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ARTICLE INFO ABSTRACT

Keywords: Advances in the field of genome sequencing have enabled a comprehensive analysis and annotation of the
Proteomes dynamics of the protein inventory of cells. This has been proven particularly rewarding for microbial cells, for
Metaproteomes which the majority of proteins are already accessible to analysis through automatic metagenome annotation. The

Functionally relevant proteins
Bioactivity prediction
Translational application

large-scale in silico screening of proteomes and metaproteomes is key to uncover bioactivities of translational,
clinical and biotechnological interest, and to help assign functions to certain proteins, such as those predicted as
hypothetical. This work introduces a new method for the prediction of the bioactivity potential of proteomes/
metaproteomes, supporting the discovery of functionally relevant proteins based on prior knowledge. This
methodology complements functional annotation enrichment methods by allowing the assignment of functions
to proteins annotated as hypothetical/putative/uncharacterised, as well as and enabling the detection of specific
bioactivities and the recovery of proteins from defined taxa.

This work shows how the new method can be applied to screen proteome and metaproteome sets to obtain
predictions of clinical or biotechnological interest based on reference datasets. Notably, with this methodology,
the large information files obtained after DNA sequencing or protein identification experiments can be asso-
ciated for translational purposes that, in cases such as antibiotic-resistance pathogens or foodborne diseases, may
represent changes in how these important and global health burdens are approached in the clinical practice.

Finally, the Sequence-based Expert-driven pRoteome bioactivity Prediction EnvironmENT, a public Web
service implemented in Scala functional programming style, is introduced as means to ensure broad access to the
method as well as to discuss main implementation issues, such as modularity, extensibility and interoperability.

1. Introduction

The functional annotation of the lists of genes and proteins derived
from high-throughput experiments is a key, yet challenging
Bioinformatics task [1]. The traditional strategy for this task is the
functional enrichment analysis. Typically, enrichment approaches use
the gene/protein annotations provided by consolidated biomedical
ontologies or knowledge bases, such as Gene Ontology [2], UniProt [3]
or Reactome [4], to infer which annotations are under- or over-re-
presented in the list of genes or proteins under study. The assumption is
that such enriched terms describe important underlying biological

processes or behaviours [5].

Early in 2002 and 2003, several independent studies addressed the
functional enrichment analysis of large lists of genes [6,7]. Onto-Ex-
press [8], MAPPFinder [9], GoMiner [10], DAVID [11], EASE [12],
GeneMerge [13] and FuncAssociate [14] are among the first batch of
successful tools. Since then, the field of functional enrichment analysis
has been quite productive, resulting in a growing number of publicly
available tools, typically categorised into three major classes, i.e. sin-
gular enrichment analysis (SEA), gene set enrichment analysis (GSEA),
and modular enrichment analysis (MEA) [1].

This work introduces a complimentary method that specifically
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tackles the annotation of hypothetical, putative and uncharacterised
proteins, which none of the conventional functional enrichment
methods does, while expediting the screening of proteomes or meta-
proteomes for bioactivities of clinical and biotechnological interest.
Traditional functional enrichment methods identify terms or modules
significantly enriched in a set of genes or proteins. Instead, the pro-
posed method looks for user-selected bioactivities through sequence
similarity analysis. So, the new method is flexible to the interests of the
user, i.e. triggering such screening in terms of sequences, bioactivities
or taxa of interest, and information availability, i.e. the user may select
the sequence references from molecular databases, literature or even in-
house wet lab experiments.

Previous work has already shown the usefulness of a similar ap-
proach for the screening of immunomodulatory and proliferative pep-
tides encrypted in the human gut microbiota [15]. Further noteworthy
examples of the translational application of the method are antibiotic
resistance and foodborne diseases. Since many of the global health
burdens correspond to this kind of microbial diseases in which the
aetiological agent can be identified by, at least, one specific protein, e.g.
diarrheal diseases produced by cholera or Shiga-toxin producing E. coli,
invasive enteric diseases produced by Brucella or Listeria spp., or even
intoxications produced by Clostridium botulinum or Bacillus sp.[16], a
method of bioactivity prediction based on expert knowledge seems to
be a proper approach.

Therefore, the rest of this work is devoted to the description of new
method as well as to the illustration of its rationale. The cases of study
are two metaproteome screenings of clinical interest, i.e. the presence
of taxon-specific prophages and the methicillin resistance protein
MecA, and two well-documented proteome cases relevant to human gut
microbiota research, i.e. the activity of glycoside hydrolases and tet-
racycline resistance protein Tet(W). The implementation of the method
is also discussed. This methodology can be freely accessed at the
Sequence-based Expert-driven pRoteome bioactivity Prediction
EnvironmENT site (http://sing-group.org/serpent).

2. Materials and methods
2.1. Activity-driven functional enrichment methodology

The proposed method is specifically designed to enable the user to
indicate the curated set of protein sequences to be used as reference
dataset. That is, from the beginning, the knowledge discovery process
targets a specific set of bioactivities of interest (Fig. 1). These sequences
may be compiled from a variety of sources, including molecular data-
bases, literature or wet lab experiments, and they may contain various
functional annotations, derived from a biomedical ontology or based on
the user’s expertise. Likewise, the set of proteomes or metaproteomes to
be analysed is specified according to the interests of analysis (i.e. a
broader or more focused screening).

