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Abstract

This tutorial presents an architecture for autonomous robots to generate behavior in joint

action tasks. To efficiently interact with another agent in solving a mutual task, a robot should
be endowed with cognitive skills such as memory, decision making, action understanding and
prediction. The proposed architecture is strongly inspired by our current understanding of the
processing principles and the neuronal circuitry underlying these functionalities in the primate
brain. As a mathematical framework, we use a coupled system of dynamic neural fields, each

representing the basic functionality of neuronal populations in different brain areas. It
implements goal-directed behavior in joint action as a continuous process that builds on the
interpretation of observed movements in terms of the partner’s action goal. We validate the
architecture in two experimental paradigms: (1) a joint search task; (2) a reproduction of an
observed or inferred end state of a grasping—placing sequence. We also review some of the
mathematical results about dynamic neural fields that are important for the implementation

work.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Research in autonomous robotics has shown that fairly
complex robot behaviors may be organized without the need
for high-level world representations which are central to
the traditional artificial intelligence approach (for a review
see, e.g., Arkin (1998)). The architectures for autonomous
robots are built on the idea that ‘autonomous agents’ should
structure their behaviors on the basis of sensory information
that they themselves acquire. The closed loop between sensors
and effectors enables a fast real-time adaptation to changing
conditions in dynamic and a priori unknown environments.
Entire chains of behaviors may emerge through learned
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interaction among individual behaviors. Thus far, most of
the applications in robotics have focused on sensory—motor
tasks such as navigation, walking or object manipulation.

A major challenge for sensor-near control architectures
is that so much of what defines an adequate action in more
cognitive tasks depends on past and future states of the
environment that are not represented in the immediate stream
of sensory signals. Imagine, for instance, a joint action task
in which two robots have to search and subsequently transport
particular objects to a predefined area of their workspace. To
guarantee for an efficient team strategy, the robots should have
the capacity to anticipate the consequences of an ongoing
action displayed by the partner. This implies the capacity
to understand the observed movements as directed towards a
specific goal (e.g., grasping a particular object). Given that in
cluttered and dynamic environments occluding surfaces often
disrupt the spatiotemporal continuity of the sensory input, the
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prediction may be possible only by integrating memorized
information or additional contextual cues. The reasoning
about the partner’s current action goal should then bias the
decision process about the object which will be grasped next.
Cognitive functions such as memorizing, decision making,
prediction and action understanding are thus essential for the
collaborative task execution.

Our attempt to implement these capacities in autonomous
robots is guided by the hypothesis that we can learn from the
processing principles in biological nervous systems. There are
three main ideas that have inspired our work. First, a growing
body of neurophysiological evidence supports the existence of
neural populations in different brain areas implementing the
process of simulating consequences of perceptual and motor
events. These internal representations are still close to the
sensors and effectors since they are part of the neural circuitry
which becomes active during normal perception and action.

An example that has attracted a lot of attention also in
robotics over the last couple of years is the existence of the
so-called mirror neurons in the premotor cortex (Rizzolatti
et al 2001, Schaal 1999). These neurons respond both when
the monkey makes a goal-directed action such as grasping an
object and when it observes another individual performing
a similar action. Mirror neurons may thus constitute the
neural correlate for a matching of action observation and action
execution which may account for our everyday ability to make
sense of the motor behavior of others.

Another example for a neural representation consistent
with the simulation idea is a class of cells recently described in
the visual motion area STS (superior temporal sulcus). They
seem to encode the position of an individual disappearing
behind an occluding surface. These cells may thus contribute
to an abstract conceptual representation of object permanence
(Baker et al 2001, Jellema and Perrett 2002).

A second characteristic property of neural circuits is
the ability to transiently hold and manipulate goal-related
information to guide forthcoming actions. Persistent activity
in specific subpopulations which carry the information about
previously encountered stimuli has been observed in a
wide variety of brain areas (for a review see Brody et al
(2003)). Neurocomputational models of this type of short-
term memory suggest that the activity is sustained through
recurrent excitatory interactions in pools of neurons that are
counterbalanced by inhibitory feedback loops (Dusterwitz et al
2000). The existence of persistent activity in the brain appears
to be closely related to the formation of categorical decisions
(Desimone and Duncan 1995). Imagine, for instance, a
network encoding object position. If the recurrent inhibition
within the network is sufficiently strong, the network supports
only a single localized activity pattern representing the selected
target even if the bottom-up input indicates the presence of
several objects in the scene.

A third idea concerns the integration of task-relevant
information over time. The basic hypothesis is that the
accumulation of sensory and other evidence leads to a
continuous increase of the population activity representing
the decision variable. When a certain threshold value is
reached, the integration process is over and a decision is

made which is typically linked to behavior (e.g., grasping
the selected target). The underlying neural circuits seem to be
sensitive to a host of psychological factors (Gold and Shadlen
2002). Neural populations in various brain areas known
to be involved in organizing forthcoming actions selectively
increase their baseline activity in response to precued task
information or prior probabilities accumulated from past
experiments (Bastian er al 2003, Asaad et al 2000). The
integration of additional information sources including input
from simulation loops brings neuronal population closer to the
threshold level and thus biases the decision processes. This
neuronal mechanism is thought to underlie the remarkable
capacity of the mammalian brain to quasi-instantaneously
adapt behavior to the context of sensory signals (Salinas 2003).

In this tutorial, we illustrate our attempt to endow
autonomous robots with some cognitive abilities using two
examples of a joint action task. The first paradigm is the
above-mentioned joint search which allows us to show the
impact of memory and prediction on behavior. The second
task is basically a grasping—placing sequence, constrained by
an obstacle, in which objects have to be placed at specific goal
positions. We use this task in an imitation paradigm in which
a robot has to reproduce the observed or inferred end state of
a sequence displayed by a human model. Here, the emphasis
is on action understanding through motor simulation and skill
transfer from an experienced teacher.

The two examples illustrate our general research goal to
allow robotic systems to interact with humans and other robots
in a natural and useful way.

As a design tool and mathematical language for
implementing the cognitive functions in our robots, we apply
the framework of dynamic neural fields (DNFs) that was
originally proposed to explain pattern formation in neural
tissue (Wilson and Cowan 1973, Amari 1977). In the domain
of robotics, DNFs have been first introduced by Schoner
et al (1995) (for follow-up studies see Engels and Schoner
(1995), Bergener et al (1999), Bicho et al (2000), Menzner
et al (2000), Quoy et al (2003) and Erlhagen et al (2006b))
to endow the so-called dynamic approach to robotics with
representation and memory. The authors demonstrated the
advantages in a navigation and obstacle avoidance task. The
links to neurobiology were addressed on a rather conceptual
level stressing the idea that neural information processing takes
place in the form of self-stabilized activation patterns.

Following this general idea, the main goal of this tutorial
is to make the link to neurobiology more specific. Over
the last 15 years or so, a large number of neuroimaging
and electrophysiological techniques have been used to study
in humans and monkeys the neural mechanisms of social
cognition. New insights into the functional and anatomical
organization of specific neural circuits have inspired our robot
control architecture for the joint action tasks. The core part
of the architecture consists of several interconnected DNFs
which represent the basic functionality of neuronal populations
in distinct but anatomically connected brain areas. The
internal dynamics of this system evolve under the influence
of external visual input and provides the decision variables for
acoherent motor behavior of the robots. Itis important to stress

R37



Tutorial

pmm———
-
.,

~ -
-~
Rl g

Firing Rate

Prsferred Direction

270
Direction (°)

180 360

Figure 1. (a) Schematic view of the heading direction ¢ of the robot with respect to a fixed frame of reference. (b) Localized firing pattern

of neurons encoding the direction ¢,,.

that our cognitive neuroscience-oriented architecture contrasts
to the sense—think—act cycle of the traditional information
processing approach (for a discussion see Pfeifer and Scheier
(1999)). The experimental findings suggest that perceptual
and action processes share a common neural substrate and are
functionally intertwined: perception serves action but action
is also a means to perception (Jackson and Decety 2004). It
is believed that motor representations may play an important
role in the processing of sensory information.

