device according to

mathematical models. The results of the simulator should replicate those of an ideal quantum
simulator, i.e. without decoherence or errors.

↪→
↪→

83
84 # In[22]:
85
86
87 #Define number of Qubits and bits of the circuit
88 qnum = 5
89 bnum = 3
90
91 #Qubit numbering scheme
92
93 q0 = 0
94 q1 = 1
95 q2 = 2
96 q3 = 3 #ancilla qubit
97
98 # Creating Programs
99 qp = QuantumProgram()

100 q = qp.create_quantum_register('q', qnum)
101 c = qp.create_classical_register('c', bnum)
102 qc = qp.create_circuit('Circuit', [q], [c])
103
104
105 #State preparation
106 psi0 = [0, 0, 1/2, 1/2, 1/2, 1/2, 0, 0]
107 qc.initialize(psi0, [q[q0],q[q1],q[q2]])
108
109 #Direct fast fourier transform (QFT)
110 qc.h(q[q0])
111 qc.cu1(pi/(2**(1)), q[q0], q[q1]);
112 qc.cu1(pi/(2**(2)), q[q0], q[q2]);
113 qc.h(q[q1])
114 qc.cu1(pi/(2**(1)), q[q1], q[q2]);
115 qc.h(q[q2])
116
117
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118 #NOTE: Swapping gate (at the end of QFT)
119 # eliminated by simply changing qubit references
120
121 #Momentum centering
122 qc.x(q[q2])
123
124
125 #Phase transformations
126 qc.u1(phi/4, q[q0])
127 qc.u1(phi/2, q[q1])
128 qc.u1(phi, q[q2])
129
130 qc.cx(q[q2], q[q3])
131 qc.cx(q[q1], q[q3])
132 qc.u1(2*phi, q[q3])
133 qc.cx(q[q1], q[q3])
134 qc.cx(q[q2], q[q3])
135
136 qc.cx(q[q2], q[q3])
137 qc.cx(q[q0], q[q3])
138 qc.u1(phi, q[q3])
139 qc.cx(q[q0], q[q3])
140 qc.cx(q[q2], q[q3])
141
142 qc.cx(q[q1], q[q3])
143 qc.cx(q[q0], q[q3])
144 qc.u1(phi/2, q[q3])
145 qc.cx(q[q0], q[q3])
146 qc.cx(q[q1], q[q3])
147
148 #Momentum (de)centering
149 qc.x(q[q2])
150
151 #Inverse QFT (swapped input)
152 qc.h(q[q2])
153 qc.cu1(-pi/(2**(1)), q[q1], q[q2]);
154 qc.h(q[q1])
155 qc.cu1(-pi/(2**(2)), q[q0], q[q2]);
156 qc.cu1(-pi/(2**(1)), q[q0], q[q1]);
157 qc.h(q[q0])
158
159
160
161 #Measurement
162 #qc.measure(q[q0], c[0])
163 #qc.measure(q[q1], c[1])
164 #qc.measure(q[q2], c[2])
165
166 #Draw the circuit
167 drawer(qc, style=my_style, scale=0.6)
168 #print(qc.qasm())
169
170
171 # In[23]:
172
173
174 #Using the state vector simulator, we can check if the algorithm produces the desired state
175
176 #Desired state (after delta t)
177 idealvec = [0, 0, 1/2, 1/2, 1/2, 1/2, 0, 0]
178
179 job_sv = execute(qc, backend='local_statevector_simulator')
180 statevector = job_sv.result().get_statevector(qc)
181
182 #The statevector describes the state of all 5 qubits; we can extract the 2-qubit state for simplicity
183 simvec = statevector[0:8]
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184 print('State vector = ', simvec)
185
186
187 #The Fidelity function can compare the desired state to the ideal output of the circuit:
188 F_fit = state_fidelity(simvec, idealvec)
189 print('Fidelity =', F_fit)
190
191 #Create density matrix of desired state
192 ideal_rho = outer(simvec)
193 plot_state(ideal_rho)
194
195
196 # In[24]:
197
198
199 # Construct state tomography set for measurement of qubits [q0, q1] in the Pauli basis
200 qc_tomo_set = tomo.state_tomography_set([q0, q1, q2])
201
202 qp.add_circuit('Circuit', qc)
203
204 # Add the state tomography measurement circuits to the Quantum Program
205 qc_tomo_circuit_names = tomo.create_tomography_circuits(qp, 'Circuit', q, c, qc_tomo_set)
206
207 circuit_list = [];
208
209 print('Created State tomography circuits:')
210 for name in qc_tomo_circuit_names:
211 circuit_list.append(qp.get_circuit(name))
212 print(name)
213
214 drawer(circuit_list[0], style=my_style)
215
216
217 # In[7]:
218
219
220 # Check tomography circuit after compilation
221 qx4_comp = compile(qp.get_circuit('Circuit_meas_X(0)X(1)X(2)'), backend=backend);
222 qp.get_execution_list(qx4_comp)
223 qx4_qasm = qp.get_compiled_qasm(qx4_comp, 'circuit3');
224 qx4_circ = qiskit.load_qasm_string(qx4_qasm);
225
226 drawer(qx4_circ, style=my_style)
227
228
229 # In[25]:
230
231
232 # Test results on local simulator
233 backend = 'local_qasm_simulator'
234
235 # Define number of shots for each measurement basis
236 shots = 100
237
238 # Run the simulation
239
240 qc_tomo_job = execute(circuit_list, backend=backend, shots=shots, max_credits=3)
241
242 lapse = 0
243 interval = 1
244 while not qc_tomo_job.done:
245 print('Status @ {} seconds'.format(interval * lapse))
246 print(qc_tomo_job.status)
247 time.sleep(interval)
248 lapse += 1
249 print(qc_tomo_job.status)
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250
251 qc_tomo_result = qc_tomo_job.result()
252 print(qc_tomo_result)
253
254 # Extract tomography data from results
255 qc_tomo_data = tomo.tomography_data(qc_tomo_result, 'Circuit', qc_tomo_set)
256
257 #Reconstruct the state from count data
258 rho_fit = tomo.fit_tomography_data(qc_tomo_data)
259
260 print('Matrix = ', rho_fit)
261
262 # calculate fidelity, concurrence and purity of fitted state
263 F_fit = state_fidelity(rho_fit, simvec)
264 pur = purity(rho_fit)
265
266 # plot
267 plot_state(rho_fit,)
268 plot_state(rho_fit, 'paulivec')
269 print('Fidelity =', F_fit)
270 print('purity = ', str(pur))
271
272
273 # # Simulation using QISKit's optimization algortithms
274
275 # In[26]:
276
277
278 backendx = get_backend(backend);
279 pprint(backendx.status)
280
281
282 # In[27]:
283
284
285 # Define number of shots for each measurement basis
286 shots = 100
287
288 # Run the simulation
289
290 qc_tomo_job_qx4 = execute(circuit_list, backend=backend, shots=shots, max_credits=3)
291
292 lapse = 0
293 interval = 30
294 while not qc_tomo_job_qx4.done:
295 print('Status @ {} seconds'.format(interval * lapse))
296 print(qc_tomo_job_qx4.status)
297 time.sleep(interval)
298 lapse += 1
299 print(qc_tomo_job_qx4.status)
300
301 qc_tomo_result_qx4 = qc_tomo_job_qx4.result()
302 print(qc_tomo_result_qx4)
303
304 # Extract tomography data from results
305 qc_tomo_data = tomo.tomography_data(qc_tomo_result_qx4, 'Circuit', qc_tomo_set)
306
307 #Reconstruct the state from count data
308 rho_fit = tomo.fit_tomography_data(qc_tomo_data)
309
310 print('Matrix = ', rho_fit)
311
312 # calculate fidelity, concurrence and purity of fitted state
313 F_fit = state_fidelity(rho_fit, simvec)
314 pur = purity(rho_fit)
315
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316 # plot
317 plot_state(rho_fit,)
318 plot_state(rho_fit, 'paulivec')
319 print('Fidelity =', F_fit)
320 print('purity = ', str(pur))
321
322
323 # In[ ]:
324
325
326 # calculate fidelity, concurrence and purity of fitted state
327 F_fit = state_fidelity(rho_fit, simvec)
328 pur = purity(rho_fit)
329
330 # plot
331 plot_state(rho_fit,)
332 plot_state(rho_fit, 'paulivec')
333 print('Fidelity =', F_fit)
334 print('purity = ', str(pur))
335
336
337 # ## Running optimization algorithms
338 #
339 # Very recently, mapping algorithms have been developed which claim to have better efficiency than

QISKit's. Such one is described in:↪→
340 #
341 # Compiling SU(4) Quantum Circuits to IBM QX Architectures, by Zulehner, Alwin and Wille, Robert.
342 # http://iic.jku.at/files/eda/2018_arxiv_developer_challenge.pdf
343 #
344 # The optimization algorithm was run according to the provided tools, adapted for the simulation

circuit. The circuit first has to be compiled into the gate set {u1, u2, u3, cx, id}↪→
345
346 # In[17]:
347
348
349 #Optimization function
350
351 def qasm_to_dag_circuit(qasm_string, basis_gates='u1,u2,u3,cx,id'):
352 """
353 Convert an OPENQASM text string to a DAGCircuit.
354
355 Args:
356 qasm_string (str): OPENQASM2.0 circuit string.
357 basis_gates (str): QASM gates to unroll circuit to.
358
359 Returns:
360 A DAGCircuit object of the unrolled QASM circuit.
361 """
362 program_node_circuit = qiskit.qasm.Qasm(data=qasm_string).parse()
363 dag_circuit = Unroller(program_node_circuit,
364 DAGBackend(basis_gates.split(","))).execute()
365 return dag_circuit
366
367
368
369 def compiler_function(dag_circuit, coupling_map=None, gate_costs=None):
370 """
371 Modify a DAGCircuit based on a gate cost function.
372
373 Instructions:
374 Your submission involves filling in the implementation
375 of this function. The function takes as input a DAGCircuit
376 object, which can be generated from a QASM file by using the
377 function 'qasm_to_dag_circuit' from the included
378 'submission_evaluation.py' module. For more information
379 on the DAGCircuit object see the or QISKit documentation
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380 (eg. 'help(DAGCircuit)').
381
382 Args:
383 dag_circuit (DAGCircuit): DAGCircuit object to be compiled.
384 coupling_circuit (list): Coupling map for device topology.
385 A coupling map of None corresponds an
386 all-to-all connected topology.
387 gate_costs (dict) : dictionary of gate names and costs.
388
389 Returns:
390 A modified DAGCircuit object that satisfies an input coupling_map
391 and has as low a gate_cost as possible.
392 """
393
394
395 #####################
396 # Put your code here
397 #####################
398
399 import copy
400 from qiskit.mapper import Coupling, coupling_list2dict
401 from qiskit import qasm, unroll
402 import networkx as nx
403
404 if gate_costs == None:
405 gate_costs = {'id': 0, 'u1': 0, 'measure': 0, 'reset': 0, 'barrier': 0, 'u2': 1, 'u3': 1, 'U':