Bioactivity potential prediction is achieved based on how similar
the proteomes or metaproteomes under analysis are to the reference
sequences. Such analysis is based on the alignment distance matrix
produced by a global progressive alignment process [17]. Each pro-
teome is analysed individually by computing the distance between each
of its proteins and each of the sequences in the reference dataset. The
similarity threshold enables the identification of the proteomes holding
higher bioactivity potential, and the likelihood of the bioactivities (if
the reference set specifies more than one) is described as means to fa-
cilitate further empirical analysis. Those protein sequences that meet
the similarity threshold specified by the user are collected and ordered
by the best score obtained. Furthermore, statistical estimations of the
predictions are calculated in order to control both the family-wise error
rate (FWER) and the false discovery rate (FDR).

The level of confidence on the protein sequences under analysis
depends on the specific interests of the user and the available in-
formation. As such, the results of the analysis should be interpreted
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Fig. 1. Schematic of the workflow of the activity-driven bioactivity potential
prediction methodology.

taking into account both the percentage of similarity between the se-
quences, and the statistical estimation of the predictions. To facilitate
the visual exploration of results, the relationships observed between the
reference sequences and the target sequences are represented in a
phylogenetic tree.

2.2. Web service

Different software packages and programming languages can be
used for implementing the proposed method. Here, attention is given to
the Sequence-based Expert-driven pRoteome bioactivity Prediction
EnvironmENT (Serpent), which provides an implementation in Scala
programming language [18]. The rationale behind the Serpent design
was to pursue a purely functional programming style while achieving
the best possible efficiency. The most time-consuming parts of the
workflow were developed so that it is possible to exploit the parallel
capabilities of the current hardware systems, and thus reduce the time
spent in each analysis.

The architecture is completely modular to facilitate the extension of


http://sing-group.org/serpent

A. Blanco-Miguez, et al.

Journal of Biomedical Informatics 91 (2019) 103121

User

User petition

Front-end
Web
module
POST GET
petition ReactJS petition
Back-end
REST
module
Router
i)
Job
E:l queue
Http4s
Argonaut
Core
module
]
file-database
ClustalQ module
E i
BLASTp
ScalaZ Atto
FS2 Forester
SCALA

Fig. 2. The Scala-oriented modular architecture of Serpent. The core and REST modules form the back-end. The core module encompasses the main processes of
analysis, while the REST module manages user requests by implementing a job queue for the incoming analysis requests. The Web module implements the user

interface using the ReactJS library.

features, i.e. to be able to deal with new requirements and eventually,
integrate other technologies. The modules of the current version of
Serpent are as follows (Fig. 2): the core module is responsible for the
execution of the different stages of the analysis pipeline, including the
sequence alignment; the HTTP server module provides RESTful access
to the functionalities of the core; and, the web module enables the user
interface. The core and REST modules form the back-end of Serpent

while the HTTP server module implements the front-end. Moreover,
within the core module there is a non-explicit submodule, i.e. the file-
database module, which manages the various data files generated
throughout the execution of the workflow as well as the final analysis
reports.

The design and functionality of the modules and, most notably,
third-party dependencies, are described in the next subsections.
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2.2.1. Core module

As the name suggests, this is the main component of the workflow. It
is programmed in Scala with the aid of the libraries Scalaz [19], FS2
(Functional Streams for Scala) [20] and Atto [21]. Scalaz facilitates a
purely functional style of programming and provides all the necessary
constructs in order to develop the program in a completely functional
manner. FS2 adds support for streaming input/output capabilities with
an emphasis in compositionality, expressiveness, resource-safety and
speed. FS2 can be seen as a replacement of old iterate-style constructs.
Finally, Atto is applied to construct the data parsers applied at the
different stages of the analysis.

Regarding third-party software, the core of Serpent relies on Clustal,
the well-known and widely used multiple sequence alignment tool.
Serpent integrates the latest version of the Clustal family, i.e. Clustal€2,
which offers increased stability and scalability [22]. Since the size of
the proteomes under analysis may be considerable, the memory con-
sumption of this tool needs to be controlled. To avoid excessive memory
consumption, Serpent splits the set of proteomes under analysis into
smaller, more manageable subsets, which can be processed by ClustalQ2
without causing any issues. When all subsets are processed, the en-
riched proteins are merged into a single set of results. Then, BLASTp is
executed on the predicted proteins to generate a statistical estimation of
the quality of the results. Following the implementation proposed by
Carroll H. D et al [23], with the p-values retrieved from the BLASTp
alignments (since e-value = p-value *m, being m the size of the re-
ference dataset), Bonferroni [24], Holm [25], Hommel [26], Hochberg
[27] and Benjamini and Hochberg [28] and Benjamini and Yekutieli
[29] corrections are estimated using the podkat R package version 1.4.2
(https://www.rdocumentation.org/packages/podkat/versions/1.4.2).
The first four corrections are designed to give strong control of the
family-wise error rate (FWER) while the last two corrections describe
the false discovery rate (FDR), i.e. the expected proportion of false
discoveries amongst the predicted proteins.

The bioactivity prediction report encompasses a tabular text file that
lists the alignment results ordered by enrichment probability and a
phylogenetic tree representation. The reporting functionality of Serpent
is supported by Forester, a collection of open source Java libraries
specialised in phylogenetic and evolutionary biology research [30].
Moreover, the phylogenetic tree is generated in the commonly used
Newick [31] and PhyloXML [32] data formats, which allows further
analysis in phylogeny-specific tools.

