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ARTICLE INFO ABSTRACT

Keywords: The increasing and indiscriminate use of antibiotics is the origin of their introduction in aquatic systems through
Cell membrane integrity (viability) domestic and livestock effluents. The occurrence of erythromycin (ERY), a macrolide antibiotic, in water bodies
Erythromycin raises serious concerns about its potential toxic effect in aquatic biota (non-target organisms), particularly in

Metabolic activity
Mitochondrial function
Photosynthesis
Toxicity

microalgae, the first organisms in contact with aquatic contaminants. This study aimed to evaluate the possible
toxic effects of ERY on relevant cell targets of the freshwater microalga Pseudokirchneriella subcapitata. Algal cells
incubated with significant environmental ERY concentrations presented disturbance of the photosynthetic ap-
paratus (increased algal autofluorescence and reduction of chlorophyll a content) and mitochondrial function
(hyperpolarization of mitochondrial membrane). These perturbations can apparently be attributed to the si-
milarity of the translational machinery of these organelles (chloroplasts and mitochondria) with the prokaryotic
cells. P. subcapitata cells treated with ERY showed a modification of metabolic activity (increased esterase ac-
tivity) and redox state (alteration of intracellular levels of reactive oxygen species and reduced glutathione
content) and an increased biovolume. ERY induced an algistatic effect: reduction of growth rate without loss of
cell viability (plasma membrane integrity). The present study shows that chronic exposure (72h), at low (ug
L~ ERY concentrations (within the range of concentrations detected in surface and ground waters), induce
disturbances in the physiological state of the alga P. subcapitata. Additionally, this work alerts to the possible

negative impact of the uncontrolled use of ERY on the aquatic systems.

1. Introduction

Erythromycin (ERY) is a broad-spectrum macrolide antibiotic
(ATB). It binds reversibly to the 23S rRNA molecule in the 50S subunit
of the ribosome, inhibiting translocation of peptidyl tRNA, and thereby
inhibiting protein synthesis in bacteria (Davies and Davies, 2010). ERY
is effective against a wide variety of bacteria and is widely used in
human and veterinary medicine. This ATB is also applied in intensive
livestock and aquaculture farming for growth promotion and feed ef-
ficiency (Jessick et al., 2011).

ERY is slightly absorbed by humans and animals and is excreted in
urine (5-10%) and faeces (50-67%) (McArdell et al., 2003). The
elimination/degradation of this macrolide in wastewater treatment
plants is incomplete (Kolpin et al., 2002). Thus, ERY has been one of
most widespread antibiotic found in aquatic systems: surface, ground-
water and drinking water (Hirsch et al., 1999; Christian et al., 2003;
Xue et al., 2013; Jiang et al., 2014; Schafhauser et al., 2018). ERY tends
to persist in aquatic systems (Zuccato et al., 2005), being detected in
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concentrations of ng L™ ! to ug L™ ! (Kolpin et al., 2002; Zhang et al.,
2013). Although there are no legal limits of discharge into the en-
vironment, ERY was included in the watch list of substances/group of
substances for extent monitoring by the Decision 2018/840/EU of
European Comission (2018). Due to its continuous and increased use,
detection in environment, persistence and toxic effects detected at low
concentrations, ERY is considered a contaminant of emerging and high
ecotoxicological concern (Mili¢ et al., 2013; Vilitalo et al., 2017).

It has been shown that antibiotics, at low concentrations, influence
bacterial cell physiology (morphology, macromolecular composition
and metabolism) and gene expression (Mitosch and Bollenbach, 2014).
The changes in bacterial populations cause impact on nutrient cycle
(Ding and He, 2010; Martinez, 2017). Additionally, the presence of ERY
in aquatic systems may cause adverse effects on aquatic, non-target
organisms (Valitalo et al., 2017). In this context, it is described that ERY
disturbed cyanobacterial growth (Ando et al., 2007; Gonzéalez-Pleiter
etal., 2013, 2017a; Waiser et al., 2016). ERY also inhibited the electron
transport of both photosystems (PSI and PSII) of the cyanobacteria
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Microcystis aeruginosa in a concentratioh-dependent way (Deng et al.,
2014). This antibiotic interfered with the chlorophyll a biosynthesis
and caused oxidative stress in the cyanobacterium Microcystis flos-aquae
(Wan et al., 2015). Other studies also reported that ERY inhibited
growth (Eguchi et al., 2004; Isidori et al., 2005; Sendra et al., 2018),
affected photosynthesis (Liu et al., 2011b; Sendra et al., 2018) and
antioxidant systems (Nie et al., 2013; Sendra et al., 2018) in microalgal
cells. Chronic exposure to ERY lead to a reduction of viability of the
freshwater invertebrate Daphnia magna (water flea) (Ji et al., 2012).

