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ABSTRACT: This study aims to develop a tool able to help decision makers to find 
the best strategy for slopes management tasks. It is known that one of the main 
challenges nowadays for every developed or countries undergoing development is to 
keep operational under all conditions their transportations infrastructure. However, 
due to the network extension and increased budget constraints such challenge is even 
more difficult to accomplish. Keeping in mind the strong impact of a slope failure in 
the transportation infrastructure it is important to develop tools able to help 
minimizing this situation. Accordingly, and in order to achieve this goal, the high 
flexible learning capabilities of Artificial Neural Networks (ANNs) were applied in 
the development of a classification tool aiming to identify the stability condition of a 
rock and soil cutting slopes, keeping in mind the use of information usually collected 
during routine inspections activities (visual information) to feed them. For that, it was 
followed a nominal classification strategy and, in order to overcome the problem of 
imbalanced data, three training sampling approaches were explored: no resampling, 
SMOTE (Synthetic Minority Over-sampling Technique) and Oversampling. The 
achieved results are presented and discussed, comparing the achieved performance for 
both slope types (rock and soil cuttings) as well as the effect of the sampling 
approaches. An input-sensitivity analysis was applied, allowing to measure the relative 
influence of each model attribute.  
 
INTRODUCTION 
 
A nowadays challenge concerning to the transportation network, mainly for every 
developed or countries undergoing development that have invested and keep investing 
to build a safe and functional transportation network, is how to keep it operational 
under all conditions, keeping in mind its extension and the increased budget limitation 
for maintenance and repair tasks. Thus, taken into account the key importance of the 
transportation system in modern societies, it is fundamental to develop new tools able 
to help in its management. 
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Keeping in mind the strong impact of a slope failure in the transportation 
infrastructure, namely for the railway it is important to develop tools able to help 
minimizing this situation. 
Over time, several efforts have been made toward the development of a system to 
detect slope failures. However, most of the systems were developed for natural slopes, 
presenting some limitations when applied to engineered (human made) slopes. In 
addition, they have limited applicability as most of them were developed based on 
particular case studies or using small databases. Furthermore, another aspect that can 
limit its applicability is related with the information required to feed them, such as 
data taken from complex tests or from expensive monitoring systems. Pourkhosravani 
and Kalantari (2011) summarized in their work some of the current methods for slope 
failure detection, which were grouped into Limit Equilibrium (LE) methods, 
Numerical Analysis methods, Artificial Neural Networks and Limit Analysis methods. 
There are also approaches based on finite elements methods (Suchomel et al. 2010), 
reliability analysis (Sivakumar and Murthy, 2005; Husein Malkawi et al. 2000), as 
well as some methods making use of data mining (DM) algorithms (Cheng and Hoang 
2016, Ahangar-Asr et al. 2010, Yao et al. 2008, Kang et al., 2017; Kang and Li, 2016; 
Suman et al. 2016). More recently, a new flexible statistical system was proposed by 
Pinheiro et al. (2015), based on the assessment of different factors that affect the 
behavior of a given slope,  which are weighted in order to calculate a final indicator of 
the slope stability condition. 
In summary, most of the approaches so far proposed share the main limitations, which 
are related with its applicability domain or dependency on information that is difficult 
to obtain. In fact, the assessment of the stability condition of given slope is a multi-
variable problem characterized by a high dimensionality. 
Artificial Neural Networks (ANNs) are one of the most well known Data Mining 
(DM) algorithms, which have been applied with success in different knowledge 
domains, such as web search, spam filters, recommender systems, and fraud detection 
(Domingos 2012). Also in civil engineering field, several applications can be found. 
For example, ANNs were applied in the study of physical and mechanical properties 
of jet grouting columns (Tinoco et al. 2014, Tinoco et al. 2016). Indeed, the high 
learning capabilities of this algorithm give it the ability to model complex nonlinear 
mappings. Thus, in this work the high flexible learning capabilities of Artificial Neural 
Networks (ANNs) were used to predict the stability condition of rock and soil cutting 
slopes according to a pre-defined classification scale based on four levels (classes). 
Moreover, one of the underlying premises of this work is to use only information that 
can be easily obtained. For that, more than fifty variables related with data collected 
during routine inspections as well as geometric, geological and geographic data were 
used to feed the models. With this methodology it is intended to identify critical zones 
for which more detailed information can then be obtained in order to perform more 
detailed stability analysis. Such novel approach is intended to support railway network 
management companies to allocate the available funds to the priority assets according 
to their stability condition. 
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METHODOLOGY 
 