Serpent also integrates a biomedical ontology annotator, which
supports the manual annotation of the reference sets by the user. These
user-defined ontology annotations are automatically included in the
results set. The inclusion of these annotations is not mandatory and is
obviously dependent on the information available for the reference
proteins.

The file-database module is responsible for managing all the data
files and reports generated throughout the analysis (Table 1). As the
input and output of each process are plain text files, the files are or-
ganised into directories and identified by a Universally Unique Identi-
fier, UUID.

Table 1
Data files and reports available for a complete analysis. If the analysis fails, only
the first two files in the table are available.

Name Description

The reference dataset

The proteome analysed

The output file with the alignments produced by ClustalQ
The report with the predicted proteins

The phylogenetic tree in Newick format

The phylogenetic tree in PhyloXML format

The phylogenetic tree in PNG format

reference.fasta
comparing.fasta
alignment.fasta
full_report.csv
similar.newick
similar.phylo.xml
similar.png
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2.2.2. REST module

The HTTP Server module can be run directly without the assistance
of a user interface. The API communication is based on the interchange
of JSON objects. In particular, the analysis queue manager deals with
the requests of analysis received by the server. This submodule imple-
ments a persistent job queue with First In, First Out (FIFO) ordering, i.e.
the requests of analysis are served in the same order as they are issued.
If unexpectedly the system crashes, the queue is restored to its last state
upon restart. An ongoing analysis cannot be restarted to the exact point
of the crash, but it is restarted from the last completed stage.

The Serpent server is programed in Scala making use of Http4s [33]
and Argonaut [34] libraries. Http4s is a minimal, idiomatic, functional
and completely asynchronous interface for HTTP services. In turn, Ar-
gonaut supports the interchange of JSON objects in server commu-
nication. The public REST API of Serpent, which is described in Table 2,
is available at http://sing-group.org/serpent/api/.

2.2.3. Web module

Serpent also has a Web front-end, which was developed with com-
monly available Web technologies, i.e. HTML, CSS and JavaScript.
Specifically, this interface leverages some of the state-of-the-art web
capabilities offered by HTML5 (http://www.w3.org/TR/html5/) and
CSS3 technologies (http://www.css3.info/) to create a visually ap-
pealing interface while retaining high usability.

The Javascript library ReactJS [35] is applied to maintain a reactive
data-flow style, i.e. to abstract the document model of the HTML code
and to enable a component-based programming environment. More-
over, the amCharts library is used to generate charts [36] while the
Foundation front-end framework [37] is used to create the different
components of the Web interface. Overall, the Web presentation of a
bioactivity prediction report entails the description of the identified
proteins in tabular format, an interactive phylogenetic tree viewer de-
veloped with react-phylocanvas, and a heatmap chart [36].

2.3. Performance and false discovery rate

The performance of the proposed method was assessed using four
well-established metrics, i.e. precision ( Py recall (—F ), accuracy
TP + FP TP+ FN

_ TP+TN___yand FDR (-7 ) [38,39]. Two test cases supported this
TP+ TN + FP + EN TP+ FP

analysis, addressing the effect of the size of the reference dataset and
the similarity threshold on the quality of the results.

The first test case measured the performance of the method while
incrementing the size of the reference dataset. Therefore, the different
glycoside hydrolases families related to 8 Bacteroides strains were re-
trieved from the CAZy database [40] (Supplementary Material S1).
Three reference datasets were selected randomly for this test, having 8,
15 and 30 glycoside hydrolases from different families, respectively.
Considering the phylogenetic distance between strains, a similarity
threshold of 40% was selected. A “true positive” result was defined as a
predicted family that was related to the strain according to the manu-
ally curated records of CAZy. These performance results can be found in
the Supplementary Material S1.

Supplementary data associated with this article can be found, in the
online version, at https://doi.org/10.1016/j.jbi.2019.103121.

The second test case assessed the performance while decreasing the
similarity threshold value. Here, the protein sequences of 49 strains of
Staphylococcus aureus were retrieved from the NCBI public FTP site
(ftp://ftp.ncbi.nlm.nih.gov/) [41]. Protein entries that have not yet
been annotated (i.e. hypothetical proteins) were not considered for
analysis. The resulting dataset was tested against two isoforms of the
methicillin resistance protein MecA considering similarity threshold
values of 60%, 50%, 40% and 30%. A “true positive” result was defined
as a predicted protein that was annotated as MecA in the GenBank
database [42]. These performance results can be found in the Supple-
mentary Material S2.
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Table 2
The public REST API methods of Serpent.
Method URL Purpose
GET project/{uuid} Returns the information of the project, i.e. the UUID of each analysed proteome as well as the names of the reference set and the file keeping
the list of proteomes in JSON format
GET analysis/{uuid} Returns basic information about the analysis, i.e. the alignment threshold, the execution status and the annotations in JSON format
GET analysis/{uuid}/{file} Returns the selected data file. The available files for a completed analysis, i.e. the reference dataset, the proteome analysed, the output file
from ClustalQ2 alignment, the prediction report and the phylogenetic tree in Newick, PhyloXML and PNG format (as described in Table 1)
GET analysis/queue Returns the size of the analysis queue, i.e. how many jobs are in line to be served, in JSON format
GET analysis/queue/{uuid}  Returns the position of the proteome in the analysis queue in JSON format
3. Results

It is well known that most of antibiotic-resistance and foodborne
diseases, which represent a global health burden, can be identified by at
least one microbial protein, such as shiga and cholera toxins or anti-
biotic-resistance proteins [16,43]. So, the method described in this
work holds great potential to deliver interesting results in translational
clinical or biotechnological studies.