Microalgae, as primary producers, constitute the basis of food chain.
These microorganisms have been considered a good indicator of an-
thropogenic pollution and are used in the assessment of water quality.
Thus, the microalga Pseudokirchneriella subcapitata has been applied as a
reference organism in standard toxicity tests (OECD, 2011; US-EPA,
2012) due to its ease of culturing, ubiquitous distribution and high
sensitivity to toxic substances including metals and organic con-
taminants (Rojickova-Padrtova and Marsalek, 1999).

Due to its action mechanism, it could be expected that ERY inhibits
the growth of cyanobacteria (a prokaryotic cell). However, it is un-
predictable what effect ERY could have on eukaryotic aquatic organ-
isms. Therefore, there is the need to study how microalgae respond to
increased concentrations of ERY for a better knowledge regarding the
risks that this antibiotic might pose to non-target organisms in aquatic
ecosystems.

Our previous study reported that ERY inhibits the growth of P.
subcapitata (72h-EC values) at environmentally relevant concentra-
tions, i.e., at concentrations detected in freshwaters (Machado and
Soares, 2019). In the present work, it was our objective to study the
modes of action of ERY on a non-target organism, the freshwater mi-
croalga P. subcapitata. For this aim, algal cells were exposed for 72 h to
different concentrations of ERY and the following physiological and
biochemical parameters were evaluated: cell morphology (biovolume),
viability, metabolic activity, chlorophyll a (chl a) content, photo-
synthetic and mitochondrial activity, reactive oxygen species (ROS)
production and intracellular reduced glutathione (GSH) content.

2. Material and methods
2.1. Strain, media and culture conditions

This work was performed using the freshwater green alga
Pseudokirchneriella subcapitata (strain 278/4) acquired from the Culture
Collection of Algae and Protozoa (CCAP), UK.

The alga was maintained in OECD medium (OECD, 2011) with
20 g L.™ ! agar (Merck), in the dark, at 4 °C. Medium stock solutions were
prepared and stored as defined by OECD guidelines (OECD, 2011). Pre-
cultures and cultures with an initial cell concentration of ~5 x 10*
cells mL™" were prepared as previously described by Machado and
Soares (2012a). Algal cells were incubated for 2 days, at 25 °C, on an
orbital shaker at 100 rpm, under continuous “cool white” fluorescent
light (fluorescent lamps with a colour temperature of 4300 K), with an
intensity of 4000 lux at the surface of the flasks.

2.2. Treatment of algal cells with ERY

Algal cells were exposed for 72h to 2.2, 5, 38 and 200 ug L™ ! ERY,
which corresponded to 72h-NOEC, 72h-EC;o, 72h-EC59, and 72h-
ECgy, respectively (Machado and Soares, 2019). The assays were carried
out in 1L Erlenmeyer flasks containing OECD medium and the con-
centrations of ERY reported above in a final volume of 400 mL. The
culture medium was inoculated with algal cells in exponential phase of
growth (from a 2-day-old culture) at 5 x 10* cells mL™ and incubated
at 25 °C, on an orbital shaker at 100 rpm, under continuous “cool white”
fluorescent light, as described above. As a control, cells were incubated
in the same conditions reported above but without ERY. The ERY stock
solution (12.6 gL'!) was prepared in dimethyl sulfoxide (DMSO) and
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stored in the dark, at -20 °C. Working solutions (5 and 20 mg LY) of ERY
were prepared in water and stored in the dark at 4 °C. In the assays, the
final concentration of DMSO was less than 0.002% (v/v). Control ex-
periments, previously done, with DMSO showed that, in the con-
centrations used, the solvent does not affect the growth of P. subcapitata
(Machado and Soares, 2019).

For algal growth kinetic assay, samples were withdrawn, at 0, 7, 24,
31, 48, 55 and 72h and cell concentration was measured using an
automated cell counter.