1, 'cx': 10, 'CX': 10}↪→
406
407 compiled_dag = copy.deepcopy(dag_circuit)
408
409 # temporary circuit to add all used gates to the available gate set
410 tmp_qasm = "OPENQASM 2.0;\n" + "gate cx c,t { CX c,t; }\n" +

"gate u3(theta,phi,lambda) q { U(theta,phi,lambda) q; }\n" + "gate
u2(phi,lambda) q { U(pi/2,phi,lambda) q; }\n" + "gate u1(lambda) q {
U(0,0,lambda) q; }\n" + "qreg q[2];\n" + "cx q[0],
q[1];\n" + "u3(0.1,0.4,0.7) q[0];\n" + "u2(0.1,0.4)
q[0]\n;" + "u1(0.1) q[0];\n"

↪→
↪→
↪→
↪→
↪→

411 u = unroll.Unroller(qasm.Qasm(data=tmp_qasm).parse(),
412 unroll.DAGBackend(["cx", "u3", "u2", "u1"]))
413 tmp_circuit = u.execute()
414
415 # prepare empty circuit for the result
416 empty_dag = DAGCircuit()
417
418 coupling = Coupling(coupling_list2dict(mapping))
419 empty_dag.add_qreg('q', coupling.size())
420
421 for k, v in sorted(compiled_dag.cregs.items()):
422 empty_dag.add_creg(k, v)
423
424 empty_dag.basis = compiled_dag._make_union_basis(tmp_circuit)
425 empty_dag.gates = compiled_dag._make_union_gates(tmp_circuit)
426
427 # pre processing: group gates
428 grouped_gates = pre_processing.group_gates(compiled_dag)
429
430 # call mapper (based on an A* search) to satisfy the constraints for CNOTs given by the

coupling_map↪→
431 compiled_dag = a_star_mapper_challenge.a_star_mapper(copy.deepcopy(grouped_gates),

coupling_list2dict(mapping), coupling.size(), copy.deepcopy(empty_dag))↪→
432 grouped_gates_compiled = pre_processing.group_gates(compiled_dag)
433
434 # estimate the cost of the mapped circuit: the number of groups as well as the cost regarding to

gate_costs↪→
435 min_groups = grouped_gates_compiled.order()
436 min_cost = 0
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437 for op, count in compiled_dag.count_ops().items():
438 min_cost += count * gate_costs[op]
439
440 # Repeat the mapping procedure 9 times and take the result with minimum groups/cost. Each call may

yield a different result, since the mapper is implemented with a certain non-determinism. In
fact, in the priority queue used for implementing the A* algorithm, the entries are a pair of
the priority and a pointer to an object holding th mapping infomation (as second criterion).
Thus, it is uncertain which node is expanded first if two nodes have the same priority (it
depends on the value of the pointer). However, this non-determinism allows to find different
solution by repeatedly calling the mapper.

↪→
↪→
↪→
↪→
↪→
↪→

441 for i in range(9):
442 result = a_star_mapper_challenge.a_star_mapper(copy.deepcopy(grouped_gates),

coupling_list2dict(mapping), coupling.size(), copy.deepcopy(empty_dag))↪→
443 grouped_gates_result = pre_processing.group_gates(result)
444
445 groups = grouped_gates_result.order()
446 cost = 0
447 for op, count in result.count_ops().items():
448 cost += count * gate_costs[op]
449 # take the solution with fewer groups (fewer cost if the number of groups is equal)
450 if groups < min_groups or (groups == min_groups and cost < min_cost):
451 min_groups = groups
452 min_cost = cost
453 compiled_dag = result
454 grouped_gates_compiled = grouped_gates_result
455
456 # post-mapping optimization: build 4x4 matrix for gate groups and decompose them using KAK

decomposition.↪→
457 # Moreover, subsequent single qubit gates are optimized
458 compiled_dag = post_mapping_optimization.optimize_gate_groups(grouped_gates_compiled,

coupling.get_edges(), copy.deepcopy(empty_dag), gate_costs)↪→
459
460 return compiled_dag
461
462
463 # In[18]:
464
465 #Get the optimized circuit qasm, load it into a circuit, and visualize it
466 gateset_comp = compile(qc, backend='local_qasm_simulator', basis_gates='u1,u2,u3,cx,id');
467 gateset_str = qp.get_compiled_qasm(gateset_comp, 'Circuit');
468 opti_str=compiler_function(qasm_to_dag_circuit(gateset_str)).qasm();
469 opti_circ = qiskit.load_qasm_string(opti_str, name = 'Circuit');
470 drawer(opti_circ, style=my_style)
471
472
473 # In[19]:
474
475
476 #Using the state vector simulator, we can check if the algorithm produces the desired state
477
478 #Desired state (after delta t, phi=0)
479 idealvec = [0, 0, 1/2, 1/2, 1/2, 1/2, 0, 0]
480
481 job_sv = execute(opti_circ, backend='local_statevector_simulator')
482 statevector = job_sv.result().get_statevector(opti_circ)
483
484 #The statevector describes the state of all 5 qubits; we can extract the 2-qubit state for simplicity
485 simvec = statevector[0:8]
486 print('State vector = ', simvec)
487
488
489 #The Fidelity function can compare the desired state to the ideal output of the circuit:
490 F_fit = state_fidelity(simvec, idealvec)
491 print('Fidelity =', F_fit)
492
493 #Create density matrix of desired state
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494 ideal_rho = outer(simvec)
495 plot_state(ideal_rho)
496
497
498 # In[20]:
499
500
501 # Construct state tomography set for measurement of qubits [q0, q1] in the Pauli basis
502 qc_tomo_set = tomo.state_tomography_set([q0, q1, q2])
503
504
505 # Reset quantum program
506 # Creating Programs
507 qp = QuantumProgram()
508 q = qp.create_quantum_register('q', qnum)
509 c = qp.create_classical_register('c', bnum)
510 qc = qp.create_circuit('Circuit', [q], [c])
511
512
513 qp.add_circuit('Circuit', opti_circ)
514
515 # Add the state tomography measurement circuits to the Quantum Program
516 qc_tomo_circuit_names = tomo.create_tomography_circuits(qp, 'Circuit', q, c, qc_tomo_set)
517
518 circuit_list = [];
519
520 print('Created State tomography circuits:')
521 for name in qc_tomo_circuit_names:
522 circuit_list.append(qp.get_circuit(name))
523 print(name)
524
525 drawer(circuit_list[0], style=my_style)
526
527
528 # In[21]:
529
530
531 # Define number of shots for each measurement basis
532 shots = 100
533
534 # Run the simulation
535
536 qc_tomo_job_qx4 = execute(circuit_list, backend=backend, shots=shots, max_credits=3)
537
538 lapse = 0
539 interval = 30
540 while not qc_tomo_job_qx4.done:
541 print('Status @ {} seconds'.format(interval * lapse))
542 print(qc_tomo_job_qx4.status)
543 time.sleep(interval)
544 lapse += 1
545 print(qc_tomo_job_qx4.status)
546
547 qc_tomo_result_qx4 = qc_tomo_job_qx4.result()
548 print(qc_tomo_result_qx4)
549
550 # Extract tomography data from results
551 qc_tomo_data = tomo.tomography_data(qc_tomo_result_qx4, 'Circuit', qc_tomo_set)
552
553 #Reconstruct the state from count data
554 rho_fit = tomo.fit_tomography_data(qc_tomo_data)
555
556 print('Vector = ', rho_fit)
557
558 # calculate fidelity, concurrence and purity of fitted state
559 F_fit = state_fidelity(rho_fit, simvec)
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560 pur = purity(rho_fit)
561
562 # plot
563 plot_state(rho_fit,)
564 plot_state(rho_fit, 'paulivec')
565 print('Fidelity =', F_fit)
566 print('purity = ', str(pur))
567
568
569 # ## Device parameters
570
571 # In[28]:
572
573
574 backendx = get_backend(backend);
575 pprint(backendx.status)
576 pprint(backendx.configuration)
577 pprint(backendx.calibration)
578 pprint(backendx.parameters)
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The script for quantum state tomography over the 3-qubit simulation follows.

1 # coding: utf-8
2
3 # # Simulation of the Schrödinger equation
4 #
5 # This is a quantum simulation of the schrodinger equation for a free (V(x)=0) 1D particle in a

4-point grid, using 2 qubits.↪→
6
7 # In[1]:
8
9

10 # Import the QuantumProgram and our configuration
11 from math import pi, sqrt
12 from pprint import pprint
13 import time
14 import numpy as np
15 import qiskit
16
17 from qiskit import QuantumProgram #QuantumProgram is being deprecated
18 from qiskit import ClassicalRegister, QuantumRegister
19 from qiskit import QuantumCircuit, available_backends, execute, register, get_backend, compile
20
21 # Import basic plotting tools
22 from qiskit.tools.visualization import plot_histogram, circuit_drawer, plot_state
23 from qiskit.tools.visualization import matplotlib_circuit_drawer as drawer, qx_color_scheme
24 get_ipython().run_line_magic('matplotlib', 'inline')
25 get_ipython().run_line_magic('config', "InlineBackend.figure_format = 'svg'")
26 my_style = {'cregbundle': True, 'compress': True, 'usepiformat': True, 'latexdrawerstyle': False,

'showindex': True}↪→
27
28 # Import tomography tools
29 import qiskit.tools.qcvv.tomography as tomo
30
31 # Aditional packages
32 from qiskit.tools.qi.qi import *
33
34 # Compiler function
35
36 from qiskit.dagcircuit import DAGCircuit
37 import pyximportcpp; pyximportcpp.install()
38 import a_star_mapper_challenge
39 import pre_processing
40 import post_mapping_optimization
41
42 import copy
43 import sys, os, traceback
44
45 GLOBAL_TIMEOUT = 3600
46 ERROR_LIMIT = 1e-10
47
48 from qiskit.unroll import Unroller, DAGBackend
49 from qiskit._openquantumcompiler import dag2json
50 from multiprocessing import Pool
51 from qiskit.mapper._mappererror import MapperError
52
53
54 # Register token
55
56 try:
57 register('TOKEN',
58 "https://quantumexperience.ng.bluemix.net/api")
59 print('Available backends:\n')
60 print(available_backends({'simulator':False}))
61 print('Available simulators:')
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62 print(available_backends({'simulator':True}))
63
64 except:
65 print('No valid token registered. Proceeding with available simulators.\n')
66 print(available_backends())
67
68
69 # Set variables for the simulation
70 #Device
71 backend = 'ibmqx4'
72 #Characteristic phase shift
73 phi = 0
74 #Desired final state
75 idealvec = [0, 1/sqrt(2), 1/sqrt(2), 0]
76 #Mapping list
77 mapping = [[1, 0], [2, 0], [2, 1], [3, 2], [3, 4], [4, 2]]
78
79
80 # ## Ideal simulation
81 #
82 # QISKit provides the option to use a local, classical simulator of a quantum device according to

mathematical models. The results of the simulator should replicate those of an ideal quantum
simulator, i.e. without decoherence or errors.