This rationale is demonstrated through the discussion of several
cases studies involving metaproteomes as well as proteomes. The ability
to predict taxon-specific functionality in metaproteomes is demon-
strated using a case study related to the presence of prophages from
Clostridium sp., Escherichia coli, Ruminococcus bromii, Lactobacillus reuteri
and Prevotella ruminicola (Supplementary Material S3) and a case study
describing the presence of B-lactam and methicillin resistance protein
MecA (Supplementary Material S4). These are applications of bio-
technological (phage-therapy) and clinical (antibiotic-resistance) in-
terest, respectively. Additionally, we present two proteome case studies
relevant to human gut microbiota research: the screening of a tetra-
cycline resistance protein Tet(W) and the screening of Bacteroides fra-
gilis and Lactobacillus acidophilus glycoside hydrolase repertoire. All this
information is publicly available at the Serpent web service and its
performance parameters including execution times and proteome/me-
taproteome(s) have been collected in the Supplementary Material S5.

The performance of the proposed method, and more specifically the
FDR, is illustrated with two additional test cases, i.e. the screening of
the glycoside hydrolases families of 8 Bacteroides strains
(Supplementary Material S1), and the detection of the methicillin re-
sistance protein MecA in 49 Staphylococcus aureus strains
(Supplementary Material S2).

In general, all these analyses consisted of the following steps: (i)
introduction of the details of the project, including the name, the target
and reference datasets, the similarity threshold in percentage and the
reference annotations (Fig. 3A), (ii) processing all the individual pro-
teomes of the project (Fig. 3B), and (iii) generation of the bioactivity
prediction results (Fig. 3C). To make visual inspection easier, results are
summarised in two heatmaps: a heatmap depicting similarity percen-
tages and another one representing alignment matches. For each ana-
lysed proteome, it is possible to check the detailed status and explore/
download the reports generated during the analysis. All data can be
downloaded. Most notably, heatmaps can be downloaded both as image
(JPEG, PNG, SVG and PDF format) and as a table (CSV, XLSX and JSON
format). The reference dataset and the list of analysed proteomes are
also available for download.

3.1. Case study I: tetracycline resistance protein Tet(W)

This case study looked into the abundance of the Tet(W) protein
into two datasets of different size: the Bacteroides genus (8 proteomes)
and the larger Lactobacillaceae family (60 proteomes). The reference
dataset was a compilation of different Tet(W) protein sequences present
in intestinal bacteria. In a first attempt to analyse the proteomes of the
Bacteroides genus dataset, an alignment threshold of 50% was set, but
the absence of results led us to empirically lower this value to 30%. As

Upload a new project

Here a new project can be created. A Serpent project consists of five basic elements: a name, a reference FASTA file, a set of comparing
FASTA files 10 be enviched with the reference one (reference and comparing fles must be proteome FASTA files, maximum 3MB size each
file), a threshoid value (between 0 and 100, is used 1o fiter the sequences during the alignment process) and an annotation fle (ihis file relates
an annotation 1o each sequence of the reference file) Each fne on the annotation fie should have the following format
reference_id:annotation (see an annotation file example here. Once the project is upioad correctly, Serpent wil offer the user a link to follow his
progress.

Project name

 here, or ciick to select files | 1 here. or click to select fles |

| o upload ; i 10 upload.

Alignment threshold
Try dropping some files !
 here, or ciick 1o select files !
+ 10 upload :

B For each proteome Serpent workflow

For each protein

Reports for analysis '1bc90a36-9fa4-48be-bd29-9ec0c0a38e70’

Here are all the files related to this analysis. Both the incoming FASTA files and the alignment file are available for download, as well as the
phylogenetic tree generated during this same alignment (available in Newick and PhyloXML format). Finally the report with the sequences that
have exceeded the threshold is shown and aiso available for downioad in CSV format

Date: Mon Feb 26 2016 20:14:07 GMT+0100

Threshold: 30.00

Download analysis FASTA files:

Phylogenetic tree:

0i1295096869/embICBK68392 1

874irefiZP_03976923 1

Qil17426901/embICAD13485.1

gil227"
9i12263256761re1ZP_03801194.1
Qil2255674971reZP_03776524.1

Predictions report:
Compa... Refers... Similar... Compa... Refers... P-value -- Bonfer.. Holm -~ Hommel - Hochb... BH BY
giS221... QI2ATT... 385% 657 639 12561 1e167  1e-167  1e167  1e-167  1e-167 27178,

Back

Fig. 3. Execution of a bioactivity potential prediction project in the Serpent
web service. A new project consists in the introduction of the reference pro-
teome, the proteomes to be analysed, the alignment threshold and the reference
annotations (A). Proteomes are analysed individually (B). Phylogenetic trees
and the enrichment report tables support expert analysis (C).
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Bacteroides fragilis 638R:

Compa... Refere... Similar... Compa... Refere... P-value
gi|5221... @i|2377... 38.5% 657 639 1.25e-1...
Bacteroides fragilis YCH46:

Compa... Refere... Similar... Compa... Refere... P-value
gi|3011...  gi[2377... 30% 30 639 1
Bacteroides salanitronis DSM 18170:

Compa... Refere... Similar... Compa... Refere... P-value
gi|3243... qi|2377... 38.97% 641 639 5e-171
gi|3243... gi|2275... 30% 30 639 0.00975
Bacteroides xylanisolvens XB1A:

Compa... Refere... Similar... Compa... Refere... P-value
gi|2950... gi|2275... 38.5% 641 639 8.75e-1...