Data characterization 
To fit the proposed models for stability condition identification, from this point 
referred to as EHC (Earthwork Hazard Category (Power et al. 2016)), of rock and soil 
cutting slopes two database were compiled respectively. Both databases, containing 
information collected during routine inspections and complemented with geometric, 
geological and geographic data of each slope, were gathered by Network Rail workers 
and are concerned with the railway network of the UK. For each slope a class of the 
EHC system was defined by the Network Rail Engineers based on their 
experience/algorithms (Power et al. 2016), which will be assumed as a proxy for the 
real stability condition of the slope for year 2015. The EHC system comprises 4 
classes1 (“A”, “B”, “C” and “D”) where “A” represents a good stability condition and 
“D” a bad stability condition. In other words, the expected probability of failure is 
higher for class “D” and lower for class “A”. 
Both databases contain a significant number of records. The rock slopes database 
comprises 5945 records, while the soil cutting slopes database is bigger, having 10928 
records available. FIG. 1 plots the distribution of EHC classes for each database. From 
their analysis, it is possible to observe a high asymmetric distribution (imbalanced 
data), particularly for the rock cutting slopes database. In fact, more than 86% of the 
rock slopes are classified as “A”. Although this type of asymmetric distribution, where 
most of the slopes present a low probability of failure (class “A”), is normal and 
desirable from the safety point of view and slope network management, it can 
represent an important challenge for data-driven models learning, as detailed in next 
section. The proposed models for EHC identification of rock and soil cutting slopes 
were fed with more than fifty variables normally collected during routine inspections 
and complemented with geometric, geographic and geological information. To be 
precise, 65 variables were used in the rock slopes study and 51 variables in soil cutting 
slopes. Since the number of analyzed variables is high (65/51), just a few examples of 
the variables used to feed the models are here enumerated: height, slope angle, 
presence of rock outcrops, animal activity, presence of boulders, ground cover, rock 
type, dangerous trees, number of root balls, rock strength, etc. 
 
Modeling 
In this work, ANNs were trained to predict EHC of rock and soil cutting slopes. 
ANNs, although not new, they are supported in a strong background and experience. 
Indeed, they have been applied in the past with high success in different knowledge 
domains including in civil engineering (Chou et al. 2016, Gomes Correia et al. 2013). 
There are also some examples of ANNs applications in slope stability analysis (Wang 
et al. 2005, Cheng et al. 2012). 
ANNs are learning machines that were initially inspired in functioning of the human 
brain (Keniget et al. 2001). The information is processed using iteration among several 
neurons. This technique is capable of modeling complex non-linear mappings and is 