To illustrate the architecture and dynamics of the field
model that controls the behavior of the robots in the joint
action tasks, we use a simulator environment. We only briefly
discuss aspects of the implementation in real robots and refer
for a more detailed description to the relevant publications
(e.g., Bicho et al (2000), Bicho (2000), Erlhagen et al
(2006b)).

This tutorial is organized as follows. In section 2,
we give an overview about some mathematical results
concerning dynamic neural fields which are relevant
for the implementation work. A discussion of recent
neurophysiological results is presented in section 3 together
with a demonstration of the approach in the two joint action
tasks. We finish with a discussion of extensions and the
relation to other modeling and robotics work.

2. Dynamic neural fields

Based on the anatomical fact that the largest input to
cortical cells comes from neighboring excitatory cells, it has
been suggested that recurrent interactions in populations of
neurons form the basic mechanism for cortical information
processing (Douglas et al 1995). The recurrent cortical
architecture is believed to amplify and stabilize noisy or
corrupted feed forward input signals. Moreover, when
information is sustained internally in the brain by means of
persistent neural activity patterns, it may be used to guide
complex behavior which goes beyond a simple input—output
information processing scheme. In their pioneering work,
Wilson and Cowan (1973) and Amari (1977) have proposed
dynamic neural fields as a simplified mathematical model
for neural processing based on recurrent interactions. These
models neglect the temporal dynamics of individual neurons
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but use instead the averaged firing rate as a means to transmit
information. In the following, we summarize the properties of
the particular DNF model proposed by Amari which we use
in the robotic applications. The Amari model is particularly
appealing since it allows under some simplifying assumptions
for a complete analytical description of the dynamics of
pattern formation. As a concrete and experimentally well-
documented example, we use the cortical representation of the
variable direction with respect to a fixed frame of reference
(figure 1(a)). The so-called head-direction (HD) cells
originally found in freely moving rats (for a review see Taube
and Bassett (2003)) encode the instantaneous head direction
of the animal in the horizontal plane. The frame of reference is
world centered so that HD cells may serve as a type of neural
compass no matter where the animal is located. Once activated
they maintain their firing pattern even in total darkness with
all external inputs removed. An individual HD cell has its
maximum firing rate at only one particular direction and firing
rates decrease monotonically on either side moving away
from this ‘preferred direction’. For a whole population of
HD cells with all directions equally represented, this means
that a particular head direction is represented by a stable
and localized activity profile or pulse in parametric space
(figure 1(b)).

2.1. Stationary pulse solutions

The Amari model explains the existence of such a pattern as the
result of a cortical circuitry acting in a center-surround fashion.
The model network contains a circular field of interacting HD
cells with an interaction strength, w(¢, ¢'), between any two
neurons ¢ and ¢’ which depends only on the distance (i.e.,
A¢p = |¢p — ¢’|) of their preferred directions. It is assumed
that nearby cells excite each other, whereas separated pairs of
cells have a mutually inhibitory influence. Figure 2(a) depicts
an example of such a synaptic weight function given by a
Gaussian minus a constant wipp;, > 0:

w(p —¢) = Aexp(—=(¢ — ¢)°/20%) = winnin, (1)
where A > 0 and o0 > 0 describe the amplitude and the
standard deviation, respectively.

Let u(¢, t) denote the synaptic input or activation at time
t to a neuron encoding direction ¢. This activation evolves
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Figure 2. (a) Symmetric synaptic weight function w(A¢), A¢p = ¢ — ¢', of center-surround type. The synaptic weights are positive
(‘excitatory’) for two cells ¢ and ¢’ that are closer to each other than the distance ¢, and are negative (‘inhibitory’) for larger distances. For
A¢ > ¢, inhibition strength is constant (= —wjb). (b) Three different output functions with threshold u are shown: sigmoid function
(dashed line), step function (solid line), ramp function (dash-dotted line).

in time as a function of external stimulation and input from
other neurons. A large number of interacting neurons create a
network that is almost homogeneous along the cortical surface
and can thus be approximated as a continuous field of neural
activation. The field dynamic is governed by the following
nonlinear integro-differential equation:

‘cw = —u(p,1) +5(¢,1)

360
N A w(g — ) f (@', 1) de’ +h. @)

Parameter T > 0 defines the time scale of the field. S(¢, 1)
is external input at time ¢ to neuron encoding direction ¢. It
is excitatory (S(¢,t) > 0) when direction ¢ is specified by
external information and S(¢, t) < 0 otherwise.
Without the integral term, i.e.,
Su(p,t)

‘L’T =—u(p,t)+S(p,1)+h, 3)
the field activity would simply relax to S(¢, 7) +h, with a low-
pass characteristic. This dynamic is not yet sufficient by itself,
as it merely reproduces the shape of the input pattern. What we
need, as described above, are mechanisms that activate only
one pulse (i.e., a localized pattern of activation as depicted in
figure 1(b)) if multiple pools of neurons receive similar or even
identical input (selection), and that are capable of retaining
activation after external input is removed (memory). Clearly,
such mechanisms involve interaction, that is, the evolution of
activation at one location of the field depends on the level of
activation at other locations of the field. The integral term
describes the interaction process as a weighted summation of
activity from neighboring field locations. The output function
f(u) gives the firing rate of a neuron with activation u. It is
a monotonically increasing nonlinear function saturating to a
constant for large u. To simplify the analytical work, Amari
assumed that f is the Heaviside function H,, with threshold
uop = 0 (figure 2(b)):

0, u < up,

HLI()(”) = {1, u 2 uo. (4)

However, this function is not continuously differentiable which
makes it inappropriate for certain applications. One can also
use other nonlinear functions which describe a more gradual

increase of the firing rate (which also seems more appropriate
with respect to biology), such as the sigmoid function with
slope parameter g (figure 2(b))

1

T = A B —uo) ©)
or the ramp function (figure 2(b))
0, u < uop,
S ) = 1B —uop), up S u <up+1/B, (6)
1

s u=uy+1/B.

Amari’s (1977) main results concerning the existence and
stability of stationary solutions of (2) carry over to the case
where f is of the more general sigmoid type because the
neural field solutions are structurally stable (Kishimoto and
Amari 1979).

2.1.1. Equilibrium solutions in the absence of external input.
For S(¢,t) = 0, equilibrium solutions® of equation (2) are
given by

360
u(@) =h +/0 w(p — @) Hy, (@', 1)) dg". )

Three qualitatively different solution regimes are of interest
for us:

(i) @-solution: u(¢) < 0, V.
Activation is negative over the whole field. It follows
that H,,(u(¢)) = 0 and thus equation (7) reduces to

u(@) = h.

Since u(¢) < 0, it follows that the condition 2 <
0 is necessary and sufficient for the existence of the
(}-solution. Since this solution is required in order to
be able to represent the absence of information (e.g., no
target detected), we must restrict the valid domain of &
to be

h <0. ()

As we will see next, the value of /4 controls the existence
of other equilibrium solutions.

3 An equilibrium solution, by definition, is a solution u(¢, t) = u(¢), that
is a solution which does not vary in time. Thus, (¢, t) = 0 for equilibrium
solutions.
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(ii) a-solution: one connected region of excitation R(u) =
{¢ | u(¢p) > 0} of length a.