B
Bonfer... Holm Hommel - Hochb... BH BY
1e-167 1e-167 1e-167 1e-167 1e-167 2.7178...

Cc
Bonfer... Holm Hommel - Hochb... BH BY
1 1 1 1 1 1

D
Bonfer... Holm Hommel - Hochb... BH BY
4e-170 4e-170 3.5e-170 4e-170 3e-170 8.1535...
0.078 0.078 0.04875 0.04875 0.0195 0.0529..

E
Bonfer... Holm Hommel - Hochb... BH BY
7e-168 7e-168 7e-168 7e-168 7e-168 1.9025..

Fig. 4. Prediction results for the Tetracycline resistance study of Bacteroides genus. Half of the strains showed Tet(W)-alike proteins. Similarity percentage values are
coloured from blue (low) to yellow (high). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

illustrated in the Fig. 4, Serpent discovered Tet(W)-like proteins in four
out of the eight strains of the Bacteroides dataset, i.e. B. fragilis 638R
(Fig. 4B), B. fragilis YCH46 (Fig. 4C), B. salanitronis DSM 18170
(Fig. 4D) and B. sylanisolvens XB1A (Fig. 4E). However, looking at the
statistical values of these predictions, two of these results, namely the
proteins returned for B. fragilis 638R and B. salanitronis DSM 18170,
were likely false positives due to their high adjusted p-values. This
suspicion was later confirmed by domain experts. These false positives
originated from the presence of poorly annotated proteins in the pro-
teomes/metaproteomes of interest, including truncated proteins. This
sort of situation is likely to occur when running Serpent with threshold
values lower than 40-50%, as proteins with a low number of amino
acids can be outputted. Therefore, a pre-processing filter was im-
plemented for the deletion of such proteins from the input proteomes/
metaproteomes. After discarding these predictions, Serpent predicted

that three out of the eight strains (i.e. 42.86% of the strains) presented
proteins similar to Tet(W), all with acceptable adjusted p-values (values
very close to 0). Detailed information about these predictions is avail-
able in Supplementary Material S6 and the entire project is publicly
available at http://sing-group.org/serpent/project/4cb5e624-1b21-
11e8-9¢54-0db66d62e496.

Regarding the Lactobacillaceae family, only two of the sixty strains
showed Tet(W)-like proteins (Fig. 5), namely the strains L. acidophilus
30SC (Fig. 5B) and L. casei (Fig. 5C). Moreover, as in the case of Bac-
teroides, the results of L. casei contained non-curated, short protein se-
quences, resulting in false positives with p-values equal to 1. The ob-
tained results showcase the lower abundance of Tet(W)-like proteins in
this set of proteomes. Specifically, Tet(W)-like proteins were only dis-
covered in one strain. Notably, the protein “gi|325334111|g-
b|ADZ08019.1|translation elongation factor G” from L. acidophilus
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Lactobacillus acidophilus 30SC:

Compa... Refere... Similar... Compa... Refere... P-value
gi|3253... gi[1609... 99.22% 640 639 0
Lactobacillus casei:
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gi|1907... @i[2275... 100% 2 639 1
gil1907... gi|2275... 6667% 3 639 1
gil1907... gi|2275... 60% 5 639 1
gi|1907... Qi[2275... 50% 6 639 1
gil1907... gi|2275... 50% 4 639 1
gil1907... gi|2275... 50% 2 639 1
gi|1907... gi2275... 50% 8 639 1
gi|1907... Qi[2275... 50% 8 639 1

B
Bonfer... Holm Hommel - Hochb... BH BY
0 0 0 0 0 0
C
Bonfer... Holm Hommel - Hochb... BH BY
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1

Fig. 5. Prediction results for the Tetracycline resistance study of Lactobacillae family. Only L. acidophilus 30SC (B) and L. casei (C) showed Tet(W)-like proteins (A).
Similarity percentage values are coloured from blue (low) to yellow (high). (For interpretation of the references to colour in this figure legend, the reader is referred

to the web version of this article.)

30SC shows a similarity of 99.22% with the Faecalibacterium prausnitzii
Tet(W) protein (Fig. 5B).

Detailed information on these predictions is available in
Supplementary Material S6 and the entire project is publicly available
at  http://sing-group.org/serpent/project/70fc0129-1c68-11e8-9c54-
0db66d62e496.

3.2. Case study II: glycoside hydrolases

In this case study, thirty of the glycoside hydrolases encoded by the
genome of the strain Bacteroides fragilis YCH46 and the thirty four
glycoside hydrolases encoded by the strain Lactobacillus acidophilus
30SC were used as reference datasets for the prediction of bioactivity in
the two proteome datasets presented in the case study I. Regarding the
Bacteroides genus, and with the exception of Bacteroides sp. CF50 strain,
all of the other species had predicted glycoside hydrolase proteins

(Fig. 6). As general trend, Serpent predicted less glycoside hydrolase
proteins while moving phylogenetically away from the strain B. fragilis
YCHA46, the strain from which the reference dataset was selected. As
expected, the strain B. fragilis 638R contained the proteome in which
more glycoside hydrolase proteins were retrieved, and most similarity
values were over 99%, with only two exceptions. The other four strains
presented similar values, with glycoside hydrolase protein identifica-
tion percentages ranging between 40% and 60%. The entire project is
publicly available at http://sing-group.org/serpent/project/26920afc-
1d7e-11e8-9¢54-0db66d62e496.

