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Abstract

Masonry is the oldest building material that survived until today, being used all over the 

world and being present in the most impressive historical structures as an evidence of 

spirit of enterprise of ancient cultures. Conservation, rehabilitation and strengthening of 

the built heritage and protection of human lives are clear demands of modern societies. 

In this process, the use of nondestructive methods has become much common in the 

process of diagnosis of structural integrity in masonry elements.

With respect to the evaluation of the stone condition, the ultrasonic pulse velocity is a 

simple and economical tool. Thus, the central issue of the present paper concerns the 

evaluation of the suitability of the ultrasonic pulse velocity method for describing the 

mechanical and physical properties of granites and for the assessment of its weathering 

state. For this purpose, results of measurements of the ultrasonic pulse velocity using 

distinct natural frequency of the transducers was carried out on specimens with different 

size and shape. The discussion of the factors that induce variations on the velocity 

measurements is also provided.
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Additionally, statistical correlations between ultrasonic pulse velocity and mechanical 

and physical properties of granites are discussed. The major output of the work is the 

confirmation that ultrasonic pulse velocity can be effectively used as a simple and 

economical nondestructive method for a preliminary prediction of mechanical and 

physical properties, as well as a tool for the assessment of the weathering changes of 

granites that occur during the serviceable life. This is of much interest due to the usual 

difficulties in removing specimens for mechanical characterization.

Keywords: granite, non-destructive testing, ultrasonic pulse velocity, testing, moisture ,

weathering, planar anisotropy
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1 Introduction

One of the major challenges in rehabilitation and repair of existing structures is 

inspection, which includes the detection of damaged zones, cracks and defects, and 

mechanical characterization of materials. This task is generally carried out not only 

based on experimental investigation on the laboratory but also by means of in situ 

nondestructive testing. Sophisticated non destructive techniques have been developed 

and improved throughout the years and are applied to various types of structures in 

distinct fields, namely masonry structures. One example of such techniques is the 

ground probe radar, which appears to be a powerful tool in the detection of voids and 

structural irregularities such as inclusions, moisture content and in the identification of 

the cross section of ancient multiple leaf masonry walls [1,2]. Another example is given 

by sonic tests, which allow e.g. the evaluation of the morphology of the masonry walls, 

detection of voids or crack damage patterns [3]. In both cases, by using appropriate 

tomography techniques, it is possible to reconstruct the internal characteristics of 

structural element. These tests are mainly used in structural identification, whereas other 

type of tests is normally used for material characterization. An example of such a 

technique is given by the controlled micro-drilling, which can be correlated with the 

elastic and strength properties of brick [4]. The ultrasonic pulse velocity method falls in 

last this category as a expedite and economical nondestructive technique.

Ultrasonic pulse velocity (UPV) testing is reported by several authors [5,6] as a useful 

and reliable non destructive tool of assessing the mechanical characteristics of concrete 

from existing structures, such as, the modulus of elasticity and the compressive strength.

These parameters can be subsequently used in the safety evaluation of the structure. In 

the field of timber structures, the results are far less appealing due to the anisotropy and 
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variability of mechanical properties [7,8]. But in the field of rock structures, the 

ultrasonic pulse velocity has also been suggested as a useful method for an estimation of 

elastic and strength properties. This aim has been accomplished by means of empirical 

correlations between the ultrasonic pulse velocity and the compressive strength and 

modulus of elasticity [9-11].

UPV can be also of use to evaluate closed cracks in a material [12] or to study concrete 

behavior at early stage, namely in the analysis of the concrete microstructure

development [13-16]. When associated to tomography, UPV can give good qualitative 

information on the changes on material properties as well as on its microcracking state

[17-19]. Kahraman [20] also studied the influence of the fracture roughness of granites 

on UPV and provided a correlation between both parameters. Although acoustic 

emission seems more appropriate in the evaluation of the crack damage in concrete and 

especially in rocks under uniaxial compression [21-23], UPV seems also to provide 

some indication about the damage in concrete [24].

The main goal of the present study is to provide correlations for a wide variety of 

granites between UPV and mechanical properties in tension and compression, as well as 

and physical properties (porosity and density). A discussion about the factors that 

influence variations on the velocity measurements is also carried out, namely with 

respect to moisture content, weathering state and material anisotropy.

The relevance of the proposed statistical correlations is the possibility of estimating the 

mechanical properties of granitic lithotypes from ancient masonry structures, which are 

very common in the Northern region of Portugal and several other countries. This is of 

relevance in diagnosis and inspection of the structural and material condition, reducing 
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the need of sampling material cores and making stone conservation treatments more 

cost-efficient.