Here we exploit the fact that the system is translation
invariant (by virtue of the assumed homogeneity of the
field) and the pulse of width a (a-solution) can be centered
on every value of the circular space. Under the assumption
that the localized pulse is in the interval [0, a], that is
u(@) > 0, for ¢ € [0,a] and u(¢) < 0 elsewhere,
equation (7) reduces to

u(@) =nh +/0 w(p —¢)dg'. )
Let

[
W(o) :/ w(§)dé§ (10)
0
be the integral of w(A¢). It is obvious that for a synaptic
weight function of center-surround type W (¢) is an odd
function (see figure 3) with only one maximum

Whnax = maxg-oW (@) = W(go)
and

Whmin = W(180) < 0. 11

Since at the boundaries of the pulse the constraints
u(0) = u(a) = 0 hold, from equation (9), we get
a
0=h+/ w(€)dé =h+ W(a) (12)
0
which reduces the question of the existence of a stationary
pulse to the analysis of the roots of equation (12). As can
be seen from figure 3, for —h < Wiy there exist two
pulse solutions, one pulse of width a; and another pulse
with width a, > a;.
(iii) N — b solution: N pulses of positive activation each with
width b.

There are situations where we need to represent multi-
valued information, as for example when multiple targets,
located at different locations, need to be represented. A
neural field may, with an appropriate choice of parameters,
exhibit equilibrium solutions consisting of multiple pulses
which are separated by a minimal distance. We will
now examine the conditions for the existence of these
equilibrium solutions.

By virtue of the homogeneity of the field, we assume
that the pulses may be centered at any value of the circular
space, but with the constraint that the distance between
any two pulses is sufficiently large*. The interaction
strength between any two neurons ¢ and ¢’ for sufficiently
large distance (>¢y) is constant and equal to —wjppip (S€E
figure 2(a)).

We make the assumption that one pulse is located
in the interval [0, /] and that the remaining N — 1
pulses are located in the intervals [¢, ¢ + b], [¢2, P2 +
bl,....[¢n—1,dn—1 + D], with ¢jy1 — ¢y > D+ ¢s,1 =
1,2,...,N — 1. Thatis, u(¢p) > 0 for ¢ € [0,b] U
[¢1,d1+D]- - Uldn-1, dn-1 +b] ($iv1 — @i > D+ ¢y)

4 This immediately imposes a limit on the number of pulses that can coexist.
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Figure 3. Integral of the weight function w(¢). Existence of
equilibrium solutions: the intersection of the —h-level with the
integral curve defines the width of the stationary a-pulse solutions.
The —h-level intersects the integral curve at points a; and a,. This
means that two g-solutions exist, one a-solution representing a pulse
of width a; (a,-solution) and second a-solution representing a pulse
of length a, (a,-solution). The intersection of the integral curve
with the line —/4 + (N — 1)@w;n, defines the existence of N — b
solutions (see equation (14)). The field has two N — b solutions, one
where the pulses have width b; (N — b, solution) and another where
the pulses have width b, (N — b, solution). Stability of equilibrium
solutions: the slope of the integral curve at the intersection points
indicates the stability of the corresponding pulse solutions. The
slope of W (¢) at ¢ = a is positive which indicates that the
ap-solution is unstable. Conversely, the negative slope of W (¢) at

¢ = a, denotes that the a,-solution is stable. W (¢) has positive
slope at ¢ = b; and negative slope at ¢ = b,. This reveals that the
N — b; solution is unstable while the N — b, solution is stable.

and u(¢) < Oelsewhere. Equation (7) can then be written
as
1+

b
u(@) = h +/0 w(g — ¢) dg’ +/ w(g — ¢) de

[

dN-1+b
+---+/ w(p — @) dg’. (13)
IN—1
Since at the boundaries of a pulse u#(0) = u(b) = 0 holds
and

¢i+b
/ w(p —¢')dg’ = —bwinniv,
combining equations (13) and (10) we can conclude that
the existence of a N— b equilibrium solution is determined
by the roots of

0=h+W(b) — (N— Dbwispip. (14)

As can be seen from figure 3, for —2+((N — 1) bwinhip) <
Whax there exist two N — b pulse solutions: one where
the pulses have width b; and another with pulses of width
b2 > bl .

It should be noted that if the interaction kernel w(A¢)
vanishes for large enough A¢, say |A¢| > c, then there
can be many independent stable pulse solutions as long as
their distance is at least c.
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2.1.2. Stability of equilibrium solutions.’ We now discuss

the stability of the relevant solutions. The #J-solution is always
stable. For the discussion of the stability of a pulse solution,
Amari developed a stability criterion and showed that a pulse
of width a is stable if

dW(a)/da < 0. (15)

Thus, from figure 3 we see that only the solution with
equilibrium length a, > ¢ is asymptotically stable and hence
robust against perturbations. Likewise, a N — b solution is
stable if

dW(b)/db < 0. (16)

Again, from figure 3 we see that the N — b solution with pulses
of width b, is unstable while the N — b solution consisting of
pulses of width b, > ¢ is stable.

In summary

1. The @-solution is always asymptotically stable and exists
forh < 0.

2. An a-solution is asymptotically stable if dW(a)/da < 0
and unstable if dW (a)/da > 0. An asymptotically stable
a-solution exists for

—Wnax < h < 0. 17

3. A N — b pulse solution is asymptotically stable if
dW(b)/db < 0 and unstable if dW(b)/db > 0. An
asymptotically stable N — b solution exists for

_Wmax + ((N - 1)bwinhib) <h <0. (18)

For fixed winnp, the value of 4 may thus be used to
guarantee for a unique pulse solution and hence for the
capacity to make a decision. The ay-solution is bi-stable
with the homogeneous rest state in which u(¢) < 0 for all
¢. This bi-stable behavior of the dynamic is crucial for
implementing the memory function since a pulse does not
emerge ‘spontaneously’ from rest state due to noise in the
system. Only a sufficiently strong, localized input carrying
information about a particular direction may switch the system
into a persistent pulse solution. The memorized information
may be updated, since the translation invariance of the system
guarantees that new external input may displace the pulse to
encode the newly arrived information (see below).

If for longer periods of time no sensory input is available,
the working memory system should be switched back to resting
level. For implementing this ‘forgetting’ mechanism in our
robots, we exploit the fact that a pulse solution may be
destabilized by adjusting the global inhibitory parameter &
to a value |hpin| > Whax. We use a first-order dynamics with

an appropriate time scale for this adaptation process:
dh
E = —Th,minCh (h - hmin) - rh,max(l - Ch)(h - hmax)-

19)

Here, |hmax| < Wmax and |hmin| > Wmax are the two
limit values of the resting level within the bi-stable and

5 Stable equilibrium solutions are patterns of activation that the neural field
can maintain persistently, even in the presence of perturbations. It should be
noted that ‘stable’ implies ‘waveform stable’ in the more strict sense.

the mono-stable regime, respectively. This dynamic lowers
the resting level (destabilizing memory) at a rate 7 mi, in the
case that a memorized pulse exists (¢, = 1). It restores the
maximal resting level (to enable memory) at the rate rj max
otherwise. The destabilization or forgetting process is slower
than the restoring process, so that after forgetting, the field
is immediately able to detect and memorize new information.
The presence of a memorized pulse is represented by

Ch = [Huo(Nu) - HM()(NS)]Hu[](NM)’ (20)
where
360
N, = H,,(u(¢)) do (21)
0
is the total positive activation in the field and
360
No= [ s@ra 22)
0

is the total external input activation (positive by construction).
The function ¢, is equal to 1 if there is positive activation in
the field (N, > 0), but no input (N, = 0). It is zero if there is
no pulse in the field or if there is a pulse and also input.

2.1.3. The external input signal. 'The input or stimulus signal
provides a means of coupling energy or initial excitation into
the field. Since S(¢) is additively coupled in equation (2), we
can easily see that when the input signal is very large compared
to the nonlinear part of the field dynamics described by the
integral term, the field behaves as a linear system with the
asymptotically stable equilibrium solution u(¢) ~ S(¢) + h.
For the applications, this behavior is not useful because the
field only reproduces the input pattern. Thus, we have to
guarantee that the external stimulus is weak compared to
the integral term. Nevertheless, as discussed below, even a
weak input signal, which is not sufficiently strong to drive the
neuronal population beyond the activation threshold, ury, for
triggering a self-stabilized pulse, may have a major impact on
the processing of subsequent stimuli.

