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SUMMARY

Non-lymphoid tissues (NLTs) harbor a pool of adap-
tive immune cells with largely unexplored phenotype
and development. We used single-cell RNA-seq to
characterize 35,000 CD4+ regulatory (Treg) and
memory (Tmem) T cells in mouse skin and colon,
their respective draining lymph nodes (LNs) and
spleen. In these tissues, we identified Treg cell sub-
populations with distinct degrees of NLT phenotype.
Subpopulation pseudotime ordering and gene ki-
netics were consistent in recruitment to skin and co-
lon, yet the initial NLT-priming in LNs and the final
stages of NLT functional adaptation reflected tis-
sue-specific differences. Predicted kinetics were
recapitulated using an in vivo melanoma-induction
model, validating key regulators and receptors.
Finally, we profiled human blood and NLT Treg
and Tmem cells, and identified cross-mammalian
conserved tissue signatures. In summary, we
describe the relationship between Treg cell hetero-
geneity and recruitment to NLTs through the com-
bined use of computational prediction and in vivo
validation.

INTRODUCTION

Regulatory T (Treg) cells are a specialized CD4+ T cell subset that

controls immune responses and play a central role in homeosta-
Immunity 50, 493–504, Febr
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sis (Sakaguchi 2004; Izcue, Coombes, and Powrie 2009). Recent

studies have described unique tissue-specific adaptations of

non-lymphoid tissue (NLTs) Treg cells distinct from their

lymphoid tissue (LT) counterparts. This includes acquisition of

an effector phenotype with expression of transcripts encoding

effector molecules (Ctla4, Gzmb, Klrg1), chemokines and their

receptors (Ccr4), and immunosuppressive cytokines (Il10) (Pan-

duro, Benoist, and Mathis 2016; Bollrath and Powrie 2013), in

addition to tissue-specific signature genes associated with their

role in each environment (Liston and Gray 2014). Nonetheless,

their full transcriptional phenotype and its reflection on NLT pop-

ulation heterogeneity is yet to be uncovered.

Trafficking of T cells to NLTs occurs in steady-state conditions

and development (Kimpton et al., 1995; Thome et al., 2016), as

well as in response to harmless stimuli at barrier surfaces such

as commensal bacteria and dietary antigens (Ivanov et al.,

2008). Treg cell migration requires tissue-specific cues involving

integrins, chemokine, and other G-protein coupled receptors

(Cepek et al., 1994; Kim et al., 2013; Chow, Banerjee, and Hickey

2015).

To provide a deeper insight into Treg cell populations in NLTs,

we analyzed single-cell RNA-seq (scRNA-seq) data of Treg cells

from mouse colon and skin and compared them to LT popula-

tions. We identified various transcriptionally distinct clusters of

Treg cells in LTs and NLTs, namely a subpopulation in the LTs,

which showed heavy priming to the NLT environment. Pseudo-

time ordering of these subpopulations further revealed the

transcriptomic adaptations occurring in Treg cells during their

transition from the lymph node to barrier tissues. Our results

show that these steady-state adaptations share a core signature

between bLN-to-skin and mLN-to-colon trajectories, indicative

of a general NLT residency program in barrier tissues. These
uary 19, 2019 ª 2019 The Author(s). Published by Elsevier Inc. 493
er the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Figure 1. Steady-State scRNA-Seq Datasets of CD4+ T Cells from LT and NLT
(A) Experimental design for scRNA-seq data collection.

(B) t-SNE representing all Treg and Tmem cells that passed quality control.

(C) Genes defining the identity of Treg and Tmemcells in lymphoid and non-lymphoid tissues. Colon and skin were individually comparedwith their corresponding

draining lymph node and spleen cells. See also Figure S1.
findings were recapitulated during de novo Treg cell recruitment

to melanoma in amurine model system. Lastly, we examined the

evolutionarily conservation of NLT Treg cells’ identity between

mouse and human.

RESULTS

Treg and Tmem Cell Identity in NLTs Is Driven by a
Common Expression Module
We performed scRNA-seq on isolated CD4+Foxp3+ (Treg) and

CD4+Foxp3-CD44high memory (Tmem) T cells (Figure S1A)

from two barrier NLT sites—the colonic lamina propria (herein-

after referred to as colon) and the skin—their lymphoid counter-

parts in the draining mesenteric and brachial lymph nodes (mLN

and bLN), and the spleen from a Foxp3-GFP mouse reporter line

(Bettelli et al., 2006) (Figure 1A). We will refer to Treg and Tmem

cells together as CD4+ T cells. For each sorted population, sin-

gle-cells were captured using the droplet-based microfluidic
494 Immunity 50, 493–504, February 19, 2019
system Chromium (103 Genomics), hereinafter referred to as

103. We obtained 30,396 good quality cells (see Experimental

Procedures, Figure S1C, Table S1). Using the same gating strat-

egy, two Smart-seq2 (Picelli et al., 2014) plate-based datasets

were produced independently. These confirmed findings drawn

from the 103 and complemented them with higher gene

coverage and full T cell receptor (TCR) sequences.

A tSNE projection (Figure 1B) after filtering (Figure S1B; Table

S2) showed a division between LT and NLT, with cells from LTs

divided into two clusters, according to cell-type. NLT cells

formed one single skin cluster and two clusters separating

Treg and Tmem cells from colon (Figure 1B). We defined gene-

expression signatures for Treg and Tmem cells in peripheral tis-

sues by examining differentially expressed (DE) genes between

all NLT and LT cells and, in parallel, between Treg and Tmem

cells (Figure 1C). NLT T cell populations are characterized by

the expression of several elements of the TNFRSF-NF-kB

pathway, including transducers (Traf1, Traf4, Traf2b), effectors
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Figure 2. Heterogeneity within LT and NLT Treg Populations

(A) t-SNE projections of Treg cells per tissue, colored by subpopulation. cTreg, central Treg; eTreg, effector Treg.

(B) Subpopulation marker gene mean expression (Z score). Values greater than 2.5 or lower than �1.5 are colored equally.

(C) Relative proportions of Treg cell subpopulations within each tissue that revealed heterogeneity.

(D) NLT/LT signature score in each Treg cell subpopulation, measured as the ratio between the number of NLT and LT genes that have been identified as

significantly upregulated in each cluster.

(E) Percentage of cells expressing each gene in Treg NLT-like cells from mLN and bLN. Genes that are upregulated in the bLN subpopulation are represented by

an open circle, and genes upregulated in mLN are represented by a filled circle.

(legend continued on next page)
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(Nfkb1, Nfkb2, Rel, Rela, Relb), and inhibitors (Nfkbib, Nfkbid,

Nfkbie). In Tmem cells, these were accompanied by cytokines

(Tnfsf8, Tnfsf11) and various pathway inhibitors, such as Tnfaip8.