↪→
↪→

83
84 # In[22]:
85
86
87 #Define number of Qubits and bits of the circuit
88 qnum = 5
89 bnum = 3
90
91 #Qubit numbering scheme
92
93 q0 = 0
94 q1 = 1
95 q2 = 2
96 q3 = 3 #ancilla qubit
97
98 # Creating Programs
99 qp = QuantumProgram()

100 q = qp.create_quantum_register('q', qnum)
101 c = qp.create_classical_register('c', bnum)
102 qc = qp.create_circuit('Circuit', [q], [c])
103
104
105 #State preparation
106 psi0 = [0, 0, 1/2, 1/2, 1/2, 1/2, 0, 0]
107 qc.initialize(psi0, [q[q0],q[q1],q[q2]])
108
109 #Direct fast fourier transform (QFT)
110 qc.h(q[q0])
111 qc.cu1(pi/(2**(1)), q[q0], q[q1]);
112 qc.cu1(pi/(2**(2)), q[q0], q[q2]);
113 qc.h(q[q1])
114 qc.cu1(pi/(2**(1)), q[q1], q[q2]);
115 qc.h(q[q2])
116
117
118 #NOTE: Swapping gate (at the end of QFT)
119 # eliminated by simply changing qubit references
120
121 #Momentum centering
122 qc.x(q[q2])
123
124
125 #Phase transformations



B.2. 3-qubit algorithms 114

126 qc.u1(phi/4, q[q0])
127 qc.u1(phi/2, q[q1])
128 qc.u1(phi, q[q2])
129
130 qc.cx(q[q2], q[q3])
131 qc.cx(q[q1], q[q3])
132 qc.u1(2*phi, q[q3])
133 qc.cx(q[q1], q[q3])
134 qc.cx(q[q2], q[q3])
135
136 qc.cx(q[q2], q[q3])
137 qc.cx(q[q0], q[q3])
138 qc.u1(phi, q[q3])
139 qc.cx(q[q0], q[q3])
140 qc.cx(q[q2], q[q3])
141
142 qc.cx(q[q1], q[q3])
143 qc.cx(q[q0], q[q3])
144 qc.u1(phi/2, q[q3])
145 qc.cx(q[q0], q[q3])
146 qc.cx(q[q1], q[q3])
147
148 #Momentum (de)centering
149 qc.x(q[q2])
150
151 #Inverse QFT (swapped input)
152 qc.h(q[q2])
153 qc.cu1(-pi/(2**(1)), q[q1], q[q2]);
154 qc.h(q[q1])
155 qc.cu1(-pi/(2**(2)), q[q0], q[q2]);
156 qc.cu1(-pi/(2**(1)), q[q0], q[q1]);
157 qc.h(q[q0])
158
159
160
161 #Measurement
162 #qc.measure(q[q0], c[0])
163 #qc.measure(q[q1], c[1])
164 #qc.measure(q[q2], c[2])
165
166 #Draw the circuit
167 drawer(qc, style=my_style, scale=0.6)
168 #print(qc.qasm())
169
170
171 # In[23]:
172
173
174 #Using the state vector simulator, we can check if the algorithm produces the desired state
175
176 #Desired state (after delta t)
177 idealvec = [0, 0, 1/2, 1/2, 1/2, 1/2, 0, 0]
178
179 job_sv = execute(qc, backend='local_statevector_simulator')
180 statevector = job_sv.result().get_statevector(qc)
181
182 #The statevector describes the state of all 5 qubits; we can extract the 2-qubit state for simplicity
183 simvec = statevector[0:8]
184 print('State vector = ', simvec)
185
186
187 #The Fidelity function can compare the desired state to the ideal output of the circuit:
188 F_fit = state_fidelity(simvec, idealvec)
189 print('Fidelity =', F_fit)
190
191 #Create density matrix of desired state
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192 ideal_rho = outer(simvec)
193 plot_state(ideal_rho)
194
195
196 # In[24]:
197
198
199 # Construct state tomography set for measurement of qubits [q0, q1] in the Pauli basis
200 qc_tomo_set = tomo.state_tomography_set([q0, q1, q2])
201
202 qp.add_circuit('Circuit', qc)
203
204 # Add the state tomography measurement circuits to the Quantum Program
205 qc_tomo_circuit_names = tomo.create_tomography_circuits(qp, 'Circuit', q, c, qc_tomo_set)
206
207 circuit_list = [];
208
209 print('Created State tomography circuits:')
210 for name in qc_tomo_circuit_names:
211 circuit_list.append(qp.get_circuit(name))
212 print(name)
213
214 drawer(circuit_list[0], style=my_style)
215
216
217 # In[7]:
218
219
220 # Check tomography circuit after compilation
221 qx4_comp = compile(qp.get_circuit('Circuit_meas_X(0)X(1)X(2)'), backend=backend);
222 qp.get_execution_list(qx4_comp)
223 qx4_qasm = qp.get_compiled_qasm(qx4_comp, 'circuit3');
224 qx4_circ = qiskit.load_qasm_string(qx4_qasm);
225
226 drawer(qx4_circ, style=my_style)
227
228
229 # In[25]:
230
231
232 # Test results on local simulator
233 backend = 'local_qasm_simulator'
234
235 # Define number of shots for each measurement basis
236 shots = 100
237
238 # Run the simulation
239
240 qc_tomo_job = execute(circuit_list, backend=backend, shots=shots, max_credits=3)
241
242 lapse = 0
243 interval = 1
244 while not qc_tomo_job.done:
245 print('Status @ {} seconds'.format(interval * lapse))
246 print(qc_tomo_job.status)
247 time.sleep(interval)
248 lapse += 1
249 print(qc_tomo_job.status)
250
251 qc_tomo_result = qc_tomo_job.result()
252 print(qc_tomo_result)
253
254 # Extract tomography data from results
255 qc_tomo_data = tomo.tomography_data(qc_tomo_result, 'Circuit', qc_tomo_set)
256
257 #Reconstruct the state from count data
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258 rho_fit = tomo.fit_tomography_data(qc_tomo_data)
259
260 print('Matrix = ', rho_fit)
261
262 # calculate fidelity, concurrence and purity of fitted state
263 F_fit = state_fidelity(rho_fit, simvec)
264 pur = purity(rho_fit)
265
266 # plot
267 plot_state(rho_fit,)
268 plot_state(rho_fit, 'paulivec')
269 print('Fidelity =', F_fit)
270 print('purity = ', str(pur))
271
272
273 # # Simulation using QISKit's optimization algortithms
274
275 # In[26]:
276
277
278 backendx = get_backend(backend);
279 pprint(backendx.status)
280
281
282 # In[27]:
283
284
285 # Define number of shots for each measurement basis
286 shots = 100
287
288 # Run the simulation
289
290 qc_tomo_job_qx4 = execute(circuit_list, backend=backend, shots=shots, max_credits=3)
291
292 lapse = 0
293 interval = 30
294 while not qc_tomo_job_qx4.done:
295 print('Status @ {} seconds'.format(interval * lapse))
296 print(qc_tomo_job_qx4.status)
297 time.sleep(interval)
298 lapse += 1
299 print(qc_tomo_job_qx4.status)
300
301 qc_tomo_result_qx4 = qc_tomo_job_qx4.result()
302 print(qc_tomo_result_qx4)
303
304 # Extract tomography data from results
305 qc_tomo_data = tomo.tomography_data(qc_tomo_result_qx4, 'Circuit', qc_tomo_set)
306
307 #Reconstruct the state from count data
308 rho_fit = tomo.fit_tomography_data(qc_tomo_data)
309
310 print('Matrix = ', rho_fit)
311
312 # calculate fidelity, concurrence and purity of fitted state
313 F_fit = state_fidelity(rho_fit, simvec)
314 pur = purity(rho_fit)
315
316 # plot
317 plot_state(rho_fit,)
318 plot_state(rho_fit, 'paulivec')
319 print('Fidelity =', F_fit)
320 print('purity = ', str(pur))
321
322
323 # In[ ]:
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324
325
326 # calculate fidelity, concurrence and purity of fitted state
327 F_fit = state_fidelity(rho_fit, simvec)
328 pur = purity(rho_fit)
329
330 # plot
331 plot_state(rho_fit,)
332 plot_state(rho_fit, 'paulivec')
333 print('Fidelity =', F_fit)
334 print('purity = ', str(pur))
335
336
337 # ## Running optimization algorithms
338 #
339 # Very recently, mapping algorithms have been developed which claim to have better efficiency than

QISKit's. Such one is described in:↪→
340 #
341 # Compiling SU(4) Quantum Circuits to IBM QX Architectures, by Zulehner, Alwin and Wille, Robert.
342 # http://iic.jku.at/files/eda/2018_arxiv_developer_challenge.pdf
343 #
344 # The optimization algorithm was run according to the provided tools, adapted for the simulation

circuit. The circuit first has to be compiled into the gate set {u1, u2, u3, cx, id}↪→
345
346 # In[17]:
347
348
349 #Optimization function
350
351 def qasm_to_dag_circuit(qasm_string, basis_gates='u1,u2,u3,cx,id'):
352 """
353 Convert an OPENQASM text string to a DAGCircuit.
354
355 Args:
356 qasm_string (str): OPENQASM2.0 circuit string.
357 basis_gates (str): QASM gates to unroll circuit to.
358
359 Returns:
360 A DAGCircuit object of the unrolled QASM circuit.
361 """
362 program_node_circuit = qiskit.qasm.Qasm(data=qasm_string).parse()
363 dag_circuit = Unroller(program_node_circuit,
364 DAGBackend(basis_gates.split(","))).execute()
365 return dag_circuit
366
367
368
369 def compiler_function(dag_circuit, coupling_map=None, gate_costs=None):
370 """
371 Modify a DAGCircuit based on a gate cost function.
372
373 Instructions:
374 Your submission involves filling in the implementation
375 of this function. The function takes as input a DAGCircuit
376 object, which can be generated from a QASM file by using the
377 function 'qasm_to_dag_circuit' from the included
378 'submission_evaluation.py' module. For more information
379 on the DAGCircuit object see the or QISKit documentation
380 (eg. 'help(DAGCircuit)').
381
382 Args:
383 dag_circuit (DAGCircuit): DAGCircuit object to be compiled.
384 coupling_circuit (list): Coupling map for device topology.
385 A coupling map of None corresponds an
386 all-to-all connected topology.
387 gate_costs (dict) : dictionary of gate names and costs.
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388
389 Returns:
390 A modified DAGCircuit object that satisfies an input coupling_map
391 and has as low a gate_cost as possible.
392 """
393
394
395 #####################
396 # Put your code here
397 #####################
398
399 import copy
400 from qiskit.mapper import Coupling, coupling_list2dict
401 from qiskit import qasm, unroll
402 import networkx as nx
403
404 if gate_costs == None:
405 gate_costs = {'id': 0, 'u1': 0, 'measure': 0, 'reset': 0, 'barrier': 0, 'u2': 1, 'u3': 1, 'U':