2 Brief description of the material

Granite is the most used stone in the construction of ancient buildings, ornamental

elements and movable stone heritage artifacts (e.g. statues, altar pieces, benches, etc.) in

the North of Portugal, either in monumental or vernacular architecture. A wide range of 

granitic rocks is present in masonry buildings and artifacts, depending on their 

petrographic features, such as grain size and internal texture. Therefore, the mechanical 

characterization of only one type of granite would be rather limitative. In addition, the 

weathering processes, to which granites are subjected through years, lead to changes on 

the mechanical properties that require characterization.

The granitic types considered in the present study were mostly collected from the 

Northern region of Portugal. The selection of the granite types was based on 

mineralogical, textural and structural characteristics. Thus, fine to medium, medium to 

coarse, and coarse-grained granites were selected (some with porphyritic textures). In 

addition to these criteria, the presence of planar anisotropies and the weathering 

condition were also considered. With respect to planar anisotropies, it is noted that: (a) 

the natural orientation planes of granitic rocks or preferred orientation of minerals 

(foliation) can be relevant for further analysis of the variation of the mechanical 

properties [25]; (b) three orthogonal planes can be identified as rock splitting planes

(quarry planes), defined as planes of preferred rupture. The rift plane is the plane 

corresponding to the easiest splitting in the quarry being easily recognized by the 

quarryman.
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In the granites tested, the foliation was marked, when macroscopically discernible, and

the orientation of the quarry rift planes was marked with the help of the quarryman.

A brief description of the different types studied here is given in Table 1. The more 

weathered types of the same granite facies are designated with an asterisk (*). 

Additionally, the loading directions considered for each granite type are also indicated. 

It should be noted that the fresh granite PTA exhibits a clear preferential planar 

orientation but this feature was not visible, macroscopically, on the weathered type 

PTA*. 

3 Experimental testing

3.1 Mechanical and physical characterization

The mechanical characterization of granites aimed at obtaining the complete behavior of 

different types of granite under tensile and compressive loading, thus, achieving an

overview of relevant engineering properties, namely elastic, strength and fracture 

properties. Obtaining the softening behavior of rock materials is only possible by 

performing tests under closed-loop control. For the direct tensile tests, a CS7400S 

servo-controlled universal testing machine with fixed end platens was used. This 

equipment has a load cell connected to the vertical actuator with a capacity of 22kN, 

being particularly suitable for small specimens. Due to the limited distance between 

platens, prismatic specimens of 80mm height, 50mm length and 40mm width were 

adopted, see Fig. 1a. Such dimensions are less favorable in case of coarse-grained 

granites and granites with porphyritic texture, since larger representative material 

volume would be ideally required [26]. To overcome this limitation, a larger number of 

specimens were tested, so that the effect of the scatter in the results is reduced and the 
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average values are representative of the macroscopic properties, especially in the case of 

coarser granites (PLA and PLA*). Two lateral notches with a depth of 5mm at mid 

height of the specimen were introduced by means of a diamond sawing machine in 

order to localize the fracture path. The specimens were fixed to the steel platens through 

the application of an epoxy resin. Due to the brittle behavior of granite, direct tensile 

tests had to be conducted using very low values of velocity, which varied between 

0.08 m/s and 0.5 m/s. More details about the direct tensile testing can be found in [27]. 

The specimens to be tested under uniaxial compression were prepared in accordance 

with ASTM D2938-95 (2002) standard [28]. A diameter of 75mm was adopted for all 

specimens and the length to diameter ratio was slightly higher than 2.0. Such 

dimensions are sufficient to be in agreement with the standard but, for coarse-grained 

granites that exhibit porphyritic internal texture, the diameter is smaller than 10 times 

the largest grain. In the preparation of the specimens, special care was taken to ensure 

parallel ends and perpendicular to the longitudinal axis. In addition, the specimen ends 

were suitably ground so that a smooth surface could be obtained. The uniaxial 

compressive tests were carried out in a very stiff frame connected with an appropriate 

closed-loop control system. Some of the granites to be tested were expected to have 

very high compressive strength and the internal variable selected as feedback signal was 

the lateral deformation, measured by a tailored made device [29]. In order to reduce the 

friction coefficient between specimens and steel platens, two oiled sheets of Teflon with 

a thickness of 100 m were placed at the interfaces between the specimen and the steel 

platens, see Fig. 1b.

The knowledge of the physical properties of rocks like porosity and density allows a 

better understanding of the variations on the mechanical properties. The physical 
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properties of the granites were determined in accordance with [26]. In order to use 

representative samples of rock masses and taking into account the average dimension of 

the grains, cubic specimens of approximately 150 150 150mm3 were used in the 

porosity test. Porosity tests were repeated in all specimens tested under tensile and 

compressive loading.