Regarding the Lactobacillaceae family, and as it is illustrated in
Fig. 7, Serpent found glycoside hydrolase sequences in all the strains.
The strains of L. acidophilus as well as those of L. amylovorus achieved
the highest prediction percentages, with 85.29% of the reference gly-
coside hydrolase proteins identified, almost all of them with over 80%
similarity. L. crispatus also had a high prediction rate, with 75.53% of
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Analysis 'bb38f654-c527-4cc1-2046-06¢5¢34080ae’
Status:

Comparing File: Bacteroides_thetaiotaomicron_VPI-5482_uid399 fasta

Analysis '7880bf6d-8af5-453b-bb2d-f70f8071b6e8"
Status:

Comparing File: Bacteroides_xylanisolvens_XB1A_uid39177 fasta

Analysis '83d1d0c3-3546-4eb2-ac37-6479117768a6"
Status:

Comparing File: Bacteroides_fragilis_638R_uid50405 fasta

Analysis '9b899aad-368f-45a7-85e9-93639d29fccc’
Status:

Comparing File: Bacteroides_fragilis_YCH46_uid13067 fasta

Analysis 'cd45d2ef-e761-4cb8-8371-accc97540153"
Status:

Comparing File: Bacteroides_vulgatus_ATCC_8482_uid13378.fa

2

ta

Analysis 'eb176b85-5b03-414¢-944d-b5912fade9b7"
Status:

Comparing File: Bacteroides_salanitronis_DSM_18170_uid40055.fasta

Analysis '99f47e9d-9607-4be7-89¢c4-b73fb74415a2"
Status:

Comparing File: Bacteroides_helcogenes_P_36_108_uid41913.fasta

Analysis '47f265¢7-9837-4be1-adaa-6fda77f95dcs"
Status:

Comparing File: Bacteroides_CF50_uid218492 fasta

Similarity percentage heatmap:

Similarity: 0 (failed)
Analysis: Bacteroides_CFS0_uid218492
Reference protein:
Icl|AP006841.1_prot_BAD47686.1_937

Fig. 6. Predictions obtained in the study of the glycoside hydrolase potential of Bacteroides genus. No glycoside hydrolase proteins were discovered in Bacteroides
CF50. Similarity percentage values are coloured from blue (low) to yellow (high). (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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Similarity percentage heatmap:

Similarity: 100%
Analysis:
Lactobacillus_acidophilus_30SC_uid5314
Reference protein:
Icl|CP002559.1_prot_ADZ06408.1_214 |
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Fig. 7. Prediction results for the glycoside hydrolase study of Lactobacillaceae family. Serpent found glycoside hydrolase proteins in all the strains. Similarity
percentage values are coloured from blue (low) to yellow (high). (For interpretation of the references to colour in this figure legend, the reader is referred to the web

version of this article.)

the total number of glycoside hydrolases covered. As for the Bacteroides
genus dataset, the other Lactobacillaceae strains presented fewer gly-
coside hydrolase predictions while moving taxonomically away from
the L. acidophilus species, passing through L. helveticus, L. jonshonni and
L. kefiranofaciens, until reaching L. fermentum and L. pentosaceus (which
had only 2.94% of glycoside hydrolase proteins). The entire project is
available at http://sing-group.org/serpent/project/11eb90bd-1d80-
11e8-9¢54-0db66d62e496.

4. Discussion

The method proposed here complements the classic functional an-
notation enrichment methods by enabling the discovery of functionally
relevant proteins in proteomes or metaproteomes from sequence in-
formation and prior expert knowledge. Its goal is to allow the assign-
ment of functions to hypothetical/putative/uncharacterised proteins
whilst detecting specific bioactivities and recovering proteins from
defined taxa. The practical use of such predictions may be to confirm a
given assumption (e.g. check if some new isolate shares a characteristic
bioactivity with the rest of the representatives from its family/species)
or to investigate a novel hypothesis (e.g. to investigate the contribution
of different genus/families and find out if they present a target bioac-
tivity).

This analysis is scalable from a few up to hundreds of proteomes. In
this sense, the new method allows the prediction of user-selected
bioactivities in proteome and metaproteome datasets from different
sources, e.g. strains, species or families, and the detection of precise
protein sequences representing biomedical or biotechnologically re-
levant activities in hundreds of proteomes/metaproteomes at the time,
facilitating the task to translational researchers.

In order to confirm the ability of Serpent for predicting bioactivity/
functionality in proteomes, we have designed to two different experi-
ments. A set of glycoside-hydrolases and tetracycline resistance proteins
Tet(W) were investigated in two proteome collections of different size
(8 vs 60 proteomes). Both cases were chosen given their direct re-
lationship with the study of the human intestinal microbiota function-
ality and their timely and broad interest to the biomedical community
[44]. In addition, these two collections of proteomes were chosen in an
attempt to represent two different prediction patterns: in the case of

glycoside hydrolases it was expected to find the bioactivity in most
samples as the reference set is obtained from one of the genus re-
presentatives. On the contrary, the functionality represented by the Tet
(W) protein was expected to have a minor presence as the set of re-
ference includes sequences obtained from other microbial taxa.