The specific growth rates (u) were calculated by least-square fitting
to the linear part of the semi logarithmic growth plots of the number of
cells mL~! versus time. The doubling time (the time it takes for the
algal population to double the cell number) or generation time (g) was
calculated using the Eq. (1):

@

After 72 h of incubation with the different ERY concentrations, the
number of cells in the culture medium was quantified as described
above. Then, cells were harvested by centrifugation (2500 x g, 5 min)
and resuspended at ~1 X 10° cells mL~*, in 100 mmol L.~ ! PBS buffer,
pH 7.0 (for subsequent ROS determination), or in OECD medium for
subsequent determination of cell viability, biovolume, auto-
fluorescence, metabolic activity, mitochondrial membrane potential
and glutathione content. For chlorophyll a determination, cells were
suspended at ~3 x 10° cells mL™ in OECD medium.

g=1n2/p

2.3. Assessment of cell viability

Algal cell viability was accessed through the evaluation of plasma
membrane integrity. Cells (1 X 10° mL™!) were stained with 0.5 pmol
L! SYTOX Green (SG) (Molecular Probes) for 20 min, at 25 °C, in the
dark as previously described (Machado and Soares, 2012a). The cells
were observed using a Leica DLMB epifluorescence microscope,
equipped with a HBO-100 mercury lamp and a filter set GFP (excitation
filter BP 470/40, dichromatic mirror 500 and suppression filter BP 525/
550).

Algal cells with permeabilized membrane, i.e., heat-treated at 65 °C
for 1 h as described by Machado and Soares (2012a) were used as po-
sitive control. As negative control (cells with an intact cell membrane),
algal cells not exposed to ERY were also used. In each experiment and
for each ERY concentration and control, at least three samples of 100
cells (total of > 300 cells) were scored in randomly selected microscope
fields.

2.4. Biovolume determination

For the determination of algal cell volume (cells non-treated and
treated with ERY), several photos were taken in random fields, in a
phase-contrast microscopy using N plan X100 objective. The images
were acquired with a Leica DC 300 F camera and treated using Leica IM
50-Image manager software.

Algal cell volume was calculated based on the assumption that P.
subcapitata commonly conforms to the shape of a sickle-shaped cylinder
(Sun and Liu, 2003). A minimum sample of 300 cells, for each ERY
concentration and in each experiment, was analysed.

Cell volume (V) was calculated using the Eq. (2):

V = (11/6). a.b* @

where a and b are cell apical section view (length) and transapical
section (width), respectively.

For each ERY concentration and control, the relative frequency (i.e.
the % of the number of times) of each volume was calculated.
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2.5. Chlorophyll a content and autofluorescence of algal cells

The determination of chl a content was performed as previously
described by Soto et al. (2011). Algal cells (3 x 10° mL™Y) were
treated with 90% (v/v) of acetone for 20 h, at 4 °C, in the dark. Then,
cells were centrifuged and the absorbance of the supernatant was
measured at 630, 647, 664 and 691 nm. Absorbance was corrected (for
turbidity) by subtracting the value of absorbance at 750 nm. Chl a
content was calculated as described by Ritchie (2008).

For the chl a fluorescence (autofluorescence) measurement, algal
cells (1 x 10° mL™~ ) were placed in quintuplicate in a transparent 96-
well flat bottom microplate (Orange Scientific). Fluorescence intensity
(in relative fluorescence units, RFU) was measured at a fluorescence
excitation wavelength of 485/14nm and an emission wavelength of
680/10 nm using a PerkinElmer (Victor®) microplate reader.

2.6. Metabolic activity determination

Metabolic activity was evaluated using a fluorescein diacetate
(FDA)-based esterase assay. Algal cells (5 X 10° mL™') were incubated
with FDA (Sigma-Aldrich) at a final concentration of 20 pmol L™Y in
the dark at 25 °C for 40 min, as previously described by Machado and
Soares (2013). Cells not exposed to ERY (positive control) and heat
treated at 65 °C for 1 h (negative control) were also used.

In order to determine the influence of ERY on the hydrolysis of FDA
and on the fluorescence of fluorescein, abiotic controls (without cells)
were carried out, using different concentrations of ERY and FDA or
fluorescein, respectively. Fluorescein was obtained by deacetylation of
FDA using a procedure similar to that described by Aruoja et al. (2015)
to HoDCFDA deacetylation. Briefly, 1 mL of FDA (1 mmol L™ was
freshly deacetylated to fluorescein by reaction with 4 mL of 10 mmol
L~! NaOH, in the dark, for 30 min. Then, the reaction was stopped by
the addition of 25 mmol L ™! PBS buffer (pH 7.4) to have a 40 umol L. ™!
FDA solution. This solution was directly protected from light and placed
on ice until use. Abiotic FDA hydrolysis assay and fluorescein assay
were performed by placing in each well of a 96-well microplate the
respective volume of ERY, 100 puL of FDA (40 pmol L™Y or fluorescein
solution (40 umolL™') and the necessary volume OECD medium to
complete 200 pL. Fluorescence intensity of samples and controls was
measured, in quintuplicate, in a microplate reader at a fluorescence
excitation wavelength of 485/14nm and an emission wavelength of
535/25 nm.