When the initial state of the field is the flat solution (¢-
solution), u(¢) = h < 0 V¢, depending on the input strength
the field can remain in the off-state or it can evolve a localized
pulse. The question we have to address is the following: how
much input energy is necessary to bring the system from the
(}-solution to a stable a-solution? For a mono-modal input, the
critical stimulus energy that triggers this transition depends
on the amplitude and on the spatial width of the input signal.
To get an estimation of this critical energy, we consider a
uniform input of amplitude s” and width a’. The field activation
converges to a stable a-solution if the following condition is

satisfied:
W(a) =—(h+s). (23)

The critical width a(s"), which depends on the amplitude s,

can be found by inverting the function W (a), i.e.,

a(sh) = Wl (= +s")). (24)

When the initial state of the field is a stable localized pulse
with width ag centered at ¢, two situations may occur:
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Figure 4. The evolution of a self-stabilized activity pattern
representing the direction ¢ = 90 is shown. Time ¢ = 0 defines the
onset of a bimodal input pattern. Note that at that time the neuronal
population encoding ¢ = 90 appears to be already pre-activated.
The following parameters’ setting was used (see section 2.3):

A¢y = /180 rad (i.e. 2°), dtgyer = 0.06 s, T = Sdtgyiers
h=—Wna/2,A=6,0 = 157/180, Winni, = 5.

(1) The input signal is centered at ¢,y and spatially overlaps
with the interval (¢, — ao/2, ¢, + ap/2). In response to
the external stimulus, the pulse moves in the direction of
increasing input, searching for the maximum of S(¢). It
stops when the inputs at the right and at the left boundary
of the pulse are equal. At the same time, the width of
the pulse changes slightly (for more details see Amari
1977)).

(i) The input signal does not overlap with the self-stabilized
activity pattern; then, to evolve a new pulse centered at
field position @iypy, the input at this site has to overcome
not only the global inhibition level / but also the additional
inhibition (—wjnnipap) created by the existing pulse of
width ag at ¢,. Thus, the input strength S(¢inpu) must
exceed the value winnipao +4, i.€., S(Pinput) > Winhivdo +4.

In our robotic applications, if we need a field operating
in the decision or selection mode then we are interested in
the J-solution and a-solution only. Thus, we have to tune the
parameters of the field to avoid the existence of N—b solutions.
This is accomplished by making the inhibition strength wipnip
sufficiently large such that condition (17) is satisfied but not
condition (18). This way, the field exhibits a competition
process among the various stimulated sites and eventually
only one self-stabilized pulse evolves. The field converges
to the stable a-solution in response to a multi-modal input.
In the example of figure 4, a bimodal, completely symmetric
input pattern is presented at time t = 0. However, since the
neuronal population encoding direction ¢ = 90 appears to
be already pre-activated above resting level by a subthreshold
input, the decision is biased towards that direction. Moreover,
the preshaping mechanism strongly alters the time course of
the decision variable (i.e., the build-up of the pulse). This in
turn may influence whether or not the encoded information
affects the integration-decision process in connected pools of
neurons (Erlhagen et al 2006a).

If we need the field to represent and memorize the
information represented by multiple inputs, then we have to
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Figure 5. (a) Asymmetric weight function wigym(¢).
(b) Self-stabilized traveling wave in direction space.

tune the parameters to guarantee the existence of a stable N —b
solution. In this case, alocalized input signal that is sufficiently
distant to any existing pulse may be memorized.

2.2. Traveling pulse solutions

A characteristic of HD cells is their ability to update their
firing based on self-motion cues even in complete darkness.
It is believed that when the head moves an angular head
velocity signal from either vestibular or motor inputs shifts the
localized activity pattern to new heading angles. The amount
of displacement corresponds to the integral of the angular head
velocity (Taube and Bassett 2003). Zhang (1996) proposed a
dynamic modification of the lateral connections of the HD
network to account for this shift mechanism. Let w(¢) be a
symmetric synaptic weight function of center-surround type
that supports a stable localized distribution U (¢) of the firing
rates

360
U@y =h+ [ w@-e)fU@Na. 0
Zhang considers the weight function
wasym(d’a [) = w(¢) + Tl(f)w/(fﬁ)v (26)

where w’(¢) is the derivative of the weight function w and
n(t) the input that causes the head-direction shift (figure 5(a)).
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The full dynamic field equation then reads

du(g,
T ”(;z D u.0)+h
360
+ / wasym(¢ - ¢/, t)f(”(‘b,’ t)) d¢, (27)
0
An exact solution of this equation is given by
1 t
u@g, 1) =U <¢ + */ n(S)dS> (28)
T Jo
which follows immediately from the observation that
360
U'@¢) = / w'(¢ — ) fU @) de". (29
0

Thus, the weight function (26) may shift the activity profile
without disturbing its shape (figure 5(b)), and the instantaneous
angular velocity of this traveling activity wave is given by

w(t) = —@.

(30)
If the asymmetry within the network connections is
proportional to the instantaneous angular speed of the head
and the internal direction is initially aligned with the real head
direction, the network works as a perfect velocity integrator.
When also adding a component proportional to an acceleration
term (¢ > 0)

nt)=—-to() —tca(t), 31
the peak of the traveling wave seems to lead the real head
direction by a constant time ¢. Such an anticipatory firing
pattern has indeed been described in HD cell populations
(Taube and Bassett 2003).

Predictive representations associated with motion seem
to be a widespread phenomenon in the cortex (Jellema and
Perrett 2002, Eskandar and Assad 1999, Fogassi et al 2005;
for a modeling account see also Erlhagen (2003)). They may
be driven not only by motor output or sensory input but also
by contextual cues. For the robotic applications, we use self-
stabilized waves in position or direction space as an internal
model for predicting the trajectory of the partner robot.

We end this section with the remark that there is a
renewed interest by part of the mathematics community to
analyze pattern formation in dynamic neural fields. The
analytical results given by Amari have been generalized to
the case of two spatial dimensions (e.g., Taylor (1999),
Laing and Troy (2003)). From the robotics point of view
these results are interesting since they allow storing in a
single representation for instance the direction and distance
of objects. Moreover, new insights have been gained about
the existence and shape of localized pulse solutions when
linear interactions are combined with bi-stable field elements
(Horta and Erlhagen 2006). The results reveal a dependence
of the pulse solutions on parameters such as input strength and
width which may also be exploited for the robotic applications.

2.3. Discretization and numerical computation

The activation u(¢, t) depends not only on time ¢, but also on
the continuous variable ¢. For the applications, the continuous
field is evaluated at discrete points in space and time. The
field dynamic is integrated numerically using the forward
Euler method. Let dtgye; be the Euler time step and A¢, the
sampling distance along ¢. The field activation, the external
input and the weight function are then vectors that can be
indexed:

;= $(jAda). (32)
uji = u(j Ay i dgyer), (33)
Sji = S( Agu. i diguer). (34)
w; = w(jAdy), (35)

where j(= 0,1,2,...,N;) is the index of the spatial
dimension, ¢, and i(= 0, 1, 2, ...) is the index of the discrete
time. With these conventions and applying the forward Euler
method to equation (2), the integration of the homogeneous
neural field reads

ds
Ujivl = Uj; ol |:_”j,i + 8
N/
+ ijfkf(uk,i)Ad)d"'h]- (36)
k=0

To guarantee numerical stability, the following condition must
hold:

thuler L. (37)

The Euler time step is the smallest time unit that exists in the
overall dynamical system. It is equal to the computational
cycle time of the computer running the numerical integration.
Its value imposes minimal time scales on the entire dynamic
architecture.  Discretization in the space dimension can
produce behavior qualitatively different from the continuous
case. Fortunately, however, if the sampling distance along
¢, Ay, is chosen to be sufficiently small, the behavior in the
discrete case approximates the behavior of the continuous field
equation quite well.

