
IOP Conference Series: Materials Science and Engineering

PAPER • OPEN ACCESS

Flexible piezoresistive pressure sensors for smart textiles
To cite this article: H Carvalho et al 2018 IOP Conf. Ser.: Mater. Sci. Eng. 459 012035

 

View the article online for updates and enhancements.

This content was downloaded from IP address 193.137.92.39 on 11/12/2018 at 14:58

https://doi.org/10.1088/1757-899X/459/1/012035
https://oasc-eu1.247realmedia.com/5c/iopscience.iop.org/28215603/Middle/IOPP/IOPs-Mid-MSE-pdf/IOPs-Mid-MSE-pdf.jpg/1?


Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

Aegean International Textile and Advanced Engineering Conference (AITAE 2018)

IOP Conf. Series: Materials Science and Engineering459 (2019) 012035

IOP Publishing

doi:10.1088/1757-899X/459/1/012035

1

 
 
 
 
 
 

Flexible 

1.  
This paper presents the development of polymer
integration in e
polyethylene film with commer

connection, as shown in Figure 1. The electrode elements should also be flexible. In this work, 
plated conductive fab
variation of electrical resistance when subjected to pressure
when pressure increases

Flexible 

1.  Introduction
This paper presents the development of polymer
integration in e
polyethylene film with commer

The sensor construction comprises the transducing element as well as two electrodes for electrical 
connection, as shown in Figure 1. The electrode elements should also be flexible. In this work, 
plated conductive fab
variation of electrical resistance when subjected to pressure
when pressure increases

 

 
 
 

Flexible 

ntroduction
This paper presents the development of polymer
integration in e
polyethylene film with commer

The sensor construction comprises the transducing element as well as two electrodes for electrical 
connection, as shown in Figure 1. The electrode elements should also be flexible. In this work, 
plated conductive fab
variation of electrical resistance when subjected to pressure
when pressure increases

Flexible 

ntroduction
This paper presents the development of polymer
integration in e
polyethylene film with commer

The sensor construction comprises the transducing element as well as two electrodes for electrical 
connection, as shown in Figure 1. The electrode elements should also be flexible. In this work, 
plated conductive fab
variation of electrical resistance when subjected to pressure
when pressure increases

Flexible p

ntroduction
This paper presents the development of polymer
integration in e
polyethylene film with commer

The sensor construction comprises the transducing element as well as two electrodes for electrical 
connection, as shown in Figure 1. The electrode elements should also be flexible. In this work, 
plated conductive fab
variation of electrical resistance when subjected to pressure
when pressure increases

piezoresistive 

H Carvalho
1 
2EgeUniversity,
3Univ

 

helder@det.uminho.pt

Abstract
integrated sensors. Flexible piezoresistive pressure sensors have many potential applications
for instance
piezoresistive polymer film and conductive fabric.
show that the sensors are functional, accurate, although showing some hysteresis. However, 
methods for joining the electrode and piezoresistive layers are necess
stability of the sensor, without affecting electrical contact between layers. Several methods 
were tested and results are reported here. The use of thermofusible bonding nets and webs has 
been found to be an interesting solution.

ntroduction and state
This paper presents the development of polymer
integration in e-
polyethylene film with commer

The sensor construction comprises the transducing element as well as two electrodes for electrical 
connection, as shown in Figure 1. The electrode elements should also be flexible. In this work, 
plated conductive fab
variation of electrical resistance when subjected to pressure
when pressure increases

iezoresistive 

H Carvalho

 Univ. of Minho, 

EgeUniversity,

Univ

helder@det.uminho.pt

Abstract
integrated sensors. Flexible piezoresistive pressure sensors have many potential applications
for instance
piezoresistive polymer film and conductive fabric.
show that the sensors are functional, accurate, although showing some hysteresis. However, 
methods for joining the electrode and piezoresistive layers are necess
stability of the sensor, without affecting electrical contact between layers. Several methods 
were tested and results are reported here. The use of thermofusible bonding nets and webs has 
been found to be an interesting solution.

and state
This paper presents the development of polymer

-textiles. The transducing element used is a volume
polyethylene film with commer