2.7. Mitochondrial membrane potential assessment

The mitochondrial membrane potential (AW,,,) was evaluated using
3,3 -dihexyloxacarbocyanine iodide [DiOCq(3)] (Sigma-Aldrich).
DiOCg(3) is a cell-permeant, green fluorescent, lipophilic probe that is
selective for mitochondria of live cells (Franklin et al., 2001). Algal cells
(1 x10° mL™') in OECD medium were stained with 2.5 pmol L1
DiOCg(3) for 10 min at room temperature in the dark, as previously
described (Sousa et al., 2018). As negative control, cells were treated
with 50 umol L of carbonyl cyanide m-chlorophenyl hydrazine (CCCP,
Sigma-Aldrich) (an uncoupler of the proton gradient) for 10 min and
then stained with DiOCg(3) as described above. CCCP stock solution
(5mmol L) was prepared in dimethyl sulfoxide (DMSO); solvent
concentration in the negative control < 1% (v/v). Fluorescence was
quantified, in quintuplicate, as described in the metabolic activity as-
sessment.

2.8. Detection of ROS production

Intracellular ROS accumulation was determined by incubating the
algal cells (1 x 10°mL~1) with 2’,7’-dichlorodihydrofluorescein dia-
cetate (H,DCFDA) in a final concentration of 10 umol L for 90 min at
25°C in the dark, as previously described by Machado and Soares
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(2016). Fluorescence intensity was measured, in quintuplicate, as de-
scribed in the metabolic activity assessment.

2.9. Evaluation of intracellular reduced glutathione content

Intracellular reduced glutathione (GSH) content was evaluated
using monochlorobimane (mBCl) as previously described by Machado
and Soares (2012b). Briefly, algal cells resuspended in OECD medium at
1 x 10° cells mL ™~ were incubated with 50 umol L.~ mBCl at 25 °C in
the dark for 90 min. As negative control, cells were treated with 1 mmol
L™! of iodoacetamide for 1h, and subsequently stained as describe
above. RFU was measured, in quintuplicate, using a microplate reader
at a fluorescence excitation of 355/40 nm and an emission of 460/
25nm.

2.10. Expression, reproducibility and statistical analysis of the results

In metabolic activity, mitochondrial membrane potential, ROS
production and intracellular reduced glutathione assessment, fluores-
cence was corrected (subtracting cell, culture medium and dye fluor-
escence), normalised (considering the cell concentration) and the re-
sults expressed (except for abiotic controls) as the ratio of fluorescence
of the assay/fluorescence of the control (cells not exposed to ERY). For
chl a content and autofluorescence, the results were normalised (con-
sidering the cell concentration) and expressed as the ratio of chl a
content or autofluorescence in the assay/chl a content or auto-
fluorescence in the control, respectively. Results are expressed as the
mean * standard deviation of three to nine independent experiments,
carried out under identical conditions. In Figs. 2, 3 and 4, the statistical
difference between control and ERY-treated cells were tested using
unpaired t test.

3. Results
3.1. Impact of ERY on algal growth, viability and morphology (biovolume)

In our previous work, the sensitivity of the green alga P. subcapitata
to the macrolide antibiotic ERY was evaluated; 72 h growth yield was
used as endpoint and the toxicity was expressed as EC values (Machado
and Soares, 2019). In order to determine the underlying mechanisms
that induced the reduction of growth yield of the alga P. subcapitata,
physiological and metabolic changes were evaluated in algal cells ex-
posed for 72 h to four ERY concentrations: a very low concentration, for
which no growth inhibition occur (72 h-NOEC), 2.2 ug L™1; a low, 5 g
L'%; an intermediate, 38 pg ! and a high concentration of ERY, 200 ug
L™, which correspond to 72h-ECy,, 72 h-ECs, and 72 h-ECqq values,
respectively (Machado and Soares, 2019).