In contrast, NLT Treg cells expressed TNF receptors (Tnfrsf4,

Tnfrsf9, Tnfrsf18) and transducers (Pim1), underscoring the

importance of signaling via the TNFRSF-NF-kB axis in control-

ling Treg cells in the peripheral tissues. Several chemokine re-

ceptors appeared DE across tissues and cell types. Ccr4,

Ccr8, and Cxcr4 were upregulated in both colon and skin

T cells, while Ccr1 and Ccr5 were specific to colon and Ccr6 to

skin. Cxcr6 was more highly expressed in NLT Tmem cells. We

also detected other genes involved in NLT identity (Crem,

Rgs2, Il1r2, Icos, Hif1a, Kdm6b, Gata3), including some specific

to Tmem (Vps37b, Id2, Ramp3, Tnfsf8) and Treg cells (Il10,

Gzmb, Ctla4, Cd83, Socs2).

Together, the scRNA-seq datasets collected provide a

comprehensive overview of Treg and Tmem cells in multiple

lymphoid and non-lymphoid tissues and identify the TNFRSF-

NF-kB pathway as key to their barrier tissue identity.

Heterogeneity within LT and NLT Treg Cell Populations
Reflects Distinct Degrees of Commitment to the
Peripheral Phenotype
Treg cell phenotypical and functional heterogeneity has been

extensivelydiscussed in recent years (Josefowicz, Lu,andRuden-

sky 2012; Campbell and Koch, 2011). Clustering our data within

each tissue grouped Treg cells into distinct subpopulations (Fig-

ure 2A) with clearly defined marker genes (Figure 2B; Table S3).

Across lymphoid organs, we identified central and effector Treg

(cTreg and eTreg) cell subsets (Cretney et al., 2011; Vasanthaku-

mar et al., 2015). cTreg cells express typical LT-associated

markers, such as Tcf7, Bcl2, Sell, S1pr1, while eTreg cells ex-

pressed a subset of NLT-associated genes, like Tnfrsf9, Relb,

Ikzf2, and Pdcd1. We also detected a subpopulation of Treg cells

with high expression of Stat1 and interferon-stimulated genes

exclusively in the bLN. A fourth, less frequent population in

lymphoid tissues (�5%–10%; Figure 2C), which we named Treg

NLT-like cells, expresses eTreg cell markers, as well as genes

characteristic of NLT T cells, such as Itgae, Rora, Fgl2, and

Klrg1 (Figure 2B). We hypothesize that this population is primed

to migrate and adapt to NLTs. Indeed, DE genes between NLT-

like Treg cells frommLN and bLN revealed that the colon-homing

moleculesCcr9 and Itga4, as well as their regulator Batfwere up-

regulated specifically in themLN, whileCxcr3 and Itgb1were pre-

sent in the bLN (Figure 2E). These differences were not observed

between other LN subpopulations (data not shown).

To quantify the bias toward LT or NLT phenotypes, we calcu-

lated an NLT-LT marker gene signature for each cluster (Fig-

ure 2D; see Experimental Procedures). Consistently across all

LTs, cTreg cells exhibited a clear LT signature, while eTregs

and NLT-like Tregs leaned toward an NLT profile, which was

more pronounced in the latter.

In thecolon,we foundthreesubpopulationsofTregcells thatwe

labeled as NLT, suppressive and LT-like. Treg NLT and suppres-
(F) Percentage of cells expressing each gene in colon Treg suppressive and Treg

(G) Matching of non-colonic Treg cells to colonic Treg cell subpopulations using a

shows the percentage of each identified subpopulation (y axis) that were labeled

(H) Percentage of cells expressing each gene in skin Treg NLT and colon Treg N
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sive cells were present in equal proportions, both exhibiting NLT

traits (Figures 2C and 2D). Treg NLT cells in colon express higher

amounts of Gata3, Nrp1, Areg, Il1rl1, and Ikzf2, matching the

known thymic-derived GATA3+-subpopulation (Schiering et al.,

2014)(Hu and Zhao 2015) while suppressive colonic Treg cells ex-

pressed more Il10, Gzmb, Lag3, and Cxcr3, resembling the

peripherally-derived RORgt+-subpopulation (Ohnmacht et al.,

2015; Schiering et al., 2014; Sefik et al., 2015). Rorc itself, while

not present as a marker, appears in a higher percentage of Treg

suppressive cells (6.16%versus 2.85% in colonic TregNLT cells).

Technical limitations for detection of lowly expressed genes by

scRNA-seqmight account for the difficulty in capturingRorc tran-

scripts. Lastly, LT-like Treg cells differed from other colonic pop-

ulations by expressing LT-associated genes including Sell, Ccr7,

Tcf7, and Bcl2, and lower amounts of NLT-associated genes

such as Klrg1, Cd44, Icos, Rora, Tnfrsf9, and Itgae (Figure 2B).

In contrast to the colon, and likely as a consequence of fewer

cells captured, skin Treg cells did not showevident heterogeneity

(Figure 2A). They expressed an unequivocal NLT signature (Fig-

ure 2D), but it was not clear towhich colonic Treg cell populations

they were most similar (Figure 2B). We addressed this by using a

logistic regression model to calculate the probability of each skin

Treg cell identifying as one of the colonic subpopulations (Fig-

ure 2G, see Experimental Procedures). This revealed that most

skin Treg cells were more similar to colonic Treg NLT than to

Treg suppressive cells. Accordingly, colon Treg NLT cell marker

genes Gata3, Il1rl1, Tnfrsf4, and Rora were not differentially ex-

pressed between skin and colon Treg NLT cells (Figure 2H, Fig-

ure S2A). Despite their resemblance, differences in function

and/or state between skin and colon Treg NLT might reside in a

few genes. Among these are Dgat2, an enzyme involved in lipid

synthesis in skin (Fagerberg et al., 2014), and Ikzf4, a transcription

factor relevant for Treg stability (Sharma et al., 2013).

The same approach classified most central and effector Treg

cells from spleen, mLN, and bLN (Figure 2G) as colonic Treg

LT-like cells. Treg NLT-like cells from these lymphoid tissues,

on the other hand, were more similar to Treg NLT and Treg-sup-

pressive cell populations in the colon. Both the mLN and the bLN

had a higher proportion of Treg cells assigned as suppressive

than spleen, which contained the highest fraction of Treg NLT

cells. We confirmed the presence and proportions of Treg cell

subpopulations in the Smart-seq2 datasets by matching these

cells to the subpopulations found across LTs and NLTs in the

103 dataset (Figure S2B).

Clustering of Tmem cells revealed multiple subpopulations

(T helper-1 [Th1 cell], Th2 cells, Th17 cells, T follicular helper

[Tfh] cells, lymphoid) (Figures S2C and S2D; Table S3) distrib-

uted differently across the tissues analyzed (Figure S2D). Th1,

Th2, and Th17 cells in lymphoid tissues exhibited a stronger

NLT phenotype than Tmem lymphoid cells and Tfh cells (Fig-

ure S2E), which is likely an indication of their ability to adapt to

and function in the NLTs.

In summary, scRNA-seq allowed us to dissect the heteroge-

neity of Treg cells from LTs and NLTs. We identified NLT- and
NLT subpopulations.

logistic regression model (90% accuracy, see Experimental Procedures). Table

by the model as each Treg cell cluster (x axis).

LT cell subpopulations. See also Figure S2.



LT-like Treg cell subpopulations that suggest progressive cross-

tissue adaptation to the NLT environment. We found a close cor-

respondence between skin and colonic Treg NLT cells, while

revealing differences in gene expression that might explain their

adaptation to the two environments.