The sensor construction comprises the transducing element as well as two electrodes for electrical 
connection, as shown in Figure 1. The electrode elements should also be flexible. In this work, 
plated conductive fab
variation of electrical resistance when subjected to pressure
when pressure increases

iezoresistive 

H Carvalho

Univ. of Minho, 

EgeUniversity,

Univ. of Minho, Dep. 

helder@det.uminho.pt

Abstract
integrated sensors. Flexible piezoresistive pressure sensors have many potential applications
for instance
piezoresistive polymer film and conductive fabric.
show that the sensors are functional, accurate, although showing some hysteresis. However, 
methods for joining the electrode and piezoresistive layers are necess
stability of the sensor, without affecting electrical contact between layers. Several methods 
were tested and results are reported here. The use of thermofusible bonding nets and webs has 
been found to be an interesting solution.

and state
This paper presents the development of polymer

textiles. The transducing element used is a volume
polyethylene film with commer

The sensor construction comprises the transducing element as well as two electrodes for electrical 
connection, as shown in Figure 1. The electrode elements should also be flexible. In this work, 
plated conductive fabric was used. Other materials have been tested in
variation of electrical resistance when subjected to pressure
when pressure increases

iezoresistive 

H Carvalho

Univ. of Minho, 

EgeUniversity,

of Minho, Dep. 

helder@det.uminho.pt

Abstract. The development of smart textiles relies in many applications on of textile
integrated sensors. Flexible piezoresistive pressure sensors have many potential applications
for instance
piezoresistive polymer film and conductive fabric.
show that the sensors are functional, accurate, although showing some hysteresis. However, 
methods for joining the electrode and piezoresistive layers are necess
stability of the sensor, without affecting electrical contact between layers. Several methods 
were tested and results are reported here. The use of thermofusible bonding nets and webs has 
been found to be an interesting solution.

and state
This paper presents the development of polymer

textiles. The transducing element used is a volume
polyethylene film with commer

The sensor construction comprises the transducing element as well as two electrodes for electrical 
connection, as shown in Figure 1. The electrode elements should also be flexible. In this work, 

ric was used. Other materials have been tested in
variation of electrical resistance when subjected to pressure
when pressure increases. 

Figure 1.

iezoresistive 

H Carvalho1, 

Univ. of Minho, 

EgeUniversity,

of Minho, Dep. 

helder@det.uminho.pt

The development of smart textiles relies in many applications on of textile
integrated sensors. Flexible piezoresistive pressure sensors have many potential applications
for instance in sports science. 
piezoresistive polymer film and conductive fabric.
show that the sensors are functional, accurate, although showing some hysteresis. However, 
methods for joining the electrode and piezoresistive layers are necess
stability of the sensor, without affecting electrical contact between layers. Several methods 
were tested and results are reported here. The use of thermofusible bonding nets and webs has 
been found to be an interesting solution.

and state-of
This paper presents the development of polymer

textiles. The transducing element used is a volume
polyethylene film with commer

The sensor construction comprises the transducing element as well as two electrodes for electrical 
connection, as shown in Figure 1. The electrode elements should also be flexible. In this work, 

ric was used. Other materials have been tested in
variation of electrical resistance when subjected to pressure

Figure 1.

iezoresistive 

, D Tama

Univ. of Minho, 

EgeUniversity, Depa

of Minho, Dep. 

helder@det.uminho.pt

The development of smart textiles relies in many applications on of textile
integrated sensors. Flexible piezoresistive pressure sensors have many potential applications

in sports science. 
piezoresistive polymer film and conductive fabric.
show that the sensors are functional, accurate, although showing some hysteresis. However, 
methods for joining the electrode and piezoresistive layers are necess
stability of the sensor, without affecting electrical contact between layers. Several methods 
were tested and results are reported here. The use of thermofusible bonding nets and webs has 
been found to be an interesting solution.

of-the
This paper presents the development of polymer

textiles. The transducing element used is a volume
polyethylene film with commercial name 

The sensor construction comprises the transducing element as well as two electrodes for electrical 
connection, as shown in Figure 1. The electrode elements should also be flexible. In this work, 

ric was used. Other materials have been tested in
variation of electrical resistance when subjected to pressure

Figure 1.

iezoresistive 

D Tama

Univ. of Minho, Center of 

Depa

of Minho, Dep. 