1, 'cx': 10, 'CX': 10}↪→
406
407 compiled_dag = copy.deepcopy(dag_circuit)
408
409 # temporary circuit to add all used gates to the available gate set
410 tmp_qasm = "OPENQASM 2.0;\n" + "gate cx c,t { CX c,t; }\n" +

"gate u3(theta,phi,lambda) q { U(theta,phi,lambda) q; }\n" + "gate
u2(phi,lambda) q { U(pi/2,phi,lambda) q; }\n" + "gate u1(lambda) q {
U(0,0,lambda) q; }\n" + "qreg q[2];\n" + "cx q[0],
q[1];\n" + "u3(0.1,0.4,0.7) q[0];\n" + "u2(0.1,0.4)
q[0]\n;" + "u1(0.1) q[0];\n"

↪→
↪→
↪→
↪→
↪→

411 u = unroll.Unroller(qasm.Qasm(data=tmp_qasm).parse(),
412 unroll.DAGBackend(["cx", "u3", "u2", "u1"]))
413 tmp_circuit = u.execute()
414
415 # prepare empty circuit for the result
416 empty_dag = DAGCircuit()
417
418 coupling = Coupling(coupling_list2dict(mapping))
419 empty_dag.add_qreg('q', coupling.size())
420
421 for k, v in sorted(compiled_dag.cregs.items()):
422 empty_dag.add_creg(k, v)
423
424 empty_dag.basis = compiled_dag._make_union_basis(tmp_circuit)
425 empty_dag.gates = compiled_dag._make_union_gates(tmp_circuit)
426
427 # pre processing: group gates
428 grouped_gates = pre_processing.group_gates(compiled_dag)
429
430 # call mapper (based on an A* search) to satisfy the constraints for CNOTs given by the

coupling_map↪→
431 compiled_dag = a_star_mapper_challenge.a_star_mapper(copy.deepcopy(grouped_gates),

coupling_list2dict(mapping), coupling.size(), copy.deepcopy(empty_dag))↪→
432 grouped_gates_compiled = pre_processing.group_gates(compiled_dag)
433
434 # estimate the cost of the mapped circuit: the number of groups as well as the cost regarding to

gate_costs↪→
435 min_groups = grouped_gates_compiled.order()
436 min_cost = 0
437 for op, count in compiled_dag.count_ops().items():
438 min_cost += count * gate_costs[op]
439
440 # Repeat the mapping procedure 9 times and take the result with minimum groups/cost. Each call may

yield a different result, since the mapper is implemented with a certain non-determinism. In
fact, in the priority queue used for implementing the A* algorithm, the entries are a pair of
the priority and a pointer to an object holding th mapping infomation (as second criterion).
Thus, it is uncertain which node is expanded first if two nodes have the same priority (it
depends on the value of the pointer). However, this non-determinism allows to find different
solution by repeatedly calling the mapper.

↪→
↪→
↪→
↪→
↪→
↪→
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441 for i in range(9):
442 result = a_star_mapper_challenge.a_star_mapper(copy.deepcopy(grouped_gates),

coupling_list2dict(mapping), coupling.size(), copy.deepcopy(empty_dag))↪→
443 grouped_gates_result = pre_processing.group_gates(result)
444
445 groups = grouped_gates_result.order()
446 cost = 0
447 for op, count in result.count_ops().items():
448 cost += count * gate_costs[op]
449 # take the solution with fewer groups (fewer cost if the number of groups is equal)
450 if groups < min_groups or (groups == min_groups and cost < min_cost):
451 min_groups = groups
452 min_cost = cost
453 compiled_dag = result
454 grouped_gates_compiled = grouped_gates_result
455
456 # post-mapping optimization: build 4x4 matrix for gate groups and decompose them using KAK

decomposition.↪→
457 # Moreover, subsequent single qubit gates are optimized
458 compiled_dag = post_mapping_optimization.optimize_gate_groups(grouped_gates_compiled,

coupling.get_edges(), copy.deepcopy(empty_dag), gate_costs)↪→
459
460 return compiled_dag
461
462
463 # In[18]:
464
465 #Get the optimized circuit qasm, load it into a circuit, and visualize it
466 gateset_comp = compile(qc, backend='local_qasm_simulator', basis_gates='u1,u2,u3,cx,id');
467 gateset_str = qp.get_compiled_qasm(gateset_comp, 'Circuit');
468 opti_str=compiler_function(qasm_to_dag_circuit(gateset_str)).qasm();
469 opti_circ = qiskit.load_qasm_string(opti_str, name = 'Circuit');
470 drawer(opti_circ, style=my_style)
471
472
473 # In[19]:
474
475
476 #Using the state vector simulator, we can check if the algorithm produces the desired state
477
478 #Desired state (after delta t, phi=0)
479 idealvec = [0, 0, 1/2, 1/2, 1/2, 1/2, 0, 0]
480
481 job_sv = execute(opti_circ, backend='local_statevector_simulator')
482 statevector = job_sv.result().get_statevector(opti_circ)
483
484 #The statevector describes the state of all 5 qubits; we can extract the 2-qubit state for simplicity
485 simvec = statevector[0:8]
486 print('State vector = ', simvec)
487
488
489 #The Fidelity function can compare the desired state to the ideal output of the circuit:
490 F_fit = state_fidelity(simvec, idealvec)
491 print('Fidelity =', F_fit)
492
493 #Create density matrix of desired state
494 ideal_rho = outer(simvec)
495 plot_state(ideal_rho)
496
497
498 # In[20]:
499
500
501 # Construct state tomography set for measurement of qubits [q0, q1] in the Pauli basis
502 qc_tomo_set = tomo.state_tomography_set([q0, q1, q2])
503
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504
505 # Reset quantum program
506 # Creating Programs
507 qp = QuantumProgram()
508 q = qp.create_quantum_register('q', qnum)
509 c = qp.create_classical_register('c', bnum)
510 qc = qp.create_circuit('Circuit', [q], [c])
511
512
513 qp.add_circuit('Circuit', opti_circ)
514
515 # Add the state tomography measurement circuits to the Quantum Program
516 qc_tomo_circuit_names = tomo.create_tomography_circuits(qp, 'Circuit', q, c, qc_tomo_set)
517
518 circuit_list = [];
519
520 print('Created State tomography circuits:')
521 for name in qc_tomo_circuit_names:
522 circuit_list.append(qp.get_circuit(name))
523 print(name)
524
525 drawer(circuit_list[0], style=my_style)
526
527
528 # In[21]:
529
530
531 # Define number of shots for each measurement basis
532 shots = 100
533
534 # Run the simulation
535
536 qc_tomo_job_qx4 = execute(circuit_list, backend=backend, shots=shots, max_credits=3)
537
538 lapse = 0
539 interval = 30
540 while not qc_tomo_job_qx4.done:
541 print('Status @ {} seconds'.format(interval * lapse))
542 print(qc_tomo_job_qx4.status)
543 time.sleep(interval)
544 lapse += 1
545 print(qc_tomo_job_qx4.status)
546
547 qc_tomo_result_qx4 = qc_tomo_job_qx4.result()
548 print(qc_tomo_result_qx4)
549
550 # Extract tomography data from results
551 qc_tomo_data = tomo.tomography_data(qc_tomo_result_qx4, 'Circuit', qc_tomo_set)
552
553 #Reconstruct the state from count data
554 rho_fit = tomo.fit_tomography_data(qc_tomo_data)
555
556 print('Vector = ', rho_fit)
557
558 # calculate fidelity, concurrence and purity of fitted state
559 F_fit = state_fidelity(rho_fit, simvec)
560 pur = purity(rho_fit)
561
562 # plot
563 plot_state(rho_fit,)
564 plot_state(rho_fit, 'paulivec')
565 print('Fidelity =', F_fit)
566 print('purity = ', str(pur))
567
568
569 # ## Device parameters
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570
571 # In[28]:
572
573
574 backendx = get_backend(backend);
575 pprint(backendx.status)
576 pprint(backendx.configuration)
577 pprint(backendx.calibration)
578 pprint(backendx.parameters)



C
QISK IT RESULTS

c.1 device parameters

The raw device parameters were obtained from the execution of the last cell of code, for each
of the scripts in section B.

ibmqx4 - Tenerife

1 {'pending_jobs' : 15, 'name' : 'ibmq_5_tenerife' , 'operational' : True}
2 {'allow_q_object' : False,
3 'basis_gates' : 'u1,u2,u3,cx,id' ,
4 'chip_name' : 'Raven' ,
5 'coupling_map' : [[1, 0], [2, 0], [2, 1], [3, 2], [3, 4], [4, 2]],
6 'deleted' : False,
7 'description' : '5 qubit transmon bowtie chip 3' ,
8 'gate_set' : 'SU2+CNOT' ,
9 'internal_id' : '5ae875670f020500393162b3' ,

10 'local' : False,
11 'n_qubits' : 5,
12 'name' : 'ibmq_5_tenerife' ,
13 'online_date' : '2017-09-18T00:00:00.000Z' ,
14 'simulator' : False,
15 'url' : 'https://ibm.biz/qiskit-ibmqx4' ,
16 'version' : '1.2.0' }
17 {'backend' : 'ibmq_5_tenerife' ,
18 'last_update_date' : '2018-09-18T09:56:34.000Z' ,
19 'multi_qubit_gates' : [{'gateError' : {'date' : '2018-09-18T09:56:34Z' ,
20 'value' : 0.03139759925594232},
21 'name' : 'CX1_0' ,
22 'qubits' : [1, 0],
23 'type' : 'CX' },
24 {'gateError' : {'date' : '2018-09-18T09:56:34Z' ,
25 'value' : 0.022638367856000235},
26 'name' : 'CX2_0' ,
27 'qubits' : [2, 0],
28 'type' : 'CX' },
29 {'gateError' : {'date' : '2018-09-18T09:56:34Z' ,
30 'value' : 0.041650384934039136},
31 'name' : 'CX2_1' ,
32 'qubits' : [2, 1],
33 'type' : 'CX' },
34 {'gateError' : {'date' : '2018-09-18T09:56:34Z' ,
35 'value' : 0.08569671400725232},

