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A B S T R A C T

Integrins are cell adhesion receptors predominantly important during normal and tumor angiogenesis. A se-
quence present on several extracellular matrix proteins composed of Arg-Gly-Asp (RGD) has attracted attention
due to its role in cell adhesion mediated by integrins. The development of ligands that can bind to integrins
involved in tumor angiogenesis and brake disease progression has resulted in new investigational drug entities
reaching the clinical trial phase in humans. The use of integrin-specific ligands can be useful for the vascular-
ization of regenerative medicine constructs, which remains a major limitation for translation into clinical
practice. In order to enhance vascularization, immobilization of integrin-specific RGD peptidomimetics within
constructs is a recommended approach, due to their high specificity and selectivity towards certain desired
integrins. This review endeavours to address the potential of peptidomimetic-coated biomaterials as vascular
network promoters for regenerative medicine purposes. Clinical studies involving molecules tracking active
integrins in cancer angiogenesis and reasons for their failure are also addressed.

1. Introduction

Cell adhesion is a paramount feature on which many of the suc-
cessful cell-based approaches using biomaterials in the field of re-
generative medicine rely on. Taking this into consideration, and since
most of biomaterials are essentially bio-inert, there is a need to increase
their ‘cell-friendliness’ in order to enable cells to adhere, function
normally and execute their natural occurring processes. Commonly,
biofunctionalization of biomaterials is achieved by integrating a tri-
peptide (RGD, Arg-Gly-Asp) into the biomaterial (Assunção-Silva et al.,
2015; Gomes et al., 2016; Silva et al., 2012). Linear or cyclic RGD se-
quences are valuable tools for this purpose since these represent the
sequence of several extracellular matrix (ECM) proteins, namely fi-
brinogen, vitronectin and fibronectin which are known to be re-
sponsible for mediating cell adhesion to the ECM (Meyer et al., 2006;
Pierschbacher and Ruoslahti, 1984a, 1984b; Ruoslahti and
Pierschbacher, 1986; Suzuki et al., 1985). Specifically, this tripeptide
interacts with integrins, a type of cell-surface receptors involved in the
adhesion, differentiation, proliferation and migration of cells
(Trabocchi and Guarna, 2014). Consequently, these heterodimeric
glycoproteins are essential for homeostasis and are involved not only in
the normal physiological development, maintenance and repair of

tissues but also in the pathological mechanisms of diseases like cancer
(Desgrosellier and Cheresh, 2010).

Regarding their structure, integrins are constituted by two different
non-covalently attached subunits (α and β), for which there are 18 α
and 8 β subtypes in vertebrates (Hynes, 2002). Additionally, each
subunit has an extracellular domain, a single transmembrane region
and a noncatalytic cytoplasmic region (Fig. 1), being the combination
between subtypes accountable for the ligand affinity of a given integrin
(Danhier et al., 2012).

In their resting state, integrins are bent and possess a salt bridge
between both subunits in the cytoplasmic region, and can be activated
by inside-out or outside-in signaling (Müller et al., 2014). Inside-out
signaling relies on the action of a protein called talin (Anthis et al.,
2009) which directly binds to the cytoplasmic tail of the β integrin and
disrupts the salt bridge, leading to an increased affinity towards in-
tegrin ligands (Anthis et al., 2009; Ginsberg et al., 1992). This type of
signaling is directly involved in adhesion strength and allows the
transmission of the necessary forces to cell migration, ECM remodeling
and assembly (Shattil et al., 2010). Even in their resting state, integrins
have residual affinity to their ligands and so on outside-in signaling,
ligand binding will cause conformational changes that in turn will in-
crease affinity (Du et al., 1991; Schwartz et al., 1995). Therefore, since
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most ligands are multivalent, they participate in the oligomerization of
these glycoproteins and it is by this means that signal transduction to
the inside of cells occurs. With this type of signaling, it is possible to
control gene expression, cell polarity, cytoskeletal structure as well as
cell survival and proliferation (Shattil et al., 2010). Apart from this, it
has been shown that integrins may possess intermediate states with
decreased affinity to soluble ligands, but presenting strong cell adhe-
sion capacity under applied external forces (Müller et al., 2013).

Concerning binding ligands, it is possible to divide integrins into
four different groups: leucocytes, collagen, laminin and RGD receptors
(Trabocchi and Guarna, 2014). RGD receptors participate in relevant
physiological processes like platelet aggregation and angiogenesis and
pathological processes such as cardiovascular diseases and tumor for-
mation (Curley et al., 1999; Danhier et al., 2012; Desgrosellier and
Cheresh, 2010). Accordingly, it is not surprising that this family of in-
tegrins has been the target for many studies regarding potential treat-
ments for conditions in which they are proposed to take part. For in-
stance, αIIβ3 is the key receptor in platelet adhesion, aggregation and
thrombus formation and is implicated in ischemic heart disease and
stroke (Coller, 1995; Plow et al., 1985). In fact, this integrin was the
first molecular target for design of specific antagonists (Coutré and
Leung, 1995; Schafer, 1996). Currently, the net outcome of this re-
search apart from many experimental tools, is the regulatory approval
by FDA of no less than three αIIβ3-targeting antagonists (abciximab in
1997, eptifibatide in 1998 and tirofiban in 1999) all with proven
clinical evidence in reducing acute coronary conditions and ischemia
(Blazing et al., 2004; Cohen et al., 2002; Giugliano et al., 2009;
Goodman, 2003; Kastrati et al., 2006; Marzocchi et al., 2008).

These pioneering efforts have made apparent the potential for de-
veloping drugs targeting integrins involved in the pathogenesis of dis-
eases where they have a role, or alternatively in gaining a deeper
pharmacological understanding of how they conduct themselves in
such pathological events (Trabocchi and Guarna, 2014). Hence, two
integrins (α5β1 and αvβ3) in particular have attracted attention due to
their significant up-regulation during tumor angiogenesis (Brooks et al.,
1994a; Brooks et al., 1994b; Kim et al., 2000; Muether et al., 2007).
Angiogenesis is the process by which new blood vessels originate from
pre-existing ones and is an essential occurrence during tumor growth

and metastasis because they carry oxygen and nutrients to cells, and are
thus able to encourage tumor development (Carmeliet, 2005). Contrary
to the situation in normal tissue, both integrins are highly expressed on
tumor blood vessels, and pro-angiogenic growth factors like IL8 or
bFGF stimulate their expression on endothelial cells (Brooks et al.,
1994a, 1994b; Kim et al., 2000). Several selective antagonists of these
integrins have since reached the clinical trial phase, including in-
tetumumab (human antibody against α5β1 and αvβ3) (O’Day et al.,
2011), etaracizumab (humanized antibody against αvβ3) (Hersey et al.,
2010), volociximab (chimeric mouse-human antibody against α5β1)
(Bell-Mcguinn et al., 2011) and cilengitide (cyclic RGD-containing
peptide antagonist of α5β1 and αvβ3) (Reardon et al., 2008). Despite
having acceptable toxicity profiles in humans, only cilengitide reached
pivotal phase III safety and efficacy trials, specifically for the treatment
of glioblastoma (Stupp et al., 2014). This fact demonstrates that the
design of effective integrin antagonists targeting cancer angiogenesis is
still to be fulfilled but the relevance of these cell adhesion receptors
should not be undermined since they intervine in several physiological,
mechanisms, in the disease state or otherwise.

Apart from the effect that αvβ3 has on tumor angiogenesis, this
integrin also takes part both in other biological events such as apop-
tosis, migration of tumor cells and diseases like osteoporosis and
rheumatoid arthritis (Trabocchi and Guarna, 2014). As for α5β1, some
promising results show a possible contribution of this glycoprotein on
the development and progression osteogenesis (Fromigué et al., 2012).
This assumption is based on its up-regulation of the expression of os-
teogenic markers and the activity of alkaline phosphatase in vitro,
while contributing to osseointegration of implants and the ectopic
formation of bone (Agarwal et al., 2015; Hamidouche et al., 2009;
Martino et al., 2009).

Ligand selectivity within the extensive family of integrins can be
achieved through drug design strategies involving the introduction of
conformational constrictions to RGD by cyclization (Haubner et al.,
1996; Kessler, 1982; Trabocchi and Guarna, 2014). This strategy en-
abled developing cyclic RGD ligands (illustrated in Fig. 2) with high
binding affinity towards αvβ3, whilst having selectivity towards it in
detriment of αIIβ3 (Aumailley et al., 1991; Haubner et al., 1997). Af-
finity towards αvβ3 can be enhanced by developing cyclic RGD-

Fig. 1. Integrin activation by extracellular ligands. After ligand binding, integrins change their conformation and increase their affinity towards the ligand. This leads to their oligo-
merization and finally to signal transduction.
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containing multimeric ligands. This strategy intends to develop poly-
valent ligands that interact simultaneously with several integrins
(Thumshirn et al., 2003). Cyclic RGD peptides, however, were not
capable of selectively distinguishing αvβ3 from α5β1 due to the close
structural topography of these integrins. Among cyclic peptides some
molecules bearing the isoDGR sequence, however, have both high af-
finity and selectivity towards αvβ3 and α5β1, representing one of the
exceptions on this regard. This binding motif results from the deami-
nation of the asparagine residue of NGR (a peptidic sequence present in
fibronectin) and acts as a integrin binding motif (Curnis et al., 2010,
2006). Therefore, it was only after elucidating the crystal structure of
αvβ3, that structure-activity relationship studies and the development
of a homology model for α5β1 permitted studying the creation of such
compounds (Marinelli et al., 2005; Xiong et al., 2001; Xiong, 2002).
Developing ligands capable of discriminating between both of these
integrins was mostly achieved by peptidomimetic ligands (Heckmann
et al., 2008; Marchini et al., 2012; Smallheer et al., 2004; Stragies et al.,
2007).