3.2 Nondestructive testing

As mentioned above, the main goal of using UPV testing as a non destructive technique 

is the correlation with elastic and strength properties of the granites under study. This 

implies that measurements of these mechanical properties and the NDTs should be 

made on the same specimens. Thus, before tensile and compressive tests have been 

undertaken, the ultrasonic pulse velocity was measured in each specimen. According to 

ASTM D2845-05 (2005) [30], the ultrasonic pulse velocity is influenced by the shape 

and size of the specimens. Therefore, ultrasonic pulse velocity measurements were also 

made in cubic specimens used in the porosity tests. Below, a comparison of the results 

obtained in the specimens with distinct shape and size are performed. Finally, since 

moisture content of the tests specimen is expected to affect the ultrasonic pulse velocity, 

two extreme moisture conditions were considered: dry and saturated.

The ultrasonic pulse measurements were carried out by using the TICO equipment from 

Proceq. Piezoelectric transducers of natural resonance frequency of 54kHz and 150kHz 

were used in the measurements. The main reason for using distinct frequencies was the 

small lateral dimension of the tensile specimens, in which only the transducers of 

natural resonance frequency of 150kHz could be used. The ultrasonic pulse velocity was 

obtained by direct transmission, where the transmitter and the receiver transducers are 
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located directly opposite each other on parallel surfaces. The connection of the 

transducers to the specimen was improved through the application of an appropriate 

coupling gel, in order to reduce the influence of voids between the material and the 

transducers. The transit time was recorded for each specimen as the average of three 

independent readings.

4 Experimental results

4.1 Mechanical and physical properties

The average values of the tensile and compressive strength and the modulus of elasticity 

for the different types of granites are indicated in Table 2. Here, the tensile strength, ft,

and normalized fracture energy, GfNI, are referred to mode I tensile tests, whereas the 

compressive strength, fc, modulus of elasticity, E, and stress markers fci and fcd describe 

the compressive behavior of granites. It is noted that the normalized fracture energy is 

given by the fracture energy divided by the tensile strength, which is also sometimes 

referred to as ductility.

In general, fresh granites or less weathered granites (BA, GA, RM, MC, PTA, PLA), 

exhibit low values of porosity, up to 1.2%. The weathered granites present considerably 

higher values. The high porosity values of the weathered granites MDB* (7.24%) and 

PTA* (5.02%) is macroscopically associated with changes of color and a rougher

surface. Although granite MDB is considered a non-weathered granite because of its 

white color, the value of porosity is remarkably high (5.06%). It has been noted that the 

porosity of igneous rocks tends to increase up to 20% or more as the weathering degree 

increases [31]. From the tests, it is also evident that the density decreases as the porosity 
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increases. The values of porosity present some scatter, in opposition to density that 

features very low coefficients of variation.

The compressive fracture process up to peak is well described by the stress markers, fci

and fcd, see Fig. 2.. The onset of the microcraking is associated to the stress level fci and 

is followed by a nonlinear increase on the lateral strain, as well as by the nonlinearity of 

the volumetric strain. The unstable microcracking occurs for the crack damage stress 

level, fcd, and is associated to the reversal point in the total volumetric strain diagram 

(Vr). This point is connected to the maximum compaction of the specimen and to the 

onset of dilation, since the increase on volume generated by the cracking process is 

larger than the standard volumetric decrease due to the axial load.

It can be seen that there is a wide range of variation for the mechanical properties 

among the granites, with low to moderate levels of scatter. According to what was 

largely discussed in [32], the weathering state, planar anisotropy and even the grain size 

influence considerably the strength and elastic properties. It is clear that the weathering 

state leads to a significant reduction of tensile and compressive strength, as well as of 

the modulus of elasticity. On the other hand, the normalized fracture energy (or 

ductility) increases with weathering. Granites exhibit low to high anisotropy under 

tensile loading. Under compression, the anisotropic behavior is more moderate, which 

can be attributed to the fact that the macrocracks are not perfectly aligned with the plane 

of anisotropy (foliation or rift plane) as in case of the direct tension. 
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4.2 Ultrasonic pulse velocity

The mean values of the UPV were obtained by averaging three measurements of the 

transit time, t, recorded during the test. After measuring the path length, L, the values of 

the velocity were calculated as UPV = L / t.

The mean values of the ultrasonic pulse velocity measured in the cubic specimens and 

the corresponding coefficients of variation are shown in Table 3. The results include the 

values obtained for different moisture contents, dry and saturated conditions, and for 

two distinct frequencies of the transducers. It should be mentioned that the results 

obtained in the cubic specimens are taken as reference, given the lower dimensions of 

the compressive and tensile specimens. 