helder@det.uminho.pt

The development of smart textiles relies in many applications on of textile
integrated sensors. Flexible piezoresistive pressure sensors have many potential applications

in sports science. 
piezoresistive polymer film and conductive fabric.
show that the sensors are functional, accurate, although showing some hysteresis. However, 
methods for joining the electrode and piezoresistive layers are necess
stability of the sensor, without affecting electrical contact between layers. Several methods 
were tested and results are reported here. The use of thermofusible bonding nets and webs has 
been found to be an interesting solution.

the-art
This paper presents the development of polymer

textiles. The transducing element used is a volume
cial name 

The sensor construction comprises the transducing element as well as two electrodes for electrical 
connection, as shown in Figure 1. The electrode elements should also be flexible. In this work, 

ric was used. Other materials have been tested in
variation of electrical resistance when subjected to pressure

Figure 1. C

iezoresistive p

D Tama

Center of 

Department of Textile Engineering, 

of Minho, Dep. 

helder@det.uminho.pt 

The development of smart textiles relies in many applications on of textile
integrated sensors. Flexible piezoresistive pressure sensors have many potential applications

in sports science. 
piezoresistive polymer film and conductive fabric.
show that the sensors are functional, accurate, although showing some hysteresis. However, 
methods for joining the electrode and piezoresistive layers are necess
stability of the sensor, without affecting electrical contact between layers. Several methods 
were tested and results are reported here. The use of thermofusible bonding nets and webs has 
been found to be an interesting solution.

art 
This paper presents the development of polymer

textiles. The transducing element used is a volume
cial name 

The sensor construction comprises the transducing element as well as two electrodes for electrical 
connection, as shown in Figure 1. The electrode elements should also be flexible. In this work, 

ric was used. Other materials have been tested in
variation of electrical resistance when subjected to pressure

Construction 

pressure 

D Tama1,2,

Center of 

rtment of Textile Engineering, 

of Minho, Dep. Industrial Electronics, Guimarães, Portugal

 

The development of smart textiles relies in many applications on of textile
integrated sensors. Flexible piezoresistive pressure sensors have many potential applications

in sports science. 
piezoresistive polymer film and conductive fabric.
show that the sensors are functional, accurate, although showing some hysteresis. However, 
methods for joining the electrode and piezoresistive layers are necess
stability of the sensor, without affecting electrical contact between layers. Several methods 
were tested and results are reported here. The use of thermofusible bonding nets and webs has 
been found to be an interesting solution.

 
This paper presents the development of polymer

textiles. The transducing element used is a volume
cial name Linq

The sensor construction comprises the transducing element as well as two electrodes for electrical 
connection, as shown in Figure 1. The electrode elements should also be flexible. In this work, 

ric was used. Other materials have been tested in
variation of electrical resistance when subjected to pressure

onstruction 

ressure 

, P Gomes

Center of Science and Textile Technology, 

rtment of Textile Engineering, 

Industrial Electronics, Guimarães, Portugal

The development of smart textiles relies in many applications on of textile
integrated sensors. Flexible piezoresistive pressure sensors have many potential applications

in sports science. 
piezoresistive polymer film and conductive fabric.
show that the sensors are functional, accurate, although showing some hysteresis. However, 
methods for joining the electrode and piezoresistive layers are necess
stability of the sensor, without affecting electrical contact between layers. Several methods 
were tested and results are reported here. The use of thermofusible bonding nets and webs has 
been found to be an interesting solution.

This paper presents the development of polymer
textiles. The transducing element used is a volume

Linq
The sensor construction comprises the transducing element as well as two electrodes for electrical 

connection, as shown in Figure 1. The electrode elements should also be flexible. In this work, 
ric was used. Other materials have been tested in

variation of electrical resistance when subjected to pressure

onstruction 

ressure 

P Gomes

Science and Textile Technology, 

rtment of Textile Engineering, 

Industrial Electronics, Guimarães, Portugal

The development of smart textiles relies in many applications on of textile
integrated sensors. Flexible piezoresistive pressure sensors have many potential applications

in sports science. In this study, flexible pressure sensors are built us
piezoresistive polymer film and conductive fabric.
show that the sensors are functional, accurate, although showing some hysteresis. However, 
methods for joining the electrode and piezoresistive layers are necess
stability of the sensor, without affecting electrical contact between layers. Several methods 
were tested and results are reported here. The use of thermofusible bonding nets and webs has 
been found to be an interesting solution.