Targeting specific integrins is an interesting approach for re-
generative medicine as most of the potential therapeutic methodologies
applied in this research field are dependent on the adhesion of specific
cell types into a given biomaterial. In fact, vascularization is one of the
biggest challenges faced by regenerative medicine during translation
from lab to clinic, which also makes it a major focus for research
(Jaklenec et al., 2012). Several methods are employed to solve this
problem, including RGD-functionalisation of biomaterials that promote
both endothelial cell (EC) adhesion and organization, while enabling
the use of pre-vascularized scaffolds for an effective connection to host
circulatory system (Bidarra et al., 2011; Chen et al., 2014; Moon et al.,
2009; Yang et al., 2014). Commonly, RGD incorporation consists in
chemically attach the molecule to the backbone of the material. These
methodologies apply different chemistries like carbodiimide (CDI)
(Ferris et al., 2015), periodate oxidation (Dalheim et al., 2016) and 4-
(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium (DMTMM)
(D’Este et al., 2014) to form an amide bond between biomaterial and
peptide or can take advantage of Diels-Alder chemistry to covalently
ligate RGD to the biomaterial (Gomes et al., 2016). Even though

cellular adhesion and proliferation normally increases following RGD
immobilization, most studies do not take into consideration several
variables that could further enhance cell behavior. Thus, studying if the
peptide presents the right conformation to exert its full biological effect,
understanding if there is no hindrance, being the peptide totally
available to interact with cells, and its density throughout the material
are variables that should be optimized in order to develop a proper
vascular network by regenerative medicine methodologies. Another
factor that can affect the proper creation of a vascularized construct is
the specificity and selectivity of the applied RGD motif. To our
knowledge, employment of ligands with specificity towards a given
integrin to improve the vascularization of tissue engineering constructs
has not received due attention and the coating of biomaterial surfaces is
usually done with RGD-containing peptides with poor selectivity
(Hersel et al., 2003). Biomaterial functionalization using molecules
with enhanced integrin selectivity could prove to be a promising
methodology to address the problem of vascularization in tissue en-
gineering since, as already mentioned, αvβ3 and α5β1 play crucial
roles during angiogenesis. Using specific integrin-targeting ligands
could be important to specifically recruit endothelial cells (ECs) to the
scaffold from complex environments while promoting their association
into vascular networks and anastomosis with the vasculature of the
host.

This review intends to provide an overview concerning clinical ex-
perience with integrin antagonists possessing anti-angiogenic effects.
The reasons for failure to become approved therapeutic agents will be
discussed. Despite these setbacks, potential applications of this type of
ligands, namely peptidomimetics, in regenerative medicine therapies
that aim to create optimal vascularized constructs capable of perfectly
integrating with the circulatory system of the human body will also be
addressed. To begin with, a brief clarification will be provided con-
cerning the interaction between RGDs and integrins and the main fea-
tures of peptidomimetic rationale design.

Fig. 2. Chemical structure of different cyclic RGD molecules.
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2. RGD-integrin interaction features and peptidomimetic design

2.1. Elucidation of the RGD-integrin interaction and peptidomimetic ligand
advantages

Initially, the shortest molecular motif in fibronectin able of binding
cells to ECM was defined by Pierschbacher and Ruoslathi as being Arg-
Gly-Asp-Ser (RGDS) and its chemical structure is represented in Fig. 3
(Pierschbacher and Ruoslahti, 1984a, 1984b). Their pioneering work
consisted of designing synthetic peptides endowed with this sequence
and studying their effect on the adhesion of fibroblasts to surfaces
displaying fibronectin. Soluble RGDS prevented fibroblast adhesion to
the latter surfaces while promoting the adhesion of these cells when
coated to sepharose beads. Moreover, it was proved that contrarily to
the other three fragments, serine (Ser), was not essential to the bioac-
tivity of the peptide and could be replaced by other amino acids
(Pierschbacher and Ruoslahti, 1984a, 1984b). Pierschbacher and Ruo-
slathi also verified that the RGD sequence was also present in other
proteins such as collagen type I, thrombin and fibrinogen and that these
motifs had the same cell binding effect (Pierschbacher and Ruoslahti,
1984a; Pierschbacher and Ruoslahti, 1984b). These results encouraged
efforts to understand if there existed a homology between different
ECM proteins and the presence of RGD as the cell adhesion sequence.
Indeed, the RGD sequence was discovered in laminin, von Willebrand
factor, vitronectin and osteopontin and these observations put the tri-
peptide as a putative candidate as a universal cell adhesion motif (Grant
et al., 1989; Oldberg et al., 1986; Plow et al., 1985; Suzuki et al., 1985).
Curiously, this tripeptide also appears in snake venom disintegrins, a
type of strong integrin inhibitors that can inhibit platelet aggregation
and angiogenesis, with variable selectivity and potency towards in-
tegrins recognizing RGD (Gould et al., 1990; Swenson et al., 2007).

Notwithstanding, and despite possessing cell adhesion properties,
RGD alone is unable of presenting cell-specificity and its effects are
highly dependent on the conformation and spatial organization of the
peptide (Ruoslahti and Pierschbacher, 1986; Trabocchi and Guarna,
2014). Complementing these features, peptides in the native state
present poor pharmacokinetics, such as low metabolic stability, poor
absorption after oral ingestion, rapid excretion, low diffusion in some
organs and may have undesired effects due to off-target interaction
with several other receptors (Giannis and Kolter, 1993). RGD, of course,
is no exception and scientists have tried to improve both the biological
activity and specificity of the peptide or peptide-like molecules through
specific structural and functional modifications, whilst maintaining
their bioactivity. This approach looks to biomolecules, in this case
peptides, as a starting point to find new molecules with secondary
structures, and additional fundamental structural characteristics ana-
logous to the native peptide and are classified as peptidomimetic mo-
lecules (Trabocchi and Guarna, 2014). The final goal is to obtain a
biomolecule with enhanced binding affinity towards a given receptor or
target molecule. Additional advantages of peptidomimetic molecules
are their extended biological activity, due to a smaller susceptibility to
premature enzymatic degradation, and improved oral bioavailability
(Olson et al., 1993). Therefore, these ligands have proved to be ex-
cellent cell adhesion inhibitors in their soluble form both in vitro and in
vivo, even when ECM proteins are present (Henderson et al., 2013;

Ravindranathan et al., 2013). Furthermore, due to their strong affinity
towards integrins, in the nanomolar range, involved in cancer angio-
genesis they are regarded as not only trackers of tumor vasculature but
also inhibitors of tumor progression (Baum et al., 2015; Sartori et al.,
2017) Additionally, RGD peptidomimetic-Paclitaxel conjugates,
showing a low nanomolar affinity for the αvβ3 integrin receptor, were
biologically evaluated in vitro and in vivo, and displayed a good tar-
geting ability towards αvβ3-overexpressing cancer cell lines (Colombo
et al., 2012; Dal Corso et al., 2015).

A fundamental advance towards a deeper understanding of the in-
teraction between RGD and integrins was achieved by resolving the
crystallographic structure of αvβ3 integrin (Xiong, 2002). Xiong and
coworkers reported the crystal structure of the extracellular segment of
this integrin complexed with cilengitide (a cyclic peptide presenting
RGD and discussed in 4.5). This seminal study observed that Asp 218
and Asp150 interact with the guanidine of Arg through a salt-bridge,
Asn215 and Ser121 establish hydrogen bonds with the Asp residue. The
carboxylic group of this residue strongly interacts with the Mn2+ ion
present at MIDAS (Metal-Ion-Dependent Adhesion Site) and the car-
bonyl group of Arg216 interacts with the amide proton of the Gly re-
sidue of RGD though hydrogen bonds. Furthermore, cilengitide includes
an aromatic group able of establishing hydrophobic interactions with
Tyr122 of αvβ3, thus showing that this might be an important feature
to include in this type of molecules. Therefore, these findings helped
establishing a general model of interaction between integrins and RGD,
facilitating both the design of RGD peptidomimetics with enhanced
affinity towards integrins and docking studies of these compounds.