It is described that ERY is mainly bacteriostatic but can also be
bactericidal depending on the species and the antibiotic concentration
(Deck and Winston, 2012). In order to elucidate whether ERY exerts an
algistatic (hampers the growth) and/or an algaecide (kill the alga) ef-
fect, the evolution of algal growth during the exposure to ERY (growth
kinetics) was studied. Algal cells exposed to 2.2 or 5ug L~ ERY pre-
sented a growth profile similar to control cells, incubated in the absence
of toxic (Fig. 1A). At higher ERY concentrations (38 and 200 ug L™ b, a
reduction of algal growth was observed, resulting in an increase of the
doubling (generation) time (Fig. 1B). The exposure of algae to 200 ug
L~! ERY had as consequence the complete arrest of growth (Fig. 1A)
after 24 h of incubation. These results suggest that ERY exerts an algi-
static effect. To confirm this possibility, the evaluation of plasma
membrane integrity of algal cells exposed to ERY was carried out
through the SYTOX Green uptake assay. It is considered that viable
cells, with an intact plasma membrane, exclude SG (SG negative cells);
the accumulation of SG (SG positive cells) requires the disruption of
plasma membrane (Machado and Soares, 2012a). Cells with an irre-
parable damage of plasma membrane are considered dead (Galluzzi
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Fig. 1. Impact of ERY on growth and biovolume of P. subcapitata. Algal cells were incubated in OECD medium for 72 h in the absence (control) or in presence of ERY.
A- Algal growth kinetics. B- Doubling time of P. subcapitata in the absence or in presence of ERY. C- Effect of ERY on algal cell volume. For each condition, at least 900
cells were measured. D-Distribution of algae in different classes, according to their biovolume. Results are presented as mean values ( + standard deviation; vertical
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Fig. 2. Effect of ERY on metabolic activity of the alga P. subcapitata. Cells were
exposed to different concentrations of ERY for 72h in OECD medium, and
subsequently centrifuged, resuspended in OECD medium and stained with FDA.
Results are presented as mean values ( + standard deviation; vertical error
bars) from nine independent experiments. Statistical differences between con-
trol and ERY-treated cells were tested using unpaired t test. The means with (*)
are significantly different (p < 0.05) from the control.

et al., 2015). Algal cells exposed up to 200 pug L* ERY, for 72 h, retained
their membrane integrity (> 99% of cells were SG negative) (Table S1)
and, consequently, can be considered viable. This result, together with
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growth kinetics assay (Fig. 1A), strongly indicates that ERY exhibited
an algistatic effect, even at high concentration (200 pg L'* ERY; 72 h-
ECqy value).

Algal biovolume was evaluated by microscopy image analysis. Cells
not exposed to ERY (control) presented an average volume of 19 um>.
The algal population presented a wide range of biovolumes: from 7 ym?>
to > 30 prn3 (Fig. 1C). The exposure of the algae to increasing con-
centrations of ERY caused a swelling of the cells as shown by the in-
crease of the mean cell volume to 22-31 um?>. The analysis of the dis-
tribution of algal population cell size (relative frequency distribution)
confirmed the increase of the size of ERY-treated cells (Fig. 1D). This
effect (drift of cell volume to higher values) is particularly evident in
ERY-treated cells with a biovolume > 20 and < 30 um?>; algal cells
treated with 38 or 200 ug L™ ! ERY presented a higher percentage of
cells in this range of biovolume (Fig. 1D). Like in control population,
ERY-treated cells also displayed a high heterogeneity of the cell volume
(from 7 ums to > 50 pmg).

3.2. Impact of ERY on algal metabolic activity

To obtain additional clues regarding the impact of ERY on micro-
algae, the overall metabolic activity of the cells was studied. Thus, the
hydrolysis of FDA by the action of intracellular esterases was quanti-
fied. The green fluorescence signal presented by algae can be correlated
with their esterase activity (metabolic activity) (Machado and Soares,
2013). The antibiotic ERY induced an increase of the green signal
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independent experiments. Statistical differences between control and ERY-
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nificantly different (p < 0.05) from the control.
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Fig. 4. Impact of ERY on the mitochondrial membrane potential (AWm) of the
alga P. subcapitata. Cells were exposed to different concentrations of ERY for
72h, in OECD medium. Subsequently, algal cells were stained with DiOCe(3).
As negative control, cells were treated with 50 umol L™ CCCP for 10 min and
then stained with DiOCg(3). Results are presented as mean values ( = standard
deviation; vertical error bars) from four independent experiments. Statistical
differences between control and ERY-treated cells were tested using unpaired t
test. The means with (*) are significantly different (p < 0.05) from the control.

emitted by algal cells, indicating a stimulation of the esterase activity,
in a concentration-dependent way (Fig. 2). Even for the algal cells in-
cubated at the lowest ERY concentration (2.2 ug L™'), where no change
of growth was observed, the esterase activity increased 25% compared
to control cultures. Algal cells exposed to higher concentrations of ERY
presented a marked increase (~75%) of the metabolic activity.