Adaptation of Treg Cells to Skin and Colon Relies on a
Shared Transcriptional Trajectory
The mechanisms underlying Treg cell recruitment and adapta-

tion from LT to NLT are far from understood. Having identified

multiple subpopulations at different stages of NLT adaptation

(Figure 2D), we further dissected the dynamics of this transition.

We obtained evidence of CD4+ T cell recruitment from LT to

NLT by reconstructing TCR clonotypes using TraCeR (Stubbing-

ton et al., 2016) from the Smart-seq2 datasets. This showed

Tmem and Treg cell clones present in LNs and respective

NLTs (Figures S3A and S3B), suggesting cell migration between

them.

To identify Treg cell LN-to-NLT adaptation trends in the data,

we reconstructed a pseudospace relationship between cells by

obtaining latent variables (LV) from Bayesian Gaussian Process

Latent Variable Modeling (BGPLVM, see Experimental Proced-

ures) (Michalis et al., 2010). Along the mLN to colon trajectory

laid out by LV0, Treg cells are ordered from cTreg to eTreg cells,

followed by NLT-like and LT-like Treg cells, and ending with the

overlapping Treg suppressive and Treg NLT cell subpopulations

(Figure 3A, ‘‘Colon’’ density plot, Figure S3C). This order

matches the increasing expression of NLT marker genes and

decrease of LT ones across mLN subpopulations (Figures 2B

and 2D). Importantly, Treg NLT-like cells from the mLN partially

mixed with Treg LT-like cells from the colon, supporting the

notion that NLT adaptation is a continuous process spanning

LT and NLT. Overall, LV0 accurately represented the progressive

migration and adaptation of Treg cells to the NLT environment,

providing a reference to study the gene expression dynamics

along this process. Skin and bLN Treg cells were projected

onto the latent space defined for colon and mLN, resulting in a

similar subpopulation distribution (Figure 3A, ‘‘Skin’’ density

plot; see Experimental Procedures). Nevertheless, a similar pro-

jection was observed when using just those cells (Figures S3C

and S3D). Applying the same approach to the Smart-seq2 data-

sets yielded similar distributions of the inferred cell subpopula-

tions (Figure S2B) along the LT-to-NLT adaptation trajectory,

as well as considerable overlaps between LV correlated genes

(Figures S3E–S3H).

The use of velocyto (La Manno et al., 2018) to infer the direc-

tionality of adaptation suggests that most Treg cells found in

the NLTs, as well as some of the NLT-like Treg and eTreg cells,

are adapting toward a more pronounced NLT phenotype

(Figure S3I).

We then used the inferred LN-NLT trajectory to identify the

cascade of transcriptional changes driving adaptation to NLTs

by modeling genes with a sigmoid curve and find their activation

or deactivation ‘‘times’’ (Figure 3B; Table S4; see Experimental

Procedures). We found 812 and 1209 genes with a switch in

expression (either up or down) along the bLN-to-skin and mLN-

to-colon trajectories, respectively, with 511 of those being

shared. LT-related genes (Lef1, Tcf7, Sell) were downregulated,

while NLT associated genes like Nfil3, Ccr8, Cxcr6, Gzmb were
upregulated. TNFRSF-NF-kB-related genes (Tnfrsf1b, Tnfrsf4,

Tnfrsf18) and the Batf transcription factor were upregulated still

in the LN, reflecting the relevance of this pathway for eTreg cell

development and the NLT phenotype (Vasanthakumar et al.,

2017, 2015). Toward the NLT side of the trajectory there is evi-

dence of further Treg cell differentiation, with upregulation of

additional genes involved in this pathway (Nfkb2, Tnfrsf9), as

well as other effector molecules (Il10,Cd44). Important regulators

for the final tissue adaptation include Rora, recently described in

skin Treg cells (Malhotra et al., 2018). We searched for enriched

Biological Processes GO Terms, and calculated the mean time

of activation or deactivation (t0) of the genes within each term.

We found the gene expression kinetics along the adaptation tra-

jectories to skin and to colon to be consistent (Spearman’s rho =

0.61, Figure 3C): T cell migration and glycolytic process are

among the earlier events in both colon and skin, followed by

cell proliferation; cytokine production and fatty acid homeostasis

emerge toward the end of the adaptation trajectory.

In summary, we determined a continuous trajectory aligning

Treg cell subpopulations from bLN, mLN, skin, and colon ac-

cording to the stage of recruitment and adaptation to the NLT

environments. Furthermore, the consistent ordering of gene

expression programs shows that gene kinetics leading to NLT

adaptation follows a similar regulatory sequence in both bLN-

to-skin and mLN-to-colon trajectories.

Treg Cell Recruitment into Steady-State Skin and
Melanoma Tumors Uses Common Mechanisms
To validate our findings in steady-state cells, we used a mouse

melanoma model to investigate whether Treg cell migration

and adaptation trajectory to peripheral tissues could be recapit-

ulated. Previous studies analyzing human TCR repertoires (Sher-

wood et al., 2013; Plitas et al., 2016) have shown that tumor-Treg

cells are likely to be recruited de novo from LTs and not from the

adjacent NLT, despite exhibiting a phenotype similar to that of

NLT Treg cells (Plitas et al., 2016; De Simone et al., 2016). We

therefore purified Treg and Tmem cells from B16.F10 mela-

nomas or PBS controls 11 days after subcutaneous implantation

into Foxp3-IRES-eGFP reporter mice (Haribhai et al., 2007) to

produce a plate-based scRNA-seq dataset (Figure 4A; see

Experimental Procedures).

Skin and tumor Treg cells clustered separately (Figure 4B). As

with steady-state skin, we observed shared clonotypes between

tumor and bLN Treg cells (Figure S4B). In the tumor-bearing

mice, we detected an additional cluster of cycling cells in both

the LN and tumor (Figure S4A). These observations suggest de

novo recruitment from LN and simultaneous expansion in both

tumor and draining-LN. DE between non-cycling tumor Treg

and control skin Treg cells revealed a relatively small number

of genes significantly different between the two Treg cell popula-

tions (28 upregulated in tumor and 10 in steady-state skin; Fig-

ure 4C), in line with recently published human data (Plitas

et al., 2016). Tumor Treg cells upregulate the exhaustion marker

Lag3 (Malik et al., 2017), as well as Cxcr3 and Ccl5, while control

skin Treg cells upregulate skin Treg cell markers such as

Il1rl1, Pim1, Sdc4, Kdm6b, and Erdr1. However, skin Treg cell

signature genes such as Batf, Tnfrsf4, Tnfrsf9, Samsn1, Tigit,

Tchp, Ccr8, Ccr2, and Itgav are similarly expressed in both

populations.
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Figure 3. Reconstruction of Treg Cell Recruitment from Lymphoid to Non-Lymphoid Tissues in Steady-State

(A) Top two latent variables (LV) found with BGPLVM for mLN and colonic Treg cells, with bLN and skin Treg cells mapped over the same coordinates. LV in the x

axis is the most relevant one, and mapping of colon and skin subpopulations over it reveals a transition of Treg cell identity across tissues.

(B) Gene expression in mLN and colon (top) or bLN and skin (bottom) over LV0 modeled into a sigmoidal curve. Dashed vertical line marks the activation point of

each gene.