2.2. Peptidomimetic rational design

Design of peptidomimetic ligands is focused in finding ways of
mimicking the pharmacophoric elements of the original peptide.
Therefore, for their proper development it is extremely important to
have a profound understanding of both the peptide and its receptor and
their electronic and three-dimensional conformational characteristics.
Apart from this data, it is also important to meet some other con-
siderations during the development phase of these biomolecules.
Among these is the substitution of amide bonds if the biological activity
remains untouched. These interactions can also be replaced if it is
outside the zone of the active site. In the long term, the objective of
these changes will be the substitution of the initial peptidic backbone
with a non-peptidic one. Flexibility is also a very important feature to
consider during the development of peptidomimetic molecules.
However, this characteristic remains untouched during the develop-
ment of first generation peptidomimetics as long as the molecule
maintains its biological activity. Further refinements will include in-
troducing elements that infer rigidity to side-chains of the new mole-
cule in order to improve its initial bioactivity (Trabocchi and Guarna,
2014). Nevertheless, during the initial steps of peptidomimetic design it
is preferable to preserve the side chains having biological relevance and
possible adjustments to enhance activity are only included in second
generation peptidomimetics. Normally, introduction of constraints into
the biomolecule, chain length modifications and isosteric replacements
are considered (Marshall, 1993). Moreover, the nature of the amino
acid sequences flanking the bioactive sequence also impacts ligand
specificity (Bochen et al., 2013). Another crucial factor to consider
during the development of peptidomimetic ligands that intend to be
coupled to materials lies on the utilized spacer unit. Thus, Pallarola
et al. studied the effect of three different spacers [polyproline, amino-
hexanoic acid and polyethylene glycol (PEG)] and concluded that a
simple variation on the spacer motif could determine higher or lower
integrin binding affinity (Pallarola et al., 2014). A final concern during
the development of peptidomimetics is to use the acquired knowledge
of the three-dimensional bioactive conformation to rapidly develop the
ideal peptidomimetic compound, without wasting time creating nu-
merous molecules without relevant bioactivity (Trabocchi and Guarna,

Fig. 3. Chemical organization of RGDS.
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2014).
The conversion of the initial peptide into a peptidomimetic com-

pound is approached hierarchically, by introducing incremental che-
mical modifications that will additionally help elucidating the struc-
ture-activity relationship (Marshall, 1993). First, the biologically active
peptide suffers alanine scanning and his biological activity is measured.
As the name suggests this step is based on the substitution of different
amino acids of the original peptidic sequence by alanine. Observing the
bioactivity of the resulting molecule will help understanding if a given
amino acid is biologically relevant or not. Therefore, if a key amino acid
residue is replaced by alanine it will be observed a loss in bioactivity
(Trabocchi and Guarna, 2014). Next in hierarchy is the reduction in size
of the initial peptide (Marshall, 1993). With this methodology it is
possible to assess the minimum sequence that interacts with the target.
To achieve it a sequential removal of amino acids either from N- or C-
termini and the subsequent biological activity measurement is done.
Concretely, this process identifies the sequence bearing the pharma-
cophore (Trabocchi and Guarna, 2014). Afterwards, replacing amino
acids of the parent peptide with D-amino acids and measuring the ac-
tivity of the obtained molecule enlightens the structural organization of
the biologically active conformation due to a change in the configura-
tion and conformation of the side chains (Marshall, 1993; Trabocchi
and Guarna, 2014). The clarification of the role each amino acid in the
bioactive peptide has can also be done by creating N-methylated pep-
tides. This approach creates a tertiary amide bond that contributes to a
further understanding between conformation and bioactivity
(Trabocchi and Guarna, 2014). Lastly, the bioactive conformation can
be defined with the help of the insertion of local and/or global con-
straints because the initial peptide is in a loose conformation that
presents low activity (Marshall, 1993).

Regarding to what specific characteristic a peptidomimetic mole-
cule emulates, this can be fitted into three different categories: type-I,
type-II and type-III mimetics (Trabocchi and Guarna, 2014). Type-I
mimetics were the first peptidomimetic molecules to be described and
mimic local topographic features of the native compound while still
carrying all the features responsible for the interaction with the target
molecule. It is frequent that these biomolecules match the peptidic
backbone atom for atom by introducing isosteres into it (Ripka and
Rich, 1998). Functional mimetics, or type-II mimetics, replicate the
basis of the interaction between the native peptide and the target
without concern for mimicking the structural arrangements of the in-
itial molecule. When the first appeared, these peptidomimetics were
thought to be equivalent to the original peptides in terms of structure,
but characterization of both biomolecules found that they bind to dif-
ferent sub-sites in a large number of receptors (Sautel et al., 1996;
Schwartz, 1994). Despite this, both types of peptidomimetics described
are valuable resources to replace peptides with molecules possessing
higher binding affinity or greater selectivity towards a given target, yet
type-III mimetics are considered the ideal approach in designing pep-
tidomimetic ligands. Such biomolecules present a scaffold with a dif-
ferent structure regarding the initial peptide and although they appear
quite unrelated, they possess all the necessary groups in a well-defined
spatial orientation to facilitate favourable molecular interactions. Thus,
they are generally termed functional-structural mimetics (Ripka and
Rich, 1998; Trabocchi and Guarna, 2014).

3. The role of integrins in angiogenesis

3.1. Brief overview of angiogenesis

Angiogenesis plays a fundamental part in fetal development, ovu-
lation, wound healing and growth and development and is character-
ized as the formation of new blood vessels from pre-existing ones
(Folkman, 1971). This process can be classified as sprouting angio-
genesis or intussusceptive angiogenesis. As such, the former happens
when ECs sprout from preexisting vessels, whereas the latter consists of

the insertion of tissue pillars within capillaries to divide these vessels
(Patel-Hett and D’Amore, 2011). Sprouting angiogenesis begins with
the dissolution of the basement membrane and consequent detachment
of pericytes from the capillary and is followed by the migration of ECs
towards the extracellular space and consequent formation of an en-
dothelial sprout. Then, downstream, the tip of the migrating edge ECs
start to proliferate, the lumen of the endothelial sprout is formed and
the sprout forms a closed looped with another vessel. In a final step,
pericytes are recruited to the new vessel and the basement membrane
involving it is formed (Carmeliet, 2000). Sprouting angiogenesis re-
presents the process about which most information concerning angio-
genesis has been gathered (Shiu et al., 2005). On the other hand, in-
tussusceptive angiogenesis happens when endothelial walls of opposing
sides of a vessel migrate towards each other and form an intraluminal
pillar. Subsequently, the pillar suffers a central perforation, whereupon
it is occupied with pericytes and myofibroblasts that will be responsible
for the deposition of ECM. New pillars continue to form, increase in
size, and finally merge to split the initial vessel into two different ones
(Burri et al., 2004).

The main purpose of angiogenesis is to provide tissues with sa-
tisfactory amounts of nutrients and oxygen (Papetti and Herman,
2002). Logically, a major regulator of this physiological process is their
oxygen concentration. Thus, when an oxygen deficit (hypoxia) within a
tissue exists, growth factors and chemokines that will activate vascular
growth and remodeling, are secreted (Fraisl et al., 2009). Acidic fi-
broblast growth factor (aFGF) and basic (FGF) represent two of these
molecules. Both activate the production of matrix proteases in ECs
which will breakdown their ECM and enable both the migration of
these cells and the formation of capillary like tubes (Doi et al., 2007).
One of the most important pro-angiogenic stimulators is vascular en-
dothelial growth factor (VEGF). The production of this growth factor is
up-regulated in cells with low oxygen amounts, and its effect is the
proliferation and invasion of the hypoxic tissue by ECs. This grants the
tissue new blood vessels which in turn will increase the oxygen level of
its cells (Krock et al., 2011). Another growth factor involved in angio-
genesis is platelet-derived growth factor (PDGF). PDGF is important in
the maturation of blood vessels, mainly in their stabilization and in-
tegrity (Hellberg et al., 2010). Transforming growth factor-β (TGF-β) is
a family of multifunctional cytokines involved in several types of cell
behaviors in which angiogenesis is included. The effect of this cytokine
in angiogenesis depends on its concentration. Therefore, at low con-
centrations, TGF-β upregulates pro-angiogenic factors, stimulates EC
proliferation and migration and is also involved in the production of
ECM proteinases. When this cytokine is present at high concentrations,
it inhibits EC growth and acts both as a promoter of the reformation of
the basement membrane and as a vessel stabilizer. Angiogenesis can
also be modulated by angiopoietins (Ang-1 and Ang-2). Through the
activation of a receptor of ECs named Tie-2, Ang-1 promotes the re-
cruitment of pericytes and smooth muscle cells (SMCs) contributing to
the stabilization and preservation of vascular integrity. Alternatively,
Ang-2 acts as a competitor of Ang-1 for Tie-2 and its effect is the re-
laxation of the interactions between both pericytes and ECs and an
enhanced degradation of ECM (Carmeliet, 2003).

3.2. Angiogenesis in cancer and the role of integrins in cancer growth and
metastasis

Even though angiogenesis is a fundamental physiological event, it
can also be nefarious in certain situations since it is essential in tumor
growth and metastasis, making, therefore, this process paramount for
their proliferation, spreading and infiltration within tissues (Carmeliet,
2005). Initially, tumors can survive by simply taking advantage of the
available vasculature of their host and surroundings. However, tumor
cells can become hypoxic if they grow beyond a distance from which
both oxygen and nutrients can reach them (approximately 200 μm)
(Nussenbaum and Herman, 2010). Thus, their response to hypoxia and
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sub-nutrition is creating new blood vessels to fulfill their metabolic
needs in a process similar to angiogenesis or by recruiting circulating
bone marrow-derived endothelial progenitor cells (Lyden et al., 2001).
In fact, several studies show that targeting tumor angiogenesis can stop
the progression and metastasis of this disease (Ferrara and Kerbel,
2005).