To exclude a possible influence of ERY on FDA-assay, abiotic
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controls without algal cells were carried out. It was observed that ERY
did not interfere with FDA hydrolysis (Fig. S.1 A) or with fluorescein
fluorescence (Fig. S.1B). Therefore, the increase of algal fluorescence, in
the FDA-assay (Fig. 2), can be most likely attributed to an increase of
the esterase activity.

3.3. Impact of ERY on algal chl a content and autofluorescence

ERY mechanism of action is associated with its binding to the 50S
subunit of the bacterial ribosome (Cammack et al., 2006). Since the
ribosomes in chloroplasts are similar to bacterial ribosomes (Harris
et al.,, 1994), the impact of ERY on algal photosynthetic activity was
study through the quantification of chl a content and the auto-
fluorescence exhibited by algal cells.

The exposure of algal cells to 2.2, 5 and 38 pg L™ ! ERY induced an
increase of chl a content (Fig. 3A). Cells exposed to the highest ERY
concentration (200 ug L™1), presented a significant reduction of chl a
content compared to control cultures.

The level of red autofluorescence exhibited by algae is related with
the photochemical activity of photosystem II (PSII) and can be used as
biomarker for assessment of negative impacts of toxicants on photo-
synthesis (Franklin et al., 2001; Fai et al., 2007). An increase of auto-
fluorescence is seen as a sign of photosynthesis disturbance due to the
inhibition of the acceptor side of PSII (Yruela et al., 1993). Algae ex-
posed to ERY concentrations between 2.2 and 5ug L™ ! presented an
autofluorescence similar to control cultures (not treated with ERY). An
increase of autofluorescence was observed for cells incubated with
38ug L' and 200 ug L™! ERY (Fig. 3B).

Together, these data indicate a disturbance of the photosynthetic
activity of algal cells exposed to ERY; this perturbation is particularly
notorious in algae cultured in the presence of high (38 and 200 ug L™ 1)
ERY concentrations.

3.4. Impact of ERY on mitochondrial membrane potential

Similarly to chloroplasts, mitochondrial ribosomes resemble bac-
terial ribosomes (Lodish et al., 2008). Therefore, the possible impact of
ERY on mitochondria was assessed through the evaluation of the mi-
tochondrial membrane potential (AW ,). DiOCx(3) is a fluorescent ca-
tionic probe which accumulates in mitochondria due to their high ne-
gative membrane potential and can be applied to monitor AW,
(Haughland, 2005). A significant increase of fluorescence signal was
observed in algal cells exposed to ERY, suggesting a hyperpolarization
of the mitochondrial membrane (increase of AW,,) of P. subcapitata.
This effect was more evident in algal cells exposed to 38 or 200 ug L ™!
ERY (Fig. 4).

3.5. Impact of ERY on intracellular ROS accumulation and GSH content

The intracellular accumulation of reactive oxygen species (ROS)
was monitored using the general redox sensor H,DCFDA (Tarpey et al.,
2004). For all ERY concentrations, despite the big dispersion of the
results observed, a substantial modification of intracellular ROS levels
was not detected compared to the control (cells not exposed to ERY)
(Fig. 5A).

Reduced glutathione (GSH) is an important antioxidant, capable of
preventing the damage to cellular components caused by ROS (Kerksick
and Willoughby, 2005). Intracellular GSH content of the algal cells of P.
subcapitata was evaluated using the monochlorobimane dye. The in-
cubation of algal cells with ERY up to 5pug L™' did not affect GSH
content (Fig. 5B). However, algae cultured in the presence of 38 ug L ™!
ERY, presented a significant increase of intracellular GSH content,
comparatively to control. For the higher ERY concentration tested
(200 pg L), no modification of GSH content was observed.
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Fig. 5. Impact of ERY on ROS production and GSH content of the alga P. sub-
capitata.

Cells were exposed to different concentrations of ERY for 72h in OECD
medium; subsequently, cells were resuspended in PBS buffer (ROS) or OECD
medium (GSH) and stained with H,DCFDA or with monochlorobimane, re-
spectively. A — Intracellular ROS accumulation. B- Intracellular reduced glu-
tathione. Results are presented as mean values ( + standard deviation; vertical
error bars) from four-six independent experiments.