                                                             
1 The original EHC system comprised 5 levels (A, B, C, D and E) (Power et al. 2016). However, and 
due to the reduced number of slopes classified as E, classes D and E were combined in one, named as 
D. 
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robust in exploration of data with noise. In this study we adopt the multilayer 
perceptron that contains only feedforward connections, with one hidden layer 
containing H processing units. Because the ANN performance is sensitive to H (a 
trade-off between fitting accuracy and generalization capability), a grid search of {0; 
2; 4; 6; 8} was adopted under an internal (i.e. applied over training data) three fold 
cross validation during the learning phase to find the best H value. Under this grid 
search, the H value that produced the lowest MAE (Mean Absolute Error) was 
selected, and then the ANN was retrained with all of the training data. The neural 
function of the hidden nodes was set to the popular logistic function 1/(1 + e-x). 
The problem of EHC determination was approached following a nominal 
classification strategy, where the network calculates a probability for each EHC level 
and then is selected the class corresponding to the highest probability. 
In addition, and in order to minimize the effect of the imbalanced data (see FIG. 1), 
Oversampling (Ling and Li 1998) and SMOTE (Synthetic Minority Oversampling 
Technique) (Chawla et al. 2002) approaches were applied over the training data before 
fitting the models. When approaching imbalanced classification tasks, where there is 
at least one target class label with a smaller number of training samples when 
compared with other target class labels, the simple use of a soft computing training 
algorithm will lead to data-driven models with better prediction accuracies for the 
majority classes and worst classification accuracies for the minority classes. Thus, 
techniques that adjust the training data in order to balance the output class labels, such 
as Oversampling and SMOTE, are commonly used with imbalanced datasets. In 
particular, Oversampling is a simple technique that randomly adds samples (with 
repetition) of the minority classes to the training data, such that the final training set is 
balanced. SMOTE is a more sophisticated technique that creates “new data” by 
looking at nearest neighbors to establish a neighborhood and then sampling from 
within that neighborhood. It operates on the assumptions that the original data is 
similar because of proximity. We note that the different sampling approaches were 
applied only to training data, used to fit the data-driven models, and the test data (as 
provided by the 5-fold procedure) was kept without any change. 
For models evaluation and comparison, three classification metrics were adopted: 
recall, precision and F1-score (Hastie et al. 2009). The recall measures the ratio of how 
many cases of a certain class were properly captured by the model. In other words, the 
recall of a certain class is given by 
	ݏ݁ݒ݅ݐ݅ݏ݋ܲ݁ݑݎܶ)/ݏ݁ݒ݅ݐ݅ݏ݋ܲ݁ݑݎܶ +  On the other hand, the .(ݏ݁ݒ݅ݐܽ݃݁ܰ݁ݏ݈ܽܨ	
precision measures the correctness of the model when it predicts a certain class. More 
specifically, the precision of a certain class is given by 
	ݏ݁ݒ݅ݐ݅ݏ݋ܲ݁ݑݎܶ)/ݏ݁ݒ݅ݐ݅ݏ݋ܲ݁ݑݎܶ +  The F1-score was also .(ݏ݁ݒ݅ݐ݅ݏ݋ܲ݁ݏ݈ܽܨ	
calculated, which represent a trade-off between the recall and precision of a class. The 
F1-score correspond to the harmonic mean of precision and recall, according to the 
following expression: 
 

ଵି௦௖௢௥௘ܨ = 2 ∙
݊݋݅ݏ݅ܿ݁ݎ݌ ∙ ݈݈ܽܿ݁ݎ
݊݋݅ݏ݅ܿ݁ݎ݌ + ݈݈ܽܿ݁ݎ

 (1) 

 
For all three metrics, the higher the value, the better are the predictions, ranging from 
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0% to 100%. 
The generalization capacity of the models was accessed through a 5-fold cross-
validation approach under 20 runs (Hastie et al. 2009). This means that each modeling 
setup is trained 5 × 10 = 100 times. Also, the three prediction metrics are always 
computed on test unseen data (as provided by the 5-fold validation procedure). 
All experiments were conducted under the R statistical environment (R Team 2009). 
ANN algorithm was trained using the rminer package (Cortez 2010), which facilitates 
its implementation, as well as different validation approaches such as the 
crossvalidation adopted in this work. 
 