Tumor angiogenesis is highly dependent on ECM disruption, the
migratory capacity of ECs and their adhesion to integrins. As a natural
outcome, integrins have been targeted as important actors in cancer
angiogenesis (Desgrosellier and Cheresh, 2010). Accordingly, several
integrins like αvβ3, αvβ5, α1β1 α2β1 α4β1, α5β1, α6β1, α6β4 and
α9β1 have been implicated in angiogenesis (Avraamides et al., 2008).
Despite the fact that all the former integrins have been implicated in
angiogenesis, this section will only focus on those having a central role
in tumor angiogenesis, namely: αvβ3, αvβ5 and α5β1 (reviewed in
Bianconi et al., 2016 and Nieberler et al., 2017). Integrin αvβ3 is one of
the most studied due to its role in cancer angiogenesis regulation
(Nussenbaum and Herman, 2010). Its role during angiogenesis is to
bind and activate MMP-2 at the migration tip of new blood vessels to
disrupt ECM and facilitate their migration and infiltration. These
findings put αvβ3 in the spotlight as a fundamental tumor angiogenic
promotor. In accordance, αvβ3 antagonists could inhibit tumor growth
in several cancer animal models (Brooks et al., 1995; Brooks et al.,
1994a, 1994b). Contrarily to αvβ3, integrin αvβ5 promotes angiogen-
esis through a pathway involving VEGF and not bFGF (Friedlander
et al., 1995). VEGF is a growth factor known for increasing vascular
permeability, constituting a promotor for tumor metastasis (Weis et al.,
2004). Thus, the expression of this integrin was found both in glioma
cells and their vasculature, implicating it in the angiogenesis of glioma
(Bello et al., 2001). Integrin α5β1 is another cell adhesion receptor
implicated in tumor angiogenesis. The expression of this integrin is
augmented in both the endothelium of mice and humans during tumor
angiogenesis and its inhibition resulted in the repression of tumor an-
giogenesis and growth on animal models (Kim et al., 2000). Similarly to
αvβ3, the expression of α5β1 is not induced by VEGF, but by other pro-
angiogenic molecules like bFGF and IL8 (Boudreau and Varner, 2004).

Taken together, these experimental findings confirmed the potential
of targeting specific integrins during tumor angiogenesis and set the
ground for the development of ligands to inhibit them. A selection of
clinically-tested molecules will be discussed in the next section of this
review.

4. Clinical trials involving integrin ligands to inhibit tumor
angiogenesis

Once the role of integrins as key mediators during tumor angio-
genesis was established, several research groups started developing
specific compounds targeting these cellular receptors. For this task,
three different types of molecules have been used, specifically, mono-
clonal antibodies, RGD-containing ligands and peptidomimetics (Curley
et al., 1999; Marelli et al., 2013). The objective of this therapeutic
approach is straight-forward, since by inhibiting tumor vasculature, the
flow of nutrients and oxygen to tumor cells is disabled, which in turn
would incapacitate their growth and expansion. Contrarily to standard
cancer treatments like chemotherapy, which may also indiscriminately
damage healthy tissues and cause severe undesired secondary effects,
integrin antagonists represent a specific means of directly targeting
tumor processes without provoking non-specific interactions and side
effects (Marelli et al., 2013).

The use of antibodies against specific integrins started when
Cheresh et al. observed that immunoprecipitation of αvβ3 was possible
by using a monoclonal antibody of M21 melanoma cells (Cheresh et al.,
1987). Moreover, LM609 decreased the invasiveness and growth ca-
pacity of melanoma, lung, pancreas and larynx carcinomas implanted
on CAM (Brooks et al., 1995; Brooks et al., 1994a, 1994b). These results
serve as proof of concept to the possible utility of inhibiting tumorTa
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angiogenesis with specific integrin ligands. However, the clinical via-
bility of LM609 is limited due to its murine origin, thus raising the
concern of possible immunogenicity when administered to humans.
Therefore, humanization of this antibody by phage display originated
vitaxin (MEDI-522) which had more suitable characteristics for human
testing (Rader et al., 1998). The following section of the review intends
to give a general overview about the clinical trials undertaken with
molecules targeting integrins involved in angiogenesis. Clinical out-
comes and adverse events found during these studies are summarized in
Table 1.

4.1. Vitaxin (MEDI-522)

Initial studies with this antibody undertaken by Coleman et al.
showed an inhibition of EC proliferation and angiogenesis, following a
balloon injury in rabbits. Furthermore, vitaxin showed an increased
antiangiogenic effect when compared to other integrin ligands, possibly
due to its affinity towards αvβ3 (Coleman et al., 1999). This study
proved the validity of vitaxin to inhibit angiogenesis and so this
monoclonal antibody was evaluated in several clinical trials (Gutheil
et al., 2000; Patel et al., 2001; Posey et al., 2001). Despite generally
having a good safety profile, vitaxin proved unsuccessful changing the
clinical outcome of the enrolled patients. Thus, only one patient diag-
nosed with a leiomyosarcoma metastatic to the liver presented a partial
response to the treatment. Even though after almost 2 years the size of
his measurable lesions continued stable, the tumor had progressed into
the gastrointestinal system which motivated treatment cessation
(Gutheil et al., 2000). The use of 99mTc-vitaxin as an imaging agent for
tumor vasculature was also unsuccessful, being able to locate the tumor
in just one melanoma patient. Thus, the authors correlate this failed
attempt not only to the low doses applied (1 mg) but also to in vivo
limitations in both the affinity and stability of the 99mTc label (Posey
et al., 2001).

4.2. Etaracizumab

The idea of creating another humanized derivation of LM609 but
increased affinity towards αvβ3 lead to the development of etar-
acizumab (Wu et al., 1998). This antibody proceeded to Phase I and
Phase II clinical studies, either alone or in combination with FDA-ap-
proved chemotherapeutic agents, but without any significant results
(Peter Hersey et al., 2010; McNeel et al., 2005). The action of etar-
acizumab alone did not provide any response to the treatment, but
three patients having metastatic renal cancer presenting and evidences
of disease progression before the clinical trial remained stable for more
than 8 months (McNeel et al., 2005). Etaracizumab proved also to be
ineffective when applied in combination with dacarbazine (DCZ) in
metastatic melanoma patients. All the treatment responses were partial
and for the combinatorial group. Generally, Hersey et al. did not ob-
serve any beneficial effects of adding etaracizumab to DCZ as most of
were similar to DCZ action alone (Hersey et al., 2010). From this point
onwards, interest in late-stage clinical evaluation was discontinued.

4.3. Intetumumab (CNTO 95)

Intetumumab is a human monoclonal antibody specific for both
αvβ3 and αvβ5 that showed inhibition of tumor growth and angio-
genesis in vitro and in vivo (Trikha et al., 2004). Like etaracizumab,
intetumumab was clinically evaluated alone (Mullamitha et al., 2007)
and in combination with DCZ (O’Day et al., 2011, 2012) and docetaxel
and prednisone (Chu et al., 2011; Heidenreich et al., 2013). When
tested alone, only one patient with angiosarcoma showed a prolonged
partial response to the treatment, but after 10.5 months the tumor
progressed (Mullamitha et al., 2007). The use of this antibody in
combination with DCZ did not show a substantial impact on the pro-
gression of patients with melanoma concerning progression-free

survival. However, it seemed to exist a tendency towards increased
overall survival for patients in the highest intetumumab dose (O’Day
et al., 2011, 2012). The combined use of intetumumab in combination
with docetaxel and prednisone showed some potential in a Phase I
clinical trial with castrate-resistant metastatic prostate cancer patients
(Chu et al., 2011). However, a subsequent Phase II study in patients
diagnosed with the same malignancy came into a premature end when
the interim analysis revealed a tendency towards better progression-
free disease and overall survival for the placebo group (Heidenreich
et al., 2013). Altogether, these results led to discontinuation of the
development of intetumumab as a possible therapeutic agent against
cancer.

4.4. Volociximab (M200)

Volociximab is a IgG4-type chimeric monoclonal antibody with
specificity towards α5β1. Preclinical data in a three-dimensional fibrin
matrix showed its ability of inhibiting human umbilical vein en-
dothelial cells (HUVECs) of forming tube-like structures independently
of the administration of growth factors. When translated to animal
models, volociximab showed the same anti-angiogenic properties in
severe combined immunodeficient mice and cynomolgus monkeys
(Ramakrishnan et al., 2006). These promising results naturally created
interest in applying volociximab as an anti-angiogenic agent in human
clinical trials. Therefore, this antibody was studied in patients having
advanced solid neoplasia (Ricart et al., 2008), and platinum-resistant
advanced epithelial ovarian cancer and primary peritoneal cancer (Bell-
Mcguinn et al., 2011). The former, a Phase I study, led to the reduction
in the metastasis of a patient presenting renal cell carcinoma and stable
disease during 4 months and to stable condition of a patient with
melanoma with visceral metastasis remained stable for 14 months
(Ricart et al., 2008). A Phase II clinical trial in patients diagnosed with
platinum-resistant advanced epithelial ovarian cancer or primary
peritoneal cancer had unsatisfactory results regarding impact on dis-
ease progression. Consequently, only one of the patients completed the
full treatment, but disease progression occurred after finishing it (Bell-
Mcguinn et al., 2011). Therefore, this antibody did not present any
therapeutic advantage and no clinical trial using volociximab is cur-
rently active and it seems that the interest in this antibody has wea-
kened.

4.5. Cilengitide

Even though several ligands containing RGD, other peptides of in-
terest (ATN-161) or mimicking the action of RGD have been developed,
very few candidates have proceeded to clinical trials. Cilengitide was
the first ligand mimicking the action of RGD to be reported and the one
that progressed further.