It can be observed that the differences between the values of the ultrasonic pulse 

velocity obtained for frequencies of 54 and 150kHz are very small, with a maximum of 

4.5% and an average of 2%. If a linear correlation is fitted to the experimental data, the 

velocity obtained with 150kHz transducers could be obtained from the velocity attained 

with the transducers of natural frequency of 54kHz by the expression UPV150 =

0.98.UPV54 (r
2 = 1.0). For practical purposes, this means that both transducers yield the 

same results. When frequencies of 54kHz are considered, the UPV values range from 

1956m/s for granite PTA* to 4805m/s for granite BA. The latter value is close to the 

typical values reported for fresh granites [25]. In case of saturated specimens, the values 

are between 3994m/s and 5527m/s, which means that a narrower range of values is 

observed. The low scattering found reflects the homogeneity of the test materials, which 

belong to the same large stone block, and confirms the reliability of UPV testing.

When comparing the average values of UPV obtained in the specimens with distinct 

shape and size, only moderate differences are found, see Fig. 3.. With the exception of
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granite PTA*, where the cubic specimens reaches values of UPV 10% and 17.5% 

higher (direction perpendicular and parallel to the foliation) than the ones obtained in

tensile prismatic specimens, differences lower than 6.5% were always found. No 

significant differences were found with respect between cubic specimens and the 

cylindrical compressive specimens, which are always lower than 6%. This means that 

the distinct size and shape of the specimens used in the mechanical tests leads to values 

of the ultrasonic pulse velocity close enough to the reference results. Therefore, 

statistical correlations between the UPV and the mechanical parameters measured in 

each specimen can be proposed.

4.3 Analysis of the variation on the UPV

Aiming at obtaining a better insight into the main factors that contribute to the range of 

variation of the ultrasonic pulse velocity among granites, internal microstructural 

aspects related to the planar anisotropy, weathering state and moisture content are 

analyzed next.

4.3.1 Weathering state and planar anisotropy

The comparison between the values of the ultrasonic pulse velocity measured in fresh 

and weathered granites is shown in Fig. 4., where the values of porosity are also 

indicated inside brackets. From the test results, one can observe that the weathering 

state influences the velocity of propagation of the ultrasonic waves through the elastic 

matrix of the material, for dry and saturated conditions. Apart from granite MDB and 

MDB*, which is hardly sensitive to weathering (as indicated above MDB and MDB* 

are probably both weathered), higher values of the ultrasonic velocity were obtained in 

less weathered granites. Among these, more remarkable differences were recorded in 
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case of granites PLA and PTA. This behavior can be related to the degree of alteration 

that can be evaluated through the increase in the porosity. In fact, as was previously 

mentioned, the increase in the porosity from fresh to weathered granites means a 

reduction of the stiffness and strength of the granites. This can be associated to the 

degradation of the rock forming minerals strength and of the grain boundaries stiffness. 

The higher amount of voids, pores and unavoidable microfissures reflects the slower 

propagation of the elastic waves. Gupta and Rao [33] found progressively decreasing

values of the UPV with the degree of weathering. This reduction is less significant in 

case of saturated specimens since pores and voids, as well as microfissures are filled 

with water.

Assuming that the UPV is affected by microfissuring of the material, it can be a simple 

and economic tool to evaluate the degree of weathering of granites, as already indicated 

in [31]. The theoretical value of the UPV of granite can be calculated from the modal 

composition and from the knowledge of the velocity of rock forming minerals. A 

comparison of the theoretical value with the effective measured value of the ultrasonic 

pulse velocity represents a measure of the rock quality. This comparison can also be an 

important technique to detect microfracturing in materials subjected to compressive or 

tensile loading. Meglis [19] reported the decreasing of the UPV as the damage due to 

stress induced cracking grows. During compression tests in granites, anisotropic 

decrease of the velocity was recorded, which is associated to the significant decrease of 

the velocity measured normal to the loading direction. This behavior is confirmed by 

the results of uniaxial compression tests conducted on three specimens of granite PLA* 

in the parallel and perpendicular direction to the rift plane. In Fig. 5., the evolution of 

the UPV with the increasing compressive stress applied in the uniaxial compression test 
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given by the relation between the compressive stress and compressive strength ( /fc) is 

shown. It is observed that a significant reduction of the UPV is found in the direction 

perpendicular to loading, whereas almost constant values are found in the direction 

parallel to loading. This behavior indicates material discontinuities resulting from 

microcracking developed in plans oriented in the direction of axial loading. It is 

possible to verify that the reduction on the UPV is particularly noticeable above the 

stress level corresponding to the crack damage stress, fcd, which equals approximately 

0.5fc.

