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Abstract 

In this work we describe an appropriate pipeline for using deep-learning as a form of improving the brain functional connectivity-
based fingerprinting process which is based in functional Magnetic Resonance Imaging (fMRI) data-processing results. This 
pipeline approach is mostly intended for neuroscientists, biomedical engineers, and physicists that are looking for an easy form of 
using fMRI-based Deep-Learning in identifying people, drastic brain alterations in those same people, and/or pathologic 
consequences to people’s brains. Computer scientists and engineers can also gain by noticing the data-processing improvements 
obtained by using the here-proposed pipeline. With our best approach, we obtained an average accuracy of 0.3132 ± 0.0129 and an 
average validation cost of 3.1422 ± 0.0668, which clearly outperformed the published Pearson correlation approach performance 
with a 50 Nodes parcellation which had an accuracy of 0.237. 
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1. Introduction 

Neuroimaging has a major clinical application as medical support in neurology, more properly in the diagnosis and 
integrative medicines [1][2]. In neuroimaging, the study of brain structure is not enough, since it doesn’t give relevant 
information for the diagnosis of pathologies where structural alterations are not anatomically detected. Therefore, a 
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method to assess brain function is necessary. This led to the development of functional Magnetic Resonance Imaging 
(fMRI), which is a technique that monitors hemodynamic events related to changes in neuronal activation in the brain 
by relying on the Blood Oxygenation Level Dependent (BOLD) contrast [3][4], including functional integration [5]. 
Functional Connectivity (FC) is based on the temporal correlation between spatially remote neurophysiological events 
in the brain [6][7]. The FC can be based in different types of fMRI data, but usually the data-type used is resting-state 
BOLD fMRI (rs-fMRI) [8] in which case the FC provides information about the default brain connectivity. 

There are three main methods used by the neuroimaging community to analyze and evaluate FC: Seed-Based 
Analysis (SBA), Independent Component Analysis (ICA) and connectomic analysis which is the method we will use 
in this work. The connectomic analysis obtains the interactions between every possible pair of brain regions. The 
connectomic data is typically represented as a connectivity matrix. The connectivity matrix is the schematization in 
matrix form of the values of the correlation between all pairs of regions. So, its size is N x N, where N is the number 
of regions or nodes resulting from the brain parcellation, and it has been used to study changes in the (brain 
functionality) due to a particular disease, such as Alzheimer’s Disease (AD) [9] or autism [10]; and also study 
physiological trait [11]. These matrices are used for classification (e.g. by recurring to Machine Learning (ML)). 

In recent work [12], those FC matrices have been able to discriminate preterm infants at term-equivalent age and 
healthy/normal-born controls with 80% accuracy using a ML method. Plus, their approach was used to distinguish 
between healthy controls and depressed patients with accuracy values of 85.85% and 70.75%, respectively for patients 
with treatment resistant depression and patients with non-treatment resistant depression [13]. Furthermore, these 
connectivity matrices have shown to be reliable fingerprints, making possible to identify accurately a specific subject 
from a large group. The research made in Functional Connectome Fingerprinting which identified individuals using 
FC patterns [14] demonstrated that when applied to rs-fMRI data, these methods can predict and identify an individual, 
respectively, with 92.5% and 94.4% accuracy. For fMRI acquisition in task conditions, they also got results that 
presented a great accuracy, with rates of about 87.3%. 

The work developed here aims at improving over results obtained in previous work [14], wherein the functional 
connectivity provided from rs-fMRI data is used as the subjects’ fingerprint. Hence, the approach followed in this 
work will be compared with the approach presented in ref. [14]. The approach of ref. [14] used two different sessions 
of rs-fMRI acquisition, obtained in different days, as the subjects’ set. Plus, each correlation matrix with FC data for 
each session was correlated by Pearson’s correlation with all the other FC matrices in the other session. 

The approach to FC in this work is based on ML techniques. So, there is always a learning-process to obtain both 
an accurate representation of data and prior knowledge [15]. The major novelty in our approach is the use of Deep 
Neuronal Networks (DNN), which uses Artificial Neural Networks (ANN) for modelling, to these standard rs-fMRI-
based FC data, to achieve a better classification [16]. The FC values allow the features’ granularity to be diversified, 
where the unit in study can be a voxel, or a parcellated brain-region [17][18]. 

2. Materials 

The different atlases have different number of ROIs, and different 
creation processes by use of different MRI data types (Table 1). The 
number of nodes doesn’t coincide [19] with the total number of 
anatomical regions of the used atlas, such as the AAL atlas [20] or the 
Freesurfer atlas [21], because the name is associated to the number of 
“seeds” used in each cerebral hemisphere during the atlas application 
process. 

The rs-fMRI data used in this work was obtained from the 
SWITCHBOX project realized at ICVS (see Acknowledgments and filiations), named here as: “ICVS data” [23]. We 
chose to use this ICVS data set as it was obtained from a 1.5 T MR clinical scanner similar to the scanners more 
commonly used worldwide [24].  
The data used in this work are volumes with the temporal data saved from rs-fMRI. Initially, the data is a set of DICOM 
brain images of different temporal points of the fMRI data-acquisition which are converted into a single 4D volume 
file (Fig. 1D).  