This paper presents the development of polymer
textiles. The transducing element used is a volume

Linqstat 
The sensor construction comprises the transducing element as well as two electrodes for electrical 

connection, as shown in Figure 1. The electrode elements should also be flexible. In this work, 
ric was used. Other materials have been tested in

variation of electrical resistance when subjected to pressure

onstruction of 

ressure 

P Gomes

Science and Textile Technology, 

rtment of Textile Engineering, 

Industrial Electronics, Guimarães, Portugal

The development of smart textiles relies in many applications on of textile
integrated sensors. Flexible piezoresistive pressure sensors have many potential applications

In this study, flexible pressure sensors are built us
piezoresistive polymer film and conductive fabric.
show that the sensors are functional, accurate, although showing some hysteresis. However, 
methods for joining the electrode and piezoresistive layers are necess
stability of the sensor, without affecting electrical contact between layers. Several methods 
were tested and results are reported here. The use of thermofusible bonding nets and webs has 
been found to be an interesting solution.

This paper presents the development of polymer-based 
textiles. The transducing element used is a volume

stat from Caplinq.
The sensor construction comprises the transducing element as well as two electrodes for electrical 

connection, as shown in Figure 1. The electrode elements should also be flexible. In this work, 
ric was used. Other materials have been tested in

variation of electrical resistance when subjected to pressure

of the flexible 

ressure sensors for 

P Gomes1, M J Abreu

Science and Textile Technology, 

rtment of Textile Engineering, 

Industrial Electronics, Guimarães, Portugal

The development of smart textiles relies in many applications on of textile
integrated sensors. Flexible piezoresistive pressure sensors have many potential applications

In this study, flexible pressure sensors are built us
piezoresistive polymer film and conductive fabric.
show that the sensors are functional, accurate, although showing some hysteresis. However, 
methods for joining the electrode and piezoresistive layers are necess
stability of the sensor, without affecting electrical contact between layers. Several methods 
were tested and results are reported here. The use of thermofusible bonding nets and webs has 
been found to be an interesting solution. 

based 
textiles. The transducing element used is a volume

from Caplinq.
The sensor construction comprises the transducing element as well as two electrodes for electrical 

connection, as shown in Figure 1. The electrode elements should also be flexible. In this work, 
ric was used. Other materials have been tested in

variation of electrical resistance when subjected to pressure

the flexible 

ensors for 

, M J Abreu

Science and Textile Technology, 

rtment of Textile Engineering, 

Industrial Electronics, Guimarães, Portugal

The development of smart textiles relies in many applications on of textile
integrated sensors. Flexible piezoresistive pressure sensors have many potential applications

In this study, flexible pressure sensors are built us
piezoresistive polymer film and conductive fabric.
show that the sensors are functional, accurate, although showing some hysteresis. However, 
methods for joining the electrode and piezoresistive layers are necess
stability of the sensor, without affecting electrical contact between layers. Several methods 
were tested and results are reported here. The use of thermofusible bonding nets and webs has 

based flexible 
textiles. The transducing element used is a volume

from Caplinq.
The sensor construction comprises the transducing element as well as two electrodes for electrical 

connection, as shown in Figure 1. The electrode elements should also be flexible. In this work, 
ric was used. Other materials have been tested in

variation of electrical resistance when subjected to pressure

the flexible 

ensors for 

, M J Abreu

Science and Textile Technology, 

rtment of Textile Engineering, 

Industrial Electronics, Guimarães, Portugal

The development of smart textiles relies in many applications on of textile
integrated sensors. Flexible piezoresistive pressure sensors have many potential applications

In this study, flexible pressure sensors are built us
piezoresistive polymer film and conductive fabric.
show that the sensors are functional, accurate, although showing some hysteresis. However, 
methods for joining the electrode and piezoresistive layers are necess
stability of the sensor, without affecting electrical contact between layers. Several methods 
were tested and results are reported here. The use of thermofusible bonding nets and webs has 

flexible 
textiles. The transducing element used is a volume

from Caplinq.
The sensor construction comprises the transducing element as well as two electrodes for electrical 

connection, as shown in Figure 1. The electrode elements should also be flexible. In this work, 
ric was used. Other materials have been tested in

variation of electrical resistance when subjected to pressure

the flexible 

ensors for 

, M J Abreu

Science and Textile Technology, 

rtment of Textile Engineering, 

Industrial Electronics, Guimarães, Portugal

The development of smart textiles relies in many applications on of textile
integrated sensors. Flexible piezoresistive pressure sensors have many potential applications