Developed by the group of Horst Kessler, cilengitide is a N-methy-
lated cyclic RGD molecule (Fig. 4) with subnanomolar activity for αvβ3
(0.58 nM) and nanomolar affinity towards αvβ5 (11.7 nM) and α5β1
(13.2 nM) (Dechantsreiter et al., 1999). Preclinical studies showed that
this ligand influenced cellular adhesion to αvβ3 and exponentiated
apoptosis of cells expressing both αvβ3 and αvβ5, whilst actively re-
ducing tumor angiogenesis and retarding its growth and metastasis in
vivo (Buerkle et al., 2002; MacDonald et al., 2001; Taga et al., 2002).
Cilengitide showed potential to treat brain tumors in two Phase I stu-
dies where two patients having malignant glioma showed complete
response to the treatment and one patient with refractory brain tumor
presented the same outcome (MacDonald et al., 2008; Nabors et al.,
2007). In addition, three glioma patients had partial responses with a
mean duration of 9.3 months (Nabors et al., 2007). Cilengitide then
progressed to Phase II clinical trials, either alone or in combination with
chemotherapy agents, where it continued to show promising results
(Fink et al., 2010; Gilbert et al., 2012; Stupp et al., 2010). Specifically, a
Phase I/IIa clinical trial showed that the addition of cilengitide to TMZ/
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radiotherapy resulted in six patients without signs of disease progres-
sion for a period of at least 2 years (Amarouch and Mazeron, 2005).
Still, genetic analysis connected this improvement to patients with
methylation of the promoter O6-methylguanine-DNA methyltransferase
(MGMT), a fact corroborated by another Phase II study (Amarouch and
Mazeron, 2005; Reardon et al., 2008). These results motivated a Phase
III clinical trial applying cilengitide, complemented by TMZ/radio-
therapy, in glioblastoma patients having methylated MGMT. Contrarily
to the previous reported studies, cilengitide showed no influence re-
garding its impact on cancer progression (Stupp et al., 2014). A prob-
able reason could reside on the dose regimen but a Phase II study with a
more intensive cilengitide regimen in individuals without MGMT me-
thylation showed no significant differences between experimental and
control groups (Nabors et al., 2015). Recently, it was found that in-
hibiting α5β1 activates a p53-dependent apoptotic pathway in glioma
cells and that single glioma cell migration could be inhibited by α5β1
antagonists and not by αvβ3 antagonists (Ray et al., 2014; Renner et al.,
2016). Hence, the lower affinity of cilengitide towards α5β1 could also
provide an explanation for the lack of clinical efficacy of this molecule
on glioblastoma. Paradoxically, different studies have showed that low
doses of cilengitide stimulate angiogenesis, due to an agonistic effect on
αvβ3 that leads to the stabilization of the vascular system (Hodivala-
Dilke, 2008; Reynolds et al., 2009; Wong et al., 2015). This effect is due
to the activation of the resting state heterodimeric integrin (the first
step in integrin signaling). Thus, binding affinity to the ligand increases
during the homo-oligomerization of integrin subunits but the blocking
of cell adhesion or integrin activation requires the utilization of higher
concentrations (Zhu et al., 2013). Together with the lower affinity of
cilengitide against α5β1, these findings aid to explain its unsuccessful
performance in the Phase III glioblastoma trial. Moreover, the agonistic
effect cilengitide presents in low concentration regimens opens new
applications to the RGD-based molecule. Wong et al. utilized this fea-
ture and took advantage of it to improve the delivery of chemother-
apeutic drug Gemcitabine into pancreatic cancers in mice, reducing its
growth, metastasis and the side effects associated to the drug while
increasing animal survival (Wong et al., 2015). Even though tumor
angiogenesis is highly correlated with their proliferation and spreading,
this result is particularly interesting and shows that angiogenesis can be
used in favor of possible experimental treatments, having cilengitide an
important role on their success.

Although possible explanations for Cilengitide failure are numerous,
this RGD-containing molecule represents by far up until now the in-
tegrin-targeting antiangiogenic agent with better perspective to trans-
late into an established therapeutic agent. Adding to this, αvβ3 is ex-
pressed on melanoma, prostate, cervical, breast and pancreatic
carcinoma cells which opens the potential application of cilengitide to
these tumors. In fact, this molecule has been applied in several Phase I
and II studies of these diseases but with no success (Alva et al., 2012;
Kim et al., 2012; Manegold et al., 2013; Vansteenkiste et al., 2015;
Vermorken et al., 2011).

To conclude this section, angiogenesis is a well-established hallmark
of cancer and integrins are deeply involved on it. Therefore, targeting it
can still be a potential approach to decrease cancer metastasis and
progression. However, solely targeting angiogenesis might not be suf-
ficient to detain the pathogenesis of cancer. Discovering possible bio-
markers for tumors and then developing ligands able of only being
cytotoxic towards tumor cells could prove to be a good complement to
the use of molecules with high affinity towards integrins involved in
angiogenesis. On this front, peptide-like ligands seem to provide the
best solution as they have a safer profile and improved clinical activity
than antibodies. Despite this promise, a peptide-like molecule with
confirmed impact on tumor vasculature and pathogenesis seems to be
still distant and so their development should face towards other areas.
Consequently, regenerative medicine approaches are highly dependent
on vascularization or other cellular responses that promote regenera-
tion rather than repair. Therefore, the use of integrin-specific ligands
could be extremely useful. The next section of the review intends to
highlight the high potential that peptidomimetic ligands targeting
proangiogenic integrins have on the improving of the vascularization of
regenerative medicine constructs.

5. Importance of vascularization in Regenerative Medicine
therapeutics: specific integrin-targeting biomaterials as a
promising solution

5.1. Vascularization strategies in Regenerative Medicine

Regenerative medicine aims to provide therapeutic solutions to re-
place or regenerate damaged tissues or organs, presenting itself as an
alternative to organ transplantation (Kim et al., 2016). Despite all the
problems arising from tissue and organ complexity, mainly due to their
intricate cellular organization and the complex interaction between
cells, their natural environment and endogenous or exogenous stimulus,
it remains paramount to engineer an efficient network to provide these
therapeutic approaches with appropriate nutrients and oxygen in vivo
(Rouwkema et al., 2008). In fact, prior to implantation these needs can
be fulfilled by using perfusion bioreactors. However, after in vivo im-
plantation the constructs will need to integrate into the host vasculature
to reestablish the correct influx of nutrients to its cells. Usually, during
the foreign body reaction, vascular networks are able of perfusing the
implant but this event takes too long. Consequently, cells in the middle
of the engineered tissue will not have appropriate access to nutrients, or
become hypoxic, and may die which will impair a proper in vivo in-
tegration of the scaffold (Butt et al., 2007).

A natural solution to this problem is adding a vascular network to
the construct before implantation, therefore accelerating its perfusion.
Pre-vascularized engineered tissues can be quickly perfused with blood
by inosculation with the host vasculature (Laschke et al., 2009) or by
surgical anastomosis of feeding and draining blood vessels (Beier et al.,
2009; Eweida et al., 2011). Such vascular networks must be highly
branched in such a way that no cell is further than 200 μm from a vessel
as this is broadly considered as the diffusion limit for oxygen and nu-
trients in tissues (Jain et al., 2005). In addition, this vascular network
should be able to behave like a selective barrier to control the passage
of materials from the vessels to their surrounding tissue. This will
prevent an excessive drainage of fluid which otherwise would lead to

Fig. 4. Chemical structure of cilengitide [c(RGDf(NMe)V)]. This RGD-containing cyclic
molecule has subnanomolar activity for αvβ3 (0.58 nM) and nanomolar affinity towards
αvβ5 (11.7 nM) and α5β1 (13.2 nM). Cilengitide reached Phase III clinical trials for the
treatment of glioblastoma but failed to have a significant impact on the outcome of this
pathology.
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tissue edema (Rouwkema and Khademhosseini, 2016).

5.1.1. Cell seeding
In vitro pre-vascularization can be done by several techniques but

the most often used is the cell seeding approach. Here, cells that will
form the future vessels are seeded onto scaffolds either engineered se-
parately or consisting of natural decellularized ECM. The use of de-
cellularized tissue has the advantage of promptly having available the
intricate 3D architecture of the vascular system (Ott et al., 2008; Song
and Ott, 2011). Therefore, cells can be directly delivered into the
channels that were, and will become again, the vascular network of the
tissue before decellularization.