122
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36 'name' : 'CX3_2' ,
37 'qubits' : [3, 2],
38 'type' : 'CX' },
39 {'gateError' : {'date' : '2018-09-18T09:56:34Z' ,
40 'value' : 0.04158178794909698},
41 'name' : 'CX3_4' ,
42 'qubits' : [3, 4],
43 'type' : 'CX' },
44 {'gateError' : {'date' : '2018-09-18T09:56:34Z' ,
45 'value' : 0.04942339516006977},
46 'name' : 'CX4_2' ,
47 'qubits' : [4, 2],
48 'type' : 'CX' }],
49 'qubits' : [{'gateError' : {'date' : '2018-09-18T09:56:34Z' ,
50 'value' : 0.0010302181416348977},
51 'name' : 'Q0' ,
52 'readoutError' : {'date' : '2018-09-18T09:56:34Z' , 'value' : 0.064}},
53 {'gateError' : {'date' : '2018-09-18T09:56:34Z' ,
54 'value' : 0.003091708656797032},
55 'name' : 'Q1' ,
56 'readoutError' : {'date' : '2018-09-18T09:56:34Z' , 'value' : 0.064}},
57 {'gateError' : {'date' : '2018-09-18T09:56:34Z' ,
58 'value' : 0.0011160854878761173},
59 'name' : 'Q2' ,
60 'readoutError' : {'date' : '2018-09-18T09:56:34Z' , 'value' : 0.026}},
61 {'gateError' : {'date' : '2018-09-18T09:56:34Z' ,
62 'value' : 0.001803112096824766},
63 'name' : 'Q3' ,
64 'readoutError' : {'date' : '2018-09-18T09:56:34Z' , 'value' : 0.025}},
65 {'gateError' : {'date' : '2018-09-18T09:56:34Z' ,
66 'value' : 0.001545458810288558},
67 'name' : 'Q4' ,
68 'readoutError' : {'date' : '2018-09-18T09:56:34Z' , 'value' : 0.065}}]}
69 {'backend' : 'ibmq_5_tenerife' ,
70 'fridge_parameters' : {'Temperature' : {'date' : '-' , 'unit' : '-' , 'value' : []},
71 'cooldownDate' : '2017-09-07' },
72 'last_update_date' : '2018-09-18T09:56:34.000Z' ,
73 'qubits' : [{'T1' : {'date' : '2018-09-18T09:56:34Z' ,
74 'unit' : 'µs' ,
75 'value' : 50.9},
76 'T2' : {'date' : '2018-09-18T09:56:34Z' ,
77 'unit' : 'µs' ,
78 'value' : 40.8},
79 'buffer' : {'date' : '2018-09-18T09:56:34Z' ,
80 'unit' : 'ns' ,
81 'value' : 10},
82 'frequency' : {'date' : '2018-09-18T09:56:34Z' ,
83 'unit' : 'GHz' ,
84 'value' : 5.24984},
85 'gateTime' : {'date' : '2018-09-18T09:56:34Z' ,
86 'unit' : 'ns' ,
87 'value' : 60},
88 'name' : 'Q0' },
89 {'T1' : {'date' : '2018-09-18T09:56:34Z' ,
90 'unit' : 'µs' ,
91 'value' : 49.8},
92 'T2' : {'date' : '2018-09-18T09:56:34Z' ,
93 'unit' : 'µs' ,
94 'value' : 17.1},
95 'buffer' : {'date' : '2018-09-18T09:56:34Z' ,
96 'unit' : 'ns' ,
97 'value' : 10},
98 'frequency' : {'date' : '2018-09-18T09:56:34Z' ,
99 'unit' : 'GHz' ,

100 'value' : 5.29578},
101 'gateTime' : {'date' : '2018-09-18T09:56:34Z' ,



C.1. Device parameters 124

102 'unit' : 'ns' ,
103 'value' : 60},
104 'name' : 'Q1' },
105 {'T1' : {'date' : '2018-09-18T09:56:34Z' ,
106 'unit' : 'µs' ,
107 'value' : 49.2},
108 'T2' : {'date' : '2018-09-18T09:56:34Z' ,
109 'unit' : 'µs' ,
110 'value' : 37.3},
111 'buffer' : {'date' : '2018-09-18T09:56:34Z' ,
112 'unit' : 'ns' ,
113 'value' : 10},
114 'frequency' : {'date' : '2018-09-18T09:56:34Z' ,
115 'unit' : 'GHz' ,
116 'value' : 5.35321},
117 'gateTime' : {'date' : '2018-09-18T09:56:34Z' ,
118 'unit' : 'ns' ,
119 'value' : 60},
120 'name' : 'Q2' },
121 {'T1' : {'date' : '2018-09-18T09:56:34Z' , 'unit' : 'µs' , 'value' : 53},
122 'T2' : {'date' : '2018-09-18T09:56:34Z' ,
123 'unit' : 'µs' ,
124 'value' : 17.7},
125 'buffer' : {'date' : '2018-09-18T09:56:34Z' ,
126 'unit' : 'ns' ,
127 'value' : 10},
128 'frequency' : {'date' : '2018-09-18T09:56:34Z' ,
129 'unit' : 'GHz' ,
130 'value' : 5.43497},
131 'gateTime' : {'date' : '2018-09-18T09:56:34Z' ,
132 'unit' : 'ns' ,
133 'value' : 60},
134 'name' : 'Q3' },
135 {'T1' : {'date' : '2018-09-18T09:56:34Z' ,
136 'unit' : 'µs' ,
137 'value' : 46.1},
138 'T2' : {'date' : '2018-09-18T09:56:34Z' ,
139 'unit' : 'µs' ,
140 'value' : 11.1},
141 'buffer' : {'date' : '2018-09-18T09:56:34Z' ,
142 'unit' : 'ns' ,
143 'value' : 10},
144 'frequency' : {'date' : '2018-09-18T09:56:34Z' ,
145 'unit' : 'GHz' ,
146 'value' : 5.17582},
147 'gateTime' : {'date' : '2018-09-18T09:56:34Z' ,
148 'unit' : 'ns' ,
149 'value' : 60},
150 'name' : 'Q4' }]}

ibmq20 - Tokyo

1 {'pending_jobs' : -1, 'name' : 'ibmq_20_tokyo' , 'operational' : True}
2 {'allow_q_object' : False,
3 'basis_gates' : 'u1,u2,u3,cx,id' ,
4 'chip_name' : 'Qubert' ,
5 'coupling_map' : [[0, 1],
6 [0, 5],
7 [1, 0],
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8 [1, 2],
9 [1, 6],

10 [1, 7],
11 [2, 1],
12 [2, 3],
13 [2, 6],
14 [3, 2],
15 [3, 8],
16 [3, 9],
17 [4, 8],
18 [4, 9],
19 [5, 0],
20 [5, 6],
21 [5, 10],
22 [5, 11],
23 [6, 1],
24 [6, 2],
25 [6, 5],
26 [6, 7],
27 [6, 10],
28 [6, 11],
29 [7, 1],
30 [7, 6],
31 [7, 8],
32 [7, 12],
33 [7, 13],
34 [8, 3],
35 [8, 4],
36 [8, 7],
37 [8, 9],
38 [8, 12],
39 [8, 13],
40 [9, 3],
41 [9, 4],
42 [9, 8],
43 [10, 5],
44 [10, 6],
45 [10, 11],
46 [10, 15],
47 [11, 5],
48 [11, 6],
49 [11, 10],
50 [11, 12],
51 [11, 16],
52 [11, 17],
53 [12, 7],
54 [12, 8],
55 [12, 11],
56 [12, 13],
57 [12, 16],
58 [13, 7],
59 [13, 8],
60 [13, 12],
61 [13, 14],
62 [13, 18],
63 [13, 19],
64 [14, 13],
65 [15, 10],
66 [15, 16],
67 [16, 11],
68 [16, 12],
69 [16, 15],
70 [16, 17],
71 [17, 11],
72 [17, 16],
73 [18, 13],
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74 [19, 13]],
75 'description' : '20 qubit device Tokyo' ,
76 'gate_set' : 'SU2+CNOT' ,
77 'local' : False,
78 'n_qubits' : 20,
79 'name' : 'ibmq_20_tokyo' ,
80 'online_date' : '2018-05-10T00:00:00.000Z' ,
81 'simulator' : False,
82 'url' : 'None' ,
83 'version' : '1' }
84 {'backend' : 'ibmq_20_tokyo' ,
85 'last_update_date' : '2018-09-20T04:04:36.000Z' ,
86 'multi_qubit_gates' : [{'gateError' : {'date' : '2018-09-20T01:31:11Z' ,
87 'value' : 0.03746604186552352},
88 'name' : 'CX0_1' ,
89 'qubits' : [0, 1],
90 'type' : 'CX' },
91 {'gateError' : {'date' : '2018-09-20T01:35:35Z' ,
92 'value' : 0.039147142673431334},
93 'name' : 'CX0_5' ,
94 'qubits' : [0, 5],
95 'type' : 'CX' },
96 {'gateError' : {'date' : '2018-09-20T01:31:11Z' ,
97 'value' : 0.03746604186552352},
98 'name' : 'CX1_0' ,
99 'qubits' : [1, 0],