In this study, flexible pressure sensors are built us
piezoresistive polymer film and conductive fabric.
show that the sensors are functional, accurate, although showing some hysteresis. However, 
methods for joining the electrode and piezoresistive layers are necess
stability of the sensor, without affecting electrical contact between layers. Several methods 
were tested and results are reported here. The use of thermofusible bonding nets and webs has 

flexible 
textiles. The transducing element used is a volume

from Caplinq.
The sensor construction comprises the transducing element as well as two electrodes for electrical 

connection, as shown in Figure 1. The electrode elements should also be flexible. In this work, 
ric was used. Other materials have been tested in

variation of electrical resistance when subjected to pressure, namely decreasing electrical resistance 

the flexible pressure sensors

ensors for 

, M J Abreu1

Science and Textile Technology, 

rtment of Textile Engineering, 

Industrial Electronics, Guimarães, Portugal

The development of smart textiles relies in many applications on of textile
integrated sensors. Flexible piezoresistive pressure sensors have many potential applications

In this study, flexible pressure sensors are built us
piezoresistive polymer film and conductive fabric. Tests using a universal testing machine 
show that the sensors are functional, accurate, although showing some hysteresis. However, 
methods for joining the electrode and piezoresistive layers are necess
stability of the sensor, without affecting electrical contact between layers. Several methods 
were tested and results are reported here. The use of thermofusible bonding nets and webs has 

flexible piezoresistive sensors appropriate for 
textiles. The transducing element used is a volume

from Caplinq. 
The sensor construction comprises the transducing element as well as two electrodes for electrical 

connection, as shown in Figure 1. The electrode elements should also be flexible. In this work, 
ric was used. Other materials have been tested in

, namely decreasing electrical resistance 

pressure sensors

ensors for 

1, Yu Yao

Science and Textile Technology, 

rtment of Textile Engineering, 35100 Bornova

Industrial Electronics, Guimarães, Portugal

The development of smart textiles relies in many applications on of textile
integrated sensors. Flexible piezoresistive pressure sensors have many potential applications

In this study, flexible pressure sensors are built us
Tests using a universal testing machine 

show that the sensors are functional, accurate, although showing some hysteresis. However, 
methods for joining the electrode and piezoresistive layers are necess
stability of the sensor, without affecting electrical contact between layers. Several methods 
were tested and results are reported here. The use of thermofusible bonding nets and webs has 

piezoresistive sensors appropriate for 
textiles. The transducing element used is a volume

The sensor construction comprises the transducing element as well as two electrodes for electrical 
connection, as shown in Figure 1. The electrode elements should also be flexible. In this work, 

ric was used. Other materials have been tested in
, namely decreasing electrical resistance 

pressure sensors

ensors for s

, Yu Yao

Science and Textile Technology, 

35100 Bornova

Industrial Electronics, Guimarães, Portugal

The development of smart textiles relies in many applications on of textile
integrated sensors. Flexible piezoresistive pressure sensors have many potential applications

In this study, flexible pressure sensors are built us
Tests using a universal testing machine 

show that the sensors are functional, accurate, although showing some hysteresis. However, 
methods for joining the electrode and piezoresistive layers are necess
stability of the sensor, without affecting electrical contact between layers. Several methods 
were tested and results are reported here. The use of thermofusible bonding nets and webs has 

piezoresistive sensors appropriate for 
textiles. The transducing element used is a volume

The sensor construction comprises the transducing element as well as two electrodes for electrical 
connection, as shown in Figure 1. The electrode elements should also be flexible. In this work, 

ric was used. Other materials have been tested in
, namely decreasing electrical resistance 

pressure sensors

smart 

, Yu Yao

Science and Textile Technology, 

35100 Bornova

Industrial Electronics, Guimarães, Portugal

The development of smart textiles relies in many applications on of textile
integrated sensors. Flexible piezoresistive pressure sensors have many potential applications