Several studies of scaffold pre-vascularization have depended on the
ability of ECs to spontaneously organize and form vascular networks
(Chen et al., 2009, 2012; Levenberg et al., 2005). ECs start by forming a
primitive network on the initially avascular scaffold in a similar process
to vasculogenesis. Then, ECs further organize in a similar way to an-
giogenesis. Even though these cells are able of assembling into complex
networks, often without addition of growth factors or specific cues,
culture conditions and the type of cells used during co-culture with ECs
are of extreme importance. Thus, these factors can influence the mor-
phology of the newly formed vascular network. Therefore, depending
on these, the obtained network will vary from immature and possessing
limited amounts of lumen to more mature networks with well-devel-
oped lumen (Chen et al., 2012; Kunz-Schughart et al., 2006). Levenberg
et al., showed that culturing mural precursor cells like embryonic fi-
broblasts and mesenchymal stem cells (MSCs) with ECs helps matur-
ating the network and its stabilization (Levenberg et al., 2005). This is
also reflected by an increased vessel lumen, which will augment the
quantity of blood that can be delivered to the tissue. In addition, these
cells help regulating vascular permeability which results in less fluid
being leaked into the tissue and lower interstitial fluid pressure (Goel
et al., 2011). Pericytes are other type of cells with beneficial action
towards stabilization of newly-formed endothelial tubes (Saunders
et al., 2006). Stratman et al. proved that the crosstalk between ECs and
pericytes induces ECs to deposit ECM proteins like collagen type IV,
laminin and fibronectin contributing in turn to stabilize the vascular
network (Stratman and Davis, 2012). Koike and coworkers also proved
that mural cells are fundamental for obtaining stable vascular networks
(Koike et al., 2004). In this seminal study, co-cultures of HUVECs and
mural precursor cells developed into stable vascular networks that
lasted for periods up to one year in vivo. In contrast, constructs en-
gineered with HUVECs alone showed minimal perfusion and dis-
appeared after 60 days. Even though, as mentioned, after seeding
HUVECs form vascular networks and can be perfused upon implanta-
tion, these cells are difficult to harvest in large amounts under clinical
conditions and have limited proliferation during the culture phase.
Furthermore, this type of ECs are heterogeneous and present several
different features depending on the organ from which they were har-
vested (molecular permeability, homeostasis, immune tolerance, an-
giogenic potential and vascular tone) (Aird, 2007; Baldwin et al., 2014).
Despite these disadvantages, HUVECs are frequently used in in vitro
studies. Contrarily to most ECs, HUVECs are available for extraction
from unwanted umbilical cords, are easy to obtain and present an

interesting expansion profile which make them an attractive source of
ECs. Unfortunately, HUVECs often render unstable vessels and their
transplantation is capable of inducing an immune response from the
host (Baiguera and Ribatti, 2013). Several studies demonstrated that
endothelial progenitor cells (EPCs) represent a promising cell popula-
tion to be used on prevascularized scaffolds (Aronson et al., 2012;
Duttenhoefer et al., 2013; Guerrero et al., 2013; Serrano et al., 2011;
Sobhan et al., 2012). These cells represent a small population of cir-
culating CD34+ cells with the capacity of accomplishing phenotypical
features of ECs in vitro (Asahara et al., 1997; Finkenzeller et al., 2007).
Importantly, EPCs have higher proliferative potential than ECs and are
easily obtained (Sales et al., 2006). Accordingly, these cells circulate in
peripheral blood and can be obtained from it by non-invasive proce-
dures. Moreover, EPCs are also present in blood from the umbilical
cord, another source of high concentrations of these progenitor cells
(Hristov et al., 2003; Murohara et al., 2000). Considering the time they
take to appear after being cultivated in vitro, EPCs can be divided into
two distinct groups. Thus, early EPCs appear less than 1 week after
culture whereas late EPCs take 2 to 4 weeks to appear and present a
cobblestone-like morphology (Asahara et al., 1997). Late EPCs are the
most interesting for the development of pre-vascularized constructs
since they are able of differentiating into ECs and form capillary-like
structures. On the other hand, early EPCs have an indirect action to-
wards vessel formation. Thus, by secreting angiogenic growth factors,
this type of EPCs has a paracrine action on angiogenesis (Hur et al.,
2004). Additional cell types with capacity to achieve complex vascular
networks in scaffolds include MSCs (Almalki et al., 2017; Hsieh et al.,
2016; Miranville et al., 2004; Pill et al., 2015), induced pluripotent
stem cell-derived endothelial cells (Belair et al., 2015) and amniotic
fluid-derived stem cells (Benavides et al., 2015; Verseijden et al.,
2010b).

5.1.2. Spheroids
Spheroids represent another way of producing pre-vascularized

constructs (Fig. 5) (Mishra et al., 2016; Rouwkema et al., 2009;
Verseijden et al., 2010a). These cell aggregates are formed by self-as-
sembly and can be obtained in vitro when cells are unable of attaching
to a surface and consequently have to interact with each other (Laschke
and Menger, 2017). Since spheroids represent 3D cellular structures,
their organization resembles what is found physiologically. Moreover,
these aggregates present high concentrations of cell-to-cell contacts,
cell-matrix interactions and produce high amounts of growth factors. In
addition, cells within spheroids are more resistant to hypoxia and
apoptosis and have enhanced differentiation potential when compared
to 2D cell culture (Bhang et al., 2012; Yoon et al., 2012). Therefore,
these features make them particularly interesting to be studied as po-
tential promoters of scaffold vascularization. Recently, Mishra et al.
utilized a poly(propylene fumarate)/fibrin hydrogel to coculture
HUVEC/human MSCs (hMSCs) and develop a pre-vascularized scaffold
for bone regeneration (Mishra et al., 2016). These authors proved that
allowing the spheroid cells to organize into vascular networks before in
vivo implantation improves the connection within the vasculature of the
host. In a different study, Laschke and coworkers proved that adipose-
derived stem cells (ASCs) spheroids seeded into polyurethane scaffolds

Fig. 5. Representation of the use of spheroids to develop
pre-vascularized constructs. After seeding, these cell ag-
gregates start to migrate and ultimately develop into de-
fined vascular structures.

L.A. Rocha et al. Biotechnology Advances 36 (2018) 208–227

217



are capable of initiating blood vessel formation. Upon implantation in
an animal model, this type of MSCs induced a strong angiogenic host
tissue response which resulted in improved scaffold vascularization and
high functional microvessel density (Laschke et al., 2013).

5.1.3. Bioprinting
3D bioprinting has enormous potential in the development of pre-

vascularized structures. The application of this technique allows precise
control over the location of cells in spatially defined locations within 3D
environments (Mandrycky et al., 2015). Therefore, the complex archi-
tecture of a vascular network can be both addressed and controlled by
directly designing it onto a scaffold. Additionally, scientists can exactly
control the cellular densities of the newly patterned vessels and orga-
nize different cell types to mimic their natural assembly in blood ves-
sels. Bioprinting is able of forming 3D vascular networks and structures
by additively depositing cell suspensions containing vascular cells in-
side, or not, an appropriate matrix (bioink) (Fig. 6) (Jakab et al., 2006).
These networks can be engineered by discretely depositing cells as
droplets or spheroids adjacently to each other in the intended form.
Creating a vascular network using this type of bioprinting relies on the
capacity of spheroids to spontaneously join and self-assembly into
blood vessels. The other way of engineering a pre-vasculature using
bioprinting is by direct-writing, where cells are continuously adminis-
tered as vascular cell suspensions inside an appropriate matrix. Thus,
using this type of bioprinting, a vasculature more similar to the one to
be replaced/needed can be obtained (Hoying and Williams, 2015). The
potential of bioprinting was demonstrated in a study by Norotte et al
(Norotte et al., 2009). These authors utilized several types of vascular
cells aggregated into separated units (either multicellular spheroids or
cylinders) to print layer-by-layer vessel-like structures with agarose
rods as molding template. During post-printing these cellular structures
started to aggregate and developed into fully biological vascular tubular
structures. Using a different approach Cui and coworkers developed a

3D polylactic acid (PLA) bioprinted vascularized bone construct having
a fully interconnected microvascular network that mimicked native
bone (Cui et al., 2016). This innovative scaffold was then subjected to
several surface modifications to optimize its capacity towards cell ad-
hesion and smart release of growth factors. Afterwards the authors re-
populated the vasculature of the scaffold with hMSCs and HUVECs
under different culture conditions. Interestingly, these authors were
able of modulating angiogenesis and osteogenesis through the delivery
of specific growth factors entrapped on the surface of the construct with
spatiotemporal coordination.

5.2. The use of molecule cues to enhance vascularization

5.2.1. Growth factors
As discussed in the section dedicated to angiogenesis, this process is

able of being controlled using specific molecular cues. Therefore, it is
not surprising that a great volume of research regarding the develop-
ment of vascular networks in regenerative medicine constructs takes
advantage of these molecules to promote vascularization. Of all these
molecules, VEGF is the one which is present in most angiogenic pro-
cesses. Several authors have demonstrated that better results are
achieved when distinct gradients of this molecule exist within scaffolds,
granting endothelial cell elongation and branching in a spatially-driven
way (Bigalke et al., 2014; Poldervaart et al., 2014). Nevertheless, an-
giogenesis is a process with different phases in which different mole-
cules take part. Therefore, to further enhance vascularization and have
a more extensive impact on angiogenesis it is interesting to combine
VEGF with other molecules involved in distinct phases of this process
(Kakudo et al., 2017; Rufaihah et al., 2017; Shin et al., 2011; Sun et al.,
2011). Even though the combination of growth factors provides sa-
tisfactory outcomes, it is difficult to understand their correct distribu-
tion within the construct and their availability over time. Perhaps the
most complete way of inducing angiogenesis is to combine the use of
these growth factors with molecules that induce their cellular expres-
sion. This way cells regulate the secretion of growth factors. It also
helps promoting the formation of growth factor microgradients and also
offers the possibility of expressing different growth factors at the same
time, thus impacting blood vessel formation and maturation (Baiguera
and Ribatti, 2013). Sonic hedgehog (Shh) is a strong tool in indirect
modulation of angiogenesis. Thus, this morphogenic agent induces cells
to express VEGF1, Ang-1 and Ang-2, increasing their concentration and
this originates large-diameter vessels in vivo (Pola et al., 2001). In ac-
cordance, Rivron and coworkers took this concept and applied it for
inducing the organization of a capillary network in an artificial tissue
for bone regeneration (Rivron et al., 2012). In this work, vascular
networks resulting from the co-culture of hMSCs and hHUVECs ag-
gregates originated primitive 3D networks, composed of cord-like vas-
cular structures with some lumens. In contrast, the addition of Shh to
the culture media promoted vessel maturation while increasing their
lumen. This led to a more functional and stable vasculature after in vivo
implantation. Once again, the importance that having a robust vascular
network can define the success of regenerative medicine approaches is
proved, as only the implants exposed to Shh (having more mature and
robust vascular networks) contributed to the formation of mature bone.