(C) Sequence of activation of GO biological processes across the transition to colon (top) or skin (bottom), evidencing a conservation between both trajectories

(Spearman’s rho - 0.61). See also Figure S3.
Next, we sought to obtain a shared migration trajectory of

steady-state versus perturbed system (tumor model) Treg NLT

cells recruitment. To this end, we used the MRD-BGPLVM algo-

rithm (Damianou et al., 2012) (see Experimental Procedures) to

explore gene expression trends across Treg cells from the control

skin, tumor,and respectivedraining-LNs together. Twomain latent

variables were identified, one explained almost entirely by cell-cy-

cle-associatedvariability (LV5), andonemainlyassociatedwith the
498 Immunity 50, 493–504, February 19, 2019
LT-NLT signature (LV9) (Figure 4D, Figure S4C). Notably, NLT

adaptation trajectory (LV9) was strongly related to the trajectories

found in control andmelanomaconditionswhenMRD-BGPLVM is

applied to each one individually (respectively, 86% and 61% of

genes correlated with LV9 are also correlated with control LV1

and tumor LV1; Figures S4E–S4H, see Experimental Procedures).

Gene kinetics along NLT adaptation (LV9) for each condition

show 158 shared genes, with 71% of which also present in the
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Figure 4. Recruitment and Adaptation of Treg Cells to the Tumor Environment Recapitulates Steady-State Migration

(A) Melanoma induction strategy and sampled tissues.

(B) t-SNE depicting Treg and Tmem cells from tumor and steady-state skin, draining brachial lymph nodes, and spleen.

(C) Differential expression between skin and tumor Treg cells. Treg cells classified as cycling were excluded.

(D) (top) Latent variables found with MRD-BGPLVM representing cell cycle (LV5) and non-lymphoid tissue recruitment/adaptation of Treg cells (LV9). (bottom)

Distribution of cells based on Tissue and Condition and Cell-Cycle phase along the recruitment trajectory.

(E) Difference in activation time (t0) of genes in control and tumor. Genes are classified as being markers of skin, lymph node, cell cycle, or other. Colored points

show mean ± mean SE for each group. Vertical dashed lines represent the mean ± SE for all t0 values. t test between control and melanoma t0 indicates no

change (p value = 0.2631), with t0 values having a Spearman correlation coefficient of 0.65 between both conditions. See also Figure S4.
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steady-state skin trajectory determined previously. Values of t0

remain largely unchanged between control and melanoma (Fig-

ure 4E), suggesting that NLT recruitment and adaptation follow

the same program in homeostatic and perturbed conditions.

The tissue adaptation genes shared between control and mela-

noma include many of the players in the TNFRSF-NF-kB

pathway we previously described in the steady-state (Tnfrsf9,

Tnfrsf18). These were accompanied by genes associated with

cell migration and adhesion (Ccr2, Gpr55, Plxna2), transcription

factors (Rora, Ikzf3, Id2, Batf, Hif1a, Prdm1), secreted factors

(Lgasl1), and others related to immune activation and effector

states (Klrg1, Icos, Tigit, Gzmb).

Despite the similarities between melanoma and control trajec-

tories, cells from both conditions do not completely overlap, and

Treg cells could be ordered by NLT adaptation between popula-

tions (from least to most adapted cells: control LN, melanoma

LN, tumor, and control skin) (Figure 4D). This implies that in

response to an immune challenge in a barrier tissue, a higher

fraction of Treg cells in the LNs acquires NLT adaptations. In

fact, for several NLTmarkers we observedmore cells expressing

them in the tumor-draining LN compared to the control, e.g., Id2

(59% versus 26%), Batf (57% versus 26%), and Lgals1 (89%

versus 67%), further supporting our hypothesis that there is

priming of Treg cells to NLTs while still in the LN. Overall, Treg

cells from challenged mice recapitulate the steady-state NLT

adaptation.

The Core Identity of NLT Treg Cells Is Conserved
between Mouse and Human
We complemented our characterization of murine NLT Treg and

Tmem cells by collecting human Treg cells, as well as Tmem

(sorted into central and effector memory) cells from blood and

skin, and from tumor-adjacent colon sections from patients un-

dergoing colonic resection (Figure 5A, Figure S5). Similar to the

mouse analysis, we identified gene markers for human CD4+

T cell populations (see Experimental Procedures).

Focusing on one-to-one orthologs, we found that 24 out of 144

human skin Treg cell markers and 17 out of 74 human colon Treg

cell markers overlapped with the respective mouse signature. In

colon, we observe the conservation of Tnfrsf4, Lgals1, Srgn,

Cxcr6, Maf, or Ikzf3 (Figure 5B), genes that we had previously

identified as important in defining tissue identity and Treg cell

subpopulations. The same applied to skin Treg cells, where we

saw expression of Batf, Rora, Rel, Srgn, Tnfrsf18, and Tigit

across species (Figure 5C). Overall, this indicates a conserved

role of the core NLT signature, namely the TNFRSF-NF-kB-

pathway.

In several instances, we observed the expression pattern of

one gene being substituted by a paralog in the other organism

(Figure 5D). For example, while the kinase Pim1 is a marker of

mouse NLT Treg cells and was not expressed in human, the in-

verse was true of Pim2. A similar situation was observed for

Rgs1-Rgs2, Hif1a-Hif3a, and others. This suggests that some

paralogous proteins have evolved to substitute each other dur-

ing evolution of NLT Treg cells in mammals. The fact that

several of the identified cases are receptors related to signal

transduction leads us to believe that evolution of cell-cell

communication pathways owes some plasticity to differential

paralog usage.
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Our cross-species comparison suggests that despite cross-

species differences, the NLT Treg cell adaptation program

defined in mouse is generally conserved in human.

DISCUSSION

Our work sheds light on the phenotype of skin and colon Treg

cells. We profiled NLT Treg and Tmem cells to identify global re-

lationships between cell populations, discriminating general

CD4+ and specific Treg cell markers in NLT. We found that these

Treg populations conserve fundamental traits shared across the

skin and colon compartments, namely a substantial prevalence

of genes part of the TNFRSF-NF-kB axis.

We leveraged the single-cell resolution of our data to explain

Treg cell heterogeneity in the context of LT-to-NLT transition.

Besides the eTreg cell state previously described in lymphoid or-

gans (Cretney et al., 2011), we found two transitional subpopula-

tions, Treg NLT-like cells in the lymphoid tissues and Treg LT-like

cell in the non-lymphoid ones, which together explain the cross-

tissue transition from central Treg to Treg NLT cell populations.

NLT-like Treg cells in the mLN and bLN showed extensive

NLT-priming, including the upregulation of tissue-specific hom-

ing-molecules to the drained NLT. Others have demonstrated

that a subpopulation of spleen Treg cells can express a partial

visceral adipose tissue (VAT) signature and later give rise to

fully-mature VAT-Treg cells upon migration (Li et al., 2018),

implying that this is valid for various tissues and should be

considered in the design of future precision medicine strategies

involving targeting of Treg cells to NLTs.