Under free stress conditions, the anisotropic velocity reflects the internal structure of the 

material related to the preferential alignment of minerals or cracks. The effect of the 

structural arrangement of the grains on the velocity of propagation of the ultrasonic 

waves concerning the planar anisotropy (foliation and quarry planes), can be observed 

in Fig. 6. Again with the exception of MDB and MDB*, the results stress the role of the 

foliation and rift planes in the velocity of propagation of the ultrasonic waves. The 

velocity of propagation of the UPV is higher in the direction parallel to the foliation or 

rift planes. Similarly to what was referred about the weathering effect, also the 

anisotropy resulting from the internal structure is lowered by water saturation.

4.3.2 Moisture content

As reported in [34], the compressional wave velocities exhibit distinct values according 

to the different pore fluid present in the rock, and.saturation increases compressional 

velocities. Winkler and Murphy [35]

create relative motion between the fluid and the solid skeleton due to inertial effects. 

When the matrix is accelerated, the fluid lags behind, from which results viscous 

dissipation of acoustic energy. The effect of the pore fluid saturation on the velocity is 
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however dependent on the frequency of the signal. At higher frequencies, the viscous 

wavelength is very small and the fluid and solid are essentially decoupled, resulting in a

maximum velocity. On the contrary, the velocity is minimal at low frequencies, when 

both fluid and solid are moving in phase.

In this work the effect of the water saturation is investigated by comparing the values of 

the UPV found in dry and saturated specimens. This analysis shows that moisture 

content has a remarkable influence on the velocity of propagation of the ultrasonic 

waves. The results indicate a clear tendency for dry specimens to exhibit much lower 

values of the UPV regarding the ones obtained in saturated specimens. Similar tendency 

was found by [33], for granites and basalts. Fig. 7a shows that the values of the UPV

obtained in saturated and dry specimens are well correlated (r2 =0.88). This means that 

the values of the ultrasonic pulse velocity in saturated specimens can be obtained with 

reasonable accuracy from the values recorded in dry specimens. In spite of the large 

scatter, the difference of the UPV for both moisture conditions appears to have some 

relation with the porosity of granites, see Fig. 7.b. The increase of the UPV from dry to 

saturated conditions increases as the porosity increases. For moderate and high 

porosities there are large variations of the UPVdry to UPVsat ratio, which, to certain 

extent, can be explained by the attenuation of the anisotropy under saturated conditions.

Fig. 8 shows the increase of the UPV measured on saturated specimens with respect to 

dry specimens defined by the following expression:

dry

drysat
sat UPV

UPVUPV
UPV [1]

In low porosity granites like BA and GA, the difference on the ultrasonic pulse velocity 

measured in dry and saturated specimens is of 14.1 and 17.4% respectively, whereas in 

granite RM and MC, the saturated specimens exhibit 30.5 and 35.0% larger values than 
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dry specimens. Reduction of approximately 30% of the dry velocity was recorded in 

granite PTA. A reduction of the UPV in dry specimens with saturation of about 20-30% 

was reported by [36] in low porosity rocks. 

Higher deviations were found in high porosity granites such as granites AF, PTA*, 

MDB and MDB*, where an increase of the ultrasonic pulse velocity in saturated 

specimens reaches a maximum of 105% in granite PTA*, in the direction perpendicular 

to the rift plane. The increase in the velocity in saturated specimens depends on the 

direction of measurement and, with the exception of granite MDB, granites exhibit a

more noticeable increase of the UPV in saturated specimens in the direction 

perpendicular to the foliation or rift planes. As previously mentioned, the consequence 

of this behavior is the reduction of the anisotropy of granites under saturated conditions, 

which seems to be related with a loss of sensitivity of the UPV technique to detect 

major discontinuities associated to pre-existing microfissures aligned in the direction 

parallel to the rift plane or to foliation plane.

5 Correlations between UPV and physical and mechanical properties

As addressed above elastic properties are usually necessary in the evaluation of the 

performance of built structures and UPV is commonly used in the estimation of the 

strength of concrete [37]. Concerning the assessment of the rock properties by means of 

simple non destructive techniques, different results revealed the dependence of the 

mechanical properties, namely the modulus of elasticity and compressive strength, on 

UPV [10, 38].

The present section aims at obtaining statistical correlations that enable the estimation 

of granite mechanical properties from UPV. The experimental data collected in the 
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present testing program includes UPV measurements from cubic, prismatic tensile and 

cylindrical compressive specimens. The relationship between the velocity of the 

longitudinal ultrasonic waves and the tensile and compressive strength are displayed in

Fig. 9a and Fig. 9b, respectively. A reasonable nonlinear correlation was found between 

the tensile strength and ultrasonic velocity (r2 = 0.89), meaning that ultrasonic pulse 

velocity can provide a reliable preliminary estimation of the tensile strength. High 

strength granites have associated high values of velocity. The compressive strength can 

only be roughly estimated by the linear expression shown in Fig. 9b, since the 

coefficient of correlation corresponding to the linear function found between both 

variables is lower (r2 = 0.72). This statistical correlation is, to great extent, affected by 

the anisotropy of the granites, particularly, of granites PLA and PLA*. As discussed 

previously, the application of compressive loads in the direction parallel to the rift 

plane, which is defined by the preferential alignment of feldspar megacrystals and the 

preferential alignment of the microfissures, leads to tensile stress concentrations at the 

tip of the potential microfissures, resulting in a reduction of the compressive strength. 