5.2.2. RGD-containing materials as promoters of cell adhesion and
vascularization

Commonly, typical materials used in regenerative medicine ap-
proaches towards engineering vascular networks like alginate, PEG and
poly-(L-lactic acid) (PLLA) are bioinert. Therefore, numerous studies
produce materials that mimic the mechanisms behind the natural cell-
ECM interaction. Logically, one way of creating materials promoting
cell adhesion and proliferation is by functionalizing them with RGD
(Chwalek et al., 2011; Hadjizadeh and Doillon, 2010; Oliviero et al.,
2012; Wang et al., 2014). By utilizing the tripeptide, researchers desire
mimicking the natural processes of angiogenesis and render their

Fig. 6. Illustration of the creation of a vascularized construct by bioprinting. This tech-
nique enables the development of discrete vascular networks using additive manu-
facturing.
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biomaterials with more suitable properties for the development of
matured vascular networks. Thus, Bidarra et al. utilized RGD-modified
alginate hydrogels to culture HUVECs and proved that this modification
improves the biofunctionality of this polymer (Bidarra et al., 2011).
Indeed, these hydrogels seemed to constitute a suitable microenviron-
ment for HUVECs. These cells maintained their viability and migrated
to the outside of the matrix constituting primitive tube-like structures.
In comparison, on unmodified alginate hydrogels cells quickly lost their
viability and could not migrate to the outside of the artificial matrix.
Additionally, RGD stimulated the production of MMP2 a type of MMP
deeply involved in endothelial cell migration during angiogenesis.
Biofunctionalization of otherwise bioinert materials, however, it is not
sufficient per se to originate fully functional, matured, vascular net-
works. Therefore, to increase the angiogenic potential of these ap-
proaches the best option is to combine the inclusion of RGD into bio-
materials with the administration of angiogenic growth factors.
Designing smart materials that upon degradation are capable of re-
leasing growth factors further stimulating cells to provide an angiogenic
response, assembling and organization into vascular networks seems
promising. In accordance, Phelps and coworkers used this concept de-
veloping a PEG hydrogel functionalized with RGD, presenting both
MMP-sensitive spots and VEGF within it (Phelps et al., 2010). These
matrices were able of sustainably deliver steady rates of this growth
factor during approximately 2 weeks. On the other hand, the admin-
istration of soluble VEGF to PEG hydrogels without the growth factor
lead to a 90 % decrease of its initial quantity over the same time.
Subcutaneous rat implants of the hydrogel containing RGD, MMP-
cleavable sites and VEGF significantly enhanced vessel ingrowth by 2
weeks and increased vasculature at 4 weeks while presenting good
perfusion. On the contrary, hydrogels without VEGF or RGD presented
minimal tissue invasion and the non-degradable matrix did not in-
tegrate into the host tissue. The appropriate rate of degradation of the
construct is also important. In accordance, Chwalek et al. developed
similar hydrogels to the previous reported study but with distinct de-
gradation profiles (Chwalek et al., 2011). These differences were due to
the inclusion of either a stable amine bond at physiological pH or an
ester bond that slowly degrades in these conditions. Furthermore, these
authors designed hydrogels of both types with variable elasticity and
RGD density with the purpose of studying the impact of these factors in
ECs growth. In vitro assays showed that cells growing on faster de-
grading materials were more prone to develop into cord-like structures
and expand. Cellular invasion depth was greater for smaller RGD con-
centrations and higher concentrations of VEGF promoted the formation
of cord-like structures. Additionally, increasing the stiffness of the hy-
drogels also reduced their invasion depth. These authors also studied
the capacity of these constructs to induce vascularization in vivo in a
CAM model. As in the in vitro studies, fast releasing VEGF hydrogels
obtained the best result regarding vascularization, being in fact com-
parable to Matrigel® in the same model. Culver et al. demonstrated that
creating specific RGD patterning within hydrogels can direct cells to
create vascular networks that are similar to organs or structures of the
human body. By using two photon laser scanning lithography (TP-LSL)
the authors created a pattern of RGD into PEG hydrogels resembling the
vascular network of mouse brain cortex (Culver et al., 2012). These
materials became biodegradable by incorporating a MMP-sensitive
peptide (GGPQGIWGQGK) into the backbone of the hydrogels. Then, to
understand if cells would organize and form a vessel network corre-
sponding to RGD distribution, HUVECs and mesenchymal progenitor
cells were encapsulated into the patterned hydrogels. Remarkably,
these cells organized into complex tubule networks in 92.3 % of the
patterned PEG-RGD showing the potential of including RGD-functio-
nalized vascular networks into the design of hydrogels. Although this
methodology is somewhat complex, the evolution of techniques like
bioprinting may take advantage of similar approaches to develop better
bio-instructive materials. Weinandy et al. developed PLLA fibers bio-
functionalized with RGD to guide vascular formation in vitro. HUVECs

and human foreskin fibroblasts (HFFs) were then seeded onto the fibers
and afterwards embedded in a fibrin gel (Weinandy et al., 2014). This
co-culture originated capillary-like networks with defined lumen ad-
jacent to the polymer fibers but not throughout the entire vascular
network. Nevertheless, these capillary-like structures remained for at
least 21 days of co-culture and this study demonstrated the usefulness
of electrospun nanofibers as guidance for vasculature formation. Per-
haps the incorporation of growth factors should have been considered
to originate a more mature vascular network, at least outside PLLA fi-
bers.

These examples show the utility of RGD-containing constructs in
different applications that intend to promote vascularization in re-
generative medicine applications. However, the use of synthetic RGD
peptides in biomaterials has some limitations. Consequently, these
peptides do not have the same potential as full ECM proteins to promote
cell adhesion due to the absence of synergistic domains present in na-
tive proteins that promote optimal cell signaling. Also, the conforma-
tion of these peptides is often not the most appropriate and they do not
exhibit selectivity towards a desired integrin. Finally, both linear pep-
tides and large cyclic peptides can be easily degraded in vivo. Still, the
use of entire ECM proteins presents several disadvantages including
very limited biological half-life, induction of inflammatory responses,
fast clearance and risk of infections (von der Mark and Park, 2013).

6. The potential of peptidomimetic ligands with integrin
selectivity for proper development of vascular networks in
regenerative medicine methodologies

To counteract the drawbacks mentioned in the preceding section,
some groups have used different RGD-containing molecules like small
cyclic RGD peptides and protein fragments. Notwithstanding, this type
of ligands fail to target specific integrins, which represents a dis-
advantage if the intention is to guide cells towards a response directed
by a defined integrin. Other approaches employ biomaterials functio-
nalized with combinations of different peptidic ligands that exhibit
integrin specificity. Normally, these mixtures do not fulfil their poten-
tial due to difficulties in controlling their spatial arrangement (Mas-
Moruno et al., 2016). Developing peptidomimetic ligands with se-
lectivity for specific integrins thus seems an interesting approach to
enhance the angiogenic properties of biomaterials for regenerative
medicine purposes (Fig. 7). Additionally, peptidomimetic molecules
may be designed having the appropriate conformation to engage in-
tegrins and elicit their biological responses whilst having better phar-
macokinetic parameters than proteins or peptides (Trabocchi and
Guarna, 2014). Nevertheless, the majority of integrins display similar
RGD binding regions making the synthesis of highly selective ligands,
whilst displaying high affinity, to distinct integrin subtypes challenging.
Therefore, some ligands presenting subtype selectivity have a residual,
but still significant, affinity towards other integrins (Kapp et al., 2017).
Although their use for regenerative medicine purposes remains under-
mined, some labs have considered them as promising tools in bioma-
terial functionalization (Fraioli et al., 2016; Guasch et al., 2015; Klim
et al., 2012; Marelli et al., 2013; Mauro et al., 2017; Rahmouni et al.,
2013). Consequently, in a pioneering study Marchand-Brynaert et al.
developed an RGD peptidomimetic molecule based on an L-tyrosine
scaffold (Fig. 8A) that was afterwards immobilized in a poly(ethylene
terephthalate) film (Marchand-Brynaert et al., 1999). Interestingly, this
ligand presented cell adhesion properties comparable to RGD, but in-
ferior to the same material functionalized with fibronectin. Even
though these results are not totally satisfying, it helped to demonstrate
that peptidomimetic ligands could provide good alternatives for the
biofunctionalization of intrinsically inert materials. Development of this
peptidomimetic ligand has continued and in a subsequent study it
showed higher adhesion capacity than RGD (Rerat et al., 2009). More
recently, Rechenmacher and coworkers modified a peptidomimetic
compound previously developed by their group with nanomolar affinity
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towards either α5β1 (Fig. 8B) or αvβ3 (Fig. 8C) (Rechenmacher et al.,
2013a). This modification intended to facilitate the immobilization of
the molecule on materials with different surface chemistries. Initially,
these authors optimized the length of the spacer motif (lysine-based)
and number of anchor units (phosphonic acid). Thus, the modified
peptidomimetic showed a nine-fold increase in α5β1 binding (in com-
parison to controls) for higher spacer lengths and seemed independent
of the number of phosphonic acids (2, 3 or 4). By culturing either α5β1-
expressing or αvβ3-expressing fibroblasts with TiO2 nanoarrays that
had the optimized compound immobilized, this study showed that this
chemical modification did not alter affinity, nor the selectivity of the
ligand. Therefore, the former cells adhered and extended their pro-
cesses in culture conditions, whereas the latter cells maintained a
round, typically non-adherent morphology. As a proof that this method
also allowed the immobilization of a αvβ3-sellective ligand, the authors
immobilized a peptidomimetic ligand with nanomolar affinity to this
integrin utilizing the same strategy. After improving the solubility of
this peptidomimetic molecule, αvβ3-containing fibroblasts were cul-
tured with TiO2-peptidomimetic nanoarrays. Contrarily to the other
ligand, these fibroblasts rapidly adhered to the titanium oxide nano-
particles. On the other hand, α5β1-containing fibroblasts did not in-
teract with the functionalized nanoparticles. This result is in line with a
previous study of the same authors where they used these compounds
but immobilized them into gold, via thiol (Rechenmacher et al., 2013b).
These reports established that peptidomimetic ligands are able of being