In this study, flexible pressure sensors are built us
Tests using a universal testing machine 

show that the sensors are functional, accurate, although showing some hysteresis. However, 
methods for joining the electrode and piezoresistive layers are necess
stability of the sensor, without affecting electrical contact between layers. Several methods 
were tested and results are reported here. The use of thermofusible bonding nets and webs has 

piezoresistive sensors appropriate for 
textiles. The transducing element used is a volume-

The sensor construction comprises the transducing element as well as two electrodes for electrical 
connection, as shown in Figure 1. The electrode elements should also be flexible. In this work, 

ric was used. Other materials have been tested in 
, namely decreasing electrical resistance 

pressure sensors

mart 

, Yu Yao3 , 

Science and Textile Technology, Guimarães, Portugal

35100 Bornova

Industrial Electronics, Guimarães, Portugal

The development of smart textiles relies in many applications on of textile
integrated sensors. Flexible piezoresistive pressure sensors have many potential applications

In this study, flexible pressure sensors are built us
Tests using a universal testing machine 

show that the sensors are functional, accurate, although showing some hysteresis. However, 
methods for joining the electrode and piezoresistive layers are necess
stability of the sensor, without affecting electrical contact between layers. Several methods 
were tested and results are reported here. The use of thermofusible bonding nets and webs has 

piezoresistive sensors appropriate for 
-conductive carbon

The sensor construction comprises the transducing element as well as two electrodes for electrical 
connection, as shown in Figure 1. The electrode elements should also be flexible. In this work, 

 [1]. The sensors present a 
, namely decreasing electrical resistance 

 
pressure sensors

mart 

, A P Souto

Guimarães, Portugal

35100 Bornova

Industrial Electronics, Guimarães, Portugal

The development of smart textiles relies in many applications on of textile
integrated sensors. Flexible piezoresistive pressure sensors have many potential applications

In this study, flexible pressure sensors are built us
Tests using a universal testing machine 

show that the sensors are functional, accurate, although showing some hysteresis. However, 
methods for joining the electrode and piezoresistive layers are necessary to assure 
stability of the sensor, without affecting electrical contact between layers. Several methods 
were tested and results are reported here. The use of thermofusible bonding nets and webs has 

piezoresistive sensors appropriate for 
conductive carbon

The sensor construction comprises the transducing element as well as two electrodes for electrical 
connection, as shown in Figure 1. The electrode elements should also be flexible. In this work, 

. The sensors present a 
, namely decreasing electrical resistance 

 
pressure sensors  

mart textiles

A P Souto

Guimarães, Portugal

35100 Bornova,

Industrial Electronics, Guimarães, Portugal 

The development of smart textiles relies in many applications on of textile
integrated sensors. Flexible piezoresistive pressure sensors have many potential applications

In this study, flexible pressure sensors are built us
Tests using a universal testing machine 

show that the sensors are functional, accurate, although showing some hysteresis. However, 
ary to assure 

stability of the sensor, without affecting electrical contact between layers. Several methods 
were tested and results are reported here. The use of thermofusible bonding nets and webs has 

piezoresistive sensors appropriate for 
conductive carbon

The sensor construction comprises the transducing element as well as two electrodes for electrical 
connection, as shown in Figure 1. The electrode elements should also be flexible. In this work, 

. The sensors present a 
, namely decreasing electrical resistance 

extiles

A P Souto

Guimarães, Portugal

, İzmir, Turkey

The development of smart textiles relies in many applications on of textile
integrated sensors. Flexible piezoresistive pressure sensors have many potential applications

In this study, flexible pressure sensors are built us
Tests using a universal testing machine 

show that the sensors are functional, accurate, although showing some hysteresis. However, 
ary to assure 

stability of the sensor, without affecting electrical contact between layers. Several methods 
were tested and results are reported here. The use of thermofusible bonding nets and webs has 

piezoresistive sensors appropriate for 
conductive carbon

The sensor construction comprises the transducing element as well as two electrodes for electrical 
connection, as shown in Figure 1. The electrode elements should also be flexible. In this work, 

. The sensors present a 
, namely decreasing electrical resistance 

extiles

A P Souto1 

Guimarães, Portugal

İzmir, Turkey

The development of smart textiles relies in many applications on of textile
integrated sensors. Flexible piezoresistive pressure sensors have many potential applications