100 'type' : 'CX' },
101 {'gateError' : {'date' : '2018-09-20T01:44:44Z' ,
102 'value' : 0.01871490928609615},
103 'name' : 'CX1_2' ,
104 'qubits' : [1, 2],
105 'type' : 'CX' },
106 {'gateError' : {'date' : '2018-09-20T01:40:01Z' ,
107 'value' : 0.042803396283799394},
108 'name' : 'CX1_6' ,
109 'qubits' : [1, 6],
110 'type' : 'CX' },
111 {'gateError' : {'date' : '2018-09-20T02:17:06Z' ,
112 'value' : 0.03028888326801335},
113 'name' : 'CX1_7' ,
114 'qubits' : [1, 7],
115 'type' : 'CX' },
116 {'gateError' : {'date' : '2018-09-20T01:44:44Z' ,
117 'value' : 0.01871490928609615},
118 'name' : 'CX2_1' ,
119 'qubits' : [2, 1],
120 'type' : 'CX' },
121 {'gateError' : {'date' : '2018-09-20T01:49:08Z' ,
122 'value' : 0.028262063629773237},
123 'name' : 'CX2_3' ,
124 'qubits' : [2, 3],
125 'type' : 'CX' },
126 {'gateError' : {'date' : '2018-09-20T02:07:56Z' ,
127 'value' : 0.03110789820736304},
128 'name' : 'CX2_6' ,
129 'qubits' : [2, 6],
130 'type' : 'CX' },
131 {'gateError' : {'date' : '2018-09-20T01:49:08Z' ,
132 'value' : 0.028262063629773237},
133 'name' : 'CX3_2' ,
134 'qubits' : [3, 2],
135 'type' : 'CX' },
136 {'gateError' : {'date' : '2018-09-20T02:35:43Z' ,
137 'value' : 0.038716648346250854},
138 'name' : 'CX3_8' ,
139 'qubits' : [3, 8],
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140 'type' : 'CX' },
141 {'gateError' : {'date' : '2018-09-20T02:50:08Z' ,
142 'value' : 0.024967535547755604},
143 'name' : 'CX3_9' ,
144 'qubits' : [3, 9],
145 'type' : 'CX' },
146 {'gateError' : {'date' : '2018-09-20T01:53:35Z' ,
147 'value' : 0.01883545014443025},
148 'name' : 'CX4_8' ,
149 'qubits' : [4, 8],
150 'type' : 'CX' },
151 {'gateError' : {'date' : '2018-09-20T02:54:32Z' ,
152 'value' : 0.014304302256721302},
153 'name' : 'CX4_9' ,
154 'qubits' : [4, 9],
155 'type' : 'CX' },
156 {'gateError' : {'date' : '2018-09-20T01:35:35Z' ,
157 'value' : 0.039147142673431334},
158 'name' : 'CX5_0' ,
159 'qubits' : [5, 0],
160 'type' : 'CX' },
161 {'gateError' : {'date' : '2018-09-20T01:58:04Z' ,
162 'value' : 0.044379251681177095},
163 'name' : 'CX5_6' ,
164 'qubits' : [5, 6],
165 'type' : 'CX' },
166 {'gateError' : {'date' : '2018-09-20T02:59:17Z' ,
167 'value' : 0.018922477678219668},
168 'name' : 'CX5_10' ,
169 'qubits' : [5, 10],
170 'type' : 'CX' },
171 {'gateError' : {'date' : '2018-09-20T02:03:09Z' ,
172 'value' : 0.015035509397939212},
173 'name' : 'CX5_11' ,
174 'qubits' : [5, 11],
175 'type' : 'CX' },
176 {'gateError' : {'date' : '2018-09-20T01:40:01Z' ,
177 'value' : 0.042803396283799394},
178 'name' : 'CX6_1' ,
179 'qubits' : [6, 1],
180 'type' : 'CX' },
181 {'gateError' : {'date' : '2018-09-20T02:07:56Z' ,
182 'value' : 0.03110789820736304},
183 'name' : 'CX6_2' ,
184 'qubits' : [6, 2],
185 'type' : 'CX' },
186 {'gateError' : {'date' : '2018-09-20T01:58:04Z' ,
187 'value' : 0.044379251681177095},
188 'name' : 'CX6_5' ,
189 'qubits' : [6, 5],
190 'type' : 'CX' },
191 {'gateError' : {'date' : '2018-09-20T02:21:30Z' ,
192 'value' : 0.028482857829085106},
193 'name' : 'CX6_7' ,
194 'qubits' : [6, 7],
195 'type' : 'CX' },
196 {'gateError' : {'date' : '2018-09-20T03:03:43Z' ,
197 'value' : 0.017131627529771293},
198 'name' : 'CX6_10' ,
199 'qubits' : [6, 10],
200 'type' : 'CX' },
201 {'gateError' : {'date' : '2018-09-20T02:12:42Z' ,
202 'value' : 0.01615766101357008},
203 'name' : 'CX6_11' ,
204 'qubits' : [6, 11],
205 'type' : 'CX' },
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206 {'gateError' : {'date' : '2018-09-20T02:17:06Z' ,
207 'value' : 0.03028888326801335},
208 'name' : 'CX7_1' ,
209 'qubits' : [7, 1],
210 'type' : 'CX' },
211 {'gateError' : {'date' : '2018-09-20T02:21:30Z' ,
212 'value' : 0.028482857829085106},
213 'name' : 'CX7_6' ,
214 'qubits' : [7, 6],
215 'type' : 'CX' },
216 {'gateError' : {'date' : '2018-09-20T02:31:17Z' ,
217 'value' : 0.019257533255399778},
218 'name' : 'CX7_8' ,
219 'qubits' : [7, 8],
220 'type' : 'CX' },
221 {'gateError' : {'date' : '2018-09-20T02:26:52Z' ,
222 'value' : 0.019179485415230096},
223 'name' : 'CX7_12' ,
224 'qubits' : [7, 12],
225 'type' : 'CX' },
226 {'gateError' : {'date' : '2018-09-20T03:37:51Z' ,
227 'value' : 0.03684749138915164},
228 'name' : 'CX7_13' ,
229 'qubits' : [7, 13],
230 'type' : 'CX' },
231 {'gateError' : {'date' : '2018-09-20T02:35:43Z' ,
232 'value' : 0.038716648346250854},
233 'name' : 'CX8_3' ,
234 'qubits' : [8, 3],
235 'type' : 'CX' },
236 {'gateError' : {'date' : '2018-09-20T01:53:35Z' ,
237 'value' : 0.01883545014443025},
238 'name' : 'CX8_4' ,
239 'qubits' : [8, 4],
240 'type' : 'CX' },
241 {'gateError' : {'date' : '2018-09-20T02:31:17Z' ,
242 'value' : 0.019257533255399778},
243 'name' : 'CX8_7' ,
244 'qubits' : [8, 7],
245 'type' : 'CX' },
246 {'gateError' : {'date' : '2018-09-20T02:40:12Z' ,
247 'value' : 0.052583034333770595},
248 'name' : 'CX8_9' ,
249 'qubits' : [8, 9],
250 'type' : 'CX' },
251 {'gateError' : {'date' : '2018-09-20T02:45:46Z' ,
252 'value' : 0.08501285782708357},
253 'name' : 'CX8_12' ,
254 'qubits' : [8, 12],
255 'type' : 'CX' },
256 {'gateError' : {'date' : '2018-09-20T03:42:34Z' ,
257 'value' : 0.018538232112185332},
258 'name' : 'CX8_13' ,
259 'qubits' : [8, 13],
260 'type' : 'CX' },
261 {'gateError' : {'date' : '2018-09-20T02:50:08Z' ,
262 'value' : 0.024967535547755604},
263 'name' : 'CX9_3' ,
264 'qubits' : [9, 3],
265 'type' : 'CX' },
266 {'gateError' : {'date' : '2018-09-20T02:54:32Z' ,
267 'value' : 0.014304302256721302},
268 'name' : 'CX9_4' ,
269 'qubits' : [9, 4],
270 'type' : 'CX' },
271 {'gateError' : {'date' : '2018-09-20T02:40:12Z' ,
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272 'value' : 0.052583034333770595},
273 'name' : 'CX9_8' ,
274 'qubits' : [9, 8],
275 'type' : 'CX' },
276 {'gateError' : {'date' : '2018-09-20T02:59:17Z' ,
277 'value' : 0.018922477678219668},
278 'name' : 'CX10_5' ,
279 'qubits' : [10, 5],
280 'type' : 'CX' },
281 {'gateError' : {'date' : '2018-09-20T03:03:43Z' ,
282 'value' : 0.017131627529771293},
283 'name' : 'CX10_6' ,
284 'qubits' : [10, 6],
285 'type' : 'CX' },
286 {'gateError' : {'date' : '2018-09-20T03:12:33Z' ,
287 'value' : 0.03967657481091055},
288 'name' : 'CX10_11' ,
289 'qubits' : [10, 11],
290 'type' : 'CX' },
291 {'gateError' : {'date' : '2018-09-20T03:08:06Z' ,
292 'value' : 0.022865430819129895},
293 'name' : 'CX10_15' ,
294 'qubits' : [10, 15],
295 'type' : 'CX' },
296 {'gateError' : {'date' : '2018-09-20T02:03:09Z' ,
297 'value' : 0.015035509397939212},
298 'name' : 'CX11_5' ,
299 'qubits' : [11, 5],
300 'type' : 'CX' },
301 {'gateError' : {'date' : '2018-09-20T02:12:42Z' ,
302 'value' : 0.01615766101357008},
303 'name' : 'CX11_6' ,
304 'qubits' : [11, 6],
305 'type' : 'CX' },
306 {'gateError' : {'date' : '2018-09-20T03:12:33Z' ,
307 'value' : 0.03967657481091055},
308 'name' : 'CX11_10' ,
309 'qubits' : [11, 10],
310 'type' : 'CX' },
311 {'gateError' : {'date' : '2018-09-20T03:16:58Z' ,
312 'value' : 0.03430588126330322},
313 'name' : 'CX11_12' ,
314 'qubits' : [11, 12],
315 'type' : 'CX' },
316 {'gateError' : {'date' : '2018-09-20T03:21:25Z' ,
317 'value' : 0.016329362868310077},
318 'name' : 'CX11_16' ,
319 'qubits' : [11, 16],
320 'type' : 'CX' },
321 {'gateError' : {'date' : '2018-09-20T03:25:50Z' ,
322 'value' : 0.029505149636642664},
323 'name' : 'CX11_17' ,
324 'qubits' : [11, 17],
325 'type' : 'CX' },
326 {'gateError' : {'date' : '2018-09-20T02:26:52Z' ,
327 'value' : 0.019179485415230096},
328 'name' : 'CX12_7' ,
329 'qubits' : [12, 7],
330 'type' : 'CX' },
331 {'gateError' : {'date' : '2018-08-23T13:52:35Z' ,
332 'value' : 0.1224402730634041},
333 'name' : 'CX12_8' ,
334 'qubits' : [12, 8],
335 'type' : 'CX' },
336 {'gateError' : {'date' : '2018-09-20T03:16:58Z' ,
337 'value' : 0.03430588126330322},
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338 'name' : 'CX12_11' ,
339 'qubits' : [12, 11],
340 'type' : 'CX' },
341 {'gateError' : {'date' : '2018-09-20T03:30:17Z' ,
342 'value' : 0.030815164528812028},
343 'name' : 'CX12_13' ,
344 'qubits' : [12, 13],
345 'type' : 'CX' },
346 {'gateError' : {'date' : '2018-09-19T17:32:37Z' ,
347 'value' : 0.032560723669238734},
348 'name' : 'CX12_16' ,
349 'qubits' : [12, 16],
350 'type' : 'CX' },
351 {'gateError' : {'date' : '2018-09-20T03:37:51Z' ,
352 'value' : 0.03684749138915164},
353 'name' : 'CX13_7' ,
354 'qubits' : [13, 7],
355 'type' : 'CX' },
356 {'gateError' : {'date' : '2018-09-20T03:42:34Z' ,
357 'value' : 0.018538232112185332},
358 'name' : 'CX13_8' ,
359 'qubits' : [13, 8],
360 'type' : 'CX' },
361 {'gateError' : {'date' : '2018-09-20T03:30:17Z' ,
362 'value' : 0.030815164528812028},
363 'name' : 'CX13_12' ,
364 'qubits' : [13, 12],
365 'type' : 'CX' },
366 {'gateError' : {'date' : '2018-09-20T03:47:01Z' ,
367 'value' : 0.028453741315738634},
368 'name' : 'CX13_14' ,
369 'qubits' : [13, 14],
370 'type' : 'CX' },
371 {'gateError' : {'date' : '2018-09-20T03:51:27Z' ,
372 'value' : 0.025184827360353296},
373 'name' : 'CX13_18' ,
374 'qubits' : [13, 18],
375 'type' : 'CX' },
376 {'gateError' : {'date' : '2018-09-20T04:04:36Z' ,
377 'value' : 0.0466878447771896},
378 'name' : 'CX13_19' ,
379 'qubits' : [13, 19],
380 'type' : 'CX' },
381 {'gateError' : {'date' : '2018-09-20T03:47:01Z' ,
382 'value' : 0.028453741315738634},
383 'name' : 'CX14_13' ,
384 'qubits' : [14, 13],
385 'type' : 'CX' },
386 {'gateError' : {'date' : '2018-09-20T03:08:06Z' ,
387 'value' : 0.022865430819129895},
388 'name' : 'CX15_10' ,
389 'qubits' : [15, 10],
390 'type' : 'CX' },
391 {'gateError' : {'date' : '2018-09-20T03:55:57Z' ,
392 'value' : 0.015578993080560988},
393 'name' : 'CX15_16' ,
394 'qubits' : [15, 16],
395 'type' : 'CX' },
396 {'gateError' : {'date' : '2018-09-20T03:21:25Z' ,
397 'value' : 0.016329362868310077},
398 'name' : 'CX16_11' ,
399 'qubits' : [16, 11],
400 'type' : 'CX' },
401 {'gateError' : {'date' : '2018-09-19T17:32:37Z' ,
402 'value' : 0.032560723669238734},
403 'name' : 'CX16_12' ,
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404 'qubits' : [16, 12],
405 'type' : 'CX' },
406 {'gateError' : {'date' : '2018-09-20T03:55:57Z' ,
407 'value' : 0.015578993080560988},
408 'name' : 'CX16_15' ,
409 'qubits' : [16, 15],
410 'type' : 'CX' },
411 {'gateError' : {'date' : '2018-09-20T04:00:24Z' ,
412 'value' : 0.023981683549585908},
413 'name' : 'CX16_17' ,
414 'qubits' : [16, 17],
415 'type' : 'CX' },
416 {'gateError' : {'date' : '2018-09-20T03:25:50Z' ,
417 'value' : 0.029505149636642664},
418 'name' : 'CX17_11' ,
419 'qubits' : [17, 11],
420 'type' : 'CX' },
421 {'gateError' : {'date' : '2018-09-20T04:00:24Z' ,
422 'value' : 0.023981683549585908},
423 'name' : 'CX17_16' ,
424 'qubits' : [17, 16],
425 'type' : 'CX' },
426 {'gateError' : {'date' : '2018-09-20T03:51:27Z' ,
427 'value' : 0.025184827360353296},
428 'name' : 'CX18_13' ,
429 'qubits' : [18, 13],
430 'type' : 'CX' },
431 {'gateError' : {'date' : '2018-09-20T04:04:36Z' ,
432 'value' : 0.0466878447771896},
433 'name' : 'CX19_13' ,
434 'qubits' : [19, 13],
435 'type' : 'CX' }],
436 'qubits' : [{'gateError' : {'date' : '2018-09-20T01:02:15Z' ,