3. Application of dynamic neural fields in joint
action tasks

3.1. Joint search task

As afirst example for illustrating how we apply dynamic neural
fields to implement some cognitive capabilities in autonomous
robots, we have chosen a joint search task. A team of two
mobile robots has to find objects distributed in the workspace
and transport them to a predefined area. We assume that there
is no direct communication and the motor intention of the
partner has to be inferred from observed movements.

Since multiple objects may be simultaneously sensed,
each robot should be able to make a decision about the object
to be attended next. To guarantee an efficient team strategy,
this decision process should reflect an adequate division of the
search space between the two agents. This necessarily requires
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the ability to predict future positions of the partner based on
past trajectory information and additional contextual cues.
Moreover, since ‘occlusion is one of the most fundamental
facts about vision in natural scenes’ (Shimojo and Nakayama
1990), a continuous stream of sensory information about the
attended object and the moving partner is not guaranteed.
This lack of ‘bottom-up’ information during brief periods of
time should of course not disrupt the ability to organize goal-
directed behavior.

3.1.1. Neuro-inspired dynamic field architecture. In
the following, we summarize experimental findings, which
constrain our choice of the dynamic control architecture and
the nature of the internal representations used to model joint
action.

The prefrontal cortex (PFC) has long been suspected to
play a central role in cognitive control by establishing the
proper mappings between sensory inputs, internal states (e.g.,
stored memories, predictions) and motor outputs needed to
perform a given task (for a review see Miller (2000)). PFC is
an interconnected set of cortical areas which is anatomically
linked to virtually all sensory and motor systems. It is
thus well positioned to integrate diverse information and
subsequently bias the processing in other brain structures
towards the achievement of an intentional goal. Indeed, the
main behavioral effect of prefrontal cortex damage seems to
be the incapacity to override more salient or habitual responses
and thus to persist towards a goal (Miller 2000). For the present
joint search task, the goal for each robot is to select an object
for placing it in the target area taking into account the behavior
of the other robot. Consequently, the goal representation in
PFC should organize sensory—motor mappings that go beyond
the habitual decision to move towards the most salient, that is,
closest object.

The fact that many PFC neurons sustain their activity
over extended periods of time has been interpreted as evidence
that these neurons actively maintain goal-relevant information.
Importantly, specific information about for instance object
location or object identity seems to be stored in distinct
subpopulations. The working memory capacity of PFC ensures
that potential target objects in joint action tasks may affect
the behavior even in the presence of interfering events such
as occlusion which disrupt the spatiotemporal continuity of
sensory input.

The cognitive capacity to infer the action goal of
conspecifics is important enough, for all species living in
social groups, that specific brain mechanisms have evolved.
Neurophysiological studies in humans and monkeys reveal
that the cortex in and near the superior temporal sulcus (STS)
region is involved in analysis of biological motion (Jellema
and Perrett 2002). The STS region is activated by the
observation of eye, head, hand or body movements. Important
for the present study is the finding that these high-level
visual representations may include sensitivity to intentionality.
Perrett and colleagues (Jellema and Perrett 2002, Baker
et al 2001) described a population of neurons in area STS
of macaque monkey that increased their firing rate when the
experimenter disappeared behind a screen. Furthermore, this
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Figure 6. Schematic view of the architecture for the joint search
task. Layer STS represents the motion of the partner robot in form
of a self-stabilized activity wave in a neuronal population encoding
direction. The working memory (WM) layer in PFC contains a
population which memorizes the visual input about the location of
the objects. The inputs from STS (inhibitory) and WM (excitatory)
lead to a decision in form of a self-stabilized activity pattern
representing the goal object which the robot will attend next. The
goal representation is linked with populations in premotor areas
encoding an action sequence (approaching—reaching—grasping)
which has to be performed to achieve that goal.

increase was selective for the position of occlusion within
the test room. The authors conclude from their analysis of
the firing pattern that it is consistent with the idea that these
populations ‘code not only for the presence of the experimenter
behind the screen, but also for the intention of the experimenter
to go behind that screen’ (Jellema and Perrett 2002). We have
recently suggested that a self-stabilized traveling wave in a
neuronal population encoding position may underlie this form
of motion extrapolation (Erlhagen 2003). Being able to track
a partner even in the presence of occluding surfaces and to
predict future positions is highly advantageous in joint action
tasks since it allows the observer to quickly adjust his/her
actions accordingly.

In figure 6 we summarize the robot control architecture
for the joint search task which conceptualizes the described
neurophysiological findings. The working memory (WM)
layer of PFC stores the sensory information about the location
of objects. The goal layer in PFC gets input from working
memory and from layer STS which encodes the predictive
information about the partner’s position in the immediate and
distal future. Finally, it is assumed that the goal representation
projects to motor areas (most likely premotor cortex (PreMC))
in which an action sequence such as approaching-reaching—
grasping necessary to achieve that goal is represented (Miller
2000).

All layers of the STS-PFC circuit are formalized by
dynamic neural fields spanned over the space of direction
relative to an arbitrary but fixed frame of reference. In the goal
layer, the recurrent interactions allow for just one localized
activity pattern whereas in the WM layer several pulses may
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Figure 7. The two mobile robotic platforms are shown which are
equipped with a 7-degrees-of-freedom arm/gripper, infrared
sensors, an omnidirectional and a monocular camera system.

coexist since the interaction kernel does not extend over the
whole field. The dynamic mode for the STS layer is an
anticipatory wave. It travels with a velocity larger than the
directional change per time unit of the partner robot which is
estimated initially from direct sensory input. The dynamics
in the goal field evolves under the influence of the excitatory
input Swy from the WM field and the input Ssts from the STS
field which is assumed to be inhibitory:

8 )
t% = —ug($, 1) +h — Ssts(@, 1) + Swm(d, 1)

360
N fo w(g — ¢) fuc(@'. 1) dp. (38)

The read-out of the firing pattern in the input layers is made
in every time step by applying the ramp nonlinearity (6) to
the normalized activation usts/|ustsleo and uwm/|tewm|oos
respectively.

3.1.2. Hardware requirements and implementation issues.
Although the focus of this tutorial is on the design principles of
the dynamic field architecture, we briefly overview the sensory
processing and path planning which we use to date for the
experimental validations on the real robot platforms shown in
figure 7. Each robot has an omnidirectional vision system
which allows tracking the partner robot based on form and
color information. It also provides the dynamic field model
with an estimate of the object locations. We use an additional
monocular camera system mounted on the torus to get a more
precise information about object position and orientation for
the grasping. Videos of the robots in action can be found at
http://www.dei.uminho.pt/pessoas/estela.

Once a decision about the next object to be attended is
made, the mobile platform first has to move towards that
target thereby avoiding obstacles. Information about obstacles
is provided by infrared sensors mounted on a ring which
is centered on the robot’s rotation axis. To generate overt
behavior, we follow the principles of the dynamic approach
to behavior-based robotics (Schoner et al 1995, Bicho et al
2000). The state variable of the dynamical system controlling
the robot is the heading direction. The vector field is
shaped by an attractive force representing the desired target

direction and repulsive forces representing the direction of
obstacles which have to be avoided. The rate of change
of heading direction obtained from the dynamics is directly
used to control the rotation speed of both wheels (for details
see Bicho (2000)). The dynamic approach could be, in
principle, used to control also the reaching and grasping of the
7-degrees-of-freedom arm/gripper (AMTEC, Germany).
Since we have yet not properly explored this possibility (but
see Jossifidis and Schoner (2004)), we employ instead a global
planning method in posture space which is inspired by Mel’s
biologically plausible network model (Mel 1990; for details
see Erlhagen et al (2006b)).