In this study, flexible pressure sensors are built us
Tests using a universal testing machine 

show that the sensors are functional, accurate, although showing some hysteresis. However, 
ary to assure 

stability of the sensor, without affecting electrical contact between layers. Several methods 
were tested and results are reported here. The use of thermofusible bonding nets and webs has 

piezoresistive sensors appropriate for 
conductive carbon

The sensor construction comprises the transducing element as well as two electrodes for electrical 
connection, as shown in Figure 1. The electrode elements should also be flexible. In this work, 

. The sensors present a 
, namely decreasing electrical resistance 

extiles 

 

Guimarães, Portugal

İzmir, Turkey

The development of smart textiles relies in many applications on of textile
integrated sensors. Flexible piezoresistive pressure sensors have many potential applications

In this study, flexible pressure sensors are built us
Tests using a universal testing machine 

show that the sensors are functional, accurate, although showing some hysteresis. However, 
ary to assure mechanical

stability of the sensor, without affecting electrical contact between layers. Several methods 
were tested and results are reported here. The use of thermofusible bonding nets and webs has 

piezoresistive sensors appropriate for 
conductive carbon

The sensor construction comprises the transducing element as well as two electrodes for electrical 
connection, as shown in Figure 1. The electrode elements should also be flexible. In this work, 

. The sensors present a 
, namely decreasing electrical resistance 

 

Guimarães, Portugal

İzmir, Turkey

The development of smart textiles relies in many applications on of textile
integrated sensors. Flexible piezoresistive pressure sensors have many potential applications

In this study, flexible pressure sensors are built us
Tests using a universal testing machine 

show that the sensors are functional, accurate, although showing some hysteresis. However, 
mechanical

stability of the sensor, without affecting electrical contact between layers. Several methods 
were tested and results are reported here. The use of thermofusible bonding nets and webs has 

piezoresistive sensors appropriate for 
conductive carbon-loaded

The sensor construction comprises the transducing element as well as two electrodes for electrical 
connection, as shown in Figure 1. The electrode elements should also be flexible. In this work, silver

. The sensors present a 
, namely decreasing electrical resistance 

Guimarães, Portugal 

İzmir, Turkey 

The development of smart textiles relies in many applications on of textile
integrated sensors. Flexible piezoresistive pressure sensors have many potential applications

In this study, flexible pressure sensors are built us
Tests using a universal testing machine 

show that the sensors are functional, accurate, although showing some hysteresis. However, 
mechanical

stability of the sensor, without affecting electrical contact between layers. Several methods 
were tested and results are reported here. The use of thermofusible bonding nets and webs has 

piezoresistive sensors appropriate for 
loaded

The sensor construction comprises the transducing element as well as two electrodes for electrical 
silver

. The sensors present a 
, namely decreasing electrical resistance 

 

The development of smart textiles relies in many applications on of textile-
integrated sensors. Flexible piezoresistive pressure sensors have many potential applications, 

In this study, flexible pressure sensors are built using 
Tests using a universal testing machine 

show that the sensors are functional, accurate, although showing some hysteresis. However, 
mechanical 

stability of the sensor, without affecting electrical contact between layers. Several methods 
were tested and results are reported here. The use of thermofusible bonding nets and webs has 

piezoresistive sensors appropriate for 
loaded 

The sensor construction comprises the transducing element as well as two electrodes for electrical 
silver-

. The sensors present a 
, namely decreasing electrical resistance 

 
ing 

Tests using a universal testing machine 
show that the sensors are functional, accurate, although showing some hysteresis. However, 

 
stability of the sensor, without affecting electrical contact between layers. Several methods 
were tested and results are reported here. The use of thermofusible bonding nets and webs has 

piezoresistive sensors appropriate for 
 

The sensor construction comprises the transducing element as well as two electrodes for electrical 

. The sensors present a 
, namely decreasing electrical resistance 

http://creativecommons.org/licenses/by/3.0


Aegean International Textile and Advanced Engineering Conference (AITAE 2018)

IOP Conf. Series: Materials Science and Engineering459 (2019) 012035

IOP Publishing

doi:10.1088/1757-899X/459/1/012035

2

 
 
 
 
 
 

 
Pressure sensors based on this principle have been presented by other researchers. Mueller et al [2] 

developed a pressure sensor array for use in robotics, based on Velostat, a similar piezoresistive 
material. Electrodes were set up with stripes of copper-coated fabric, with the upper layer oriented 
perpendicularly to the lower layer, thus forming a matrix.  