Table 1. Atlases versus number of ROIs 
descending order. Parcellation  ROIs MRI data type 
150 nodes 278 Functional 
268 nodes 268 Functional 
100 nodes 184 Functional 
Freesurfer 160 Anatomical 
AAL 116 Anatomical 
50 nodes 93 Functional 
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These fMRI data-set labels are the identity information of the subject (e.g. gender, state in a disease, blood type). These 
labels are information that will be used in the supervised learning for training, validation and testing of the DL models. 

Before the DL-pipeline, the fMRI data undergoes an FC-pipeline to obtain a FC file with the values of the 
correlation of fMRI intensities between each of brain region pair, for each of the 76 subjects (39 male and 37 female) 
(Fig. 1E). The scanner used was a Siemens 1.5 T MRI scanner with a 12-channel receive-only head-coil. The rs-fMRI 
was obtained using BOLD sensitive Echo-Planar Imaging (EPI) sequence with these parameters: 30 axial slices; 
TR/TE = 2000 ms/30 ms; flip angle = 90º; slice thickness = 3.5 mm; slice gap = 0.48 mm; voxel size = 3.5 x 3 x 3.5 
mm2; FoV = 1.344 mm. Before the FC-pipeline, there is a standard FSL data-processing of the rs-fMRI data which 
obtains a file with 355 lines, one for each of the volumes of the acquisition with the mean BOLD signal for each region 
of the brain datasets. After the FC-pipeline, there are two types of data: the FC, and the respective subject’s labels 
(Fig. 1F).  

The FC data was analyzed by use of the correlation 
matrix (a.k.a. ROIs FC analysis method). Each FC input 
file has one line for each volume in the acquisition, and 
one column for each region of the atlas used in the 
parcellation process (e.g. the average value for each 
volume and region). The static FC was computed through 
the Pearson’s correlation between the full time-series of 
each pair of brain regions, resulting in the symmetric 
matrix with the Pearson’s coefficients expressed in one 
adjacency matrix per subject [7][25]. Then a Fisher’s r-
to-Z transformation was applied to each correlation 
matrix to improve the normality of the correlation 
coefficients. 

3. Methods 

The DL module (Fig. 1G) obtains the best models and 
their respective results. Thus, the use of the DL module 
enabled a better automation of processes, an easier and 
more efficient data management, and the creation of a 
workflow which deals with the FC information and uses 
it as the features for the construction of DL models 
allowing an improvement in subject’s classification. This 
DL processing is a reliable method for applications in FC 
obtained from rs-fMRI data, in which we used a recent 
library Nipy [26] based in the Python programming 
language [27] (Fig. 1C) with several advantages for the 
workflow. The datasets creation, which includes the 
analysis of the values by dataset and subject, or by class 
of the dataset, is then prepared for use in the training, 
validation and test of DL models (Fig. 1C). Finally, the 
major objective, the DL application over the FC data to 
improve the subject’s classification tasks includes the 
fine-tuning of the models, the selection of the best models, and the analysis and management of the different results 
(Fig. 1G). 

	

Fig. 1. Schema of the zmaterials and methods used in the dissertation.	
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The development environment used in this work 
is represented in Figure 2. All development work 
was based in the Python programming language 
[27]. To download and manage the different 
packages used in this work we used anaconda [28]. 
Plus, to support the different parts of the work we 
used PyDev, a Python Integrated Development 
Environment (IDE), for Eclipse. Most of the work was developed and tested by using either the bash console or the 
interactive console of Python (iPython). Finally, to increase computation velocity this work used the Compute Unified 
Device Architecture (CUDA), a parallel computing platform and programming model developed by NVIDIA [29] 
which uses graphical processing units (GPUs) in different computation tasks (Fig. 1C and Fig. 2). The use of CUDA 
permits the use of GPUs as the computation unit of the DL application. All the software ran on servers with Ubuntu 
operating system. 

We tested two different DL models, each of them based in one of two different types of layers: fully connected 
layers, and convolutional layers. For each of the two types of layers, we then tested architectures with different depths. 
The plan was thus to design a small DL framework (see Fig. 1G) working alongside other methods, as part of a bigger 
framework, where this small framework could deal with the FC matrices extracted from the rs-fMRI data. The small 
DL framework was divided in two major parts: the fine-tuning models, and the final models (Fig. 1G). The fine-tuning 
part is responsible for the continuous adjustment of the model so that the model passes on to the final phase. In the 
final phase, the deeper tests are done, with increasing number of repetitions, and where the model and the model’s 
performance values are saved for future uses. The validation of each model is made manually, after analysis of the 
performance measurements. 