4. Discussion

Due to its increased use, not only in the fight against human bac-
terial infections, but also to promote the increase of growth rates in
livestock and to prevent bacterial crop damages, antibiotics are wide-
spread in aquatic systems (ground, surface and even drinking water).
Macrolides are one of the classes of antibiotics most frequently detected
in the environment (Halling-Sorensen et al., 1998; Hirsch et al., 1999;
Pérez et al., 2017).

Research has been mainly focused on the study of the resistance of
bacteria to antibiotics and its consequences for humans (Chang et al.,
2015). Although this is a paramount issue, the presence of antibiotics in
aquatic environments can cause a serious threat for all food chain. So, it
is of high importance to study the impact of antibiotics on other (non-
target) organisms (Vilitalo et al., 2017). Thereby, it was our objective
to contribute for the elucidation of the modes of action of the macrolide
ERY on a non-target organism: the freshwater alga P. subcapitata. Mi-
croalgae are primary producers and constitute the basis of food chain
being one of the first organisms to be exposed to toxicants, which in-
creases their importance in the evaluation of the possible toxic effects in
the environment.

Although more than 95% of proteins localized in the chloroplasts
are encoded by nuclear genes, synthesized on cytosolic ribosomes as
precursor proteins and imported into the organelle (Soll and Schleiff,
2004; Shi and Theg, 2013), chloroplasts have their own genome. In the
case of the single-cell green alga Chlamydomonas reinhardtii, chloroplast
DNA (cpDNA) encodes, as an example, for polypeptides identified as
subunits of multimeric complexes involved in the PSI si and PSII, the
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cytochrome b/f complex, the complex ATP synthase and for the large
subunit of the enzyme ribulose-1,5-bisphosphate carboxylase/oxyge-
nase (RuBisCo) (Maul et al., 2002; Gallaher et al., 2018). All proteins
encoded by cpDNA are synthesized in chloroplasts. Reflecting the
bacterial ancestry, ribosomes present in chloroplasts resemble bacterial
ribosomes (Harris et al., 1994; Reyes-Prieto et al., 2007). Therefore, the
sensitivity of chloroplast ribosomes to ERY can be in the origin of the
toxicity that this ATB can cause in a non-target organism (P. subcapitata
algal cells). Consistent with this possibility, a disturbance of photo-
synthesis, revealed by an increase of autofluorescence, in algal cells
exposed to 38 and 200 ugL.~ ! ERY was observed (Fig. 3A). The increase
of algal autofluorescence occurs as a result of the reduction of photo-
synthesis efficiency (Fai et al., 2007) and is usually attributed to the
inhibition in the photochemical activity of PSII, the first protein-com-
plex in the light-dependent reactions of photosynthesis (Yruela et al.,
1993; Samson et al., 2018). The inhibition of photosynthesis here ob-
served is in agreement with the results presented in the literature re-
porting the perturbation of photosynthetic apparatus of the alga P.
subcapitata exposed to 60 ug L~ ERY for 96 h (Liu et al., 2011b). Si-
milarly, it has also been reported that some antibiotics (amoxicillin and
chloramphenicol) can inhibit photosynthesis in plants and in cyano-
bacteria by blocking the PSII electron transport chain, which inhibits
the transfer of electrons from chlorophyll to the PSI sireaction centre
(Okada et al., 1991; Pan et al., 2008).

Chlorophyll biosynthesis is a complex process involving 15 steps
catalysed by enzymes encoded by both chloroplast and nuclear genes
(Beale, 2005). P. subcapitata algal cells exposed to ERY presented a dual
response: chl a content increased for 38 ug L™ ' ERY (72h-ECs,) and
decreased for 200 pg L™! ERY (72 h-ECq0) (Fig. 3B). The first stage of
photosynthesis is the absorption of light by photosynthetic pigments
that are attached to proteins in the thylakoid membranes of chlor-
oplasts. The increase in chl a content in cells exposed to 38 ug L™ ERY
could be seen as a homeostatic mechanism to compensate for the
photosynthesis inhibition. At higher ERY concentration (200 pug L™')
the cells became unable to compensate for the reduction of photo-
synthetic efficiency. Most likely, ERY at high concentrations induced a
decrease of chl a content in algal cells through the inhibition of protein
synthesis in chloroplast ribosomes. The results presented are in agree-
ment with those reporting the inhibition of photosynthetic pigments,
including chl a, in P. subcapitata algal cells exposed to high con-
centrations of ERY (> 60 ug L™ for 96 h (Liu et al., 2011a). In a recent
work, a modification of expression of genes involved in photosynthesis
of the alga Chlamydomonas reinhardtii after the exposure to the anti-
septic triclosan was described (Gonzéalez-Pleiter et al., 2017b).