437 'value' : 0.0006991930204756636},
438 'name' : 'Q0' ,
439 'readoutError' : {'date' : '2018-09-19T20:55:52' ,
440 'value' : 0.05600000000000005}},
441 {'gateError' : {'date' : '2018-09-20T01:03:22Z' ,
442 'value' : 0.0007889914883145721},
443 'name' : 'Q1' ,
444 'readoutError' : {'date' : '2018-09-19T20:55:52' ,
445 'value' : 0.04699999999999993}},
446 {'gateError' : {'date' : '2018-09-20T01:02:15Z' ,
447 'value' : 0.0009886300613452526},
448 'name' : 'Q2' ,
449 'readoutError' : {'date' : '2018-09-19T20:55:52' ,
450 'value' : 0.05899999999999994}},
451 {'gateError' : {'date' : '2018-09-20T01:03:22Z' ,
452 'value' : 0.0025731445216121696},
453 'name' : 'Q3' ,
454 'readoutError' : {'date' : '2018-09-19T20:55:52' ,
455 'value' : 0.08899999999999997}},
456 {'gateError' : {'date' : '2018-09-20T01:02:15Z' ,
457 'value' : 0.002036104022737961},
458 'name' : 'Q4' ,
459 'readoutError' : {'date' : '2018-09-19T20:55:52' ,
460 'value' : 0.04699999999999993}},
461 {'gateError' : {'date' : '2018-09-20T01:03:22Z' ,
462 'value' : 0.0006173096953862034},
463 'name' : 'Q5' ,
464 'readoutError' : {'date' : '2018-09-19T20:55:52' ,
465 'value' : 0.02200000000000002}},
466 {'gateError' : {'date' : '2018-09-20T01:04:32Z' ,
467 'value' : 0.0007059812261480114},
468 'name' : 'Q6' ,
469 'readoutError' : {'date' : '2018-09-19T20:55:52' ,
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470 'value' : 0.03600000000000003}},
471 {'gateError' : {'date' : '2018-09-20T01:05:42Z' ,
472 'value' : 0.0008735386069325668},
473 'name' : 'Q7' ,
474 'readoutError' : {'date' : '2018-09-19T20:55:52' ,
475 'value' : 0.09000000000000008}},
476 {'gateError' : {'date' : '2018-09-20T01:04:32Z' ,
477 'value' : 0.0006520883818727508},
478 'name' : 'Q8' ,
479 'readoutError' : {'date' : '2018-09-19T20:55:52' ,
480 'value' : 0.03600000000000003}},
481 {'gateError' : {'date' : '2018-09-20T01:05:42Z' ,
482 'value' : 0.0009465413727616223},
483 'name' : 'Q9' ,
484 'readoutError' : {'date' : '2018-09-19T20:55:52' ,
485 'value' : 0.02300000000000002}},
486 {'gateError' : {'date' : '2018-09-20T01:01:10Z' ,
487 'value' : 0.0010770656544301094},
488 'name' : 'Q10' ,
489 'readoutError' : {'date' : '2018-09-19T20:55:52' ,
490 'value' : 0.026000000000000023}},
491 {'gateError' : {'date' : '2018-09-20T01:01:10Z' ,
492 'value' : 0.0007899349344439033},
493 'name' : 'Q11' ,
494 'readoutError' : {'date' : '2018-09-19T20:55:52' ,
495 'value' : 0.026000000000000023}},
496 {'gateError' : {'date' : '2018-09-20T01:02:15Z' ,
497 'value' : 0.0011547320170097741},
498 'name' : 'Q12' ,
499 'readoutError' : {'date' : '2018-09-19T20:55:52' ,
500 'value' : 0.31400000000000006}},
501 {'gateError' : {'date' : '2018-09-20T01:03:22Z' ,
502 'value' : 0.0008256323822705691},
503 'name' : 'Q13' ,
504 'readoutError' : {'date' : '2018-09-19T20:55:52' ,
505 'value' : 0.03200000000000003}},
506 {'gateError' : {'date' : '2018-09-20T01:02:15Z' ,
507 'value' : 0.004003386392515573},
508 'name' : 'Q14' ,
509 'readoutError' : {'date' : '2018-09-19T20:55:52' , 'value' : 0.136}},
510 {'gateError' : {'date' : '2018-09-20T01:01:10Z' ,
511 'value' : 0.001511509737380956},
512 'name' : 'Q15' ,
513 'readoutError' : {'date' : '2018-09-19T20:55:52' ,
514 'value' : 0.025000000000000022}},
515 {'gateError' : {'date' : '2018-09-20T01:01:10Z' ,
516 'value' : 0.000783947763673909},
517 'name' : 'Q16' ,
518 'readoutError' : {'date' : '2018-09-19T20:55:52' ,
519 'value' : 0.02100000000000002}},
520 {'gateError' : {'date' : '2018-09-20T01:03:22Z' ,
521 'value' : 0.0009847877397772264},
522 'name' : 'Q17' ,
523 'readoutError' : {'date' : '2018-09-19T20:55:52' , 'value' : 0.124}},
524 {'gateError' : {'date' : '2018-09-20T01:04:32Z' ,
525 'value' : 0.0029553308978162995},
526 'name' : 'Q18' ,
527 'readoutError' : {'date' : '2018-09-19T20:55:52' ,
528 'value' : 0.08799999999999997}},
529 {'gateError' : {'date' : '2018-09-20T01:05:42Z' ,
530 'value' : 0.004024421168266401},
531 'name' : 'Q19' ,
532 'readoutError' : {'date' : '2018-09-19T20:55:52' ,
533 'value' : 0.21599999999999997}}]}
534
535 {'backend' : 'ibmq_20_tokyo' ,
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536 'last_update_date' : '2018-09-20T04:04:36.000Z' ,
537 'qubits' : [{'T1' : {'date' : '2018-09-20T00:56:33Z' ,
538 'unit' : 'µs' ,
539 'value' : 73.97981251076645},
540 'T2' : {'date' : '2018-09-20T00:57:52Z' ,
541 'unit' : 'µs' ,
542 'value' : 57.45185513429501},
543 'frequency' : {'date' : '2018-09-20T04:04:36Z' ,
544 'unit' : 'GHz' ,
545 'value' : 4.490730818760002},
546 'name' : 'Q0' },
547 {'T1' : {'date' : '2018-09-20T00:56:33Z' ,
548 'unit' : 'µs' ,
549 'value' : 57.90009001517608},
550 'T2' : {'date' : '2018-09-20T00:58:44Z' ,
551 'unit' : 'µs' ,
552 'value' : 49.76375027812928},
553 'frequency' : {'date' : '2018-09-20T04:04:36Z' ,
554 'unit' : 'GHz' ,
555 'value' : 5.074677796000907},
556 'name' : 'Q1' },
557 {'T1' : {'date' : '2018-09-20T00:56:33Z' ,
558 'unit' : 'µs' ,
559 'value' : 81.80700499358136},
560 'T2' : {'date' : '2018-09-20T00:57:52Z' ,
561 'unit' : 'µs' ,
562 'value' : 57.24147410606729},
563 'frequency' : {'date' : '2018-09-20T04:04:36Z' ,
564 'unit' : 'GHz' ,
565 'value' : 4.984768292626855},
566 'name' : 'Q2' },
567 {'T1' : {'date' : '2018-09-20T00:56:33Z' ,
568 'unit' : 'µs' ,
569 'value' : 60.998308964297735},
570 'T2' : {'date' : '2018-09-20T00:58:44Z' ,
571 'unit' : 'µs' ,
572 'value' : 38.60104384267681},
573 'frequency' : {'date' : '2018-09-20T04:04:36Z' ,
574 'unit' : 'GHz' ,
575 'value' : 5.1094796207543975},
576 'name' : 'Q3' },
577 {'T1' : {'date' : '2018-09-20T00:56:33Z' ,
578 'unit' : 'µs' ,
579 'value' : 94.03263643897567},
580 'T2' : {'date' : '2018-09-20T00:57:52Z' ,
581 'unit' : 'µs' ,
582 'value' : 58.01405979931684},
583 'frequency' : {'date' : '2018-09-20T04:04:36Z' ,
584 'unit' : 'GHz' ,
585 'value' : 5.125198514600377},
586 'name' : 'Q4' },
587 {'T1' : {'date' : '2018-09-20T00:56:33Z' ,
588 'unit' : 'µs' ,
589 'value' : 110.68589325313599},
590 'T2' : {'date' : '2018-09-20T00:58:44Z' ,
591 'unit' : 'µs' ,
592 'value' : 59.66365678384753},
593 'frequency' : {'date' : '2018-09-20T04:04:36Z' ,
594 'unit' : 'GHz' ,
595 'value' : 4.959163147824194},
596 'name' : 'Q5' },
597 {'T1' : {'date' : '2018-09-20T00:56:33Z' ,
598 'unit' : 'µs' ,
599 'value' : 88.85140461675599},
600 'T2' : {'date' : '2018-09-20T00:59:34Z' ,
601 'unit' : 'µs' ,
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602 'value' : 65.53941040812195},
603 'frequency' : {'date' : '2018-09-20T04:04:36Z' ,
604 'unit' : 'GHz' ,
605 'value' : 5.229591051536364},
606 'name' : 'Q6' },
607 {'T1' : {'date' : '2018-09-18T03:51:02Z' ,
608 'unit' : 'µs' ,
609 'value' : 127.71208127230781},
610 'T2' : {'date' : '2018-09-20T01:00:22Z' ,
611 'unit' : 'µs' ,
612 'value' : 69.67014805739245},
613 'frequency' : {'date' : '2018-09-20T04:04:36Z' ,
614 'unit' : 'GHz' ,
615 'value' : 4.662443378664702},
616 'name' : 'Q7' },
617 {'T1' : {'date' : '2018-09-20T00:56:33Z' ,
618 'unit' : 'µs' ,
619 'value' : 113.70288906142393},
620 'T2' : {'date' : '2018-09-20T00:59:34Z' ,
621 'unit' : 'µs' ,
622 'value' : 62.244369026050414},
623 'frequency' : {'date' : '2018-09-20T04:04:36Z' ,
624 'unit' : 'GHz' ,
625 'value' : 4.898170007936852},
626 'name' : 'Q8' },
627 {'T1' : {'date' : '2018-09-20T00:56:33Z' ,
628 'unit' : 'µs' ,
629 'value' : 58.5076847544152},
630 'T2' : {'date' : '2018-09-20T01:00:22Z' ,
631 'unit' : 'µs' ,
632 'value' : 41.67305899678406},
633 'frequency' : {'date' : '2018-09-20T04:04:36Z' ,
634 'unit' : 'GHz' ,
635 'value' : 5.23356320846535},
636 'name' : 'Q9' },
637 {'T1' : {'date' : '2018-09-20T00:56:33Z' ,
638 'unit' : 'µs' ,
639 'value' : 79.30371805842574},
640 'T2' : {'date' : '2018-09-20T00:57:52Z' ,
641 'unit' : 'µs' ,
642 'value' : 49.01314546901237},
643 'frequency' : {'date' : '2018-09-20T04:04:36Z' ,
644 'unit' : 'GHz' ,
645 'value' : 5.143066844328144},
646 'name' : 'Q10' },
647 {'T1' : {'date' : '2018-09-20T00:56:33Z' ,
648 'unit' : 'µs' ,
649 'value' : 82.05509127425432},
650 'T2' : {'date' : '2018-09-20T01:00:22Z' ,
651 'unit' : 'µs' ,
652 'value' : 69.69627881631212},
653 'frequency' : {'date' : '2018-09-20T04:04:36Z' ,
654 'unit' : 'GHz' ,
655 'value' : 5.033452505246013},
656 'name' : 'Q11' },
657 {'T1' : {'date' : '2018-09-20T00:56:33Z' ,
658 'unit' : 'µs' ,
659 'value' : 155.472440371174},
660 'T2' : {'date' : '2018-09-20T00:57:52Z' ,
661 'unit' : 'µs' ,
662 'value' : 82.66992944021662},
663 'frequency' : {'date' : '2018-09-20T04:04:36Z' ,
664 'unit' : 'GHz' ,
665 'value' : 4.457739048688047},
666 'name' : 'Q12' },
667 {'T1' : {'date' : '2018-09-20T00:56:33Z' ,
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668 'unit' : 'µs' ,
669 'value' : 98.82957987929765},
670 'T2' : {'date' : '2018-09-20T00:58:44Z' ,
671 'unit' : 'µs' ,
672 'value' : 65.40292977993548},
673 'frequency' : {'date' : '2018-09-20T04:04:36Z' ,
674 'unit' : 'GHz' ,
675 'value' : 5.019179601871802},
676 'name' : 'Q13' },
677 {'T1' : {'date' : '2018-09-20T00:56:33Z' ,
678 'unit' : 'µs' ,
679 'value' : 54.07355005973775},
680 'T2' : {'date' : '2018-09-20T00:57:52Z' ,
681 'unit' : 'µs' ,
682 'value' : 49.29794199258292},
683 'frequency' : {'date' : '2018-09-20T04:04:36Z' ,
684 'unit' : 'GHz' ,
685 'value' : 5.080117334592717},
686 'name' : 'Q14' },
687 {'T1' : {'date' : '2018-09-20T00:56:33Z' ,
688 'unit' : 'µs' ,
689 'value' : 82.91385036748657},
690 'T2' : {'date' : '2018-09-20T00:58:44Z' ,
691 'unit' : 'µs' ,
692 'value' : 61.5228915646018},
693 'frequency' : {'date' : '2018-09-20T04:04:36Z' ,
694 'unit' : 'GHz' ,
695 'value' : 5.020233434629288},
696 'name' : 'Q15' },
697 {'T1' : {'date' : '2018-09-20T00:56:33Z' ,
698 'unit' : 'µs' ,
699 'value' : 85.67928720189813},
700 'T2' : {'date' : '2018-09-20T00:59:34Z' ,
701 'unit' : 'µs' ,
702 'value' : 58.63905527468041},
703 'frequency' : {'date' : '2018-09-20T04:04:36Z' ,
704 'unit' : 'GHz' ,
705 'value' : 4.903254256329702},
706 'name' : 'Q16' },
707 {'T1' : {'date' : '2018-09-20T00:56:33Z' ,
708 'unit' : 'µs' ,
709 'value' : 74.44205335344174},
710 'T2' : {'date' : '2018-09-20T00:58:44Z' ,
711 'unit' : 'µs' ,
712 'value' : 53.824983990499895},
713 'frequency' : {'date' : '2018-09-20T04:04:36Z' ,
714 'unit' : 'GHz' ,
715 'value' : 4.778395760893867},
716 'name' : 'Q17' },
717 {'T1' : {'date' : '2018-09-20T00:56:33Z' ,
718 'unit' : 'µs' ,
719 'value' : 77.84556028168906},
720 'T2' : {'date' : '2018-09-20T00:59:34Z' ,
721 'unit' : 'µs' ,
722 'value' : 42.45041778142437},
723 'frequency' : {'date' : '2018-09-20T04:04:36Z' ,
724 'unit' : 'GHz' ,
725 'value' : 5.094016718022559},
726 'name' : 'Q18' },
727 {'T1' : {'date' : '2018-09-20T00:56:33Z' ,
728 'unit' : 'µs' ,
729 'value' : 33.54235712417796},
730 'T2' : {'date' : '2018-09-20T01:00:22Z' ,
731 'unit' : 'µs' ,
732 'value' : 7.413384481068095},
733 'frequency' : {'date' : '2018-09-20T04:04:36Z' ,
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734 'unit' : 'GHz' ,
735 'value' : 5.0591896753481045},
736 'name' : 'Q19' }]}