For the first case study, eight TetW proteins were selected from the
strains of representative Gram positive bacteria of the gut microbiota,
namely Bifidobacterium longum, Faecalibacterium prausnitzii, Lactobacillus
reuteri, Coprococcus comes, Subdoligranulum variabile, Oxalobacter for-
migenes and Clostridium difficile [45]. These eight proteins were used as
reference set for the analysis of a dataset containing eight Bacteroides
sp. proteomes and another dataset containing sixty Lactobacillaceae
proteomes. Bacteroides genus includes species that are mainly com-
mensal gut microbiota as well as opportunistic pathogens that, when
clinically isolated, often show resistance to tetracycline [46]. In turn,
the members of the Lactobacillaceae family are Gram positive, strict or
aerotolerant anaerobic and fermentative rod-shaped bacteria that are
commonly present among the microbiota of both human gastro-
intestinal and genitourinary tract, but also in fermented foods or on
plant surfaces [47]. Some species of the genus Lactobacillus are also
marketed as probiotics given their beneficial effects over human health
[48].

Of the 38 tetracycline resistance genes already described, the gene
tet(W), which encodes a ribosomal protection protein avoiding binding
of tetracycline to ribosome, is the most extended tetracycline resistance
gene in the anaerobic gut and rumen bacteria [49]. Tet(W) protein was
mostly absent from the two proteome datasets, with very low similarity
values in the case of Bacteroides genus, and just two out of the sixty
proteomes of the Lactobacillaeae species containing Tet(W) homologues.
Although it is well known that intestinal microbiota of humans and
animals may act as a reservoir of antibiotic resistance genes that could
ultimately be transferred to pathogens, Serpent analysis show that this
is not a general trend in the two case studies presented [50]. This is very
relevant from a biomedical point of view as transfer of antibiotic re-
sistance genes is observed between bacterial species in the gastro-
intestinal tract of mammals, and for instance the Tet(W) protein of
Faecalibacterium prausnitzii Tet(W) showed a high similarity value
compared to the “translation elongation factor G” from L. acidophilus
30SC (99.22%) [50].
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The low similarity of the Tet(W) proteins in our Bacteroides genus
dataset contrasts, a priori, with previous experimental data showing
that over 50% of the Bacteroides fragilis isolates are resistant to tetra-
cyclines, while resistance in non-Bacteroides and other Gram-negative
genera are more variable [51]. This can be explained by the fact that
only tet(M), (Q) and (X) genes have been found in Bacteroides genus
[52] whereas tet(W) gene is commonly found in other human and an-
imal intestinal bacteria [53]. In this case, Serpent was again useful as
after a BLASTp check, the predicted Tet(W)-like proteins were shown to
be Tet(Q) proteins, another similar tetracycline resistance protein found
in Bacteroides genus [52]. Noteworthy, low threshold values may return
proteins with weak similarity, but this too can be a useful result, if the
intention of the user is to explore sets of related proteins. Moreover, two
of the Tet(Q) discovered proteins were annotated as “small GTP-binding
protein”. This shows the potential of Serpent to handle proteomes/
metaproteomes with poor or even no annotations to predict their po-
tential bioactivity, as it is possible to retrieve hypothetical or bad an-
notated proteins that have certain homology to the set of reference. This
is a clear complement to classic experiments using functional enrich-
ment algorithms such as SEA, GSEA or MEA.

Regarding the Lactobacillaceae family, the low number of sequences
found in the dataset is in agreement with previous studies reporting the
presence of tet(w) genes in few strains of L. crispatus, L. johnsonii, L.
paracasei and L. reuteri [54-56]. Care should be taken in the sense that,
in certain farming environments where antibiotic usage is frequent, the
tet(W) gene can be present in more than 30% of the Lactobacillus iso-
lates, mostly from the L. ruminis, L. fermentum, L. reuteri and L. amylo-
vorus species [57].

Regarding the other case study, two sets of glycoside hydrolases
from representatives of the Bacteroides genus and the Lactobacillaceae
family were selected. The two datasets of reference were retrieved from
the database of Carbohydrate-Active enZYmes (CAZy), which contains
information about enzymes involved in the synthesis, metabolism, and
transport of carbohydrates [58]. Specifically, a subset of thirty glyco-
side hydrolases of the Bacteroides fragilis YCH46 strain was used as re-
ference dataset for the Bacteroides genus, and a dataset containing the
thirty-four Lactobacillus acidophilus 30SC glycoside hydrolases served as
reference dataset for the Lactobacillaceae family. Microbes inhabiting
digestive tracts are exposed to diverse and abundant substrates, notably
those derived from plant polysaccharides found in food or animal gly-
cosaminoglycans produced by the host (e.g. mucins) [59-61]. The
complete enzymatic deconstruction of polysaccharides involves not
only glycoside hydrolases, but other CAZy enzymes such as poly-
saccharide lyases or carbohydrate esterases [62-65]. However, glyco-
side hydrolases are the most abundant enzymes involved in the
breakdown of polysaccharides into simpler carbohydrates and they will
therefore determine the ability to hydrolyse complex sugars [66].