Our pseudotime results support migration and adaptation re-

lationships between subpopulations and allowed us to explore

the basic mechanisms for the establishment of peripheral Treg

cell phenotypes. In this transition, metabolic and proliferation

changes in Treg cells happen concurrently with priming for

migration, followed by changes in cytokine production machin-

ery upon establishment in the periphery. Despite the overall sim-

ilarity of recruitment and adaptation to NLTs, and although all

three subpopulations (skin NLT, colon NLT, colon suppressive)

fell close along the NLT adaptation trajectory, colon but mainly

skin Treg NLT cells exhibited greater adaptation to the NLT envi-

ronment. We hypothesize that the upregulation of Ikzf4, Dgat2,

and Itgae observed in skin might explain and contribute to the

further stabilization, retention, and metabolic adaptation of

Treg cells to the NLT compartment.

Treg cell priming in LNs is apparent from their increased NLT

signature and expression of tissue-homing molecules, yet it is

likely that Treg NLT-like cells are a heterogeneous subpopula-

tion, with some cells egressing to the NLTs and others recently

drained from the NLTs. This was confirmed using velocyto and

agrees with the bidirectional migration between LNs and the

NLTs described in skin using a photoconversion system (Mat-

sushima and Takashima 2010). Studies coupling photoconver-

sion and scRNA-seq can further our understanding of Treg cell

migration patterns, as previously shown with single-cell qPCR

(Ikebuchi et al., 2016).

A considerable proportion of the adaptation program between

bLN-to-tumor was contained within the bLN-to-skin trajectories.

Similar to steady-state, cues derived from NLTs are likely to

prime Treg cells located in the draining LNs, as indicated by a
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Figure 5. Human-Mouse Comparison of NLT Treg Cell Marker Genes

(A) Tissues and cell types sampled from human.

(B and C) Top shows overlap between NLT Treg cell markers detected in human and mouse, in either (B) colon or (D) skin datasets. Bottom shows fold-change

between gene expression in non-lymphoid and lymphoid tissues in mouse and human. Blood and spleen were used as lymphoid tissues in human and mouse,

respectively.

(D) NLT paralogs exhibiting opposing expression patterns between human and mouse. See also Figure S5.
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higher percentage of cells expressingBatf, Lgals1, Id2, and other

NLT markers in melanoma. In sum, tumor Treg cells resemble

less mature versions of their homeostatic skin counterparts

that, nevertheless, follow the same NLT adaptation trajectory.

Despite the conserved tissue-specific signatures, the differen-

tial paralog usage we identified between species suggests a

pivotal role for expanded gene families in rewiring signaling path-

ways throughout evolution. Studies focusing not only on tissue-

resident cells, but also on the surrounding environment and

organs can help dissect the relevance of these pathways in

T cell biology and how this evolutionary rewiring might affect im-

mune response and homeostasis.

Overall, we reveal a dynamic adaptation of T cells as they

traffic across tissues and provide an open resource (http://

www.teichlab.org/data/) for investigating in vivoCD4+ T cell phe-

notypes in mouse and human, to ultimately harness NLT CD4+

T cells as future therapeutic targets.
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Nextera XT DNA Sample Preparation kit Illumina Cat#FC-131-1096

Deposited Data

Smart-seq2 raw data This paper ArrayExpress: E-MTAB-6072

10x Chromium raw data This paper ArrayExpress: E-MTAB-7311

Processed count matrices and metadata This paper https://figshare.com/projects/Treg_scRNA-
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Interactive data browser This paper www.teichlab.org/data

Experimental Models: Cell Lines
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Oligo-dT (Picelli et al., 2014); IDT N/A

Template Switch Oligo (TSO) (Picelli et al., 2014); Exiqon N/A

ISPCR (Picelli et al., 2014); IDT N/A

Software and Algorithms

R https://www.r-project.org/ Version: 3.5.1; RRID: SCR_001905

RStudio https://www.rstudio.com/ Version: 1.2.720

CellRanger 10x Genomics Version: 1.2.0

Other

Illumina Nextera XT protocol sample

preparation protocol

Fluidigm PN 100-5950 B1

10x library preparation protocol 10x Genomics https://support.10xgenomics.com/single-

cell-gene-expression/library-prep/doc/

user-guide-chromium-single-cell-3-

reagent-kits-user-guide-v2-chemistry

Plate-based scRNA-seq (Smart-seq2) (Picelli et al., 2014) N/A
CONTACT FOR REAGENTS AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to the Lead Contact, Sarah A. Teichmann

(st9@sanger.ac.uk).

MICE

All mice were maintained under specific pathogen-free conditions at the Wellcome Genome Campus Research Support Facility

(Cambridge, UK) and at the Kennedy Institute for Rheumatology (Oxford, UK). All procedures were in accordance with the Animals

Scientific Procedures Act 1986. For steady-state experiments, the Foxp3-GFP-KI mouse reporter line (Bettelli et al., 2006) was used.

The melanoma challenge was performed in Foxp3-IRES-GFP genetically targeted reporter mice (Haribhai et al., 2007) purchased

from The Jackson Laboratory (stock no. 006772). In both cases, 6-14 week-old mice were used.

HUMAN SAMPLES

Human skin and blood samples were obtained from patients undergoing breast reduction plastic surgeries (REC approval number:

08/H0906/95+5). Surgical-resection specimens were obtained from patients attending the John Radcliffe Hospital Gastroenterology
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Unit (Oxford, UK). These specimens were obtained from normal regions of bowel adjacent to resected colorectal tumors from pa-

tients undergoing surgery. Informed, written consent was obtained from all donors. Human experimental protocols were approved

by the NHS Research Ethics System (Reference number:11/YH/0020). Further details concerning patients and tumors can be found

in Table S5.

ISOLATION OF MURINE LEUKOCYTES FOR STEADY-STATE SKIN DATASET

To isolate leukocytes from ear tissue, ears were removed at the base, split into halves and cut into very small pieces. Tissue was

digested in 3.5ml RPMI medium (GIBCO) with 0.1% BSA, 15mM HEPES, 1mg/mL collagenase D (Roche) and 450mg/mL Liberase

TL (Roche) for 60 min at 37�C in a shaking incubator at 200rpm. Digested tissue was passed through an 18G needle to further disrupt

the tissue and release cells. Cells were filtered through a 70mm cell strainer, and the digestion was terminated by addition of ice-cold

RPMI containing 0.1%BSA (Sigma-Aldrich) and 5mMEDTA (Invitrogen). A three-layer (30, 40, 70%) Percoll (GE Healthcare) density-

gradient was used to enrich for the lymphocytes. Cells obtained from the digestion were layered in the 30% layer on top of the 40%

and 70% layers, and centrifuged for 20 min at 1800rpm without brake. Cells at the 40/70% interface were collected for the subse-

quent analysis. Cell suspensions from spleen and bLN were prepared as described previously (Uhlig et al., 2006).

ISOLATION OF MURINE LEUKOCYTES FOR STEADY-STATE COLON DATASET

Colons were washed twice in RPMI medium (GIBCO) with 0.1% BSA (Sigma-Aldrich) and 5mM EDTA (Invitrogen) in a shaking incu-

bator at 200rpm at 37�C to remove epithelial cells. The tissue was then digested for an hour in RPMI with 10% FCS, 15mM HEPES

(GIBCO) and 100U/mL collagenase VIII (Sigma-Aldrich). Digestion was terminated by addition of ice-cold RPMI with 10% FCS

(Sigma-Aldrich) and 5mM EDTA (Invitrogen). Leukocyte enrichment and suspension was obtained as described in the previous

paragraph.