3.1.3. Robot experiments. In figure 8 we show the dynamics
of the field model and the simulated behavior of the robots
in a situation which is completely symmetric for both robots,
R1 and R2. They sense two objects, T1 and T2, which are
located to the left and the right of the target areas (gray circles)
where the two objects have to be placed. Robot R1 is initially
heading towards object T2 (time #,). However, as shown by
the anticipatory wave in layer STS, R1 predicts that T2 is also
the current action goal of R2. The inhibitory input from STS
starts to decrease the localized activity pattern in the goal layer
representing T2 (time ;). Finally, the summed input from STS
and WM results in a switch of the goal representation to T1
(time #,) and robot R1 starts to direct its behavior towards that
object. This occurs despite the fact that the sensory input from
T2 is stronger since the object is closer.

Note that normally the timing of decisions is different in
each agent. It is thus unlikely that also robot R2 will change
its initial motor intention based on the predicted outcome of
the partner’s action.

The second example shall illustrate the importance of
working memory in joint search tasks (figure 9). Both robots
are again heading towards the same object T2 (time #y). Robot
R1 has initially sensed and memorized also the direction of
object T1. However, this object disappears from sight during
the move due to an occluding surface (time #;). The self-
stabilized wave in layer STS again indicates the conflict with
the motor intention of robot R2. Since no direct sensory input
is available, the switch to goal T1 occurs now completely
based on memorized information (time #,). When sensory
information is again available, the directional information
about T1 is updated (time #3).

Figure 10 illustrates that the self-stabilized wave in layer
STS may link the ongoing behavior of the partner robot to a
particular object even when most of the motion trajectory is
hidden from view. Robot R2 disappears behind a wall but the
initial information about its change in direction is sufficient
to trigger the predictive signal consistent with the hypothesis
that R2 is heading towards T1. As a consequence, robot R1
directs its attention towards object T2 since a whole range of
heading directions including the direction of T1 appears to be
inhibited.

3.2. Action understanding in a grasping—placing task

Although the experiments in the joint search task show that
the capacity to extrapolate trajectory information results in an
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Figure 8. Snapshots at different points in time of the dynamic model controlling robot R1 show the activity (thick line) of the three dynamic
fields STS, WM and goal together with the input (thin line). The two localized peaks of activation in WM represent the location of the
targets (T1 and T2). At time f,, the decision to head towards target T2 is represented in the goal field. The other robot, R2, also moves
towards T2. In STS, the peak of activation, representing the location of the partner, moves ahead of the input thus representing an
anticipatory wave. As can be seen in the snapshots at times #; and #,, the pulse in STS travels in the direction of T2. The inhibitory input
from STS to the goal layer eventually inhibits the decision to move towards T2 and the robot switches its action goal, i.e., the decision is
now to grasp object T1 (snapshot #, to #3), while the partner keeps moving towards T2.

efficient division of the search space between the two agents,
the wave mechanism alone is not sufficient to efficiently
organize more complex joint action tasks. Imagine, for
instance, that there exist several objects in the current heading
direction of R2. The observing robot R1 has to infer which of
the objects is the current goal of the partner since the predicted
outcome will affect the choice of its complementary action.
This prediction may be possible by integrating additional
information sources such as for instance object cues (e.g.,
color, shape) or memorized task information. Moreover, very
often more detailed information about the action means (e.g.,
the grip type) may allow for inferring what the partner is going
to do with a particular object.

In the following, we describe and validate a dynamic field
model for action understanding which we have developed in
close cooperation with our experimental partners (Erlhagen
et al 2006a).

3.2.1. Extended field model.  Converging lines of
experimental evidence suggest that the interpretation of others’
actions is not based on purely visual mechanism but involves
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also the observer’s motor system. It has been suggested
that an understanding of an observed movement as directed
towards a specific goal may be gained by simulating the
action outcome using the proper motor repertoire (Gallese and
Goldman 1998). Compelling neurophysiological evidence for
such a matching of action observation and action execution
came from the discovery of the STS—PF-F5 mirror circuit (for
arecentreview see Rizzolatti er al (2001)). Mirror neurons first
described in the premotor cortex (F5) of the macaque monkey
fire both when the monkey performs a particular goal-directed
action (e.g., grasping an object) and when it observes another
individual performing a similar action. In the visual motion
area STS, neurons representing actions similar to those coded
by F5 have been described. The only difference seems to be
that STS neurons do not fire during active movements. Both
areas are linked to area PF of the parietal cortex which also
contains mirror neurons. Recent neurophysiological findings
in this area give direct support for the involvement of the mirror
circuit in intention reading. Fogassi et al (2005) described
a population of grasping mirror neurons which showed a
selective response in dependence on the final goal of an action
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Figure 9. The importance of working memory for the joint search task is illustrated. Initially (snapshot fy), both robots are moving towards
object T2. R1 sees both objects and their location is represented in WM. At time ¢, object T1 is no longer visible since it is occluded by the
wall. Its position remains represented in WM by a self-stabilized pulse (albeit with somewhat decreased amplitude). The traveling pulse in
STS representing the motion of the partner ends up inhibiting the decision to move towards object T2 (time ¢, to ;) which causes a switch in
the decision. R1 moves now towards the occluded object T1 (snapshots 7, to 5) while R2 maintains the decision to grasp object T2.

sequence (grasping for eating versus grasping for placing).
Since PF has strong anatomical connections to the prefrontal
cortex, the PFC—mirror circuitry sketched in figure 11(b) may
constitute a distributed neural network in which the meaning
of an action is constructed based on working memory, sensory
evidence, contextual cues and a goal-directed matching of
action observation and action execution.

3.2.2. Experimental paradigm. To test the functionality of
the field model in robots, we have chosen an action observation
task in which a human model first grasps and subsequently
places an object at one of two laterally presented targets that
differ in height. The grasping and transporting behavior is
constrained by an obstacle in form of a bridge (figure 11(a)).
Depending on the height of the bridge, the lower target may
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Figure 10. The impact of the capacity to track motion also behind occluding surfaces is illustrated. As represented in the goal layer, initially
robot R1 heads towards target T1. In the time interval #; to #,, robot R2, which is also heading towards T1, disappears behind the wall. The
self-stabilized wave in STS representing the motion of the partner eventually inhibits the decision to grasp object T1 and robot R1 switches
to object T2. This decision is represented at time #, in the goal field by an activation peak centered at the direction in which T2 lies.

(a) (b)
Visual Input
o
k]
2 o STS
2
PFC
Grip Tiajectory.
Goal
PF
-
Spatial gap
"~ Grip&Tigjectory
Task
- F5
[ A= o
Height
T ~ Gip Tajectory.

Path Planning

Figure 11. (a) Bridge paradigm: the robot has to grasp an object and place it at one of the two targets behind the bridge obstacle.

(b) Sketch of the control architecture. The central part consists of the STS—PF-F5 mirror circuit for a matching of action observation and
action execution. The circuit is connected with the goal layer in prefrontal cortex (PFC) which encodes the intentional action goal (placing
target) parameterized by its spatial gap relative to the bridge. The demonstrated means in STS, the selected goal, the selected action
sequence in PF and the selected motor primitives in the action layer F5 are represented by self-stabilized activity patterns of local pools of
neurons. The bimodal activity distribution in the task layer of PFC reflects the memorized information about the two (equally likely) placing

goals parameterized by their height.
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Figure 12. The robot in the bridge paradigm is shown. It consists of an industrial 6-degrees-of-freedom manipulator with a four-fingered

anthropomorphic hand and a vision system.

only be reached by grasping the object with a full grip and
transporting it below the bridge. Placing the object at the
higher target, on the other hand, may require combining a
precision grip and a hand trajectory above the bridge.