Bacteroides genus are known to prosper in environments enriched
in oligo and polysaccharides derived from plants, mainly due to the vast
array of glycoside hydrolases encoded in their genomes [67,68]. On the
contrary, members of the Lactobacillae family are mainly related to the
hetero- or homo-fermentative conversion of simpler sugars into organic
acids [69,70]. It is noteworthy that, in both cases, the glycolytic ca-
pacity is species-dependent as these enzymes reflect the adaptation to
different animal guts (with different diets) or even different environ-
ments (dairy vs fermented meat, or gut vs vaginal mucosa) in the case
of Lactobacillus genus. This is well illustrated by our analysis, where the
number of glycoside hydrolase proteins is lower as the species is more
taxonomically distant from the species included in the reference dataset
(i.e. B. fragilis and L. acidophilus).

It is also noteworthy the added value of applying Serpent in trans-
lational studies. Many of the global health burdens correspond to mi-
crobial diseases in which the aetiological agent can be identified by at
least one specific protein. In this regard, reference sets including a
curated list of those protein biomarkers can be helpful for translational
purposes, namely for studying antibiotic-resistance and foodborne
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diseases. Biomarkers for diarrheal diseases produced by cholera or
Shiga-toxin producing E. coli, invasive enteric diseases produced by
Brucella or Listeria spp. or even intoxications produced by Clostridium
botulinum or Bacillus cereus could be detected using the proposed
method. To demonstrate such translational application, two cases of
studies supporting the screening of human faecal metaproteomes of
clinical interest were designed: a case study related to the presence of
prophages from specific taxa and a case study describing the presence
of the antibiotic resistance protein MecA. In the case of the prophages
study, given that phage therapy is currently becoming an alternative for
the use of antibiotics, the massive identification of lysogenic phages
within the intestinal microbiome has clinical relevance for the precise
modification of microbial populations within the human gut micro-
biota. In the other case study, the MecA protein, usually present in
Staphylococcus aureus genomes as well as in other bacteria, represents
an important threat in clinical environments as it confers resistance to
the semisynthetic penicillin methicillin.

On another level, it is important to stress that while the main aim of
Serpent is to find bioactivities broadly, the method entails statistical
mechanisms to help users to interpret and explore the results. Granted,
any prediction tool has intrinsic the probability of making mistakes,
that is, of producing false positives, and mismanagement of these false
positives can lead to incorrect interpretations of the results. To de-
monstrate the ability of Serpent to manage false positives, two addi-
tional test cases were designed to evaluate the impact of the size of the
reference dataset and the similarity threshold in the predictions. Most
notably, the screening of the glycoside hydrolases families of 8
Bacteroides strains, and the detection of the methicillin resistance pro-
tein MecA in 49 Staphylococcus aureus strains.

In the first case, the larger the size of the reference dataset, i.e. the
number of families of glycoside hydrolases, the greater the probability
of false positives, i.e. predictions of such families (Supplementary
Material S1). This is mostly due to the similarity between the reference
sequences. In the case of the strains enriched with 30 families of gly-
coside hydrolases, the protein of the GH133 family presents a high false
positive rate (in 62.5% of the strains). Such result is justified by the
great similarity that this protein has with the protein of the GH5 family,
which is present in all the strains in which G133 is falsely predicted.
However, even with these false positives, the FDR is below 0.05 in the
three executions (FDR of 0 with 8 families, 0.023 with 15 families and
0.046 with 30 families), which shows that, for the most part, Serpent is
able to take into account these cases in sequence similarity analysis.

The second test case demonstrates the increase of the FDR with the
decrease of the similarity threshold value. As detailed in the
Supplementary Material S2, with intermediate threshold values, except
for one protein in the Staphylococcus aureus strain LGA251, the prob-
ability of false positives was very low (FDR 0.026). Further examination
of this false positive shows that the predicted protein was Pbp, a pe-
nicillin-binding protein with a 90% similarity with MecA (https://
www.uniprot.org/uniprot/P07944). However, when the threshold was
set under 40%, the rate of false positives increased greatly (for a si-
milarity threshold of 30%, the FDR was 0.2). These false positives were
proteins with a low number of aminoacids, predicted with high p-values
(close to 1). This situation is similar to that previously observed in the
analysis of the Tet(W) protein in Bacteroides and, as explained earlier,
Serpent minimises its occurrence by enabling the filtering of such short
proteins prior to the analysis.

5. Conclusions

This paper presents a new method for the prediction of the bioac-
tivity potential of proteomes/metaproteomes based on prior knowl-
edge. This methodology complements conventional functional annota-
tion enrichment methods, allowing the assignment of functions to
hypothetical/putative/uncharacterised proteins whilst detecting spe-
cific bioactivities or even recovering proteins from defined taxa.
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Acknowledging that all tools of this nature have some embedded like-
lihood of making a mistake, the user is advised to take into con-
sideration the FWER and FDR values calculated for the predictions as
means to ensure a correct interpretation of the results.

The translational and practical use of the proposed method was
demonstrated by two metaproteome examples of clinical interest and
two proteome case studies relevant to the human gut microbiota re-
search. Results show that the large information files obtained after DNA
sequencing or protein identification experiments can be associated for
translational analysis purposes that, in cases such as antibiotic-re-
sistance pathogens or foodborne diseases, may introduce changes in
how these important and global health burdens are approached in the
clinical practice.
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