MELANOMA INDUCTION AND CELL ISOLATION

The melanoma induction experiments were performed in accordance with UK Home Office regulations under Project License PPL

80/2574. The protocol used was adapted from a previous publication (Riedel et al., 2016). For syngeneic tumors, 2.53 105 B16.F10

melanoma cells (ATCC) were inoculated subcutaneously into the shoulder region of 6- to 14-week-old female Foxp3-IRES-GFPmice

(Haribhai et al., 2007). Animals were excluded if tumors failed to form or if health concerns were reported. Control Foxp3-IRES-GFP

mice were injected with 50 ml PBS. Animals were culled after 11 days. Tumors, tumor-draining (brachial) lymph nodes and spleen

were isolated for subsequent analysis. PBS-injected and steady-state skin, draining lymph nodes (bLN) and spleen were collected

from control mice. Tumor and PBS-injected skin were mechanically disrupted and digested in a 1ml mixture of 1 mg/mL collagenase

A (Roche) and 0.4 mg/mL DNase I (Roche) in PBS (solution A) at 37�C for 1h with 600rpm rotation. 1ml of PBS containing 1mg/mL

Collagenase D (Roche) and 0.4 mg/mL DNase I (Roche) (solution B) was then added to each sample, which returned to 37�C for 1h

with 600 rpm rotation. Lymph nodes were digested for 30min in 500ml of solution A, and for further 30min after the addition of 500ml of

solution B. EDTA (Invitrogen) at the final concentration of 10mM was added to all samples. Spleens were processed as described

previously (Uhlig et al., 2006). Suspensions were passed through a 70 mmcell strainer before immunostaining. Samples from different

animals were kept separated throughout processing and sorting.

ISOLATION OF HUMAN CD4+ T CELLS

Isolation of leukocytes from human skin
Plastic surgery skin included reticular dermis to the depth of the fat layer. The upper 200 microns of skin were harvested using a split

skin graft knife. Whole skin was digested in RPMI 1640with 100IU/mL penicillin, 100ug/mL streptomycin, 2mML-glutamine (GIBCO),

10% FCS (Sigma-Aldrich) and 1.6mg/mL type IV collagenase (Worthington-Biochemical) for 12-16 hours at 37�C and 5% CO2.

Digest was passed repeatedly through a 10ml pipette until no visible material remained. To yield a single-cell suspension, digest

was passed through a 100-micron filter into a polypropylene sorting tube.

Isolation of leukocytes from human colon
Normal regions of bowel adjacent to resected colorectal tumors were prepared as previously described, with minor modifications

(Bettelli et al., 2006; Geremia et al., 2011). In brief, mucosa was dissected and washed in 1 mM dithiothreitol (DTT) (Sigma-Aldrich)

solution for 15min at room temperature to removemucus. Specimens were then washed three times in 0.75mMEDTA (Invitrogen) to

deplete epithelial crypts andwere digested for 2h in 0.1 mg/mL collagenase A solution (Roche). For enrichment of mononuclear cells,

digests were centrifuged for 30 min at 500 g in a four-layer Percoll (GE Healthcare) gradient and collected at the 40%/60% interface.
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Peripheral blood mononuclear cell isolation
10mL blood from skin donors were collected into EDTA (Invitrogen). Density centrifugation with Lymphoprep (STEMCELL Technol-

ogies) was performed according to manufacturer’s instructions. Recovered cells were cryopreserved by pelleting and resuspending

in 1ml heat-inactivated fetal calf serum containing 10% DMSO, and storing at �80�C.
Cryovials were later thawed in water bath, then rapidly being transferred to warmed medium (RPMI 1640 (GIBCO) with 100IU/mL

penicillin, 100ug/mL streptomycin, 2mM L-glutamine (GIBCO), 10% FCS (Sigma-Aldrich)) and filtered through a 100-mm filter.

Flow cytometry and single-cell RNA sequencing
Mouse and human cell suspensions were stained with the antibodies in the Key Resource Table and DAPI (Sigma-Aldrich).

Droplet-based scRNA-seq datasets were produced using a Chromium system (10xGenomics), referred to as 10x. Cell populations

of interest were sorted, manually counted, and their concentrations adjusted to enable the capture of �5000 cells (except for skin

Treg and Tmem cells, for which we aimed to capture �300 each). The standard protocol for the 10x single cell 30 kit (V2 chemistry)

was followed and each cell population loaded onto a separate chip inlet. We ran each sample on one lane of Illumina HiSeq 4000,

following manufacturer’s recommendations.

Two plate-based scRNA-seq datasets: the ‘‘colon dataset,’’ including Treg and Tmem cells from colon, mLN and spleen, and the

‘‘skin dataset’’ from skin, bLN and spleen. Single cells were sorted in 2ml of Lysis Buffer (1:20 solution of RNase Inhibitor (Clontech) in

0.2% v/v Triton X-100 (Sigma-Aldrich)) in 96 well plates, spun down and immediately frozen at �80�C. Smart-seq2 protocol (Picelli

et al., 2014) was largely followed to obtain mRNA libraries from single cells. Oligo-dT primer, dNTPs (ThermoFisher) and ERCC RNA

Spike-In Mix (1:50,000,000 final dilution, Ambion) were then added. Reverse Transcription and PCR were performed as previously

published (Picelli et al., 2014), using 50U of SMARTScribe Reverse Transcriptase (Clontech). The cDNA libraries for sequencing

were prepared using Nextera XT DNA Sample Preparation Kit (Illumina), according to the protocol supplied by Fluidigm. Libraries

from single cells were pooled and purified using AMPure XP beads (Beckman Coulter). Pooled samples were sequenced on an Illu-

mina HiSeq 2500 (paired-end 100-bp reads) or Illumina HiSeq 2000 v4 chemistry (paired-end 75-bp reads) aiming at an average

depth of 1 million reads/cell.

RNA expression quantification
Sequencing data from 10x runs was aligned and quantified using the CellRanger software package with default parameters.

Gene expression from Smart-seq2 scRNA-seq data was quantified in counts using Salmon v0.6.0 (Patro et al., 2017), with the

parameters–fldMax 150000000–fldMean 350–fldSD 250–numBootstraps 100–biasCorrect–allowOrphans–useVBOpt. For mouse,

the cDNA sequences used contain genes from GRCm38 and sequences from RepBase, as well as ERCC sequences and an

EGFP sequence. Since the EGFP RNA is transcribed together with Foxp3, counts from these two genes were added after quantifi-

cation to represent Foxp3 expression. For human data quantification, cDNA sequences from GRCh38 and ERCC were used.

Standard scRNA-seq analysis (QC, differential expression andmarker gene detection, and clustering) was performed using Seurat

(Satija et al., 2015). All data was log-normalized using the NormalizeData function with a scale factor of 10000. Our expression data

for different tissues is also available for user-friendly interactive browsing online at data.teichlab.org.

scRNA-seq quality control
Quality control of 10x-derived datawasmade taking into account number of UMIs - keeping cells with between 1000 and 15000UMI -

and number of genes - keeping cells with between 700 and 3500 genes with at least 1 UMI (Table S1). While cells were not filtered by

their mitochondrial read content, cells with an elevated number of these reads are eventually removed via clustering (see ‘‘Subpop-

ulation detection in 10x data’’).