RESULTS AND DISCUSSION 
 
Following are presented and discussed the achieved performance in EHC 
determination of both rock and soil cutting slopes based on ANN algorithm, as well as 
the effect of the three training sampling approaches explored: Normal (no resampling), 
OVERed (Oversampling) and SMOTEd (SMOTE). 
FIG. 2 gives an overview of ANNs models performance in rock and soil cutting 
slopes, based on recall, precision and F1-score. 
Concerning to rock cutting slopes study (left side of FIG. 2) the achieved performance 
is somewhat lower independently of the resampling approach applied. Although a very 
high performance is observed for class “A” (F1-score higher than 95%), for class “C” 
and particularly for class “D”, all models evidence clear difficulties in predicting such 
classes correctly. In fact, and using F1-score as reference, the best performance in 
identification of slopes of class “D” is lower than 14% (see FIG. 2) which was 
achieved by applying SMOTE resampling approach. From FIG. 3a analysis, which 
plots the relation between observed and predicted EHC values of rock cutting slopes 
by applying oversampling approach (best overall fit), it is clear the model difficulties 
in correctly predicting class “C” and particularly class “D”, for which the expected 
probability of failure is higher. As shown, only around 12% of rock cutting slopes 
classified as “D” are correctly identified, which represents a low performance, namely 
when compared with soil cutting slopes study as following discussed. Overall, these 
results show that the methodology applied for EHC determination of rock cutting 
slopes needs future development in order to overcome this gap. 
Relating to soil cutting slopes study, a very promising performance is observed, as 
shown in FIG. 2 (right side). For example, soil cutting slopes of class “A” can be 
correctly identified, either with or without resampling. Also for classes “B” and “C” a 
promising performance is also observed, with an F1-score around 55%. Concerning the 
class ”D“, although an F1-score lower than 36% was achieved, the obtained value for 
recall metric around 57% shows a good performance for class ”D“ identification. 
Analyzing FIG. 3b that shows the relation between observed and predicted EHC 
values according to the best overall fit (SMOTEd), one can see that the model 
performance is very promising. Indeed, when a SMOTE resampling approach is 
applied, ANN algorithm is able to predict correctly around 57% of soil cutting slopes 
of class “D”, which represents a very promising performance if we take into account 
that this is the minority class. For class “C”, although the accuracy is not so high 
(around 40%), when not predicted as “C” they are classified as belonging to the 
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closest class, that is, “B” or “D”. This type of misclassification is also observed for 
classes “A”, “B” and “D”, which can be interpreted as positive point. Concerning to 
classes “A” and “B”, the ANN model was able to identify it very accurately. 
Comparing the achieved results of rock and soil cutting slopes studies, the proposed 
models for soil cutting slopes are more effective, namely in the identification of 
classes “C” and “D” for which the probability of failure is higher (see FIG. 2). A 
possible explanation for the lower performance, namely for classes “C” and “D” of 
rock cutting slopes could be related with the EHC classes being assumed as 
representative of the real stability condition of each slope. Indeed, analyzing the 
number of slope failures by EHC class for rock slopes there are some indications that 
the classification attributed to each rock slope could lack of some accuracy as reported 
in the work of Power et al. (2016), which used the same source of information. It 
would be expected that most of the failures would occur in slopes of classes “C” and 
mainly “D”. However, for rock slopes such behavior is not observed as reported on 
Power et al. (2016). In fact, the number of failures for each EHC class is almost 
constant from classes “A” to “D”, particularly when compared with soil cuttings. For 
example, the number of failures observed in rock cutting slopes of class “C” is only 
twice higher when compared to class “A”. This observation shows that the defined 
classes for rock slopes have a poor correlation with actual failures. 
These results show that a deeper data analysis is required, particularly in the study of 
rock cutting slopes. For example, the number of variables taken as model attributes 
might be too high and may be influencing the generalization performance of the 
models. 
Thus, and in order to better understanding the proposed models, the relative 
importance of each model input was measured based on a sensitive analysis. For that, 
the methodology proposed by Cortez and Embrechts (2013) was applied. Accordingly, 
FIG. 4 shows the relative importance of the 20 most relevant variables based on the 
two models that achieved the overall best performance in EHC determination  of rock 
(left side) and soil (right side) cutting slopes (see FIG. 3). From their analysis, it is 
observed that the height of the slope is one of the most relevant variables affecting the 
slope stability condition, either for rock or soil cutting slopes. On the other hand, and 
particularly for rock slopes, it is observed that the first seven most relevant variables 
are responsible for around 70% of the total influence. 
These results, together with achieved performance, suggest a need of revision of the 
variables used as model attributes. Accordingly, and as a future works, it is intended to 
apply a more sophisticated feature selection method in order to improve models 
performance. In particular, it will be explored a multi-objective evolutionary 
computation method that simultaneously maximizes prediction performance and 
minimizes the number of inputs used. 
As a final observation, and considering the overall performance of all models, it 
should be underlined the potential of ANNs, or even other soft computing algorithms, 
in EHC determination of rock and soil cutting slopes. 
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FIGURES 
 

 
 

FIG. 1. Rock and soil cutting slopes data distribution by EHC classes 

 

 
 

FIG. 2. ANN performance comparison in EHC determination of both rock and 
soil cutting slopes based on recall, precision and F1-score 
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a)  b)  
 

FIG. 3. ANN performance: a) Rock cutting slopes following an OVERed 
approach; b) Soil cutting slopes following a SMOTEd approach 

 

a)  b)  
 

FIG. 4. Relative importance bar plot of the 20 most relevant variables according 
to ANN models in EHC determination: a) Rock cutting slopes following an 
OVERed approach; b) Soil cutting slopes following a SMOTEd approach 
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