4. Results and Discussion 

In ref. [14], the process applied to compare the FC matrices was the similarity-based Pearson’s correlation where 
for each subject it is made a Pearson’s correlation between that subject’s FC matrix obtained in an experimental session 
(the target matrix), and the other existent FC matrices obtained in different experimental sessions (the database 
matrices). Then, it is only chosen the database FC matrix with the maximum correlation value (the chosen matrix). If 
the chosen matrix and the target matrix are of the same subject, then the classification is correct, and so the 
classification score obtained is 1. If it is not the same subject, then the classification is incorrect, and the obtained 
classification score is 0. To test the approach, we applied the procedure of ref. [14] to the 1.5T MRI ICVS data, and 
obtained static FC for the set of atlases used in this work, and the obtained results are presented in Table 2. These 
values in Table 2 are the objective 
values to be outperformed by the DL 
approach developed here. 

By analyzing the average 
correlations values for correct and 
incorrect classifications, it was verified 
that the correlation value affects 
positively the classification result. And 
again, the difference between the two 
situations was significant. Therefore, 
the amount of correlation value also is 
correlated with the average accuracy over the dataset (see Table 3). 

The principal additions to the initial simple fully connected layer model towards more complex systems were the 
increase depth and the adding of convolutional networks. Doing the fine-tuning of the learning process for each 
parcellation and session prediction would require an exceedingly long time. As our dataset has 76 subjects, the 
probability of correct classification by a random process is 1/76»0.01316. The selection process of the best set of 
hyperparameters begins by using the 50 nodes atlas, for it has the fewer number of features and it has the worst results. 
Hence, it will have a greater interval for improvement with a lesser number of parameters, and thus less features to 

	
Fig. 2. Development environment schema with the support technology 	

Table 2. Different parcellation obtained values using approach of ref. [14] for our data 

 Predict session 1 Predict session 2 

Parcellation      Value Diff.  Parcellation Value Diff. 

 150 nodes  0.342   0.000 150 nodes 0.342 0.0000 

100 nodes  0.316   0.026 268 nodes 0.303 0.0395 

268 nodes  0.316        0.026 100 nodes 0.289 0.0526 

Freesurfer  0.263   0.079 AAL 0.276 0.0658 

AAL  0.250   0.092 Freesurfer 0.250 0.0921 
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learn. The first set of hyperparameters wasn’t selected randomly but by use of several references [12][14][22][30], and 
also some experiments were made before testing the models. The models used amount to a total of 135 different 
models, and for each model we make 10 tests, with each test having a different set of alpha rates used for the activation 
function Leaky ReLU. 

The results demonstrated that the best alpha is 0.8, which 
implies that to obtain better classifications results, the 
models give some importance (near 1) to the negatives 
values in the dataset. It is relevant to emphasize that in these 
tests, we only intend to get a comparison between the results 
for different tests, and not already aim for the best model. 

The probability of the improvement with the increase of 
epochs is very likely, as the training accuracy continually 
increases as the epochs increase, and so does the learning process. As mentioned before, the number of combinations 
in analysis are 135, wherein 15 models with different loss and activation function were tested for 9 learning rates. 
After analyzing the 15 different models for different parameters, it was obtained that the best model for a 50 Nodes 
parcellation, for both accuracy and cost, was the model with the parameters described in Table 4. This best model 
obtained an average accuracy of 0.3132	± 0.0129 and an average validation cost of 3.1422	±	0.0668, which clearly 
outperformed the published Pearson correlation approach performance with a 50 Nodes parcellation [14], which had 
a validation accuracy of 0.237. 

5. Conclusion 

To compare the different models, we used a set of metrics to 
assess the performance of the model and to compare it with other 
models and hence fine-tune the different hyperparameters of the 
model. Some metrics were used to assess the behavior of the 
model in both training and validation, such as, accuracy and loss. 
In addition to the final values, other values are calculated during 
the training, such as maximum accuracy in validation with the 
corresponding epoch occurrence, the differences between the different data (e.g. training and validation), and others. 
The different metrics used were always saved. 

The cross-validation was not possible to use since for the static FC there were too few cases for each label. Thus, 
the best approach was to divide the FC data of each acquisition session into two equal parts, one part being used as the 
validation data and the other is used as the test data.  

The approach proposed here comprehends the pre-processing of the raw data, the creation of datasets with different 
functional connectivity information, and the creation of a DL module which helps fine-tune the different DL models 
before getting the best model, which is then used to make the final analysis. 
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Table 3. Correlations values in the correct and incorrect 
classifications, and respective difference for our data. 

 Correct 
classification  

Incorrect 
classification 

Difference 

Average 
value  

0.464 0.394 0.070 
Standard 

Deviation  
0.082 0.089 -0.006 

Maximum 0.650 0.625 0.025 
Minimum 0.271 0.190 0.081 

Table 4. Best Model Parameters (Batch size=# Hidden Layers=1), 
with Adjustable Learning-Rate [Init.=0.001, Best =0.0001] 

Parameter Value 
Activation functions Tanh 
Loss Function Categorical cross-entropy 

Optimizer RMSprop 
Kernel Initializer Glorot Uniform 
Bias Initializer Random Uniform 

Nodes per hidden layer 200 

fMRI Data Temporal 
Filtering 

None 
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