The fundamental idea for the processing in the STS—PF—
F5 circuit is that the matching takes place on the level of
motor primitives which represent whole goal-directed motor
behaviors and abstract from the fine details of the movements.
For the bridge paradigm, we distinguish between two grasping
primitives (precision grip (PG) and full grip (FG)) and two
types of transporting primitives for avoiding the obstacle
(below (BT) or above (AT) the bridge). The vision system
classifies the demonstrated action in terms of grip type and
trajectory type and triggers the respective representations in
the visual layer STS. It is assumed that these primitives are
already in the motor repertoire of the observing robot, that is,
corresponding representations exist in the motor layer F5. In
the intermediate layer PF, specific combinations of primitives
(e.g., PG/AT) are stored which allow achieving a particular
placing goal. The internal goal representations in PFC are
parameterized by their height relative to the bridge (spatial
gap in figure 11(a)). They may be triggered or influenced by
direct visual input (placed object), through the connections to
layer PF, learned associations with representations of object
cues (e.g., color) and/or memorized task information (e.g.,
number and height of goals).

For each model layer, we use a dynamic neural field of
center-surround type (1) and a sigmoid output function (5).
Since the underlying metrics for abstract dimensions such
as grip type are not known, it is further assumed that pools
of neurons representing alternative action means (e.g., full
or precision grip) interact only through inhibitory surround
connections, thus implementing a competition process.

3.2.3. Robot platform and implementation issues. First
experiments within the bridge paradigm were conducted
on a robot platform consisting of an industrial 6-degrees-
of-freedom robot arm (KUKA, Germany) on which a

four-fingered anthropomorphic robot hand (GRAALTECH,
University of Genova, Italy) was mounted (see figure 12).

Videos of the robot in action can be found at
http://www.dei.uminho.pt/pessoas/estela. For the imitation
task, the vision system has to classify the hand motion of the
human demonstrator. The hand and the object are identified
and tracked in real time on the basis of a chroma-space blob
segmentation in the YUV color space using a monocular
camera view. The hand tracking algorithm is based on a
mutual information optimization approach (Viola and Wells
1995) which maximizes the consistency between an observed
image and postures of a hypothetic hand model. The hand
trajectory (above or below the bridge) and the placing goal
(high or low) are classified on the basis of a distance measure
relative to the respective object. The classification of the
grasping behavior (full or precision) is essentially based on
the orientation of the palm relative to the object.

3.24. Robot experiments. The STS—PF-F5 mirror circuit
implements a direct mapping from action observation onto
action execution. To give a concrete example of the dynamics
within the mirror circuit, imagine that in the action observation
layer STS, the grip PG and the trajectory AT are represented.
The two pulses act as additive input to the neural population
encoding the sequence PG/AT in layer PF. The evolving pulse
solution in PF triggers in turn through congruent mappings the
respective neural representations, PG and AT, in the action
layer F5. As shown in our previous work, this pathway
may be exploited to copy action means from the human
demonstrator. However, due to differences in embodiment
and/or environmental constraints, very often this matching
cannot be direct. Imagine for instance that the bridge obstacle
is lowered for the human but not for the robot. Now the human
may grasp the object with a full grip (FG) to place it at the
higher target. For the imitator, an automatic copying of the
grip would lead to a collision with the bridge. Therefore,
some cognitive control over the direct pathway is required.
We exploit here a purely temporal mechanism to guarantee
that the previously established pathway linking the PG/AT
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representation to the goal representation in PFC dominates the
processing in the mirror circuit. Since in a known task setting
the pulse in PFC evolves faster compared to the pulses in STS,
the goal pathway biases the competition process between the
two PF populations encoding the sequence PG/ AT and FG/ AT,
respectively (Erlhagen et al, 2006a).

The following goal inference task shall illustrate how a
simulation based on motor representations may be used to
predict the sensory consequences of an ongoing action (Gallese
and Goldman 1998). Recently, Umilta ez a/ (2001) have shown
that a population of mirror neurons in F5 may encode a goal-
directed action also when the crucial part defining that action
is hidden from view. The information sufficient to trigger
grasping mirror neurons was a hand disappearing behind an
occluding surface combined with the knowledge that there is
also a graspable object behind that occluder.

Adapted to the bridge paradigm this means that only the
grasping part of the action sequence can be observed, the
placing is hidden from view (figure 13(a)). The additional
input necessary for goal inference comes from the information
about potential end states represented as two self-stabilized
pulses in the working memory layer of PFC. This task
information acts as subthreshold input resulting in a pre-
activation close to threshold, urty, of neuronal populations
representing goals (in PFC) and associated sequences of means
(in PF). As a consequence of the robot’s ‘expectation’ prior
to action observation, the activity pattern representing the
observed grip type (FG) in layer STS is sufficient to trigger first
the evolution of a pulse in PF representing the motor sequence
FG/BT and subsequently the associated representation of the
lower placing goal in PFC. The stable state of the model
dynamics (figure 13(b)) reveals that this occurs despite the
lack of a suprathreshold representation for the trajectory
type in layer STS. Without pre-activation, the converging
input from both STS inputs would be necessary to drive the
population in layer PF. As depicted in figure 13(c), the robot
shows its understanding by combining a full grip (FG) and
a trajectory below the bridge (BT) to reproduce the inferred
action effect. To generate the overt behavior, the abstract
primitives represented in layer F5 are translated into the right
kinematics using a global path planning in posture space (for
details see Erlhagen et al (2006b)).

The experiment highlights the important role of common
task knowledge for joint action. This task knowledge should
be continuously updated (e.g., number and probability of
placing goals) in accordance with the outcome of each
individual imitation trial (see Erlhagen and Schoner (2002)
for a computational implementation).

Movement primitives do not encode the fine details of
the movements and thus provide a sufficiently abstract level
of description for a matching across dissimilar embodiments.
However, a remaining problem for goal inference in joint
human-robot tasks is the large difference in motor skills. Very
often, a direct matching through congruent motor primitives
will be impossible. The robot may nevertheless acquire a
meaning of an observed movement not strictly in its motor
repertoire by covertly using its own action means for achieving
the observed end state. Neurophysiological evidence for such

R50

PFC

0 small . large
spatial gap

STS

PG FG AT BT

FG/BT  PG/BT PG/AT FG/AT

PG FG AT BT

Figure 13. Goal inference task. (a) Only the grasping behavior of
the human model is observable. (b) The stable pulse in layer PFC of
the field model represents the inferred goal (lower placing target).
Note that no visual description of the trajectory type is represented
in layer STS. (c) To reproduce the inferred end state, the robot
combines a full grip (FG) followed by a trajectory below the bridge
(BT) as represented in the action layer F5 of the field model.

a learning mechanism comes from a recent study by Ferrari
et al (2005) in which grasping neurons in F5 were described
which fired when the monkey observed actions performed with
an unknown tool. Importantly, the monkey could gain during
practice an understanding of the movement as goal directed
since the tool was used from time to time to give food.

The next experiment illustrates in a simulation the learning
process for the robot (figure 14). The validation on the real
robot is part of our future work. The human model grasps the
object with a tool and places it at the higher goal. The vision
system is assumed to classify this hand—tool motion as the new
grip type ‘IG’ which differs from a full or precision grip (see
Rittscher er al (2003) for a recent overview about different
tracking and classification techniques). Although the tool use
is not in its motor repertoire, the robot learns to associate the
IG grip with the PG/AT sequence previously used to achieve
the goal. Since the goal is known to the robot, the observation
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Figure 14. Learning to understand the meaning of an action (tool
use) which is not in the motor repertoire of the robot. (a) The human
model uses a tool to grasp the object. (b) The figure shows the stable
state of the model dynamics in a goal inference task after the
learning of synaptic links between the visual description of the new
grip type IT in layer STS and the sequence PG/AT in layer PE. The
robot usually uses this sequence to place the object at the higher
target. Although the robot cannot reproduce the tool use, it can
achieve an understanding of its meaning by simulating the goal
using its own motor repertoire. For more details see the text. (c) A
simulation of the overt behavior in the goal inference task is shown.

of the placing drives the goal representation in PFC and the
associated sequence of motor primitives in PF. Subsequently,
synaptic links between the neuronal representations in ST'S and
PF are learned. We have applied a correlation-based learning
rule for the synaptic connections, a(x, y), between any two
neurons x and y in the two model layers that is compatible with
the field format (for theoretical aspects see Dayan and Abbott
(2001); for a discussion in the context of mirror neurons see
Keysers and Perrett (2004)):

8
TSEG(X, ) Z) = _a(x’ Y, t) + an(ﬁl(x))fZ(IZZ(y))v (39)

where n > 0 and i, ii; denote the equilibrium solutions of
the relaxation phase in layer STS and layer PF, respectively.
Note that the same learning rule is also used to establish the
synaptic links between the goal representations and the action
means in PF (Erlhagen et al 2006a).