However, the UPV presents rather high values in this direction, since it is in the 

perpendicular direction to the foliation that the pre-existing microfractures 

discontinuities are detected. If the values concerning the granites PLA and PLA* were 

excluded from the experimental data, a linear function fc = 0.0446UPVdry - 46.70 would 

be found for the relationship between the compressive strength and the ultrasonic pulse 

velocity, with a mucher higher coefficient of determination (r2 = 0.85). But this 

correlation should only be used for rather isotropic granites. It is noted that linear 

correlations between the compressive strength and the UPV were given in [38] for 

granites and in [10] for several types of rocks. 
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The relation between the UPV and the modulus of elasticity is displayed in Fig. 10. The 

significant linear correlation achieved between the modulus of elasticity and the UPV 

(r2= 0.84) confirms the expected relation between both properties. It should be noticed 

that the propagation velocity depends on the dynamic modulus of elasticity of the 

continuum medium. 

In addition to previous researchers, relations between the UPV and compressive and 

tensile fracture properties are also investigated. With respect to compressive loading, 

linear fittings of the experimental data composed by the UPV and the stress markers 

that characterize the pre-peak fracture process are proposed, see Fig. 11. The linear 

functions show that rough estimations of the crack initiation and crack damage stress 

levels, fci and fcd, can be obtained from the UPV. The coefficient of correlation would 

increase considerably if the values concerning the granite PLA (perpendicular direction 

to rift plane) were excluded from the data.

Reasonable nonlinear correlations were found between ultrasonic pulse velocity and the 

mode I normalized fracture energy, GfN. In spite of the scattered data, there is a clear 

tendency for the UPV to exhibit higher values in case of more brittle materials, seeFig. 

12.

The reasonable relations obtained between UPV and tensile and compressive fracture 

parameters can be, to a certain extent, explained by the good correlations achieved 

between the compressive and tensile fracture properties with the corresponding peak 

stress [27, 29]. As a main result, it is important to stress the possibility of estimating the 

compressive and tensile fracture behavior of granites by simply measurement of the 

UPV.
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The relations between the UPV and the physical parameters, porosity and density, are 

illustrated in Fig. 13. Both correlations are characterized by large scatter of the data, 

which to a certain extent is associated to the anisotropy of some granites. However, a

reasonable nonlinear correlation was found between UPV and porosity (r2 = 0.74). If 

one considers the values of the UPV in saturated conditions, the nonlinear correlation 

with the porosity is given by UPVsat = 5004 -0.123 (r2 = 0.78). For the density, despite 

the large scatter, there is still a positive trend with the UPV.

6 Conclusions

In order to obtain a better insight about the adequacy of using the ultrasonic pulse 

velocity (UPV) as a simple and economical nondestructive technique to predict the 

elastic and strength properties of granite, a large experimental testing programme was 

set-up. Cubic, prismatic tensile and cylindrical compressive specimens with distinct size 

were considered under different moisture conditions, namely, oven dried and saturated. 

Two distinct natural resonance frequencies of the transducers were also considered. 

From the results, it was observed that although no significant differences were obtained 

between frequency transducers, UPV measured with frequency of 150kHz exhibit 

slightly lower values than 54kHz transducers. Also specimens of smaller size (tensile 

specimens) present slightly lower values of the UPV.

Factors like weathering state and moisture content were found to affect remarkably the 

values of the UPV. Weathered granites exhibit lower values for UPV and saturated 

granites exhibit higher values for UPV. In addition, the internal microstructure related 

to planar foliation or rift plane leads to remarkable anisotropy of the UPV. Higher 

values of velocity were recorded in the direction parallel to the foliation or rift planes.
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Anisotropy can be, to a great extent, hidden by water saturation of the specimens. This 

moisture condition leads to a loss of sensitivity to detect internal free stress 

microcracking that induces anisotropy. Therefore, UPV appears to be a simple 

nondestructive technique of evaluating the internal anisotropy only of dry granites.