c.2 output quantum circuits

c.2.1 2-qubit implementation

φ = 0

Figure 29.: Circuit representation of the 2-qubit simulation algorithm, for φ = 0.

Figure 30.: Circuit representation of the 2-qubit simulation algorithm implemented using QISKit’s
compiler in ibmqx4, for φ = 0.
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Figure 31.: Circuit representation of the 2-qubit simulation algorithm implemented using the alterna-
tive compiler in ibmqx4, for φ = 0.
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Figure 32.: Circuit representation of the 2-qubit simulation algorithm implemented using QISKit’s
compiler in ibmq20, for φ = 0.
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Figure 33.: Circuit representation of the 2-qubit simulation algorithm implemented using the alterna-
tive compiler in ibmq20, for φ = 0.
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φ = π/2

Figure 34.: Circuit representation of the 2-qubit simulation algorithm, for φ = π/2.

Figure 35.: Circuit representation of the 2-qubit simulation algorithm implemented using QISKit’s
compiler in ibmqx4, for φ = π/2.
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Figure 36.: Circuit representation of the 2-qubit simulation algorithm implemented using the alterna-
tive compiler in ibmqx4, for φ = π/2.
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Figure 37.: Circuit representation of the 2-qubit simulation algorithm implemented using QISKit’s
compiler in ibmq20, for φ = π/2.
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Figure 38.: Circuit representation of the 2-qubit simulation algorithm implemented using the alterna-
tive compiler in ibmq20, for φ = π/2.
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φ = π

Figure 39.: Circuit representation of the 2-qubit simulation algorithm, for φ = π.

Figure 40.: Circuit representation of the 2-qubit simulation algorithm implemented using QISKit’s
compiler in ibmqx4, for φ = π.
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Figure 41.: Circuit representation of the 2-qubit simulation algorithm implemented using the alterna-
tive compiler in ibmqx4, for φ = π.
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Figure 42.: Circuit representation of the 2-qubit simulation algorithm implemented using QISKit’s
compiler in ibmq20, for φ = π.
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Figure 43.: Circuit representation of the 2-qubit simulation algorithm implemented using the alterna-
tive compiler in ibmq20, for φ = π.
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c.2.2 3-qubit implementation

φ = 0

Figure 44.: Circuit representation of the 3-qubit simulation algorithm, for φ = 0.
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Figure 45.: Circuit representation of the 3-qubit simulation algorithm implemented using QISKit’s
compiler in ibmqx4, for φ = 0 (section 1).
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Figure 46.: Circuit representation of the 3-qubit simulation algorithm implemented using QISKit’s
compiler in ibmqx4, for φ = 0 (section 2).
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Figure 47.: Circuit representation of the 3-qubit simulation algorithm implemented using the alterna-
tive compiler in ibmqx4, for φ = 0 (section 1).
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Figure 48.: Circuit representation of the 3-qubit simulation algorithm implemented using the alterna-
tive compiler in ibmqx4, for φ = 0 (section 2).
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Figure 49.: Circuit representation of the 3-qubit simulation algorithm implemented using QISKit’s
compiler in ibmq20, for φ = 0 (section 1).
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Figure 50.: Circuit representation of the 3-qubit simulation algorithm implemented using QISKit’s
compiler in ibmq20, for φ = 0 (section 2).
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Figure 51.: Circuit representation of the 3-qubit simulation algorithm implemented using the alterna-
tive compiler in ibmq20, for φ = 0 (section 1).
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Figure 52.: Circuit representation of the 3-qubit simulation algorithm implemented using the alterna-
tive compiler in ibmq20, for φ = 0 (section 2).
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