In [3], a model for piezoresistive sensors of this type was developed and compared with a sensor 
fabricated using copper plates as electrodes. The authors found that contact resistance is not very 
important at high resistance (low force) but becomes significant at low resistance. This means that the 
sensor construction and electrode preparation may have an important influence on the performance of 
the sensor. 

A construction for integration of the sensors in textiles was presented in [4]. The piezoresistive film 
was inserted into a pocket in a knitted structure using the intarsia technique. This allowed to insert an 
area of conductive yarn at each side of the film, thus forming the two electrodes. 

The use of different electrode materials was compared in [1], where a conductive woven fabric, a 
conductive knitted fabric and copper tape were used as electrodes. It was shown that the behaviour of 
the copper tape is very similar to that of the woven fabric, with some spread and hysteresis. Using a 
specifically designed circuit for conditioning of the sensor, it was possible to obtain an almost linear 
relationship between Force and output voltage. Using the knitted fabric, however, the relation turned 
non-linear, although with less spread and hysteresis. 

In the previous experiments, the layers of the sensor were simply overlaid, without any binding 
between them. This results in instability of the zero point, because contact between the layers varies 
when pressure is removed. Moreover, to provide mechanical stability of the assembly, which assures 
robustness for practical use of the sensor, a method of joining the layers should be found. Several 
solutions have been tried, such as fusing the fabric with Linqstat using a hot press, preparing the 
electrodes with conductive silicone or with conductive ink, all of them presenting significant 
drawbacks [5][6]. In this work, thermoplastic bonding nets and webs were used to achieve bonding 
between layers. 

 

2.  Materials and methods 
The sensors were constructed according to the following table: 

 
Table 1. Materials and conditions. 

 Material Conditions 

Electrodes Sn/Cu/Ag plated polyamide fabric: Zell by 
Statex 

Cut smaller than piezoresistive 
layer, see Figure 2 

Piezoresistive 
material 

Linqstat (Caplinq) Dimensions square 3x3cm 
 

Bonding 
material 1 

Thermoplastic web based on polyolefin, 
manufacturer 1 
 

Press, 5 bar, 10 sec, 110 ºC 
Oven, 10 minutes, 110 ºC 
Glass plate on sensor assembly 

Bonding 
material 2 

Thermoplastic net based on polyolefin, 
manufacturer 2 
 

Press, 5 bar, 10 sec, 85 ºC 
Press, 5 bar, 10 sec, 110 ºC 
Oven, 10 minutes, 110 ºC 
Glass plate on sensor assembly 

 
Figure 2 shows the sensor layers overlaid before the bonding operation: 
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3.3.  Comparison with unbonded sensor 
The results obtained using the bonding materials are qualitatively very similar to the ones obtained for 
sensors with simply overlaid layers [1]. The same type of hysteretic behaviour and increase of 
maximum output voltage over time has been observed. A major difference is the resistance values 
measured. As expected, with the bonding layer partly isolating the electrical contact between the 
piezoresistive and the electrode layers, the resistance values are higher for the bonded sensors. Using 
bonding material 1, resistance values at 100 N were 125 and 101 Ω for sample 1 and 2, respectively. 
With bonding material 2, resistance values at 100N were 206 and 142 Ω. Sensors without bonding 
material presented values of about 50 Ω. 

 

4.  Conclusions and future work 
In this work, a method for joining the layers of a flexible, polymer-based piezoresistive sensors has 
been found. Previous efforts had not been successful [5][6]. This is an important achievement for the 
practical use of such a sensor, allowing it to be placed in any position, avoiding the displacement of 
the layers and assuring a stable zero point. 

Adhesion between the layers seems to be sufficient in all cases, but has to be further evaluated and 
quantified. Plasma treatment of the piezoresistive layer can help improve adhesion and will be used in 
future experiments. Future work will also focus on the observed effect of decreasing electrical 
resistance when cyclic loading is applied. 
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