immobilized onto the surface of materials without losing their affinity
and selectivity. Consequently, it opened excellent perspectives for the
development of materials capable of equally attracting specific types of
cells or guiding cellular responses of interest. Given that peptidomi-
metics can discriminate between integrins, immobilizing these ligands
onto biomaterials may help elucidating the role that different integrins
have on mechanotransduction. Likewise, Rahmouni et al. developed
PEG hydrogels nanopatterned with gold nanoparticles on the surface
and possessing variable bending stiffness (Rahmouni et al., 2013).
Then, these hydrogels were functionalized with α5β1- or αvβ3-integrin
specific ligands and by culturing fibroblasts within them the authors
assessed the traction forces exerted by the adhesion mediated by each
of these integrins. In this work, it is showed that cells adhering to α5β1
integrins employed higher maximum forces in the material than cells
binding to αvβ3. Despite their preliminary nature, these results de-
monstrate that one has to not only develop integrin-specific materials
but also physically tailor them to correspond to the mechanical needs of
cells if the intention is to guide them towards a given response. In an-
other effort to understanding the behavior of α5β1 and αvβ3 during
cell adhesion, Guasch et al. orthogonally functionalized alternated
stripes of gold and metal oxide with peptidomimetic ligands specific to
αvβ3 (Fig. 8D) and α5β1 (Fig. 8E), respectively (Guasch et al., 2015).
Thus, to accomplish an orthogonal functionalization these researches
used an αvβ3 ligand with a thiol group and an α5β1 molecule with
phosphonic acid. This work intended to correlate the focal adhesion

Fig. 7. Surface functionalization strategy using αvβ3- (1) or α5β1-specific (2) peptidomimetics. Integrin specificity will enable to modulate the type of integrin to be activated, and
possibly to modulate the cellular response. Adapted with permission from (Fraioli et al., 2015). Copyright © 2015 Elsevier B.V.
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points during cellular adhesion with the location of these integrins and
assess the role cells have in positioning these receptors. Therefore,
U20S osteosarcoma cells seeded in the functionalized material ex-
hibited an expression of both integrins in the zone of the α5β1-specific
ligand, i.e. independently of integrin affinity, whereas cells in the αvβ3-
selective zones only presented clusters of this integrin. According to
Guasch and coworkers (Guasch et al., 2015), this colocalization can be
motivated by a crosstalk between the activated α5β1 and αvβ3 in-
tegrins that overcomes the affinity of the latter towards its ligand. Al-
though the activation of αvβ3 integrins in this area is unlikely, due to
the high selectivity of the peptidomimetic ligand, α5β1 might recruit
αvβ3 integrins by inside-out signaling ensuring their colocalization
prior to cell migration. Interestingly, the initial width of the gold stripes
(7-8 μm) proved to be insufficient to motivate the expression of αvβ3 on
this area. Consequently, U20S cells only started to express αvβ3 on the
gold stripes after increasing the width of this surface. Hindering of the
peptidomimetic ligand by its lateral confinement was discarded due to
the expression of αvβ3 on metal oxide stripes with 7-8 μm. Instead, the
explanation to this experimental observation might lie on the different
roles α5β1 and αvβ3 integrins have during cell adhesion. Therefore,
cells seemed not to sense the appropriate mechanical stimulus to ex-
press αvβ3 integrins, which again shows the importance of mechan-
otransduction in cell behavior, concretely in integrin expression. These
results need to be explored in order to gather more knowledge about
the different roles each integrin possesses during cell adhesion, if ob-
jective is developing smart-instructive materials. Consequently, pepti-
domimetic ligands seem the best option to ensure it as they can be
tailored to have nanomolar specificity to an intended integrin. To ex-
plore the importance of mechanotransduction in bone regeneration,
Mauro et al. developed RGD-like poly(amido-amine) (AGMA1) hydro-
gels reinforced by montmorillonite (MMT) with tunable stiffness

(Mauro et al., 2017). This reinforcement originated swollen hydrogels
with a shear storage modulus (G′) 20 times higher than conventional
hydrogels. Thus, these hydrogels presented excellent mechanical
properties to be used in bone regeneration. This was corroborated when
these authors culture pre-osteoblastic MC3T3-E1 mouse cells and ob-
served that their hydrogels fomented cell adhesion and proliferation
while inducing a clear differentiation towards the osteoblastic pheno-
type. Fraioli et al., however, were the first to report that peptidomi-
metic ligands with specificity to αvβ3 and α5β1 could enhance adhe-
sion, proliferation and differentiation of cells towards an osteogenic
phenotype (Fraioli et al., 2015). Accordingly, two peptidomimetics
presenting specificity to either αvβ3 or α5β1 were immobilized onto
titanium surfaces. To guarantee that the effects seen on the cells were
only due to the bioactivity of both ligands, these authors reduced the
roughness of titanium surfaces as rough surfaces are known to posi-
tively influence of osteoblastic-like cells. Remarkably, the action of
these highly specific ligands conducted SaOS-2 cells to differentiate into
osteoblast-like cells while improving the cellular adhesion and pro-
liferation in an equal extension to native ECM proteins.

The use of peptidomimetics for surface coating and regenerative
medicine applications is still in its infancy but has presented promising
results to date in the guidance of specific cellular responses. Although
none of the reported studies is conducted with the purpose of enhancing
the formation of a vascular network in a regenerative medicine therapy
these works use peptidomimetic molecules specific to integrins in-
volved in angiogenesis (αvβ3 and α5β1). The described results show
that the effect of these molecules on cellular adhesion can be equivalent
to the action of ECM proteins and conduct cellular differentiation to an
intended cell type. Therefore, this opens excellent opportunities for the
use of peptidomimetic ligands as vascularization enhancers in re-
generative medicine constructs. It is important to underline, though,

Fig. 8. Structure of peptidomimetic ligands used on the biofunctionalization of surfaces. A – Initial molecule consisting on an L-tyrosine scaffold developed by Marchand-Brynaert et al.
(1999). B and C – α5β1-specific and αvβ3-specific peptidomimetics created by Rechenmacher et al., respectively (Rechenmacher et al., 2013a). D and E – Peptidomimetic ligands with
specificity to αvβ3 and α5β1, respectively, used by Guasch et al. (2015).
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that the development of these ligands is rather intricate, involving in
silico studies to understand the spatial orientation of the chemical mi-
metics and deep knowledge in organic chemistry. Nevertheless, the
possibility of enhancing the vascular response of cells and guiding their
behavior towards the creation of complex vascular networks may help
dictating the success of a therapy in this field. Another important fact to
retain is that peptidomimetics do not represent the holy grail in di-
rected vascular responses. Therefore, as it is shown in this review, there
are many factors involved in the creation of vascular networks. These
include: a correct spatiotemporal administration of growth factors, the
use of cell types that mimic the organization of vascular structures in
vivo and having environments that resemble the mechanical properties
cells find in their habitat. Consequently, a multidisciplinary approach
that addresses all these challenges will bring us closer to developing
complex, functional, vascular networks that grant the success of re-
generative medicine constructs upon implantation.

7. Conclusion

Angiogenesis is highly dependent on the action of integrins due to
their effects on ECs adhesion, proliferation and assembly into complex
networks. Accordingly, this process is fundamental for the appropriate
development of vascularized constructs in regenerative medicine ap-
proaches and may help dictate their successful implantation. Thus, in-
tegrin-specific peptidomimetics can provide interesting solutions to
accomplish the appropriate vascularization of these scaffolds.
Peptidomimetics can help directing cells towards their assembling and
maturation into complex vascular networks and ensure the success of
such therapeutic approaches. These molecules present several ad-
vantages when compared to the more frequently applied proteins and
peptides. Consequently, peptidomimetics present high affinity (some-
times in the subnanomolar range) towards integrins, excellent integrin
selectivity, are more stable and less prone to enzymatic degradation and
do not trigger immunogenic responses. However, their development is
not straightforward, can be time consuming and demands specific ex-
pertise. Despite these drawbacks, they can be powerful tools in guiding
cell responses and further understanding the role of integrins in cellular
processes.
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