The significant statistical correlations that were established between the ultrasonic pulse 

velocity and the mechanical properties, namely tensile strength, compressive strength,

modulus of elasticity and fracture values, indicate that these parameters can be 

reasonably estimated by means of this nondestructive method. In particular, the 

statistical correlations obtained between UPV and fracture parameters seem to be novel 

in the literature and can be used for an estimation of the fracture behavior of granites in 

compression and tension.
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Table 1

: Brief description of granites tested and loading directions

Granite 
Designation

Description Loading Directions

AF
Fine to medium-grained two-mica 
granite

Parallel and perpendicular to 
the foliation plane

MC
Coarse-grained porphyritic 
biotite granite

Parallel to the rift plane

MDB
MDB*

Medium-grained two- mica 
granite

Parallel and perpendicular to 
the foliation plane

RM Medium-grained biotite granite Parallel to the rift plane

GA, GA*
Fine to medium-grained, with 
porphyritic trend, two mica 
granite

Parallel to the rift plane

BA
Fine to medium-grained 
porphyritic biotite granite

Parallel to the rift plane

PTA
PTA*

Fine to medium-grained two-mica 
granite

Parallel and perpendicular to 
the foliation and rift plane

PLA
PLA*

Medium to coarse-grained 
porphyritic biotite granite

Parallel and perpendicular to 
the rift plane
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Table 2

: Mechanical parameters characterizing the tensile and compressive behavior of granites. The coefficient 

of variation is indicated inside brackets

Granite Porosity (%) ft (N/mm2) GfN (mm) fc (N/mm2) E (N/mm2) fci (N/mm2) fcd (N/mm2)

BA 0.51 (12.9) 8.08 (11.4) 0.023 (14.7) 148.5 (4.8) 59939   (5.2) 55.1 (0.36fc) 102.2 (0.66 fc)

GA 0.47   (6.1) 6.01 (11.1) 0.025 (22.0) 135.7 (5.0) 52244   (2.3) 50.0  (0.37fc) 96.2   (0.71 fc)

GA* 3.56   (2.6) 3.52 (12.3) 0.058 (23.2) 89.5   (2.5) 35088   (3.3) 25.1  (0.28fc) 43.2  (0.49 fc)

RM 0.74   (9.6) 4.51   (9.3) 0.033 (14.1) 159.8 (2.5) 58926   (1.8) 52.4  (0.33fc) 123.3 (0.78 fc)

MC 0.87   (4.3) 5.23   (6.3) 0.043 (21.0) 146.7 (2.8) 63794   (5.6) 58.5 (0.39 fc) 120.9 (0.81 fc)

AF foliation 
3.16   (3.2)

2.34 (11.5) 0.077 (19.1) 66.7   (7.8) 15748   (7.2) 17.5 (0.26 fc) 29.1   (0.43 fc)

AF // foliation 3.04   (3.0) 0.067 (19.8) 68.9   (5.6) 18954   (6.9) 15.8 (0.23 fc) 30.1   (0.44 fc)

MDB foliation
5.06   (7.5)

2.36   (5.4) 0.111 (17.5) 49.7   (5.2) 15886 (13.5) 14.5 (0.30 fc) 21.8   (0.45 fc)

MDB // foliation 2.20   (4.9) 0.113 (17.8) 44.8   (2.8) 11600   (4.2) 11.8 (0.26 fc) 17.8   (0.40 fc)

MDB* foliation
7.24   (3.4)

1.83   (4.3) 0.147 (15.7) 35.2   (3.4) 11028 (12.0) 9.7   (0.27 fc) 15.2   (0.43 fc)

MDB* // foliation 1.97   (5.3) 0.126 (12.1) 26.0   (7.1) 12243 (13.6) 6.8   (0.27 fc) 10.7   (0.43 fc)

PTA foliation
1.17   (2.8)

4.15 (14.1) 0.044 (21.7) 119.1 (3.1) 40526   (3.1) 30.1 (0.25 fc) 75.4   (0.63 fc)

PTA // foliation 4.90 (15.6) 0.042 (12.0) 109.1 (7.3) 41504   (1.6) 27.0 (0.24 fc) 58.3   (0.53 fc)

PTA* rift plan
5.02   (7.6)

1.56 (11.3) 0.151 (19.4) 60.4   (4.8) 15008   (7.1) 14.1 (0.24 fc) 31.4   (0.53 fc)

PTA* // rift plan 2.12   (4.1) 0.124 (13.6) 50.2 (11.1) 18168   (3.3) 14.7 (0.29 fc) 26.6   (0.52 fc)

PLA rift plan
0.84   (5.8)

2.79 (10.5) 0.053 (25.0) 147.0 (2.6) 53737   (2.8) 45.1 (0.31 fc) 113.3 (0.77 fc)

PLA // rift plan 6.31 (13.2) 0.040 (24.6) 125.2 (6.1) 58180   (2.6) 40.8 (0.33 fc) 85.9   (0.70 fc)

PLA* rift plan
1.55   (7.7)