Figure 14(b) shows the stable state of the model dynamics
in a goal inference task in which the transporting and placing
phase of the action was hidden from view (no suprathreshold
activation for the trajectory type in STS). After the learning
process, the observation of the IG grip is sufficient to infer the

higher target as the end state of the action sequence. The overt
behavior (figure 14(c)) shows that the robot uses the previously
associated movement primitives PG and AT represented in the
action layer F5.

If an observed action is understood, that is, connections
between action goal and action means are established, further
knowledge associated with that action may be transferred
by observing an experienced teacher. The prefrontal cortex
(PFC) is commonly believed to extract information about
regularities across experiences and to represent rules that can
be used to guide action (Miller 2000). We tested in a variation
of the basic bridge paradigm the autonomous development
of representations that relate object cues to specific goals.
Figure 15 illustrates as a simple example the effect of a learned
association with object color processed by the vision system.
The synaptic links are again established using the correlation-
based rule (equation (39)). After a series of observation
(and internal simulation) trials, human and robot share the
knowledge about what to do with a particular object: a yellow
object has to be placed at the higher goal and a blue object at
the lower goal. As a consequence, a simple presentation of a
blue or yellow object will automatically trigger the associated
goal and action means to achieve that goal. This acquired
knowledge may then be used in joint action tasks as an
additional cue to anticipate the consequences of an ongoing
action displayed by the partner.

4. Discussion

We presented the theoretical framework of dynamic neural
fields as a design tool to build cognitive control architectures
for autonomous robots based on neuro-plausible principles.
Our close cooperation with experimenters from neuroscience
and cognitive science has strongly influenced the proposed
architectures for implementing cognitive functions such as
goal inference and decision making. They also draw our
attention to specific questions which are usually not central to
current robotics research such as, for instance, the role of goals
in movement observation (Bekkering et a/ 2000). In general,
the architectures reflect the notion that cognitive processes in
the brain unfold over time under the influence of multiple
internal and external influences (Beer 2000). The choice
of neural fields as a mathematical description of population
dynamics simplifies or ignores many aspects of processing in
the brain (e.g., the timing of spikes). However, the fact that
they can be mathematically analyzed is an important advantage
when trying to build cognitive agents.

As our robot experiments show, there is a need for some
cognitive control of direct sensory—motor schemas (Arkin
1998) which have been proposed in the robotics domain as a
means to cope with the dynamics of real-world environments.
A local obstacle avoidance behavior as implemented in our
dynamic control architecture for the mobile platform, for
instance, is not sufficient to guarantee for a successful placing
behavior in the bridge paradigm. The existence of the bridge
obstacle determines together with the ultimate action goal the
type of grasping at the beginning of the action sequence. A
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Figure 15. During imitation of a human model, synaptic connections between the neural representation of the action goal and neuronal
populations encoding object color are learned. These associations establish a rule: (a) a yellow object has to be placed at the higher goal;
(b) a blue object has to be placed at the lower goal. In each case, the stable state of the model dynamics in an imitation experiment is shown.
After learning, the cue representation alone may drive the respective goal representation.

wrong initial choice of the grip type (e.g., based on object
‘affordances’) may thus not be easily compensated on the fly.

It has been argued that cognition in robots would
essentially require the capacity to simulate on the basis
of internal representations interaction with the environment.
Since simulation allows for anticipation, it may constitute an
important processing principle to guarantee a fluent real-world
behavior (Clark and Grush 1999). The neurophysiological
findings summarized in this tutorial strongly support the notion
that simulating action and perception is not a centralized
process but involves a distributed network of brain areas which
are also active during normal perceptual and motor behavior.
The fundamental idea for joint action tasks is that these
circuits allow an observer to make sense about the partner’s
motor behavior by linking it to internal representations of
goals (e.g., placing an object at a particular position). The
anticipated outcome of the action can then be used to choose
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a complementary goal-directed behavior. As we have shown,
coupling various dynamic neural fields each with a specific
functionality allows implementing such simulation loops since
the internal field representations are self-stabilized. The
decision process in the goal layer establishes the proper
mappings between sensory inputs, internal states and motor
outputs needed to perform a given task. This allows for
cognitive control which is necessary whenever prepotent
input—output mappings have to be overridden like in the
example of the joint search task.

The field architecture implements the fundamental
principle that different sources of information compete
for expression in behavior (Desimone and Duncan 1995).
Relatively small changes in the baseline activity level of
neurons due to the integration of contextual information
for instance may drastically alter the time course of the
pulse evolution. This may in turn alter the processing in
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connected field layers and eventually also the forthcoming
behavior (Asaad et al 2000; compare figure 4). A context-
dependent interpretation of sensory input is essential for what
we recognize as intelligent behavior in autonomous agents.

Although our robots show cognitive behaviors in joint
action tasks, they are still not able to autonomously cooperate
in completely unstructured and dynamic environments. For
instance, the global path planning algorithm for the arm
control which we currently employ does not allow us to
cope with unpredictable obstacles. Another limitation for
our current implementations concerns the vision system. It
is yet not powerful enough to autonomously track and classify
a sufficiently rich repertoire of body motions. However,
for many highly relevant problems there exist already
computational models based on dynamic fields or conceptually
related recurrent networks which may be adapted for the
robotics work. Examples include aspects of higher level
vision including the perception of biological motion (Giese
1999, Giese and Poggio 2003), the transformation of retinal to
body-centered coordinates (Salinas and Abbott 1995, 1996),
the context-dependent selection of visuomotor maps (Salinas
2003), the control of eye movements (Kopecz and Schoner
1995) or the problem of sequence learning and prediction
(Abbott and Blum 1996).

Learning defined as the capacity to represent and
memorize newly acquired knowledge is in general considered
a hallmark of intelligent systems. In distributed field models,
learning can be seen as a structural change of the overall
dynamical systems which usually evolves over a longer time
scale compared to the time scale of a single motor act.
Recently, it has been shown that the asymmetry of the weight
function which leads to the traveling wave solution in direction
space may be autonomously learned during development and
practice. The synaptic learning rule utilizes a form of temporal
average of recent cell activity to associate the firing of cells
encoding directional change (e.g., proprioceptive, visual) with
the recent change in the representation of direction (Stringer
et al 2002).

The persistent activity patterns in the dynamic fields
allow forming associations between events separated in
time. Our simple example of learned synaptic links between
representations of object cue and goal illustrates that a
biologically plausible Hebb rule can be used (see also
Salinas and Abbott (1995)). To establish the synaptic links
between goal and appropriate action means, the learning
process should have access to information related to an
evaluation of performance (Erlhagen ef a/ 2006a). Future work
should therefore explore in more detail the implementation
of unsupervised and reinforcement learning techniques in
distributed dynamic field networks (for an overview about
mathematical models see Dayan and Abbott (2001)).

In conclusion, recent advances in neuroscience and
computational modeling have substantially increased our
understanding of the processing principles underlying
cognitive functions. The implementation of human-like
cognitive skills in robots is still a distant goal. We believe
that the dynamic field approach which joins computational,
mathematical and engineering efforts is a promising direction
to progressively close the gap to the human model.
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