For Smart-seq2 data, count values for each cell were grouped in an expression matrix, and ERCC expression were separated from

true gene expression. Cells were then filtered based on different quality parameters calculated for each dataset (Table S1). Addition-

ally, the output of TraCeR (Stubbington et al., 2016) was used to remove cells without a detected TCR sequence, as well as invariant

Natural Killer T (iNKT) cells and gv T cells (defined as cells with at least one g and one v chain detected and no ab pair). For the colon

and skin datasets, 433 and 745 cells passed quality control, respectively.

Importantly, we note that TCR detection greatly improved our filtering by excluding cell types captured by FACS that did not fit the

intended categories. This is the case for iNKT cells - captured mostly together with spleen T memory cells - and gd-T cells - sorted

together with skin Tmem cells in the melanoma experiment. Indeed, we also identified a NKT population in the 10x dataset, mostly

within the cells sorted as spleen Tmem cells, as well as some LN Tmem cells (Figures S1B and S1C). We cannot, however, state that

these are ‘‘invariant,’’ since we have no access to their complete TCR chains. TCR filtering also enables removal of cell doublets by

identifying cells expressing an excessive diversity of recombined TCR chains. Even in cases of no allelic exclusion for TCR ɑ and b

sequences, each cell would still only be able to produce two recombinants of each, allowing removal of cell doublets expressingmore

than two recombinants for a TCR locus. Lastly, we removed all cells not expressing any recombinant TCR in order to have a more

stringent quality control. While in the human dataset the number of cells without a TCRwas evenly distributed across tissues and cell

types, there was a clear skew toward TCR absence in peripheral Treg cells (colon and skin) in the mouse datasets. These Treg cells

did not appear to differ from the remaining population, having no differentially expressed genes or major differences in their overall

number, presenting only a skew toward a higher number of reads (data not shown).
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Dimensionality reduction methods
To obtain an overview of the datasets showing the relationships between cell population clusters, Principal Component Analysis

(PCA) and tSNE were used. Before PCA, data was scaled using the ScaleData function (negative binomial model, normalizing by

the number of UMI and centering the data). PCA and tSNE were calculated using the RunPCA and RunTSNE functions, respectively.

For each dataset, a different number of Principal Components (PCs) and values for perplexity were used (Table S1), chosen by visual

inspection of an elbow plot representing the relative importance of each PC. With exception of the PCA projection for the complete

10x dataset, only highly variable genes were used, calculated using the FindVariableGenes function from Seurat with the parameters

num.bin = 100 and binning.method = ’’equal_frequency.’’ Using all genes for dimensionality reduction of the whole 10x dataset re-

sulted inmore accurate clustering, allowing for the identification of most contaminant cells on this first step (Figure S1B). Plate-based

datasets were treated separately as much as possible to avoid confounding batch effects from experiments performed separately.

Subpopulation detection in 10x data
To find clusters in the data, we used the FindClusters function from Seurat, with the same number of principal components used for

tSNE. Cluster annotation was done by inspecting markers detected by the FindAllMarkers function.

Global clustering of the 10x dataset was done with the resolution parameter set to 0.2. After clustering the complete dataset, we

excluded artifactual subpopulations (Figure S1, Table S2). A mixed Treg and Tmem cell population characterized by high expression

of immediate-early response genes (e.g., Jun, Junb, Fos, Fosb), which has previously been reported in other cell types (Adam, Potter,

and Potter 2017; van den Brink et al., 2017; Wu et al., 2017) was removed. An additional population of lymphoid tissue Tmem cells

was also excluded because they presented expression profiles similar to NKT cells (Nkg7, Ccl5, Cd160, Klrbc1, Cxcr6).

Clustering on individual tissues used the following resolutions: for Treg cells, 0.3 on Spleen, 0.4 on bLN, 0.4 on mLN, 0.5 on Colon,

0.4 on all skin cells; for Tmem cells 0.4 on Spleen, 0.3 on bLN, 0.7 on mLN, and 0.6 on Colon. Annotation was performed and sub-

populations characterized by immediate-early response genes were removed (Table S3).

Differential expression analysis
Differential expression (DE) andmarker gene detectionwas performed using the FindMarkers and the FindaAllMarkers functions from

the Seurat R package, using the default Wilcoxon test. Genes were considered differentially expressed if they had an average log

fold-change of at least 0.25 and a Bonferroni-adjusted p value of 0.05 or lower.

For DE including all cells of the 10x dataset, a minimum of 5% of cells had to express the gene, otherwise a minimum of 1% was

used. For comparisons between tests (for example Treg versus Tmemcells and LT versus NLT, see Figure 1C), the FindMarkers func-

tion was run twice - the first time to determine all genes considered expressed for each comparison, the second using the union of all

those genes.

In the human and mouse comparison, human NLTs were compared to blood and mouse NLTs were compared to spleen only, and

testing was restricted to genes with one-to-one orthologs.

Mapping cells to known populations using logistic regression classification
To make a correspondence of cells in the 10x dataset with the identified Treg cell subtypes in the colon (Figure 2G), or between

Smart-seq2 data and the complete 10x dataset (Figure S2B), the counts and subpopulation labels of the 10x dataset Treg cell sub-

populations and the complete 10x dataset were used to train a logistic regression classification model using scikit-learn with an L1

penalty and default parameters. The label with the highest probability predicted by the model was then attributed to each cell. The

figures show the percentage of each tested population that was predicted as matching to each learned label.

Obtaining a migration latent variable for steady-state Treg cells
The large dimensionality of single-cell RNA-seq data has been used before to gain insights on time-dependent events (Trapnell et al.,

2014; Lönnberg et al., 2017) by applying methods for pseudotime inference. Although it is impossible to follow one cell through the

complete process, these methods can order single-cell data into a continuous dimension, using the discrete samples as snapshots

containing a multitude of intermediate states.

Immune cells are expected to migrate between LTs and NLTs. We assumed that this effect would be reflected as a gradual single-

cell expression phenotype, which could be captured as a latent variable of the data. To achieve this, we used Bayesian Gaussian

Process Latent Variable Modeling (BGPLVM) (Michalis et al., 2010), implemented in the python package GPy (https://github.com/

SheffieldML/GPy) as ‘‘GPy.models.BayesianGPLVM,’’ which was already used before for dimensionality reduction in scRNA-seq

data to model Th1-Tfh cell differentiation (Lönnberg et al., 2017). BGPLVM was used on log-scaled counts and only considering

highly variable genes. We run the method with six latent variables (LV) to be sure we capture the most relevant ones by Automatic

Relevance Determination (ARD, Figure S3C), although this number does not alter significantly the performance of the algorithm. We

then interpret the most important LV as the one ordering the cells between tissues along a migration and adaptation transition. In

agreement, we observe gene expression changes associated with losing the lymphoid tissue identity and acquiring a peripheral

tissue transcriptional profile (Figure 3B).
Immunity 50, 493–504.e1–e7, February 19, 2019 e5

https://github.com/SheffieldML/GPy
https://github.com/SheffieldML/GPy


For 10x data, themethodwas used onmLN and colon Treg cells. We thenmapped bLN and skin Treg cells onto the same LV using

the predict function from the BGPLVM module, in order to have a similar coordinate system for both trajectories. Running BGPLVM

with all data together would achieve a similar result (not shown). A BGPLVM projection of bLN and skin Treg cells (Figure S3D) shows

an identical projection but with a wider gap between bLN and skin cells due to the large differences in cell numbers. We excluded

spleen cells from this analysis to focus specifically on LN to NLT adaptation.