1.91 (11.1) 0.085 (18.5) 88.5 (4.2) 28981   (1.6) 26.3 (0.30 fc) 48.5   (0.55 fc)

PLA* // rift plan 3.86   (5.1) 0.065 (13.5) 76.9   (3.2) 41607   (7.6) 19.7 (0.26 fc) 37.8   (0.49 fc)
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Table 3

: Mean values of the ultrasonic pulse velocity obtained in cubic specimens. Coefficient of variation is 

indicated inside brackets (%)

Granite

Dry specimens Saturated specimens

UPV54

(m/s)
UPV150

(m/s)
UPV54

(m/s)
UPV150

(m/s)
BA 4804   (1.5) 4776    (1.7) 5527   (1.0) 5457 (1.1)
GA 4593   (1.0) 4556    (1.2) 5423   (1.4) 5359 (1.5)
GA* 3244   (2.1) 3203    (2.4) 4598 (0.97) 4505 (1.4)
RM 4104   (4.0) 4037    (4.1) 5369   (1.3) 5266 (1.9)
MC 4083   (1.1) 3986  (0.85) 5489 (0.89) 5361 (1.1)
AF foliation plan 2256   (4.4) 2186    (6.0) 4276   (2.0) 4163 (1.8)
AF // foliation 2572   (3.7) 2523    (4.0) 4410   (4.7) 4310 (4.8)
MDB foliation 2488   (1.5) 2426    (1.8) 4041   (1.5) 3888 (2.1)
MDB // foliation 2241   (2.7) 2181    (2.8) 3994   (4.2) 3805 (5.7)
MDB* foliation 2340   (1.6) 2273    (2.1) 4025 (1.5) 3933 (3.1)
MDB* // foliation 2341 (0.76) 2301  (0.80) 4029   (2.4) 3894 (2.5)
PTA foliation 3278 (0.53) 3210  (0.26) 4723   (2.4) 4576 (2.8)
PTA // foliation 3585 (0.35) 3567    (0.5) 4873   (2.0) 4779 (2.4)
PTA* rift plan 1956 (17.8) 1899 (18.5) 4024   (7.2) 3874 (9.0)
PTA* // rift plan 2545 (12.5) 2495  (12.2) 4032   (5.4) 3907 (7.0)
PLA rift plan 2743  (1.8) 2626    (2.2) 4706   (5.1) 4602 (5.0)
PLA // rift plan 4162   (2.1) 4037    (1.9) 5421   (2.9) 5268 (2.3)
PLA* rift plan 2650   (2.6) 2543    (3.1) 4522   (5.5) 4294 (6.2)
PLA* // rift plan 3720   (2.3) 3595    (2.2) 4981   (2.7) 4851 (2.9)
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(a)

(b)

Fig. 1
. Test setup for mechanical characterization; (a) Direct tensile tests; (b) Uniaxial compressive tests
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Fig. 2.
Evolution of the fracture process under uniaxial compression in a typical stress-displacement diagram up 
to peak load



30

Fig. 3.

Comparison of the UPVdry among the specimens with distinct size and shape 
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(a)

(b)
Fig. 4.

Comparison of the ultrasonic pulse velocity between fresh and weathered granites using 54kHz 

transducers; (a) dry cubic specimens; (b) saturated cubic specimens 
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Fig. 5.

Evolution of the ultrasonic pulse velocity for granite PLA* under increasing uniaxial compressive stress
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(a)

(b)
Fig. 6.

Evaluation of the influence of planar anisotropies on the ultrasonic pulse velocity; (a) dry cubic 

specimens; (b) saturated cubic specimens
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(a)

(b)
Fig. 7.

Influence of the moisture state on the ultrasonic pulse velocity; (a) UPVdry vs. UPVsat (b) porosity vs. 

UPVdry/UPVsat ratio
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Fig. 8.

Increase of the UPV in saturated specimens with respect to the dry specimens 
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(a)

(b)

Fig. 9.

Relationship between ultrasonic pulse velocity and the granite strength; (a) UPVdry vs. tensile strength; 

(b) UPVdry vs. compressive strength 
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Fig. 10.

Relationship between ultrasonic pulse velocity, UPVdry, and modulus of elasticity, E
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(a)

(b)

Fig. 11.

Relationship between ultrasonic pulse velocity and compressive stress levels; (a) UPVdry vs. crack 

initiation stress; (b) UPVdry vs. crack damage stress
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Fig. 12.

Relationship between ultrasonic pulse velocity and the tensile fracture parameter; UPVdry vs. normalized 

mode I fracture energy, GfN
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(a)

(b)

Fig. 13.

Relationship between ultrasonic pulse velocity and physical parameters; (a) porosity vs. UPVdry; (b) dry 

density vs. UPVdry
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