Like chloroplasts, the proteins present in mitochondria have a dual
genetic origin: mitochondrial and nuclear. In the alga C. reinhardtii, the
mitochondrial genome has eight protein-coding genes, associated for
instance, with complex I (NADH dehydrogenase), complex II (CoQH,-
cytochrome c¢ reductase) and complex IV (cytochrome c oxidase) of
electron transport chain (Gallaher et al., 2018). All proteins encoded by
mitochondrial DNA are synthesized by mitochondrial ribosomes, which
also resemble bacterial ribosomes (Lodish et al., 2008; Andreux et al.,
2013). The sensitivity of mitochondrial ribosomes to ERY, and the
consequent inhibitory effect on protein synthesis (de Vries et al., 1973),
can cause a perturbation of mitochondrial activity. Compatible with
this possibility, it was observed the hyperpolarization of mitochondrial
inner membrane (increase of mitochondrial transmembrane potential,
AW,.) in algal cells treated with 5-200pg L~* ERY (Fig. 4), which
suggests a mitochondrial dysfunction. Mitochondrial hyperpolarization
has been observed in a wide variety of cells; it was associated with the
inhibition of the complex I of electron transport chain and a reduction
of ATP level (Forkink et al., 2014).

In algal cells, ROS generation is mainly attributed to the disturbance
of the normal functioning of PSII or PSI siin the chloroplast thylakoids,
and respiratory chain in mitochondria (Apel and Hirt, 2004; Asada,
2006). Although a perturbation of the activity of chloroplasts and
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mitochondria was observed in ERY treated cells, a clear image about
the modification of the intracellular level of ROS in algal cells treated
with ERY, did not emerge (Fig. 5A). Interestingly, GSH content did not
follow an identifiable pattern in algal cells exposed to ERY, either
(Fig. 5B). The increase of intracellular levels of ROS, induced by che-
mical or physical stressors, is usually one of the main reasons of loss of
cell membrane integrity, via lipid peroxidation and cell death
(Valavanidis et al., 2006). The present results suggest that oxidative
stress is not in the basis of the toxic effects found in P. subcapitata cells
treated with ERY. Consistent with this possibility, it was observed that
algal cells exposed up to 200 ug L.~ ERY conserved an intact plasma
membrane, as evaluated by their impermeability to SG (Table S1).

Algal cells exposed to 38 or 200 ug L.~ ! ERY presented a reduction
of growth rate (Fig. 1B), which was accompanied with an increase of
biovolume (Fig. 1C,D) in the absence of loss of viability (Table S1).
Such algistatic effect can be attributed to a reduction of the energetic
state of the cells as consequence of the disturbance of photosynthetic
and mitochondrial activity. Most likely, the reduction of the energetic
state of the cells impairs algal growth through the inhibition of algal
cell division. It was described that the hindrance of algal cell cycle
progress, as a consequence to the exposure to metals or NiO nano-
particles, resulted as cells with an increased biovolume and aberrant
morphology (Machado and Soares, 2014; Sousa et al., 2018).

The exposure of algal cells to ERY induced an increase of esterase
activity (Fig. 2). The intensification of esterase activity may be the
consequence of the disturbance of algal metabolism or the accumula-
tion of the enzymes due to the inhibition of cell separation.

5. Conclusion

The present work offered several evidences regarding the impact of
ERY at low levels (within the range of the concentrations found in
surface and ground waters) on relevant cell targets of the alga P. sub-
capitata. Probably, ERY inhibited the protein synthesis in the prokar-
yotic-like ribosomes, present in chloroplasts and mitochondria of algal
cells, resulting in a disturbance of photosynthetic and mitochondrial
activity. The dysfunction of these organelles, most likely, caused a de-
crease of cell energy level (ATP) which had as consequence the re-
duction of cell growth rate through the impairment of cell division,
rendering cells with an increased biovolume. ERY exerted an algistatic
effect: reduced or impaired algal growth, in the absence of a loss of
membrane integrity; i.e., algal cells lost their proliferation capacity but
remained viable. The present work contributes to the elucidation of the
mechanisms of action underlying the ERY toxicity to a non-target,
aquatic organism: the freshwater alga P. subcapitata. In addition, it
raised awareness for the potential negative impacts that ERY may cause
on aquatic systems.
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