Similar effects are also observed in the corresponding Smart-seq2 cells (Figures S3F and S3G). We then show that all the LVs cho-

sen as a ‘‘pseudospace variable’’ (LV0) have a similar effect between datasets by comparing the shared proportions of genes corre-

lated with each of them (Figure S3H).

Identifying a common tissue migration trajectory in control and melanoma
Similarly to the steady-state, migration from the LN to the skin with a melanoma challenge is also expected. A common between-

tissue Treg cell migration trajectory in control and melanoma conditions was obtained using Manifold Relevance Determination

(Damianou et al., 2012) (MRD). MRD works by having an underlying BGPLVMmodel whose dimensions can be shared or private be-

tween sections of the data. Having the prior knowledge that a cell-cycle effect is present in the data (Figure S4A) and with the goal of

obtaining a LV explaining tissue recruitment in both conditions, the melanoma dataset was divided into three sections for input: one

with the expression in all cell-cycle associated genes, one with marker genes for any tissue, and one with the remaining genes. The

importance of each section in each latent variable is shown in the ARD plot (Figure S4C). The model was run allowing for 12 LVs as

output, and the one highly influenced by tissue-specific genes but not cell-cycle or other genes was used as amigration trajectory for

both conditions (Figure 4D). The effects captured by these LVs can be observed in BGPLVM projections for the individual conditions

(Figures S4E–S4G).

Switch-like genes in the migration latent variable
Gene expression changes in a continuous trajectory can be interpreted as a series of switch-like events. These can bemodeled using

a sigmoid curve, described by the following equation:

S=
23m0

1+ e�kðt�t0Þ

where m0is the mean expression between the sigmoid ‘‘on’’ and ‘‘off’’ states, t0 is the point in which the switch in expression hap-

pens, and kdefines the sigmoid inclination and can be interpreted as the activation strength. Parameter kwill additionally inform on the

direction of the switch (activation or inhibition) from its signal.

The R package switchde (Campbell and Yau, 2017) was used to model gene expression as a sigmoid in the inferred migration tra-

jectories, using the appropriate latent variable as pseudotime.

In the steady-state 10x dataset partitions (mLN+colon Treg cells and bLN+skin Treg cells), switchde was applied for non-Tmem

cell specific genes expressed in at least 30 cells, aswell as geneswith an absolute correlation greater than 0.25with the LV chosen for

both partitions. Due to the large differences in the number of cells in the skin partition, we ran switchde 100 times on different sub-

samples of each Treg cell subpopulation matching the smallest subpopulation size (405 for the colon partition, 55 for the skin parti-

tion), and used themedian values of the parameters for further analysis. For themelanoma dataset, genes expressed in at least 5 cells

in both conditions were tested. Only genes with a q-value % 0.05 and that had a t0within the LV range were kept for further

interpretation.

RNA velocity estimation
RNA velocity is a measure that leverages detection of spliced and unspliced transcripts to predict single-cell development direction-

ality (La Manno et al., 2018). We used velocyto to determine in which direction cells were changing in the cross-tissue adaptation

trajectories. We have followed the python implementation of velocyto, and the code can be found in https://github.com/

tomasgomes/Treg_analysis/blob/master/Velocyto.ipynb, where each of the runs is present.

Detection of expanded clonotypes
T cell receptor (TCR) sequences were reconstructed from single-cell RNA-seq data and used to infer clonality using TraCeR (Stub-

bington et al., 2016). We used TraCeR with the parameters–loci A B D G,–max_junc_len 120 to allow reconstruction of TCRa, TCRb,

TCRv and TCRg chains in each cell and to permit TCRg chains with long CDR3 regions.

GO Term enrichment
To test for enriched GO Biological Processes or KEGG Pathways in gene sets, the gprofiler R package (Reimand et al., 2016) was

used, with the option of moderate hierarchical filtering enabled.

To determine the succession of Biological Processes GO Terms (Figure 3C, Table S4), we used the approach above on all genes

called DE by switchde, and plotted only the terms with at least two genes.
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Cell-cycle analysis
To assess potential effects of cell-cycle in the interpretation of the scRNA-seq datasets, Cyclone (Scialdone et al., 2015)

(implemented in the scran R package) was used on all datasets. Results for the mouse melanoma dataset (where a relevant cycling

population exists) were projected on the tSNE (Figure S4A). As the vast majority of cells was assigned to the default cell-cycle stage

(G0/G1 in mouse, S in human), no cell-cycle correction was performed.

DATA ACCESSIBILITY

scRNA-seq data for this project has been deposited in ArrayExpress under the accession numbers E-MTAB-6072 and E-MTAB-

7311. Processed data can be found in https://figshare.com/projects/Treg_scRNA-seq/38864, and analysis notebooks can be found

in https://github.com/tomasgomes/Treg_analysis.
Immunity 50, 493–504.e1–e7, February 19, 2019 e7

https://figshare.com/projects/Treg_scRNA-seq/38864
https://github.com/tomasgomes/Treg_analysis

	Single-Cell Transcriptomics of Regulatory T Cells Reveals Trajectories of Tissue Adaptation
	Introduction
	Results
	Treg and Tmem Cell Identity in NLTs Is Driven by a Common Expression Module
	Heterogeneity within LT and NLT Treg Cell Populations Reflects Distinct Degrees of Commitment to the Peripheral Phenotype
	Adaptation of Treg Cells to Skin and Colon Relies on a Shared Transcriptional Trajectory
	Treg Cell Recruitment into Steady-State Skin and Melanoma Tumors Uses Common Mechanisms
	The Core Identity of NLT Treg Cells Is Conserved between Mouse and Human

	Discussion
	Supplemental Information
	Acknowledgments
	Author Contributions
	Declaration of Interests
	References
	STAR★Methods
	Key Resources Table
	Contact for reagents and resource sharing
	Mice
	Human samples
	Isolation of murine leukocytes for steady-state skin dataset
	Isolation of murine leukocytes for steady-state colon dataset
	Melanoma induction and cell isolation
	T cells
	Isolation of leukocytes from human skin
	Isolation of leukocytes from human colon
	Peripheral blood mononuclear cell isolation
	Flow cytometry and single-cell RNA sequencing
	RNA expression quantification
	scRNA-seq quality control
	Dimensionality reduction methods
	Subpopulation detection in 10x data
	Differential expression analysis
	Mapping cells to known populations using logistic regression classification
	Obtaining a migration latent variable for steady-state Treg cells
	Identifying a common tissue migration trajectory in control and melanoma
	Switch-like genes in the migration latent variable
	RNA velocity estimation
	Detection of expanded clonotypes
	GO Term enrichment
	Cell-cycle analysis

	Data Accessibility



